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Word of low complexity without uniform

frequencies

Julien Cassaigne and Idrissa Kaboré

Abstract: In this paper, we construct a uniformely recurrent infinite
word of low complexity without uniform frequencies of letters. This shows
the optimality of a bound of Boshernitzan, which gives a sufficient condition
for a uniformly recurrent infinite word to admit uniform frequencies.

Mathematics Subject Clasification: 37B10, 37A25, 68R15 . 1

1 Introduction

Let us consider an infinite word u over a finite alphabet. We can naturally
associate to it a subshift. The goal of this paper is to describe some ergodic
properties of this subshift. By Oxtoby theorem, we know that the subshift is
uniquely ergodic if and only if, in u, each finite word has uniform frequency.
Moreover the subshift is minimal if u is uniformly recurrent.

For a long time, people have tried to find some conditions on infinite
words which imply one of these properties. M. Keane gave in [10] a uniformly
recurrent infinite word with complexity 3n+1 (from 4-interval exchange map)
which does not possess uniform frequencies. Later, Boshernitzan, in [1],
proved that a uniformly recurrent infinite word admits uniform frequencies
if either of the following sufficient conditions is satisfied:

lim inf
p(n)

n
< 2 or lim sup

p(n)

n
< 3

where p denotes the complexity function of u (see [3] chap. 4, by J. Cassaigne
and F. Nicolas for more details on the subject).

The bound of the second sufficient condition of Boshernitzan being al-
ready optimal by Keane’s result, our goal in his work is to establish the
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optimality of the bound of the first sufficient condition. And we succeed to
construct a uniformly recurrent infinite word without uniform frequencies,

the complexity function of which verifies lim inf
p(n)

n
= 2.

This result relates some properties of the complexity function and the
ergodic measures of the subshift. This type of question has been investigated
in the last years. The goal is to bound the number of ergodic measures of
the subshift in terms of the complexity function.

Boshernitzan was the first to look at it, see [1]. During his Phd. thesis T.
Monteil, see [11] and [3] (chap. 3 by S. Ferenczi and Th. Monteil) has proved,

the same result with different techniques: If lim sup
p(n)

n
= K ≥ 2, then the

subshift has at most K − 2 ergodic measures. Since this time, some results
have appeared in the same veine: V. Cyr and B. Kra have also obtained
similar results, see [6, 7]. In the first paper, they prove that the bound of
Boshernitzan is sharp. In the second one, they construct minimal subshifts
with complexity function arbitrarily close to linear but having uncountably
many ergodic measures. We can also cite M. Damron and D. Fickenscher [8]
who obtained the bound K+1

2
under a condition on the bispecial words.

Nevertheless, it seems that our proof is of a different nature, with an
explicit construction of the infinite word.

After the preliminaries (section 2) we construct an infinite word which is
uniformly recurrent in section 3, then we show in section 4 that this word is
without uniform frequencies of letters and to finish we study the complexity
of this word in section 5 and give in section 6 the proof of the main statement
of section 3.

2 Preliminaries

In all that follows we consider the alphabet A = {0, 1}. Let us denote A∗,
the set of the finite words on alphabet A, ε the empty word. For all u in
A∗, |u| denotes the length (the number of letters it contains) of the word u
(|ε| = 0) and for any letter x of A, |u|x is the number of occurrences of the
letter x in u. We call Parikh vector of a finite word u, the vector denoted by

U and defined by

(
|u|0
|u|1

)
.

A finite word u of length n formed by repeating a single letter x is typ-
ically denoted xn. We define the n-th power of a finite word w as being
the concatenation of n copies of w; we denote it wn. An infinite word is an
infinite sequence of letters of A. We denote Aω the set of infinite words on
A.
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We say a finite word v is a factor of u if there exist two words u1 and u2

on the alphabet A such that u = u1vu2; we also say that u contains v. The
factor v is said prefix (resp. suffix) if u1 (resp. u2) is the empty word. For
any word u, the set of factors of length n is denoted Ln(u). The set of all
factors of u is simply denoted L(u).

Definition 2.1. Let u be an infinite word on the alphabet A = {0, 1}. A
factor v of u is said to be

• a right special factor if v0 and v1 are both factors of u, and a left special
factor if 0v and 1v are both factors of u.

• a bispecial factor of u if v is simultaneously a right special factor and
a left special factor of u.

• a stronq bispecial factor of u if 0v0, 0v1, 1v0, 1v1 are factors of u and
a weak bispecial factor if uniquely 0v0 and 1v1, or 0v1 and 1v0, are
factors of u.

• an ordinary bispecial factor of u if v is a bispecial factor of u which is
neither strong nor weak.

An infinite word u is said to be recurrent if any factor of u appears
infinitely often. An infinite word u is uniformly recurrent if for all n ∈ N,
there exists N such that any factor of u of length N contains all the factors
of u of length n.

Definition 2.2. Let u be an infinite word on an alphabet A. The complexity
function of u is a function counting the number of distinct factor of u of
length n for any given n. It is denoted p and so that:

p(n) = #Ln(u).

Let us denote s and b the functions respectively called first difference
and second difference of the complexity of u; they are defined as follows:
s(n) = p(n+ 1)− p(n) and b(n) = s(n + 1)− s(n).

On a binary alphabet the function s counts the number of special factors
for a given length in u. Let us denote m the map from L(u) to {−1, 0, +1}
defined by

∀v ∈ L(u), m(v) =





−1 if v is weak bispecial
+1 if v is strong bispecial
0 otherwise
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The following formula was given by the first author in [5]:

∀n ≥ 0, s(n) = 1 +
∑

w ∈ L(u)
|w| < n

m (w) = 1 +
∑

w bispecial
|w| < n

m (w) .

This relation allows to compute the complexity p(n) provided when we
are able to describe the set of strong and weak bispecial factors of the binary
infinite word u.

Definition 2.3. Two bispecial factors v and w of an infinite word u on
the alphabet {0, 1} are said to have the same type if they are all strong,
weak, or ordinary. In other words the bispecial v and w have the same if
m(v) = m(w).

Definition 2.4. ([3] chap. 7, by S. Ferinczi and T. Monteil) Let u be an
infinite word on an alphabet A.

• We say that u admits frequencies if for any factor w , and any sequence
(un) of prefixes of u such that limn→∞ = ∞, then limn→∞

|un|w
|un|

exists.

• We say that u admits uniform frequencies if for any factor w, and any
sequence (un) of factors of u such that limn→∞ = ∞, then limn→∞

|un|w
|un|

exists.

In [10], M. Keane gave an example of a uniformly recurrent infinite word
with complexity 3n + 1 which does not possess uniform frequencies. Later,
Boshernitzan [1] obtained the following results:

Theorem 2.1. Let u be an infinite word on an alphabet A. Then, u ad-
mits uniform frequencies if its complexity function verifies at least one of the
following conditions:

• lim inf
p(n)

n
< 2,

• lim sup
p(n)

n
< 3.

The example of Keane enssures that constant 3 is optimal in the second
condition, i.e., it cannot be replaced with a larger constant.
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3 Construction of a class of uniformly recurrent

words

Let (li), (mi), (ni) be three integer sequences which are strictly increasing
and verify the following conditions:

• li < mi < ni,

•
mi

li
increases exponentially to +∞,

•
ni

mi

increases exponentially to +∞.

Let us define in A∗ two sequences (ui) and (vi) in the following way:
u0 = 0, v0 = 1 and for all i ∈ N, ui+1 = umi

i vlii and vi+1 = umi

i vni

i . The
sequence (ui) converges towards an infinite word u.

For i ≥ 1, consider the substitution σi defined by σi(0) = 0mi1li, σi(1) =
0mi1ni. Then, we have

ui = σ0σ1σ2 . . . σi−1(0) and vi = σ0σ1σ2 . . . σi−1(1).

Theorem 3.1. Any infinite word u so defined is uniformly recurrent.

The proof is given at the end of this paper.

4 The word u is without uniform frequencies

Lemma 4.1. For all i ≥ 1 we have:

1.
|ui|0
|ui|

≥

(
1 +

l0
m0

)−1

Πi−1
j=1

(
1 +

ljnj−1

mjlj−1

)−1

2.
|vi|1
|vi|

≥ Πi−1
j=0

(
1 +

mj

nj

)−1

.

Proof. • Lower bound on
|ui+1|0
|ui+1|

.

Firstly, we have for all i ≥ 0, |ui| ≤ |vi| since |u0| = |v0| = 1 and ui is a

strict prefix of vi for i ≥ 1. Then
|vi|

|ui|
=

mi−1|ui−1|+ ni−1|vi−1|

mi−1|ui−1|+ li−1|vi−1|
≤

ni−1

li−1

since

li−1 < ni−1 for i ≥ 1.
As

|ui+1|0 = mi|ui|0 + li|vi|0 ≥ mi|ui|0

5



and

|ui+1| = mi|ui|+ li|vi| = |ui|

(
mi + li

|vi|

|ui|

)

we deduce the following inequalities:

|ui+1| ≤ |ui|

(
mi + li

ni−1

li−1

)

and
|ui+1|0
|ui+1|

≥

(
1 +

li
mi

ni−1

li−1

)−1

·
|ui|0
|ui|

.

Thus
|ui|0
|ui|

≥
|u1|0
|u1|

Πi−1
j=1

(
1 +

ljnj−1

mjlj−1

)−1

.

• Lower bound on
|vi+1|1
|vi+1|

.

We have

|vi+1|1 = mi|ui|1+ni|vi|1 ≥ ni|vi|1 and |vi+1| = mi|ui|+ni|vi| ≤ |vi| (mi + ni)

since |ui| ≤ |vi|. So
|vi+1|1
|vi+1|

≥
ni

mi + ni

.
|vi|1
|vi|

.

Hence
|vi|1
|vi|

≥ Πi−1
j=0

(
1 +

mi

ni

)−1

.

In the rest of the paper we need to fix

li = 22.2
i+4, mi = 28.2

i

, and ni = 210.2
i

, for i ≥ 0. (∗)

Then the inequalities of Lemma 4.1 become:

1.
|ui|0
|ui|

≥ Πi
j=1

1

1 + 2−2j

2.
|vi|1
|vi|

≥ Πi
j=1

1

1 + 2−2j

So we get

6



Lemma 4.2.

∀i ≥ 1, min

(
|ui|0
|ui|

,
|vi|1
|vi|

)
≥ Πi

j=1

1

1 + 2−2j
.

Then we have the following lemma:

Lemma 4.3.

∀i ∈ N,
|ui|0
|ui|

+
|vi|1
|vi|

≥
3

2
.

Proof. • For i = 0, the inequality is evident.

• For i ≥ 1, write: Pi = Πi
j=1

1

1 + 2−2j
. The sequence (Pi) is decreasing

and satisfies the following induction formula: Pi+1 =
1

1 + 2−2i+1
Pi.

Let us show, by induction, that
4

3
Pi =

1

1− 2−2i+1
.

We have
4

3
P0 =

1

1− 2−2
.

Assuming that for some i ≥ 0,
4

3
Pi =

1

1− 2−2i+1
it follows :

4

3
Pi+1 =

4

3
Pi ×

1

1 + 2−2i+1
=

1

1− 2−2i+1
×

1

1 + 2−2i+1
=

1

1− 2−2i+2
.

So

Pi =
3

4
×

1

1− 2−2i+1
.

Hence, with Lemma 4.2 we get

|ui|0
|ui|

+
|vi|1
|vi|

≥ 2×
3

4
×

1

1− 2−2i+1
≥

3

2
.

Lemma 4.4. The letters of the word u do not admit unform frequencies.

Proof. If the letters of u possessed uniform frequencies, then the frequen-
cies of 0 and 1, respectively denoted fu(0) and fu(1), should verify fu(0) =

limi→∞
|ui|0
|ui|

, fu(1) = limi→∞
|vi|1
|vi|

and fu(0) + fu(1) = 1. That is contradic-

tory with Lemma 4.3.
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5 Complexity of u

To estimate the complexity of u we are going to observe its bispecial factors.

Notation 5.1. Let h, i ∈ N. We denote u
(h)
i the finite word σhσh+1σh+2 . . . σh+i−1(0)

and u(h) the infinite word limi→∞ u
(h)
i . However u

(0)
i and u(0) are simply de-

noted respectively ui and u.

Definition 5.1. A factor of u(h) is said to be short if it does not contain 10
as a factor. A factor of u(h) which is not short is said to be long.

Lemma 5.1. (Synchronization lemma): Let w be a long factor of u(h). Then

there exist x, y ∈ A and v ∈ A∗ such that xvy is a factor of u
(h+1)
i and

w = sσh (v) p, where s is a non-empty suffix of σh(x), and p is a non-empty
prefix of σh(y). Moreover, the triple (s, v, p) is unique.

Proof. Since w is long, it cannot occur inside the image of one letter. Any
occurrence of w in u is therefore of the form sσh(v)p, so existence follows.

Uniqueness is consequence of the fact that 10 occurs in u(h) only at the
border between to images of letters under σh.

Lemma 5.2. 1. The short and strong bispecial factors of u(h) are ε and
1lh.

2. The short and weak bispecial factors of u(h) are 0mh−1 and 1nh−1.

Proof. Let us first observe that in u(h), the factor 01 is always preceded by
10mh−1. Therefore a bispecial factor containing 01 must also contain 10 and
is long.

Then the short bispecial factors are all of the form 0k or 1k, k ≥ 0. We see
that ε is strong bispecial (extensions 00, 01, 10, 11); 0k (0 ≤ k < mh − 1) is
ordinary bispecial (extensions 00k0, 00k1, 10k0), as well as 1k (1 ≤ k < nh−1,
k 6= lh); 1

lh is strong bispecial (extensions 01lh0, 01lh1, 11lh0, 11lh1); 0mh−1 is
weak bispecial (extensions 00mh−11 and 10mh−10), as well as 1nh−1; 0mh and
1nh are not special, and 0k (k > mh) and 1k (k > nh) are not factors.

Lemma 5.3. Let w be a factor of u(h). Then the following assertions are
equivalent:
(1) w is a long bispecial factor of u(h).
(2) There exists a bispecial factor v of u(h+1) such that w = σ̂h(v) where
σ̂h(v) = 1lhσh(v)0

mh1lh.
Moreover v and w have the same type and |v| < |w|.
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Proof. First, let us observe this fact: If a finite word v is a factor of u(h+1) then
σ̂h(v) = 1lhσh(v)0

mh1lh is a factor of u(h). Now, let us consider a bispecial
factor v of u(h+1). Therefore the words σ̂h(0v), σ̂h(1v), σ̂h(v0) and σ̂h(v1) are
factors of u(h); moreover 0σ̂h(v) and 1σ̂h(v) are respectively suffix of the first
two words whereas σ̂h(v)0 and σ̂h(v)1 are respectively prefix of the last two
words. Hence, the word w = σ̂h(v) is bispecial in u(h), and m(w) ≥ m(v).

Conversely, let w be a long bispecial factor of u(h). Then, according to the
synchronization lemma, we can write w uniquely in the form sσh(v)p where
s and p are respectively non-empty suffix and prefix of images of letters.

As 0w and 1w are factors of u(h), and σh(v)p starts with 0, it follows
that 0s0 and 1s0 are factors of u(h). This is only possible if s = 1lh (
s = 1k with 1 ≤ k < lh or lh < k < nh are excluded since 0s0 /∈ L

(
u(h)

)
;

s = 0k1lh with 1 ≤ k < mh and s = 0k1nh with 0 ≤ k < mh are excluded
since 1s0 /∈ L

(
u(h)

)
; and s = 0mh1lh and s = 0mh1nh are excluded since

0s0 /∈ L
(
u(h)

)
).

Similarly, 1p0 and 1p1 are factors of u(h), and this is only possible if
p = 0mh1lh. Therefore w = σ̂h(v).

If w extends as awb with a, b ∈ A, then v also extends as avb. Therefore
m(v) ≥ m(w). It follows that m(v) = m(w): v and w have the same type.
Moreover, it is clear that |v| < |w|.

In fact, long bispecial factors of u(h) are the images by σ̂h of the “less
long” bispecial factors of u(h+1). Thus, step by step, any non-ordinary bis-
pecial factor w of u(h) of given type, will be write in the following form
σ̂hσ̂h+1 . . . σ̂h+i−1(v) where v is a short bispecial factor of u(h+i) with the
same type.
We will call bispecial factors of rank i, (i ≥ 0) of u(h), and write a

(h)
i , b

(h)
i ,

c
(h)
i , d

(h)
i the following words

a
(h)
i = σ̂hσ̂h+1 . . . σ̂h+i−1(ε), b

(h)
i = σ̂hσ̂h+1 . . . σ̂h+i−1(1

lh+i),

c
(h)
i = σ̂hσ̂h+1 . . . σ̂h+i−1(0

mh+i−1) and d
(h)
i = σ̂hσ̂h+1 . . . σ̂h+i−1(1

nh+i−1).

The short bispecial ε, 1lh , 0mh−1 and 1nh−1 of u(h) are the bispecial factors
of rank 0, a

(h)
0 , b

(h)
0 , c

(h)
0 , and d

(h)
0 .

The non-ordinary bispecial factors of u are therefore ai = a
(0)
i , bi = b

(0)
i ,

ci = c
(0)
i , di = d

(0)
i .

Definition 5.2. Let v, w ∈ A∗ and V, W be their corresponding Parikh
vectors. Let us say that V is less than W and write V < W when |v|a ≤ |w|a
for all a ∈ A and |v| < |w|.
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Proposition 5.1. Let v, w, v′, w′ be four words such that v′ = σ̂i(v) and
w′ = σ̂i(w). Then

V < W =⇒ V ′ < W ′.

Proof. Assume that V < W . Then, |v|0 ≤ |w|0, |v|1 ≤ |w|1, and |v| < |w|.
On the one hand, we have |v′|0 = mi (|v|+ 1) and |w′|0 = mi (|w|+ 1); hence
|v′|0 < |w′|0. On the other hand, we have |v′|1 = li|v|0 + ni|v|1 + 2li and
|w′|1 = li|w|0 + ni|w|1 + 2li; so |v′|1 ≤ |w′|1. Finally, |v′| = |v′|0 + |v′|1 <
|w′|0 + |w′|1 = |w′|1.

Lemma 5.4. For all i ≥ 0, let Ai, Bi, Ci, Di be the Parikh vectors corre-
sponding to the non-ordinary bispecial factors of u, ai, bi, ci, di. Then, we
have

∀i ≥ 1, Di−1 < Bi < Ci < Ai+1 < Di

Proof. Applying σ̂i−1 on the words b
(i)
0 , c

(i)
0 , σ̂i

(
a
(i+1)
0

)
= 1li0mi1li, and d

(i)
0

we get the following words




d
(i−1)
0 = 1ni−1−1

b
(i−1)
1 = 1li−1 (0mi−11ni−1)li 0mi−11li−1

c
(i−1)
1 = 1li−1

(
0mi−11li−1

)mi−1
0mi−11li−1

a
(i−1)
2 = 1li−1 (0mi−11ni−1)li

(
0mi−11li−1

)mi (0mi−11ni−1)li 0mi−11li−1

d
(i−1)
1 = 1li−1 (0mi−11ni−1)ni−1 0mi−11li−1 .

The Parikh vectors corresponding to these words are:




D
(i−1)
0 =

(
0

ni−1 − 1

)

B
(i−1)
1 =

(
mi−1 (li + 1)
ni−1li + 2li−1

)

C
(i−1)
1 =

(
mimi−1

li−1 (mi + 1)

)

A
(i−1)
2 =

(
mi−1 (mi + 2li + 1)

li−1 (mi + 2) + 2lini−1

)

D
(i−1)
1 =

(
mi−1ni

ni−1 (ni − 1) + 2li−1

)
.

From (∗) we have

ni−1li + li−1 < li−1mi, mi + 2li + 1 < ni, li−1mi + 2ni−1li < ni−1 (ni − 1) .

It follows the inequalities:

D
(i−1)
0 < B

(i−1)
1 < C

(i−1)
1 < A

(i−1)
2 < D

(i−1)
1

10



Applying σ̂i−2 on the words d
(i−1)
0 , b

(i−1)
1 , c

(i−1)
1 , a

(i−1)
2 , and d

(i−1)
1 we get the

words d
(i−2)
1 , b

(i−2)
2 , c

(i−2)
2 , a

(i−2)
3 , and d

(i−2)
2 ; By Proposition 5.1, it results the

following inqualities:

D
(i−2)
1 < B

(i−2)
2 < C

(i−2)
2 < A

(i−2)
3 < D

(i−2)
2 .

And so on, after the i-th iteration we get:

D
(0)
i−1 < B

(0)
i < C

(0)
i < A

(0)
i+1 < D

(0)
i .

Lemma 5.5.

∀i ≥ 0, |bi| < |ci| < |ai+1| < |di| < |bi+1|.

Proof. • For i ≥ 1, the inequalities |bi| < |ci| < |ai+1| < |di| < |bi+1| follows
from Lemma 5.4
• For i = 0, recall that

|b0| = l0, |c0| = m0−1, |a1| = 2l0+m0, |d0| = n0−1 and |b1| = l1 (m0 + n0)+m0+2l0.

So
|b0| < |c0| < |a1| < |d0| < |b1|.

Lemma 5.6. The function s associated to the word u verifies:

∀n ∈ N, s(n) =





1 if n = 0

2 if n ∈
⋃

i≥0

(
]|ci|, |ai+1|] ∪ ]|di|, |bi+1|]

)
∪ ]0, |b0|]

3 if n ∈
⋃

i≥0

(
]|bi|, |ci|] ∪ ]|ai+1|, |di|]

)
.

Proof. Let n ∈ N. We know that ai, bi, ci, and di, i ≥ 0 are the only bispecial
factors of u which are strong or weak. Hence, we have

s (n) = 1 +
∑

w bispecial
|w| < n

m (w)

= 1 + # {i ≥ 0 : |ai| < n}
+# {i ≥ 0 : |bi| < n}
−# {i ≥ 0 : |ci| < n}

−# {i ≥ 0 : |di| < n} .

11



Since for m ∈]0, |b0|[ there is not strong or weak bispecial factor of u with
length m we have,

for 0 < n ≤ |b0|, s(n) = 1 +
∑

w bispecial
|w| ≤ n− 1

m (w) = 1 +m(ε) = 2.

Suppose n > |b0|. Then, there exists i ∈ N such that n ∈ [|bi|, |bi+1|[.
Since the sequences |ai|, |bi|, |ci|, and |di| are increasing we are in one of the
following cases:

• n ∈ [|bi|, |ci|[, then s(n) = 1 + (i+ 1) + (i+ 1)− (i)− (i) = 3.
• n ∈ [|ci|, |ai+1|[, then s(n) = 1 + (i+ 1) + (i+ 1)− (i+ 1)− (i) = 2.
• n ∈ [|ai+1|, |di|[, then s(n) = 1 + (i+ 2) + (i+ 1)− (i+ 1)− (i) = 3.
• n ∈ [|di|, |bi+1|[, then s(n) = 1+ (i+2)+ (i+1)− (i+1)− (i+1) = 2.

Theorem 5.2. The complexity function p of u verifies:

∀n ≥ 1, p(n) ≤ 3n+ 1.

Proof. By Lemma 5.6, s(n) ≤ 3 for all n ≥ 0. So, p(n) = p(0)+
∑n−1

m=0 s(m) ≤
p(0) + 3(n) = 3n+ 1.

Proposition 5.3. Let v, w, v′, w′ be four finite words such that v′ = σ̂i(v)
and w′ = σ̂i(w). Then for all λ > 0 we have:

W > λ

[
V +

(
1
1

)]
=⇒ W ′ > λ

[
V ′ +

(
1
1

)]

Proof. Assume that W > λ

[
V +

(
1
1

)]
. Since |v′|0 = mi (|v|+ 1) and |v′|1 =

li|v|0 + ni|v|1 + 2li then:

V ′ =

(
mi mi

li ni

)(
|v|0
|v|1

)
+

(
mi

2li

)
.

In the same way, we write W ′ (it suffices to replace V with W in the previous
formula). It follows,

W ′ − λ

[
V ′ +

(
1
1

)]
=

(
mi mi

li ni

)(
|w|0 − λ|v|0
|w|1 − λ|v|1

)
+ (1− λ)

(
mi

2li

)
− λ

(
1
1

)
.

Since

W > λV + λ

(
1
1

)
and (1− λ)

(
mi

2li

)
> −λ

(
mi

2li

)

12



it follows that:

W ′−λ

[
V ′ +

(
1
1

)]
> λ

[(
mi mi

li ni

)(
1
1

)
−

(
mi + 1
2li + 1

)]
= λ

(
mi − 1

ni − li − 1

)
>

(
0
0

)
.

This proposition allows to prove the following lemma:

Lemma 5.7.

∀i ≥ 0, Bi+1 > li+1

[
Di +

(
1
1

)]

Proof. Let us choose an integer i ≥ 1. Then, we have b
(i)
1 = σ̂i

(
b
(i+1)
0

)
=

1li (0mi1ni)li+1 0mi1li and d
(i)
0 = 1ni−1; the corresponding Parikh vectors are:

B
(i)
1 =

(
li+1mi +mi

li+1ni + 2li

)
and D

(i)
0 =

(
0

ni − 1

)
. It follows the inequality:

B
(i)
1 > li+1

[
D

(i)
0 +

(
1
1

)]
.

By regressive induction on j ≤ i, suppose that:

B
(j)
i+1−j > li+1

[
D

(j)
i−j +

(
1
1

)]

where B
(j)
i+1−j and D

(j)
i−j are respectively Parikh vectors of the words b

(j)
i+1−j

and d
(j)
i−j.

Thus, by Proposition 5.3,

B
(j−1)
i+2−j > li+1

[
D

(j−1)
i−j+1 +

(
1
1

)]

since B
(j−1)
i+2−j and D

(j−1)
i−j+1 are respectively Parikh vectors of b

(j−1)
i+2−j = σ̂j−1

(
b
(j)
i+1−j

)

and d
(j−1)
i−j+1 = σ̂j−1

(
d
(j)
i−j

)
. So,

B
(j)
i+1−j > li+1

[
D

(j)
i−j +

(
1
1

)]
, 0 ≤ j ≤ i.

In the inequality above, we find the lemma by making j = 0.

Theorem 5.4. The complexity function p of u verifies lim inf
p(n)

n
= 2

13



Proof. We have s(n) = 2 for |di| < n ≤ |bi+1|. So

p (|bi+1|) = p (|di|) + 2 (|bi+1| − |di|) .

By Lemma 5.6, we have p(n) ≤ 3n+ 1 and we deduce that:

p (|bi+1|) ≤ 2|bi+1|+ 1 +
1

li+1
|bi+1|

since Bi+1 > li+1

[
Di +

(
1
1

)]
> li+1Di. So

p (|bi+1|)

|bi+1|
≤ 2 +

1

|bi+1|
+

1

li+1
and lim

i→∞

p (|bi+1|)

|bi+1|
= 2.

Thus, lim inf
p(n)

n
= 2, since s(n) ≥ 2 (for all n ≥ 1) implies lim inf

p(n)

n
≥

2.

6 Proof of theorem 3.1

Now, with Notation 5.1 we are able to explain the proof of Theorem 3.1.

Proof. Let us show that for i ≥ 0, there exists Ni such that any factor of u
of length Ni contains the prefix ui. Indeed, u does not contain 1n0+1.

• For i = 0 any factor of u of length N0 = n0 + 1 contains the prefix
0 = u0.

• For i ≥ 1, any factor of u(i) of length N
(i)
0 = ni + 1 contains the prefix

0 = u
(i)
0 of u(i). Thus, any factor of u(i−1) of length

N
(i−1)
1 = (mi−1 + ni−1)

(
N

(i)
0 + 1

)

contains σi−1 (0) = u
(i−1)
1 .

By regressive induction on j, suppose that for j ≤ i−1, there exists N
(j)
i−j

such that any factor of u(j) of length N
(j)
i−j contains the word u

(j)
i−j. Then, any

factor of u(j−1) of length

N
(j−1)
i−j+1 = (mj−1 + nj−1)

(
N

(j)
i−j + 1

)

contains σj−1

(
u
(j)
i−j

)
= u

(j−1)
i−j+1.

So, for 0 ≤ j ≤ i − 1, there exists N
(j)
i−j such that any factor of u(j) of

length N
(j)
i−j contains the word u

(j)
i−j.

Consequently, letting Ni = N
(0)
i , it follows that any factor of u = u(0) of

length Ni contains the word ui. This completes the proof.
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