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LOCAL TYPES OF (Γ, G)-BUNDLES

AND PARAHORIC GROUP SCHEMES

CHIARA DAMIOLINI AND JIUZU HONG

Abstract. Let G be a simple algebraic group over an algebraically closed field k. Let Γ be
a finite group acting on G. We classify and compute the local types of (Γ, G)-bundles on a
smooth projective Γ-curve in terms of the first non-abelian group cohomology of the stabilizer
groups at the tamely ramified points with coefficients in G. When char(k) = 0, we prove
that any generically simply-connected parahoric Bruhat–Tits group scheme can arise from a
(Γ, Gad)-bundle. We also prove a local version of this theorem, i.e. parahoric group schemes
over the formal disc arise from constant group schemes via tamely ramified coverings.

1. Introduction

Moduli spaces of vector bundles on a smooth and projective curve C have been a central
object in algebraic geometry, with tight relations to representation theory and also conformal
field theory. A natural generalization of these objects, which encompass parabolic bundles
or prym varieties, is to instead consider principal G-bundles over C, where G is a parahoric
Bruhat–Tits group. The definition of this type of group can be roughly described by saying
that the generic fiber of G is reductive, it has connected geometric fibers, and for every point
x ∈ C such that G|x is not reductive, the sections of G over a formal disk about x defines a
parahoric group in the sense of [BT84], see Definition 2.2.1. The points x with non reductive
fiber G|x are called ramified points of G. In what follows we will assume further that the
generic fiber of G is actually simple and not merely reductive. One of the aims of this paper,
developed in Section 6 and inspired by [BS15], is to provide a direct description of these
groups through (ramified) Galois coverings and the concept of (Γ, G)-bundles.

Parahoric Bruhat–Tits groups have been introduced in [PR10], where the authors outline
a series of conjectures about the moduli space BunG of G-bundles. Among others, they
suggest the description of spaces of generalized theta functions on BunG via an appropriate
notion of conformal blocks, which would be the first step to obtain a Verlinde-type formula
to compute their dimension. Motivated by this paper and by the uniformization theorem for
BunG [Hei10]—conjectured as well in [PR10]—many mathematicians have worked on twisted
conformal blocks [Dam20, Zel19, HK18, DM19, HK22]. These are a natural generalization
of the conformal blocks attached to a curve C and to representations of simple Lie algebras
(see, e.g., [TUY89]), where the simple Lie algebra is replaced by a pair (Γ, g) consisting of a
simple Lie algebra g and a finite group Γ acting on g. Its representation theory is described
by (possibly twisted) affine Lie algebras and, under appropriate conditions, one can identify
them with appropriate spaces of generalized theta functions on BunG , where G is a parahoric

Bruhat–Tits group on C arising from a Γ covering C̃ of C [HK18].
As we have mentioned, one of the goals is to express parahoric Bruhat–Tits groups through

(Γ, G)-bundles, concept introduced in [BS15] and then extended by the first author in [Dam21].

Let Γ be a finite group and assume that it acts on a smooth and projective curve C̃ over
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Spec(k) so that π : C̃ → C̃/Γ =: C is a possibly ramified covering of the curve C (we assume
here that char(k) does not divide the order of Γ). Let G be a simple algebraic group over k

and assume that Γ acts on G as well, so that one obtains an induced action of Γ on G × C̃.

Under these assumptions, the group G := π∗(G × C̃)Γ is a parahoric Bruhat–Tits group
over C. We can generalize this construction, by considering (Γ, Gad)-bundles, i.e. principal

Gad-bundles over C̃ which are further equipped with a compatible action of Γ. If E is a
(Γ, Gad)-bundle, then the group scheme GE := E ×Gad G is still equipped with an action of Γ

lifting the action on C̃, so that GE := π∗(GE )
Γ defines a smooth group scheme over C. This is

actually a parahoric Bruhat–Tits group over C and, according to the following theorem, this
construction essentially recovers all parahoric Bruhat–Tits groups.

Theorem 6.2.2. Let G be a parahoric Bruhat–Tits group over C, a smooth and projective
curve of genus g ≥ 1 over an algebraically closed field k of characteristic zero. Assume that G
is generically simple and simply connected, and let G be the group over k with the same root
datum as Gk(C), where k(C) is the function field of C. Then there exists a finite group Γ, a

Γ-covering π : C̃ → C, and a (Γ, Gad)-bundle E on C̃ such that G ∼= π∗(GE )
Γ.

This result is stated in slightly more generality in Theorem 6.2.2, where curves of genus
zero are allowed, provided that G is ramified at at least two points, or not ramified at all. This
result can be seen as a generalization of [BS15, Theorem 5.2.7]: in fact, Balaji and Seshadri
assume that the parahoric Bruhat–Tits group G is generically split, while we do not restrict
to this case.

The proof of Theorem 6.2.2 relies on its local counterpart, developed in Section 4 and
which we summarize here. For every integer N will use the notation KN (resp. ON ) to

denote k((z1/N )) (resp. k[[z1/N ]]). Moreover, if σ is an automorphism of G with σN = 1, we

let σ act on KN as well by σ(z1/N ) = ζ−1
N z1/N for a primitive N -th root of unity ζN .

Theorem 4.2.1. Let τ be a diagram automorphism of order r of the simple and simply
connected group G, and let T be a maximal torus preserved by τ . Let Gθ be a parahoric group
scheme of the twisted loop group G(Kr)

τ corresponding to a point θ in X∗(T )
τ
Q. Let m be the

minimal positive integer such that mθ is in the lattice X∗(Tad)
τ , where Tad is the image of T

in Gad, the adjoint quotient of G. If char(k) does not divide m, then

Gθ ∼= ResOm/O (GOm)
σ ,

for some automorphism σ on G such that σm = 1, and σ̄ = τ̄ ∈ Out(G).

This can be viewed as an extension of [BS15, Theorem 2.3.1], where the authors assumed
τ is trivial. Here instead, σ can be any finite order automorphism of G, see Corollary 4.1.6.
Moreover, we work over a field k of possibly positive characteristic, while [BS15] considers
only the case k = C. In Remark 4.1.3 we also note that the above result remains true if r = 2
(resp. r = 3) and G is adjoint of type A2ℓ, E6 (resp. D4).

The key step towards proving this result is Theorem 4.1.2, where we show that indeed the
group scheme ResOm/O (GOm)σ is a parahoric groups scheme Gθ for an appropriate θ which we
can determine explicitly using Theorem 3.3.1. This heavily relies on Proposition 4.1.1, which
can be seen as the group theoretic counterpart of the analogous isomorphism that holds at the
level of affine Lie algebras [Kac90, Theorem 8.5]. This perspective will also be the underlying
point of view of Appendix A and in particular of Theorem A.1.10.

The principal consequence of Theorem 6.2.2 is that the study of parahoric Bruhat–Tits
group can be translated into the analysis of (Γ, G)-bundles. We first of all show that any



LOCAL TYPES OF (Γ, G)-BUNDLES AND PARAHORIC GROUP SCHEMES 3

two (Γ, G)-bundles are isomorphic outside the ramification points of the covering C̃ → C.
We then call the isomorphism class of a (Γ, G)-bundle around a ramification point the local
type of the bundle (as in [BS15] and [Dam21]). We further give a combinatorial description
of the local types using the non-abelian cohomology H1(Γx, G) for the cyclic group Γx ⊂ Γ
fixing the ramified point x. Intuitively, if we see the (Γ, G)-bundle E only as a G-bundle,
this is trivial on the formal neighborhood Dx of x. It is the action of Γx on this trivial G-
bundle that can be explicitly determined by an element G(Dx) satisfying appropriate cocycle
conditions. By changing the trivialization, this gives rise to an element of H1(Γx, G(Dx)),
which in turns coincides with H1(Γx, G) (see Proposition 5.1.3 as well as [TW03, Lemma
2.5]). In Proposition 5.2.1 we further show that, when G is simply-connected, the moduli
stack BunΓ,G,~κ parametrizing (Γ, G)-bundles of local type ~κ at ramified points is isomorphic
to BunG for some parahoric Bruhat–Tits group G.

We are then left to give an explicit description of H1(Γ, G) for a cyclic group Γ, whose
generator γ acts on the simple group G via an automorphism of G. Resorting to previous
works on twisted conjugacy classes for simple algebraic groups and related invariant theory
[Moh03, Spr06], we can explicitly describe H1(Γ, G) when γ acts as a diagram automorphism
τ of G as follows.

Theorem 3.3.1. Let m be the order of Γ and let its generator γ act on G by the diagram
automorphism τ of order r. Assume that char(k) does not divide m. Then if either k = C,
or G is simply connected or adjoint, then

H1(Γ, G) ∼=
1
mX∗(T )

τ

Avτ (X∗(T ))⋊W τ
,

where X∗(T ) denotes the set of cocharacters of T , by Avτ we denote the map averaging the
action of τ , and W is the Weyl group of G.

Using this explicit description, we can compare the chamber of Bruhat–Tits buildings for
G(Kr)

τ with the possible local types of (Γ, G)-bundles. This is used not only as an effective
way to compute local types of (Γ, G)-bundles, but also as an ingredient used to prove the
results of Section 4.

In Appendix A we explore further consequences of Theorem 3.3.1. When G is simply
connected, this can be identified with certain rational points in the fundamental alcove of
the affine Weyl group Avτ (X∗(T )) ⋊W τ , see Lemma A.1.5. When G is adjoint, H1(Γ, G)
has an even more concrete realization, as described in Proposition A.1.8. This has as a
consequence that we can extend Kac’s classification of automorphisms of G to fields of positive
characteristic not dividing the order of Γ (Theorem A.1.10).

Some of the results obtained in this paper have been independently obtained by Pappas
and Rapoport in the recent preprint [PR22]. Their work is more arithmetic oriented than the
one presented here. For instance, their description of local types are Bruhats-Tits theoretic,
while our description is more group-theoretical and combinatorial in nature. One can also
compare [PR22, Theorem 1.1] and Theorem 6.2.2: under different assumptions—we restrict to
characteristic zero—both statements assert that parahoric Bruhat–Tits group schemes arise
from coverings, but the methods used to reach this result are different. Our result is based on
its local counterpart (Theorem 4.1.2), which we prove in a group-theoretical way and where
we do not require characteristic zero. In a previous version of our paper, the argument for
Corollary 5.2.2 was incomplete. Since this is one of the main results of [PR22] and it does
not represent a key element of this paper, in this version of the paper we use their work to
deduce this result.
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Structure of the paper. In Section 2 we recall the definition of parahoric groups and of
parahoric Bruhat–Tits group schemes. In Section 3 we introduce the concept of non-abelian
group cohomology. We give an explicit description of H1(Γ, G) when the cyclic group Γ acts
on a simple group G by diagram automorphisms in Theorem 3.3.1. In Section 4 we give an
explicit description of the local structure of parahoric group schemes (see Theorem 4.1.2).
In order to extend this description to a global one, we introduce in Section 5 the concept of
(Γ, G)-bundle and show that local types uniquely identify them (Proposition 5.1.9). Finally,
in Section 6, we show that all parahoric Bruhat–Tits groups over a projective smooth curve
can be realized from (Γ, Gad)-bundles (Theorem 6.2.2). Besides providing many concrete
examples of local types and their computations, in Appendix A we also describe H1(Γ, G) in
terms of rational points of the fundamental alcove and classify finite order automorphisms of
simple algebraic groups (Theorem A.1.10).

Acknowledgements. The authors wish to thank J. Heinloth for conversations had during
the conference “Bundles and Conformal Blocks with a Twist” held at ICMS, Edinburgh. Many
thanks also to S. Kumar, G. Pappas and M. Rapoport for their interest in this work and their
comments on a previous version of this paper. We also thank Cheng Su for communicating
to us some similar ideas on local types that are presented in this work. J. Hong is grateful to
R. Travkin for many stimulating discussions on the global aspects of parahoric Bruhat–Tits
group schemes in 2021. Many thanks to the anonymous referee, whose helpful comments
significantly improved this paper. J. Hong was partially supported by the NSF grant DMS-
2001365.

Notation. Throughout we work over an algebraically closed field k of characteristic p. As-
sumptions on the characteristic will vary throughout the paper, and will always be allowed
to have characteristic zero.

We denote the valuation field k((z)) by K and its ring of integers k[[z]] by O. For every

r ∈ N such that p 6 |r, we set Kr := k((z
1
r )) and similarly Or := k[[z

1
r ]]. The discrete valuation

v of K extends to a unique valuation vr of Kr with values in 1
rZ such that vrz

1
r = 1

r .
We fix a generator γ of Gal(Kr/K) and assume that a primitive r-th root of unity ζr ∈ k

is fixed so that γ(z
1
r ) := ζ−1

r z
1
r .

Geometrically, this situation corresponds to the tamely ramified Galois covering between
formal disks

π : Dr := Spec(Or) −→ D := Spec(O),

which restricts to an étale covering D×
r := Spec(Kr) → D× := Spec(K) between punctured

disks. Similarly, when x ∈ C is a smooth point of a reduced curve, we will denote by Ox the
complete local ring at x, in formulas Ox = lim

←−
OC,p/m

n
x, and Dx := Spec(Ox). By choosing a

local coordinate z at x, these are isomorphic to O and D. One analogously defines the field
Kx and the scheme D×

x = Spec(Kx).
For every scheme X over D× (or D), we will denote by XKr (resp XOr) the fiber product

X ×D× Dr (resp. X ×D Dr).

2. Parahoric Bruhat–Tits group schemes

In this introductory section, we recall the notions of parahoric groups and the associated
group schemes over O. Following [Hei10], in the second half of this section we introduce a
global version of these groups, that is parahoric Bruhat–Tits group schemes over curves.
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2.1. Parahoric group schemes. We briefly present here the notion of parahoric group
schemes, introduced in [BT84] and to which we refer for more details. These are connected
group schemes G over O such that GK are reductive and the sections G(O) define a parahoric
subgroup P of G(K). They are a generalization of constant group schemes GO for a reductive
group scheme G over k. In this paper we only consider the case in which GK is required to be
absolutely simple, and we begin describing such groups.

In this section we denote by G a quasi-split absolutely simple group scheme over K which
splits over a tamely ramified extension. This implies that we can write

G ∼= ResKr/K(GKr )
τ ,

where G is a simple algebraic group over k, τ is a diagram automorphism of order r, and

char(k) does not divide r. The action of τ on Kr is k-linear and determined by τ(z
1
r ) = ζ−1

r z
1
r

for ζr a primitive r-th root of unity.
The maximal torus T of G can be analogously described as ResKr/K(TKr)

τ and contains the
maximal split torus S of G which is isomorphic to the connected component of (TK)

τ , which
we denote T τ,◦

K
. The relative root system R for (G,S) (which is not necessarily reduced) can

be seen as a quotient of the root system R of (G,T ). We call an element a of R a multiple or
divisible root if 2a or 1

2a is also an element of R. This case can only happen when τ has order
two and switches adjacent roots in the Dynkin diagram of G. In order to describe parahoric
subgroups of G(K), we briefly introduce the root subgroups Ua of G for every a ∈ R. In what
follows, we denote by ∆a ⊂ R the set of preimages of a ∈ R.

When a is not multiple or divisible, then the group Ua is given by
(
∏

α∈∆a

Uα(Kα)

)τ
,

where Kα is the subfield of Kr which is fixed by the stabilizer of any α ∈ ∆a, in formulas Kα =
KStabα
r . Since the action of τ on ∆a is transitive, one can identify Ua with Uα(Kα). In this way,

the map xα : Ga(Kα)→ Uα(Kα) induces the Chevalley-Steinberg pinning xa : Ga(Kα)→ Ua.

Example 2.1.1. In the case of ∆a = {α, τ(α)}, then

Ua = {Aτ(A) with A ∈ Uα(K2)}.

Note that τ(A) ∈ Uτ(α)(K2). The identification of Uα(K2) with Ua is given by A 7→ Aτ(A).

The discrete valuation v of K induces a unique valuation v : Kα →
1
rZ and, through the

pinning xα, this induces a valuation va on non identity elements of Ua. Namely, for every
A ∈ Ua \ {0} we set va(A) := v(x−1

a (A)). This allows us to define, for every ℓ ∈ R, the group
Ua,ℓ := v−1

a [ℓ,∞) ⊆ Ua.
One similarly defines Ua and Ua,ℓ for multiple and divisible roots, and we refer the reader

to [BT84, 4.1.9] and [Hei17, Appendix].
Consider the affine space generated by the cocharacters of S, i.e. E = X∗(S) ⊗Z R, which

we can identify with X∗(T
τ )⊗Z R. The bilinear map X∗(S)×X

∗(S)→ Z induces the map

E ×R → R, (θ, a) 7→ θ(a).

Definition 2.1.2. We define the parahoric group associated with θ ∈ E to be the subgroup
Pθ of G(K) which is generated by T (Or)

τ,0 and {Ua,−θ(a)}a∈R. By [BT72, BT84, 3.8.1, 3.8.3,
4.6.2, 4.6.26, 5.2.6] there exists a unique affine smooth group scheme Gθ over O which extends
G and such that Gθ(O) = Pθ. The group Gθ is called the parahoric group scheme associated
with θ.
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2.2. Parahoric Bruhat–Tits group schemes. In the same spirit in which D× = Spec(K)
and D = Spec(O) detect the local behavior of a smooth curve at a point, the group schemes
that we have described in the previous section provide the local description of parahoric
Bruhat–Tits group schemes. More precisely, we have the following definition:

Definition 2.2.1. Let C be a smooth projective curve over k. We say that a smooth affine
group scheme G over C is a parahoric Bruhat–Tits group scheme over C if it satisfies the
following conditions:

(1) All geometric fibers of G are connected.
(2) The generic fiber of G is simple.
(3) For all x ∈ C such that the fiber G|x is not simple, the group scheme G|Dx is a parahoric

group scheme extending G|
D
×
x
, that is G(Dx) is a parahoric subgroup of G(D×

x ).

In Section 6 we will see how, under appropriate conditions, parahoric Bruhat–Tits groups
can be recovered from coverings of curves through the concept of (Γ, G)-bundles.

Remark 2.2.2. The definitions of parahoric Bruhat–Tits groups given in [Hei10, BS15], allows
the generic fiber to be semisimple, rather than simple as in our definition. This simplifies
our arguments, but it is not a very restrictive condition. However, we note that in [BS15,
Definition 5.2.1] condition (2) is replaced by the assumption that there exists a Zariski open
subset U ⊆ C such that G|U ∼= G × U , for G a simple group scheme over k. From Proposi-
tion 6.1.6, in fact this is equivalent to require the parahoric Bruhat–Tits group scheme defined
in Definition 2.2.1 to be generically split.

3. Non-abelian group cohomology

In this section we introduce the non-abelian cohomology H1(Γ, G) of a cyclic group Γ with
values in a simple group G. We show in Theorem 3.3.1 that this space can be realized as a
quotient of the non-abelian cohomology of Γ with values in a Γ-invariant torus of G. This will
be a key result used in Section 4 and in Section 5. We postpone to Appendix A further con-
sequences of Theorem 3.3.1, including an explicit classification of finite order automorphisms
of simple groups (see Theorem A.1.10).

We begin by recalling the definition of H1(Γ, A) for a group A, not necessarily abelian. Fix
a generator γ of Γ and let m be the cardinality of Γ. By abuse of notation, we will still denote
by γ the automorphism of G induced by γ. Throughout we will assume that char(k) does not
divide the order of Γ.

Definition 3.0.1. We say that an element g ∈ A is a cocycle if

(1) g · γ(g) · · · γm−1(g) = 1

holds. The set of cocycles is denoted by Z1(Γ, A). The non-abelian cohomology of Γ with
values in A, denoted by H1(Γ, A), is the quotient of Z1(Γ, A) by the equivalence relation ∼γ ,
which identifies two cocycles a and b if and only if there exists an element g ∈ A such that
a = gbγ(g)−1.

Remark 3.0.2. This recovers the definition of non-abelian cohomology introduced in [Ser97,
Part I, §5], where a 1-cocycle is defined as being a map τ → aτ of Γ to A such that

(2) aτ1τ2 = aτ1τ1(aτ2)

for all τ1, τ2 ∈ Γ. Two 1-cocycles a and b are cohomologous if there exists c ∈ A such that
aτ = cbττ(c)

−1 for every τ ∈ Γ. Since Γ is cyclic, a 1-cocycle is uniquely determined by
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the assignment γ → aγ , for a generator γ of Γ and the condition (2) is translated into (1),
recovering the definition of cocycles presented here. Similarly, the equivalence relation ∼γ
translates the property of two 1-cocycles being cohomologous.

One can see that H1(Γ, A) is a pointed space, with the class of 1 ∈ A being a preferred
point, but it is not a group if A is not abelian. Furthermore, given an exact sequence of
groups

0 // A // B // C // 0

which are equipped with compatible actions of Γ, one obtains an exact sequence

0 // AΓ // BΓ // CΓ // H1(Γ, A) // H1(Γ, B) // H1(Γ, C) .

In this way H1(Γ, A) can be interpreted as a space which measures the failure of right-exactness
for the functor that takes a group with a Γ action to its subgroup of Γ-invariants.

3.1. Non-abelian cohomology for diagram automorphisms. Let G be a simple alge-
braic group over k and assume that the cyclic group Γ acts on G, hence on G(k). Throughout
this section, we will further assume that the generator γ of Γ acts on G via a diagram auto-
morphism τ of order r preserving a maximal torus T and a Borel subgroup B containing T .
We will denote H1(Γ, G(k)) by H1

τ (Γ, G).
Since τ is a diagram automorphism, the Weyl group W of (G,T ) is acted on by Γ and we

denote by W τ = WΓ the invariant elements. Note that if R = R(G,T ) is the root system of
G relative to T , then W τ is the Weyl group of Gτ .

Proposition 3.1.1. Using the above notation, there is a bijection

H1
τ (Γ, G)

∼= H1
τ (Γ, T )/W

τ .

We learned from [PR22], that one could also deduce this result from the proof of [PZ13,
Proposition 2.4]. We give here a different proof, relying on [Moh03] which focuses on the
invariant theory of twisted conjugacy classes of simple algebraic groups.

We first show that H1
τ (Γ, G) is a quotient of H1

τ (Γ, T ). This fact actually holds without the
assumption that γ acts on G by a diagram automorphism, and so we state and prove this
result without this assumption.

Lemma 3.1.2. Assume that the generator γ of Γ acts on the simple group G by an auto-
morphism σ. Let T be a maximal torus preserved by σ and B a Borel subgroup containing T
which is also preserved by σ. The natural inclusion B ⊆ G and projection B → T induce a
surjection H1

σ(Γ, T )→ H1
σ(Γ, G).

Proof. We first of all recall [Ste68, Lemma 7.3], which ensures that the map G × B → G
defined by (g, b) 7→ gbσ(g)−1 is surjective. This implies that we can write every element x ∈
Z1(Γ, G) ⊆ G as x = gbσ(g)−1 for some g ∈ G and b ∈ B. Note that since xσ(x) · · · σr−1(x) =
1 necessarily we have that also bσ(b) · · · τ r−1(b) = 1, that is b ∈ Z1(Γ, B) ⊂ Z1(Γ, G). The
equality x = gbσ(g)−1 tells us that x and b define the same element of H1

σ(Γ, G) and so that
the inclusion of B in G induces a surjection H1

σ(Γ, B)→ H1
σ(Γ, G).

We now show that H1
σ(Γ, B) ∼= H1

σ(Γ, T ). To show this consider the exact sequence of
algebraic groups

(3) 1 // U // B // T // 1

on which Γ acts.
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Denote by U (ℓ) = [U (ℓ−1), U (ℓ−1)] the derived series of U , and set Uℓ := U (ℓ)/U (ℓ+1). By

convention, U (0) = U . Then Uℓ can be regarded as a vector space over k. Let N be such
that U (N) 6= 0 and U (N+1) = 0. For any linear action of Γ on Uℓ, we have H i(Γ, Uℓ) = 0

for i ≥ 1, since the characteristic of k does not divide |Γ|. Note that the group U (ℓ) is a

normal subgroup of B, and setting Bℓ := B/U (ℓ) we obtain that Uℓ is normal in Bℓ+1 and
that Bℓ = Bℓ+1/Uℓ. Then, by [Ser97, Corollary 2, §5.5] and [Ser97, Corollary, §5.6], there
exists a natural bijection

H1
σ(Γ, Bℓ)

∼= H1
σ(Γ, Bℓ+1)

for any ℓ. Note that B0 = T and BN+1 = B. It then follows that H1
σ(Γ, B) ∼= H1

σ(Γ, T ). �

In order to show that Proposition 3.1.1 holds, we will use [Moh03, Theorem 1.1]. This
result states that the inclusion map T ⊂ G induces an isomorphism of schemes

Tτ/W
τ

∼=
// G//τG,

where Tτ consists of the coinvariant T/(1 − τ)T and G//τG is the categorical quotient of G
by the action of G on itself defined as g ∗ h := ghτ(g)−1.

Combining this statement with Definition 2.1.2, we obtain the commutative diagram

H1
τ (Γ, T )

// //

��

H1
τ (Γ, G)

��

�

�

// G(k)/ ∼τ

ww♣♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

Tτ/W
τ

∼=
// (G//τG)(k)

where ∼τ identifies two elements g and g′ of G(k) if and only if g = hg′τ(h)−1 for some
h ∈ G(k). To conclude the proof of Proposition 3.1.1, we are then left to show that the map
H1
τ (Γ, G)→ (G//τG)(k) is injective.

Since Γ acts on G, we can build the disconnected group scheme G̃ = G⋊Γ, whose elements
will be denoted g.γ for g ∈ G and γi ∈ Γ. Using this language G//τG is the categorical quotient
of the component G.γ by conjugation and G(k)/ ∼τ= G(k).γ/∼ consists of conjugacy classes
of elements in the component G.γ. In [Moh03, Proposition 3.18], it is shown that every
fiber of the map G.γ → G//τG contains exactly one orbit consisting of semisimple elements.
In particular the restriction of G(k).γ/ ∼ → (G//τG)(k) to semisimple elements in G.γ is

injective. We then focus our attention on semisimple elements of G̃.

As for connected groups, an element g.γ of G̃ is semisimple if there exists a linear rep-

resentations ρ : G̃ → GLn, such that ρ(g.γ) is diagonalizable. For a connected group G, an
element is semisimple if and only if it is conjugated to an element of the torus T . In the
following lemma, we will see that an analogous statement holds in this situation. Using the
terminology introduced in [Spr06], we say that an element g ∈ G is τ -semisimple if and only
if g is τ -conjugated to an element of T , i.e. there exists h ∈ G such that hgτ(h)−1 ∈ T .

Lemma 3.1.3. An element g ∈ G is τ -semisimple if and only if g.γ is semisimple in G̃.

Proof. We first of all prove that if g.γ is semisimple, then g is τ -semisimple by applying

[Moh03, Proposition 3.4]. Applying that result to the element z = 1.γ ∈ G̃ we indeed obtain

that g.γ is conjugate, via an element h.1 ∈ G̃ to an element of T τ,0.γ. Since γ acts on G by
τ , this is equivalent to g being τ -conjugate to an element of T τ,0, hence being τ -semisimple.

Conversely, assume that g = htτ(h)−1 for some h ∈ G and t ∈ T . This is equivalent to

the element g.γ ∈ G̃ being conjugated to t.γ via the element h.1. Since semisimplicity of an
element in invariant under conjugation, it is then enough to show that t.γ is a semisimple
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element in G̃. This is a direct consequence of the last part of [Moh03, Lemma 3.5] using
z = 1.γ. �

Proof of Proposition 3.1.1. By the above arguments, it is enough to show that every element
of H1

τ (Γ, G) can be represented by a τ -semisimple element of G. This is equivalent to showing
that H1

τ (Γ, T ) surjects onto H1
τ (Γ, G), and this is guaranteed by Lemma 3.1.2. �

3.2. Cohomology of tori. Given the results of Proposition 3.1.1, in order to give an explicit
description of the local types of (Γ, G)-bundles through non abelian cohomology, we focus our
attention on the computation of H1(Γ, T ).

Lemma 3.2.1. Let Tm denote the m-th torsion elements of T . The inclusion map Tm → T
induces an isomorphism H1

τ (Γ, T )
∼= H1

τ (Γ, Tm).

Proof. Let (−)m denote the map T → T given by t 7→ tm. From the exact sequence

0 // Tm // T
(−)m

// T // 0

we obtain the long exact sequence

T τ
(−)m

// T τ // H1
τ (Γ, Tm) // H1

τ (Γ, T )
(−)m

// H1
τ (Γ, T ).

Observe that if t is a cocycle, i.e. belongs to Z1(Γ, T ), then tm is zero in H1
τ (Γ, T ) since it

can be written as sτ(s)−1 for s =
∏m−2
i=0 τ i(t)m−1−i. It follows that H1

τ (Γ, Tm) surjects onto
H1
τ (Γ, T ). Moreover, since G is simply connected (or adjoint) the group T τ is connected,

so that the induced map (−)m between invariants is necessarily surjective, hence H1
τ (Γ, Tm)

injects into H1
τ (Γ, T ). Thus we obtain H1

τ (Γ, Tm)
∼= H1

τ (Γ, T ) as claimed. �

Proposition 3.2.2. Let Γ be a cyclic group of order m acting on the simple algebraic group
G over k by the (diagram) automorphism τ of order r. If char(k) does not divide m and G is
either simply connected or adjoint, then we have a natural identification

H1
τ (Γ, T )

∼=
r
mX∗(T )

τ

Nτ (X∗(T ))
=

1
mX∗(T )

τ

Avτ (X∗(T ))
,

where Nτ is the norm operator 1 + τ + · · · + τ r−1 and Avτ = 1
rNτ .

Proof. We first of all observe that since the group Γ is cyclic, one recovers that H2
τ (Γ,X∗(T ))

is isomorphic to X∗(T )
τ/Nτ,m(X∗(T )) (see, e.g. [Bro82, Example 2, page 58-59]), where Nτ,m

denotes 1+τ + · · ·+τm−1. It thus remains to prove that H1
τ (Γ, T )

∼= H2(Γ,X∗(T )). Moreover,
in view of Lemma 3.2.1, we have

(4) H1
τ (Γ, T )

∼= H1
τ (Γ, Tm),

where Tm denotes the m-th torsion elements of T .
We next have the exact sequence of abelian groups

(5) 0 // X∗(T )
m·

// X∗(T ) // Tm // 0,

where we have identify Tm with the quotient X∗(T )/mX∗(T ) as follows. Choose a basis
λ1, . . . , λℓ of X∗(T ), so that X∗(T ) ∼= Zℓ. Similarly, we fix an isomorphism T ∼= (k×)ℓ, which
identifies Tm with µℓm. The map Zℓ → (k×)ℓ given by (a1, . . . , aℓ) 7→ (ζa1 , . . . , ζaℓ), induces
the wanted isomorphism. We can then take τ -invariants of (5), obtaining the short exact
sequence

0 // H1
τ (Γ,X∗(T )) // H1

τ (Γ, Tm) // H2
τ (Γ,X∗(T )) // 0,
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where we have used the fact that the multiplication map m · : X∗(T ) → X∗(T ) induces the
zero maps H1

τ (Γ,X∗(T )) → H1
τ (Γ,X∗(T )) and H2

τ (Γ,X∗(T )) → H2
τ (Γ,X∗(T )) (see e.g., [Sha,

§7.7]).
In order to conclude, it suffices to show that H1

τ (Γ,X∗(T )) = 0. When G is simply connected
(or adjoint), we can identify X∗(T ) with Zℓ, with the action of τ given by either

τ(a1, . . . , aℓ) = (aℓ, . . . , a1) if τ has order 2

or

τ(a1, a2, a3) = (a2, a3, a1) if τ has order 3 (and so necessarily G of type D4).

In both cases, a direct computation shows that H1
τ (Γ,Z

ℓ) = 0, implying the isomorphism
H1
τ (Γ, Tm)

∼= H2
τ (Γ,X∗(T )) which, combined with (4), allows us to conclude. �

Remark 3.2.3. When k = C, one does not need to assume that G is adjoint or simply connected
to obtain the isomorphism of Proposition 3.2.2. In fact we have the exact sequence

(6) 0 // X∗(T ) // h
e

// T // 0,

where e(h) := exp(2πih) and we can identify h with X∗(T )⊗Z C.
The action of Γ on T induces an action on h and on X∗(T ), which we still denote τ . Taking

τ -invariants of (6) (seen as an exact sequence of abelian groups) we obtain the following long
exact sequence of abelian groups

0 // X∗(T )
τ // hτ

e
// T τ // H1

τ (Γ,X∗(T )) // 0 // H1
τ (Γ, T ) // H2(Γ,X∗(T )) // 0,

hence the desired isomorphism claimed in Proposition 3.2.2.
Moreover, given an element [t] ∈ H1

τ (Γ, T ), we explicitly describe the associated equivalence
class in 1

mX∗(T )
τ/Avτ (X∗(T )). Choose h ∈ h such that t = e(h), then the natural map

H1
τ (Γ, T )

∼= 1
mX∗(T )

τ/Avτ (X∗(T )) identifies [e(h)] = [t] to the element Avτ (h) =
1
m [h+τ(h)+

· · · + τm−1(h)] of 1
mX∗(T )

τ/Avτ (X∗(T )). This can be seen from the explicit computation of
the cohomology of cyclic groups as in [Bro82, Example 2, page 58-59].

3.3. Cohomology of simple groups. We now combine Proposition 3.1.1, Proposition 3.2.2
and Remark 3.2.3 to deduce the following result.

Theorem 3.3.1. Let Γ = 〈γ〉 be the cyclic group of order m such that γ acts on G via a
diagram automorphism τ of order r. Then if either k = C or G is simply connected or adjoint
(and char(k) does not divide m), then

H1
τ (Γ, G)

∼=
1
mX∗(T )

τ

Avτ (X∗(T ))⋊W τ
=

r
mX∗(T )

τ

Nτ (X∗(T ))⋊W τ
,

where Nτ := rAvτ .

4. Parahoric group schemes

The main result of this section is to realize every parahoric group scheme through invariant
sections of restriction of scalars.
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4.1. Parahoric group schemes from invariants. Throughout this section G is a simple
group over k which is assumed to be simply connected. We will denote by Gad the adjoint
quotient of G. Let Γ be the cyclic group of order m and assume that char(k) does not divide
m. Assume that a generator of Γ acts on G (and on Gad) by a diagram automorphism τ
preserving the maximal tori T and Tad. In view of Theorem 3.3.1, for any κ ∈ H1

τ (Γ, Gad)
we can choose κ = [t̄] for some t̄ ∈ T τad. We then let σ be the automorphism Adt̄ ◦ τ . Then

σm = 1. Moreover, t̄ can be written as ζλm, for λ ∈ X∗(Tad). The group Γ acts also on Km by

γ(z
1
m ) = ζ−1

m z
1
m . It follows that we can define two actions of Γ on the group scheme GKm , one

induced by σ and another one by τ . We can then define two group schemes over K, namely

Gσ,K := ResKm/K(GKm)σ and Gτ,K := ResKr/K(GKr )
τ ,

whose global sections are contained in G(Km).
We now show that these group schemes are naturally isomorphic. This can be interpreted as

a group version of the Lie algebra isomorphism between g(Kr)
τ and g(Km)

σ (see e.g. [Kac90,
Chapter 8]). The key ingredient is to explicitly relate the two actions σ and τ on GKm . Choose
an isomorphism between X∗(Tad) and Zℓ so that the element λ corresponds to (λ1, . . . , λℓ).
Similarly, we identify the torus Tad with Gℓ

m and let zθ denote the element of Tad(Km) given

by (z
λ1
m , . . . , z

λℓ
m ). In fact, θ = λ

m ∈
1
mX∗(Tad)

τ .

Proposition 4.1.1. The map Adzθ induces an isomorphism of group schemes

ResKr/K(GKr)
τ

∼=
// ResKm/K(GKm)

σ .

Proof. Let Γ be the Galois group Gal(Km/K) with a generator γ. After the base change, we
have the following isomorphism

ResKr/K(GKr )×K Km ∼= GKm ,

where the Galois group Γ acting on ResKr/K(GKr) ×K Km corresponds to the action of γ on

GKm given by combining τ on G and the field automorphism z 7→ ζ−1
m z. Similarly, we have

ResKm/K(GKm)×K Km ∼= GKm ,

where the Galois group action corresponds to γ acts on GKm given by combining σ on G,
and the field automorphism as above. One may check easily that the automorphism Adzθ :
GKm

∼= GKm intertwines with the two actions given above. By Galois descent, we obtain the

isomorphism ResKr/K(GKr)
τ

∼=
// ResKm/K(GKm)σ . �

Theorem 4.1.2. Let σ be an automorphism of G arising from a class κ ∈ H1
τ (Γ, Gad) as

above. Under the isomorphism of Proposition 4.1.1, the group scheme ResOm/O(GOm)
σ is

isomorphic to the parahoric group scheme Gθ, where θ =
λ
m .

Proof. Let B be the Borel subgroup preserved by τ which contains T . Let B− be the opposite
Borel subgroup of B. Let U± be the unipotent radical of B±. It is well-known that the
multiplication U−×U × T → G is an open embedding of varieties over k. It induces an open
embedding of their jet schemes as pro-varieties over k:

U−(Om)× U(Om)× T (Om)→ G(Om).

By taking σ-invariants, we get an open embedding:

U−(Om)
σ × U(Om)

σ × T (Om)
σ → G(Om)

σ.
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Since G is simply-connected, Gσ is a connected simple algebraic group, cf. [Ste68]. Thus,
G(Om)

σ is also a connected pro-algebraic group over k. As a consequence, U−(Om)
σ, U(Om)

σ

and T (Om)
σ generate G(Om)

σ.
Via the isomorphism Adzθ : Gτ,K ∼= Gσ,K given in Proposition 4.1.1, we can identify the

relative root systems for Gτ,K and Gσ,K. For any relative root a ∈ R, Ua denotes the root
subgroup in Gτ,K and we denote U ′

a the associated root subgroup in Gσ,K. Moreover, there
is a natural valuation structure on U ′

a. Using the description of the root subgroups given in
Section 2 and the analogue for U ′

a, by direct calculation we have for any a ∈ R the identification

Adzθ(Ua,−θ(a)) = U
′
a,0.

Moreover, Adzθ(T (Or)
τ ) = T (Om)

σ. Let P±
θ be the subgroup of P generated by {Ua,−θ(a) :

a ∈ R±}. Then, Adzθ(P
±
θ ) = U±(Om)

σ.
It follows that Adzθ(Pθ) = G(Om)

σ. In view of [BT84, I.7.6], the isomorphism Adzθ : Gτ,K
∼=

Gσ,K uniquely extends to an isomorphism Gθ ∼= ResOm/O(GOm)σ. �

Remark 4.1.3. In Theorem 4.1.2, we have assumed that G is simply connected, so that we can
ensure that Gσ and G(Om)

σ are connected. When G is not simply connected, this property
doesn’t automatically hold, but it will depend on the type of the group G. When G is adjoint
and τ has order 2 (resp. 3), this will be the case when G is of type A2ℓ or E6 (resp. D4),
cf. [Ste68, 9.8]. So in these cases, Theorem 4.1.2 also holds when G is of adjoint type.

In the above, we consider the automorphism σ arising from a class κ ∈ H1
τ (Γ, Gad). In

the following proposition and its corollary, we obtain a decomposition of every finite order
automorphism of G. We allow here G to be a simple group which is not necessarily simply
connected.

Proposition 4.1.4. Let G be a simple algebraic group over k. Let σ be an automorphism of
G of order m and assume that char(k) does not divide m. Then we have a decomposition

σ = Adt̄ ◦ τ,

where τ is a diagram automorphism of G preserving a Borel B and a maximal torus T con-
tained in B, and t̄ is a τ -invariant element of Tad which can be written as ζλm for λ ∈ X∗(Tad)

τ .

Proof. We first assume G is adjoint. Then, we write σ = Adg ◦ τ
′, for some diagram auto-

morphism τ ′ preserving a Borel subgroup B′ and a maximal torus T ′ contained in B′. By
the condition σm = 1 and the fact that G is adjoint, we deduce that g satisfies the condition
gτ ′(g) · · · (τ ′)m−1(g) = 1. Thus, [g] ∈ H1

τ ′(Γ, G) where Γ is the cyclic group of order m. By

Theorem 3.3.1, there exists t′ ∈ T ′ such that [g] = [t′], with t′ = (ζm)
λ for some λ ∈ X∗(T

′)τ
′
.

One may observe that [g] = [t′] is equivalent to that, there exists an element k ∈ G, such that
σ = Adk ◦ Adt′ ◦ τ

′ ◦ Adk−1 . Thus, σ = Adt ◦ τ , where τ = Adk ◦ τ
′ ◦ Adk−1 is a diagram

automorphism preserving B = Adk(B
′) and T = Adt(T

′), and t = Adk(t
′) = ζλm ∈ T with λ

regarded as an element in X∗(T )
τ .

Now, let G be a simple algebraic group which is not adjoint. Passing to Ḡ = Gad = G/Z(G),
we can write σ = Adt̄ ◦ τ where τ preserves a Borel subgroup B̄ of Gad and a maximal torus
T̄ contained in B̄, and t̄ ∈ T̄ τ . Denoting by T and B the preimages of T̄ and B̄ in G, the
result is proved. �

Corollary 4.1.5. Let G be a simple algebraic group over k. Let σ be an automorphism on G
of finite order. Assume that char(k) does not divide the order of σ and the order of the center
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of Gη,0, where η is a diagram automorphism such that σ̄ = η̄ ∈ Out(G). Then, we have a
decomposition

σ = Adt ◦ τ,

where τ is a diagram automorphism preserving a Borel subgroup B and a maximal torus T
contained in B, and t = ζλM for some positive integer M and λ ∈ X∗(T )

τ . In fact, one can
take M = |σ| · |Z(Gτ,0)|, where Z(Gτ,0) is the center of Gτ,0.

Proof. It follows from Proposition 4.1.4 that we can write σ = Adt̄ ◦ τ where τ preserves a
Borel subgroup B̄ of Gad and a maximal torus T̄ contained in B̄, and t̄ ∈ T̄ τ . Denote by
T and B the preimages of T̄ and B̄ in G. Let T̄m be the subgroup of T̄ consisting of those
elements t̄ such that t̄m = 1. The surjective map T 7→ T̄ induces the surjective morphism
π : T τ,0 → T̄ τ , which restricts to the surjection T τ,0M → T̄ τm where M = m · |Z(Gτ,0)|, as
ker(π) = Z(Gτ,0) (see, e.g.,[Spr09, Corollary 7.6.4 (iii)]). In particular this means that for

such an M , there exists t ∈ T τ,0M such that t̄ is the image of t in T̄ . Moreover, by assumption
char(k) does not divide M , hence there exists an M -th primitive root of unity ζM . Observe

that the assignment µ 7→ ζµM induces a surjective map X∗(T )
τ = X∗(T

τ,0)→ T τ,0M . It follows

that we can write t = ζλM for some λ ∈ X∗(T )
τ . Thus, σ = Adt ◦ τ on G with t = ζλM for some

λ ∈ X∗(T )
τ . �

We can further obtain the following generalization of Theorem 4.1.2.

Corollary 4.1.6. Let G be a simply-connected simple algebraic group with a finite order
automorphism σ such that σm = 1, and char(k) does not divide m. Then, ResOm/O(GOm)

σ

is a parahoric group scheme.

Proof. By Proposition 4.1.4, we are able to write σ = Adt̄ ◦τ for some diagram automorphism
τ preserving a maximal torus T , and an element t̄ ∈ Tad such that t̄m = 1. It then follows
from Theorem 3.3.1 that [t̄] ∈ Hτ (Γ, Gad). We are then in the assumptions of Theorem 4.1.2,
so that we can conclude that ResOm/O(GOm)σ is a parahoric group scheme as desired. �

4.2. Matching with Bruhat–Tits building of G(Kr)
τ . We assume G is simply-connected.

Following [Tit79], we describe the chamber of the Bruhat–Tits building of the twisted loop
group G(Kr)

τ for the maximal split K-torus T τ ×k K, and the corresponding affine Weyl
group action. The chamber corresponding to T τ ×k K is given by X∗(T )

τ
R. The group W τ

can be regarded as the Weyl group of the relative root systems corresponding to T τ ×k K.
The translation part comes from T (Kr)

τ/T (Or)
τ . Note that there is a natural identification

X∗(T )τ ∼= T (Kr)
τ/T (Or)

τ given by λ̄ 7→
∏r−1
i=0 τ

i(t
λ
r ) for any λ̄ ∈ X∗(T )τ , where λ is a

representative of λ̄ in X∗(T ) [BH20, Section 2.3]. Then the translation lattice on the chamber
X∗(T )

τ
R is exactly given by Avr(X∗(T )).

Given an element θ ∈ X∗(T )
τ
Q, let m be the minimal positive integer such that θ ∈

1
mX∗(Tad)

τ . We write θ = λ
m for some λ ∈ X∗(Tad)

τ and set σ = Adζλm ◦ τ for some m-
th primitive root ζm of unity. The following corollary follows from Theorem 4.1.2.

Theorem 4.2.1. If char(k) does not divide m, then there exists an isomorphism of group
schemes

ResOr/O(GOr)
σ ∼= Gθ,

where Gθ is the parahoric group scheme corresponding to θ.

From the Bruhat–Tits theory, parahoric group schemes are determined by facets, i.e. any
interior points of a given facet give rise to the same parahoric group scheme. From this
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corollary, we can try to find an interior point in a given facet such that m is minimal. Thus,
the restriction of the characteristic p can be very small.

Remark 4.2.2. Let G be a special parahoric group scheme over O of typeX
(r)
N with r > 1. Here,

“special” refers to that the parahoric group schemes correspond to special vertices of Bruhat–

Tits building of G(Kr)
τ . When X

(r)
N 6= A

(2)
2ℓ , the parahoric group scheme G is isomorphic to

ResOr/O(GOr)
σ where σ is a diagram automorphism of order r. When X

(r)
N = A

(2)
2ℓ , there are

two special parahoric group schemes which are not isomorphic. One of them can be realized
using a diagram automorphism of order 2, while another one can be realized by a standard
automorphism of order 4, see [BH20, HY22].

5. (Γ, G)-bundles

5.1. (Γ, G)-bundles and their local types. We recall in this section the notion of (Γ, G)-
bundles, following [BS15, Dam21]. Let Γ be a finite group acting on a smooth and projective
curve C. Assume further that G is an affine group scheme over k and fix an action of Γ on G
via ρ : Γ→ Aut(G). Throughout we will assume that G is smooth and that the characteristic
of k does not divide |Γ|.

Definition 5.1.1. A (Γ, G)-bundle is the data of a right G-bundle E over C together with a
left action of Γ on its total space, lifting the action of Γ on C, and compatible with the action
of Γ on G.

Remark 5.1.2. One can similarly define a (Γ, G)-bundle as being a left G-bundle with a right
action of Γ on its total space. It will be clear from the context which version we are going to
use.

More explicitly, on every Γ-equivariant open set U ⊆ C on which E is trivial as a G-bundle,
we can express the compatibility condition as follows. Let 1 ∈ E(U) define a trivialization of
E , then for all γ ∈ Γ and g ∈ G(U) we require that

(7) γ(1 · g) = γ(1) · ργ(g).

This in particular tells us that the action of Γ on E is uniquely determined by the action of
Γ on the preferred section 1 and the fixed action of Γ on G by ρ.

We now consider the case in which U is replaced by the disk Dx = Spec(k[[zx]]) around
a point x ∈ C. The stabilizer Γx of x ∈ C is a cyclic group, denote its generator by γx,
and denote by mx its order. Then, on the formal disk Dx about x the element γx acts
multiplying the local coordinate zx by a primitive mx-th root of unity. Any (Γ, G)-bundle
E on C trivializes, as a G-bundle, over Dx. We fix a trivialization induced by the element
1 ∈ E(Dx), so that we can, and will, identify γx(1) with a unique element of G(Dx) and 1
with the unit of G(Dx). We then deduce from (7) and γmx

x = e, that γx(1) needs to satisfy
the cocycle condition

γx(1)ργ(γx(1)) · · · ρ
mx−1
γ (γx(1)) = 1.

Changing the trivialization to 1′ ∈ E(Dx), we obtain that

γx(1
′) = a · γx(1) · ρ

−1
γ (a).

for a ∈ G(Dx) such that 1 = 1′ · a. It follows that isomorphism classes of (Γx, G)-bundles on
Dx are described by the non abelian cohomology H1(Γx, G(Dx)), where we view G(Dx) as a
Γx-group through the combined actions of Γx on Dx and on G (via ρ).

Similarly to [TW03, Lemma 2.5] we have the following statement.
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Proposition 5.1.3. The closed embedding x → Dx (or equivalently the evaluation map
k[[zx]] → k given by zx 7→ 0), induces an isomorphism H1(Γx, G(Dx)) ∼= H1(Γx, G(k)). In
particular, isomorphism classes of (Γx, G)-bundles on Dx are in bijection with H1(Γx, G(k)).

Proof. It is enough to show that the evaluation map induces an injection of H1(Γz, G(Dx))
into H1(Γx, G(k)) since this map is already surjective. This can be seen as a consequence of
either [Dam21, Proposition 2.9] or [Gil18, Claim 3.2]. �

Using the same terminology introduced by [BS15] and used also in [Dam21], we define the
concept of local type in cohomological terms.

Definition 5.1.4. For every (Γ, G)-bundle E on C and x ∈ C with stabilizer Γx, we call
local type of E at x the element κ ∈ H1(Γx, G) := H1(Γx, G(k)) which corresponds to the
isomorphism class of E on Dx via Proposition 5.1.3.

Remark 5.1.5. Observe that for all γ ∈ Γ and x ∈ C one has that Γγ(x) = γΓxγ
−1. Moreover,

if an element κ ∈ H1(Γx, G) describes the local type of the (Γ, G)-bundle E around x, this
uniquely determines the element γ(κ) ∈ H1(Γγ(x), G) corresponding to the local type of E
around γ(x). Thus, specifying the local type of E at x automatically specifies the local type
of E at all the points in the same orbit of x.

5.1.6. Patching. We can use the main theorem of [BL95], to show that (Γ, G)-bundles on C
can be obtained by patching together local (Γ, G)-bundles. The covering that we will use
consists of the complement of the ramification locus R of the action of Γ on C, and of formal
neighborhoods Dx about every point x ∈ R. We begin with the following result:

Lemma 5.1.7. Let E be a (Γ, G)-bundle on C. Let U = C \ R be the complement of the
ramification locus of the action of Γ on C. Then the restriction of E to U is isomorphic to
the trivial (Γ, G)-bundle over U .

Proof. In view of [Dam21, Theorem 3.1] it is enough to show that π∗(E)
Γ is the trivial π∗(G×

U)Γ-bundle on the quotient curve U/Γ. Since U does not contain any ramification point, we
deduce from [Dam21, Proposition 2.9] that π∗(E)

Γ is a π∗(G × U)Γ-bundle. Moreover, the
group π∗(G× U)Γ is a parahoric Bruhat–Tits group over the affine curve U/Γ, hence [Hei10,
Theorem 1] guarantees that π∗(E)

Γ ∼= π∗(G× U)Γ, concluding the argument. �

Remark 5.1.8. The idea underlying the proof of the above result can be found also in the
proof of [HK22, Lemma 3.1].

The following result tells us that we can reconstruct (Γ, G)-bundles from local types at the
ramification points.

Proposition 5.1.9. Let C be a smooth and projective curve with a Γ action and ρ : Γ →
Aut(G) be a group homomorphism. Let R ⊂ C be the ramification locus for the action of
Γ. Choose S = {x1, . . . , xs} ⊆ R such that R = ⊔xi∈SΓxi and, for every x ∈ S choose an
element κx ∈ H1(Γx, G). Then there exists a (Γ, G)-bundle over C with local types γ(κx) at
every point γ(x) ∈ R with x ∈ S and γ ∈ Γ.

Proof. In view of Remark 5.1.5 it is enough to show that there exists a (Γ, G)-bundle over C
with local types κx at every point x ∈ S. From Proposition 5.1.3 we know that κx extends
uniquely to an element of H1(Γx, G(Dx)), and this defines an isomorphism class of (Γ, G)-
bundles on the disjoint union ⊔γ∈Γ/Γx

Dγ(x) of the prescribed local type. On the open curve
U = C \R, we take the trivial (Γ, G)-bundle U ×G. For these data to give rise to a (Γ, G)-
bundle on the whole curve C, it is enough to show that H1(Γx, G(D

×
x )) is trivial. Rewriting this
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in terms of Galois cohomology, this equals H1(Kmx/K,H), where H := (ResKmx/K
(GKmx

))Γx

is a smooth and connected group over Spec(K). Recall that H1(Kmx/K,H) can be identified
with the set of isomorphism classes of H-bundles over Spec(K) which are trivial after base
change to Spec(Kmx). Thus, the triviality of H1(Kmx/K,H) follows from the fact that the
absolute Galois cohomology H1(K,H) vanishes, and this follows from [BS68, page 484]. �

5.2. Components of BunΓ,G. Let C be a smooth and projective curve on which the finite
group Γ acts and assume that Γ acts on the group G. We focus here on the moduli stack
BunΓ,G of (Γ, G)-bundles on C.

As in the statement of Proposition 5.1.9, let S = {x1, · · · , xs} be a subset of the ramification
locus R such that R = ⊔si=1Γxi. Further denote by Γi the stabilizer groups at xi. For every
xi ∈ S, choose an element κi ∈ H1(Γi, G) and denote by ~κ the s-tuple (κ1, . . . , κs). Denote
by BunΓ,G,~κ the moduli stack of (Γ, G)-bundles on C with local types ~κ at ~x. It follows
from Proposition 5.1.9 that BunΓ,G,~κ is always non-empty. Moreover, by [Dam21], BunΓ,G,~κ
is isomorphic to BunG~κ

, where

G~κ = AutΓ,G(E),

for a (Γ, G)-bundle E in BunΓ,G,~κ.

Proposition 5.2.1. If G is simply-connected, then the group scheme G~κ is a parahoric
Bruhat–Tits group scheme over C̄ = C/Γ. In particular, BunΓ,G,~κ is connected.

Proof. Let γi be a generator of Γi. Then the local type κi = [ti] ∈ H1(Γi, G) gives rise to a finite
order automorphism σi := Adti ◦ γi on G. By Proposition 5.1.3, H1(Γi, G) ∼= H1(Γi, G(Dxi)).
Fix any E ∈ BunΓ,G,~κ. Then, [E|Dxi

] ∈ H1(Γx, G(Dx)) ∼= H1(Γx, G) (by Proposition 5.1.3).

It actually means that E|Dxi
is isomorphic to the (Γx, G)-bundle E

◦
i := Dxi × G, which is a

trivial G-bundle and the action of γi is given by (z, g) 7→ (γi(z), tiγi(g)). This implies that

AutΓi,G(E|Dxi
) ∼= AutΓi,G(E

◦
i )
∼= ResDxi

/Dx̄i
(GDxi

)σi ,

where x̄i is the image of xi under the projection map C → C/Γ. By Corollary 4.1.6,
AutΓi,G(E|Dxi

) is a parahoric group scheme. Thus, G~κ = AutΓ,G(E) is a parahoric Bruhat–Tits

group scheme over C̄.
The second statement follows from [Hei10, Theorem 2]. �

The following result can be seen as a consequence of the above proposition together with
[PR22, Theorem 4.2] or directly from [PR22, Corollary 7.2].

Corollary 5.2.2. The stack BunΓ,G is decomposed as the disjoint union of connected algebraic
stacks ⊔~κBunΓ,G,~κ.

We now use some of the consequences of Theorem 3.3.1 established in Appendix A to
compute the number of connected components of BunΓ,G in a variety of examples.

Example 5.2.3. We now assume that Γ = 〈γ〉 is a cyclic group of order r and its generator
acts on G by a diagram automorphism of order r as well. Let s be the number of ramified
points for the action of Γ on C. We combine Corollary 5.2.2 and Example A.1.2 to show that

• if (G, r) ∈ {(A2ℓ−1, 2), (Dℓ+1, 2), (E6, 2), (D4, 3)} then BunΓ,G has 2s connected com-
ponents;
• if (G, r) = (A2ℓ, 2), then BunΓ,G has only one component.

Finally, when Γ is trivial, then BunΓ,G = BunG, which is connected. This can also be seen
directly from Corollary 5.2.2 and Lemma A.1.5.
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Example 5.2.4. Assume that the group Γ ∼= Z/2Z acts trivially on G = SLn. Let s be the
number of ramified points for the action of Γ on C. Then we deduce from Corollary 5.2.2 and
Example A.1.3 that the stack BunZ/2Z,SLn

has
⌈
n+1
2

⌉s
connected components.

Example 5.2.5. We can construct explicitly a (Γ, G)-bundle which has different local types than
the trivial (Γ, G)-bundle. Let E be the following (Γ, G)-bundle: E = C ×G. Fix a γ-invariant
element t 6= 1 in G such that t2 = 1. G acts on E on the right, and γ(p, x) = (γ(p), tγ(x)).
Then, the local type of E at a ramified point is given by [t] ∈ H1(Γ, G). When G is of
type A2ℓ−1, we can find an element t such that [t] is not trivial. For example, we can take
t = α∨

ℓ (−1), where α
∨
ℓ is the ℓ-th simple coroot, regarded as a cocharacter of the maximal

torus T .

6. Parahoric Bruhat–Tits group schemes arising from coverings

6.1. Reductive group schemes over curves. In this section we denote by G a smooth and
simple group scheme over a smooth curve C. i.e. the group G is smooth over C and every
geometric fiber is a simple group. Let G be the simple group over k with the same root datum
as one geometric fiber of G and let GC denote its pullback to C. Let E := Iso(GC ,G) denote
the scheme over C classifying the group scheme isomorphisms from GC to G over C. In view
of the following result, E is a right Aut(G)-bundle.

Lemma 6.1.1. [SGA70, Corollaire 1.17, Exposé XXIV] There exists an equivalence between
the category Form(G)C of forms of G over C, and the category BunAut(G),C of Aut(G)-bundles

over C, given by G′ 7→ Iso(GC , G
′). The inverse is given by F 7→ GF := F ×Aut(G) G.

We will also make use of the following result.

Lemma 6.1.2. Let H be a finite group acting on a variety X over k. Suppose that H permutes
the set of connected components of X transitively. Let X◦ be a component of X and H◦ be
the stabilizer of X◦ in H. Then, the morphism φ : H ×H

◦
X◦ → X given by (h, x) 7→ h · x, is

an H-equivariant isomorphism.

Proof. Since H permutes the component set of X transitively, the morphism φ must be
surjective. Since for any h ∈ H, the map h : X◦ → hX◦ is an isomorphism, then φ is also a
closed immersion. Thus, φ is an isomorphism of varieties. �

Let E◦ denote a connected component of E and denote by C̃ the quotient E◦/Gad. Since

Gad is connected, C̃ coincides with a component of the quotient E/Gad. Moreover C̃ is a
connected étale covering over C and E/Gad is a right Out(G)-bundle. We define Γ to be the

subgroup of Out(G) which stabilizes the component C̃. It then follows from Lemma 6.1.2

that π : C̃ → C is an étale Γ-covering, that is the map π : C̃ → C is a Γ-principal bundle and

C̃/Γ = C. We summarize this construction and notation in the diagram below.

G E E◦

C C̃ = E◦/Gad

AutG-bundle Gad-bundle

π

We recall the following fact from étale descent along principal bundles.

Lemma 6.1.3. [Vis05, Theorem 4.46] Let π : C̃ → C be an étale Γ-covering of algebraic
curves for some finite group Γ. There is an equivalence between the category of smooth group
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schemes over C and smooth Γ-group schemes over the Γ-curve C̃, where the pullback functor
π∗ and the Γ-invariant direct image πΓ∗ are inverse to each other.

To be more explicit, we observe that if G is a Γ-group scheme over C̃, then by adjunction
there is a map π∗π∗(G)→ (G) which induces

(8) ǫ : π∗πΓ∗ (G)→ π∗π∗(G)→ G.

Since π is étale, then ǫ is an isomorphism. Similarly, for every group H over C, the map π
induces

(9) η : H → π∗(π
∗H)Γ

which is an isomorphism as well.
We now fix a splitting

(10) ι : Out(G)→ Aut(G)

preserving a Borel subgroup B and a maximal torus T contained in B. This gives rise to a

group homomorphism φι : Γ → Aut(G). It then follows that E◦ is a (Γ, Gad)-bundle over C̃,
where the action of Γ is on the right and the action of Gad is on the left.

We now denote by GE◦ the group scheme over C̃ associated to the Gad-bundle E
◦, namely

GE◦ := E◦ ×Gad G, where Gad acts on G by conjugation. The group scheme GE◦ , together

with the induced Γ-action, is a group scheme over C̃ which is equipped with an action of Γ

compatible with that on C̃.

Lemma 6.1.4. Under the above assumptions, there exists a natural isomorphism of group
schemes over C

G ∼= π∗(GE◦)Γ.

Proof. The map C̃ → C is a torsor for the group Γ, hence by Lemma 6.1.3 it is enough to
check that π∗G ∼= GE◦ .

Since C̃ = E◦/Gad, this can be further reduced to show that there exists an Gad ⋊ Γ-
equivariant isomorphism between E◦ ×k G and E◦ ×C G. To establish such an isomorphism,
we first construct an Aut(G)-equivariant isomorphism between E ×C GC and E ×C G, where
the action of Aut(G) is given by

E ×C GC ×Aut(G)→ E ×C GC , ((φ, g), ψ) 7→ (φ ◦ ψ,ψ−1(g))

E ×C G ×Aut(G)→ E ×C G, ((φ, α), ψ) 7→ (φ ◦ ψ,α).

It follows that the map

f : E ×C GC → E ×C G, (φ, g) 7→ (φ, φ(g))

is Aut(G)-equivariant and it is also an isomorphism which further restricts to an isomorphism

E◦ ×C GC ∼= E
◦ ×C G,

which is Gad ⋊ Γ-equivariant. This concludes the lemma. �

Proposition 6.1.5. If the smooth algebraic curve C is affine, then G ∼= π∗(G × C̃)
Γ, where

the action of Γ on G
C̃

is induced from the splitting (10) and Γ acts on C̃ described above.

Proof. Lemma 5.1.7 shows that the (Γ, Gad)-bundle E
◦ is isomorphic to the trivial (Γ, Gad)-

bundle C̃ ×Gad. Then, the proposition follows from Lemma 6.1.4. �
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We conclude this section with a description of generically split groups over C. For this
purpose, we recall that a simple group scheme G over C is called generically split if Gk(C) is
a split simple group scheme over the function field k(C) of C.

Proposition 6.1.6. The simple group scheme G is generically split if and only if G ∼= GF :=
F×GadG for some Gad-bundle F on C. In particular, if C is affine, then G is split generically
if and only if G ∼= G× C.

We note that when C is affine, this result can also be found in [CGP16, Corollary 3.2.].

Proof. Suppose that G ∼= GF for some Gad-bundle F over C. Since generically F is trivializ-
able, G is generically split.

Conversely, by Lemma 6.1.4 we know that G ∼= π∗(GE◦)Γ. It is enough to show that if
G is generically split, then necessarily Γ must be trivial. Let K (resp. L) be the function

field of C (resp. C̃), so that Gal(L/K) = Γ. It suffices to show that when Γ is nontrivial,
GK = ResL/K(GL)

Γ is not split. The K-form GK of GL gives a class κ in H1(Γ,Aut(G)(L)).

The pointed set H1(Γ,Aut(G)(L)) classifies the isomorphism classes of all K-forms of GL.
Recall that H1(Γ,Out(G)) can be identified with the isomorphisms classes of all group homo-
morphisms from Γ to Out(G). With respect to the splitting ι : Out(G)→ Aut(G), it induces
a map H1(Γ,Out(G)) → H1(Γ,Aut(G)(L)). This map is injective, since the composition of
Out(G)→ Aut(G)(L)→ Out(G) is the identity map. We also observe that, the group homo-
morphism u : Γ → Out(G) induced from the action of Γ on G, corresponds to κ. Since u is
nontrivial, it follows that κ is also nontrivial. Thus, GK is not split.

When C is affine, E is trivializable. Thus, the second statement also follows. �

6.2. Parahoric Bruhat–Tits group schemes over curves. Suppose that C is a connected
projective smooth curve over k. In this section we will further assume that char(k) = 0,

assumption needed for Lemma 6.2.1. Let π : C̃ → C be a Γ-covering of C. For any x ∈ C, let

mx denotes the ramification index at x; equivalently for any x̃ ∈ C̃ such that π(x̃) = x, we
have mx = |Γx̃|.

Lemma 6.2.1. Let C be any connected projective smooth curve C over k. Let g be the genus
of C. There exists a connected Γ-covering π : Ĉ → C of C for some finite group Γ, with
prescribed branched points x1, · · · , xs ∈ C and prescribed ramification indices m1, · · · ,ms at
x1, · · · , xs, except the following cases:

(1) g = 0, s = 1;
(2) g = 0, s = 2 and m1 6= m2.

Proof. Using [Ser08, Theorem 6.4.2], the proof proceeds as in the proof of [Poo05, Lemma
2.5]. �

Given a parahoric Bruhat–Tits group scheme G over C, we say that G is ramified at x ∈ C
if the fiber Gx at x is not reductive. If x ∈ C is a ramified point of G, then G|Dx is a parahoric
group scheme over Dx.

Theorem 6.2.2. Let G be any parahoric Bruhat–Tits group scheme over a connected smooth
projective curve C of genus g with s—possibly zero—ramified points in C. Assume that
G|k(C) is simply connected and let G be the split semisimple and simply connected group over
k having the absolute type of G|k(C). Suppose further that (g, s) 6= (0, 1). Then, there exists a

Γ-covering π : C̃ → C of C for some finite group Γ and a (Γ, Gad)-bundle E where Γ acts on
Gad by diagram automorphisms, such that G ∼= π∗(GE )

Γ.
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Proof of Theorem 6.2.2. Since the case s = 0 is covered by Lemma 6.1.4, we can assume that
s ≥ 1.

We will begin with some notation. We first of all denote by R = {x1, x2, · · · , xs} the set
of all ramified points of G and by S the set {1, . . . , s}. The affine curve C \ R is denoted by
C◦. For every i ∈ S, let zi be a formal parameter around xi, and let ui : D→ Dxi ⊂ C be the
isomorphism identifying z with zi.

By Proposition 6.1.5, there exists an isomorphism G|C◦ ∼= ResĈ◦/C◦(GĈ◦)
D, for some étale

D-covering Ĉ◦ of C◦, and a faithful action of D on G preserving a triple (B,T, e), where
T ⊂ B and e is a pinning of the pair (B,T ). Then, there exists an isomorphism u∗i (G)|D×

∼=
Res

D
×
ri
/D×(GD×)τi , with τi ∈ D.

Since by definition u∗iG is a parahoric group scheme, Theorem 4.2.1 tell us that there exists
an isomorphism

(11) φi : u
∗
iG
∼= ResDmi

/D(GDmi
)σi ,

where σi acts on G by τi ◦Adti for some ti ∈ T
τi , and σi acts on Dmi

as usual. Note that, by
Theorem 4.1.2, the isomorphism φi always exists if we replace mi by any of its multiples and
take the same action of σi on G. In particular, when g = 0 and s = 2, we can assume that
m1 = m2, hence we can assume to be in the hypothesis of Lemma 6.2.1.

By Lemma 6.2.1, there exists a Γ′-covering f : X → C of C for some finite group Γ′, such
that the ramification indices at each xi is mi. Then f∗G is a smooth group scheme over X.
For each xi, choose a point x′i above xi and let Γ′

i be the stabilizer of x′i in Γ′. Let Dxi (resp.
Dx′i

) be the formal neighborhood of xi (resp. x
′
i) in C (resp. X). Then the isomorphism (11)

can be reinterpreted as the following isomorphism

(12) φi : G|Dxi

∼= ResDx′
i
/Dxi

(GDx′
i

)Γ
′
i ,

where Γ′
i = 〈γi〉 with γi being of order mi and acting on G by σi. Then the isomorphism (12)

together with the natural isomorphism ResDx′
i
/Dxi

(GDx′
i

)Γ
′
i ∼= fΓ

′

∗ (Gf−1(Dxi
)) give rise to the

following isomorphism:

ψi : G|Dxi

∼= fΓ
′

∗ (Gf−1(Dxi
)),

where f−1(Dxi) =
⋃
γ∈Γ′/Γ′

i
Dγ·x′i

, and Gf−1(Dxi
) is the constant group scheme over f−1(Dxi).

Recall the maps ǫ and η from (8) and (9). For each 1 ≤ i ≤ s, the map ǫ induces a natural
morphism of group schemes

ǫi : f
∗(fΓ

′

∗ (Gf−1(Dxi
)))→ Gf−1(Dxi

),

which is Γ′-equivariant and is an isomorphism over f−1(D×
xi), since f is étale on D×

xi . There
exists a unique smooth Γ′-group scheme G′ over X such that G′|f−1(C◦) = f∗(G|C◦), and for

each i an isomorphism ψ′
i : G

′|f−1(Dxi
)
∼= Gf−1(Dxi

) of Γ
′-group schemes such that

ψ′
i = ǫi ◦ f

∗(ψi).

We now show that there is an isomorphism

(13) G ∼= fΓ
′

∗ (G′).

The group scheme G′ is glued from f∗(G|C◦) and {Gf−1(Dxi
)}i=1,··· ,s via the transition

isomorphisms {ψ′
i}i=1,··· ,s. By Lemma 6.1.3, the map η gives rise to an isomorphism

ηC◦ : G|C◦ ∼= fΓ
′

∗ (f∗(GC◦)).
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Moreover, we also have isomorphisms ψi : G|Dxi

∼= fΓ
′

∗ (Gf−1(Dxi
)). We shall show that ηC◦ and

{ψi}i=1,··· ,s can glue to an isomorphism G ∼= fΓ
′

∗ (G′). It suffices to show the commutativity of
the following diagram:

(14)

G
D
×
xi

fΓ
′

∗ (Gf−1(Dxi
))

fΓ
′

∗ ◦ f
∗(G|

D
×
xi
) fΓ

′

∗ ◦ f
∗ ◦ fΓ

′

∗ (Gf−1(Dxi
)))

ηG|
D
×
xi

ψi

fΓ
′

∗ ◦f∗(ψi)

fΓ
′

∗ (ǫi) ,

where fΓ
′

∗ (ǫi) ◦ f
Γ′

∗ ◦ f
∗(ψi) = fΓ

′

∗ (ψ′
i). By the adjunction between fΓ

′

∗ and f∗, we have

fΓ
′

∗ (ǫi)
−1 = ηfΓ′

∗ (Gf−1(Dxi
))
. Then, the commutativity of (14) follows from the functoriality of

the morphism Id→ fΓ
′

∗ ◦ f
∗ of functors, applying to ψi.

Now, we proceed with a construction similar to that of Lemma 6.1.4. The scheme E =
Iso(GX ,G

′) is an Aut(G)-bundle over X, with a commuting action of Γ′. Let E◦ be a com-
ponent of E . The finite group Out(G)× Γ′ acts on E . Let Γ be the subgroup of Out(G)× Γ′

which stabilizes the component E◦ of E . Set C̃ = E◦/Gad. Then, π : C̃ → C is a Γ-covering of

C, and E◦ is a (Γ, Gad)-bundle over C̃.

Let X◦ (resp. C̃◦) be the open unramified part of X (resp. C̃) with respect to the Γ′ (resp.
Γ)-action. Recall that X = E/Aut(G) and Aut(G) = Gad ⋊Out(G). Let D′ be the stabilizer
of the component E◦ in Out(G) via the splitting (10). By Lemma 6.1.2, X = E◦/(Gad ⋊D′).

Thus, the natural morphism q : C̃ → X is an étale D′-covering of X. Moreover, the projection
map Γ→ Γ′ descends to an isomorphism of groups Γ/D′ ∼= Γ′.

Finally, we are ready to verify that G ∼= πΓ∗ (GE◦). Note that fΓ
′

∗ ◦ q
D′

∗
∼= πΓ∗ . By (13), it

suffices to check that q∗(GE◦)D
′ ∼= G′. Since q is étale, by Lemma 6.1.3, it is enough to show

that GE◦ ∼= q∗G′ as Γ-group schemes. In other words, it suffices to show that

GE◦ ∼= C̃ ×X (E ×Aut(G) G).

By Lemma 6.1.2, E ×Aut(G) G ∼= E◦ ×Gad⋊D
′
G. Thus, we are left to show that

GE◦ ∼= C̃ ×X (GE◦/D′),

which holds true, since q : C̃ → X is étale. This concludes the proof of our theorem. �

Appendix A. Local types via alcoves

In this appendix we give a concrete realization of the non-abelian group cohomology
H1(Γ, G) as a consequence of Theorem 3.3.1. As an application, we obtain an explicit classifi-
cation of finite order automorphisms of G which enhance the analogue classification provided
by [Kac90, Theorem 8.6] at the level of (twisted) affine Lie algebras, to positive characteristic
(see Theorem A.1.10). Along the way We also provide many concrete examples.

One motivation to give a precise description of these spaces arises from the following geo-
metric question: How to effectively describe (Γ, G)-bundles on a curve? In Section 5, we have
shown that the local description of a (Γ, G)-bundle is determined by its local type, and that
this is naturally identified with an element of H1(Γ, G).

As in previous sections, throughout we assume that G is a simple group over an algebraically
closed field k. We further assume that Γ is a cyclic group (with generator γ) acting on G,
and that char(k) does not divide the order of Γ.
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A.1. Diagram automorphisms. We will begin by recalling, via a pictorial description given
in Table 1, the diagram automorphisms of simply laced groups. In particular we can see that
only D4 admits an automorphism of order 3 and that none of the simple roots of A2ℓ are
Γ-invariant.

Type Diagram automorphisms

A2ℓ−1
α1 α2 αℓ α2ℓ−2 α2ℓ−1

A2ℓ
α1 α2 αℓ αℓ+1 α2ℓ−1 α2ℓ

Dℓ+1
α1 α2 αℓ−1

αℓ

αℓ+1

D4

α4

α1 α2

α3

E6
α1

α6

α2 α3 α4 α5

Table 1. Diagram automorphisms of simply laced groups.

Example A.1.1. Let G be a simply connected group, so that X∗(T ) has a basis of coroots, and
let T be a τ -invariant torus, so that we can apply Proposition 3.2.2. When τ is the trivial
diagram automorphism, then it follows that X∗(T )

τ = X∗(T ) = Nτ (X∗(T )), so that H1
τ (Γ, T )

is isomorphic to (Z/mZ)⊕ℓ, where ℓ is the rank of G and m = |Γ|. One could obtain this
result directly from the definition of H1

τ (Γ, T ), which is in bijection with Tm, the m-torsion of
the torus T . Assume now that τ is not trivial. In view of Table 1, we can explicitly spell out
the generators of X∗(T )

τ and NτX∗(T ).

Order of τ Type Z-generators of X∗(T )
τ Z-generators of NτX∗(T )

Order 2

A2ℓ−1

α̌ℓ 2α̌ℓ

α̌i + α̌2ℓ−i for i ∈ {1, . . . , ℓ− 1} (α̌i + α̌2ℓ−i) for i ∈ {1, . . . , ℓ− 1}

A2ℓ α̌i + α̌2ℓ+1−i for i ∈ {1, . . . , ℓ− 1} (α̌i + α̌2ℓ+1−i) for i ∈ {1, . . . , ℓ}

Dℓ+1

α̌i for i ∈ {1, . . . , ℓ− 1} 2α̌i for i ∈ {1, . . . , ℓ− 1}

α̌ℓ + α̌ℓ+1 (α̌ℓ + α̌ℓ+1)

E6

α̌3, α̌6 2α̌3, 2α̌6,
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α̌1 + α̌5, α̌2 + α̌4 (α̌1 + α̌5), (α̌2 + α̌4)

Order 3 D4

α̌2 3α̌2

(α̌1 + α̌3 + α̌4) (α̌1 + α̌3 + α̌4)

Hence we can explicitly compute H1
τ (Γ, T ) in this situation.

Order of τ Type H1
τ (Γ, T )

Order 2

A2ℓ−1
Z
mZ
×
(

Z
(m/2)Z

)ℓ−1

A2ℓ

(
Z

(m/2)Z

)ℓ

Dℓ+1

(
Z
mZ

)ℓ−1
× Z

(m/2)Z

E6

(
Z
mZ

)2
×
(

Z
(m/2)Z

)2

Order 3 D4
Z
mZ
× Z

(m/3)Z

In particular, if we assume that τ has order 2 and m = 2, then we can see that H1
τ (Γ, T ) is

trivial in type A2ℓ for ℓ ≥ 1, while it consists of two elements for type A2ℓ−1 with ℓ ≥ 2. From
this, and Lemma 3.1.2, we can immediately deduce that H1

τ (Γ,SL2ℓ+1) is trivial for ℓ ≥ 1. We
can actually show that H1

τ (Γ,SL2ℓ) has indeed two elements for ℓ ≥ 2. Let B denote a Borel
of G = SL2ℓ containing T on which τ acts. One obtains that the map φ

(G/B)Γ
φ

// H1
τ (Γ, B)

ψ
// H1

τ (Γ, G) // 0,

is zero. Since the map ψ is surjective and |H1
τ (Γ, B)| = |H1

τ (Γ, T )| = 2, then also |H1
τ (Γ, G)| =

2, concluding the example.

Example A.1.2. We now use Theorem 3.3.1 and Example A.1.1 to compute H1
τ (Γ, G) for

simply connected groups G in which the order of Γ equals the order of τ . We summarize the
result in the table below.

Order of τ Type H1
τ (Γ, G)

Order 1 Any {[0]}

Order 2

A2ℓ−1 {[0], [α̌ℓ]}

A2ℓ {[0]}

Dℓ+1 {[0], [α̌ℓ]}

E6 {[0], [α̌2]}

Order 3 D4 {[0], [α̌2]}

When τ is non trivial, and when G is of type A2ℓ there is nothing to show since H1
τ (Γ, T )

is already trivial. In type A2ℓ−1 the Weyl group W τ acts trivially on the invariant coroots, so
H1
τ (Γ, G) = H1

τ (Γ, T ). In the other cases with τ of order 2, the Weyl group W τ permutes the
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non zero invariant coroots and so we always have two elements in H1
τ (Γ, G), one represented

by 0 and the other one by the class of any of the invariant simple coroots. Finally, for D4 and
τ of order 3, we have that σ2(α̌2) = −α̌2 and so the two non trivial elements of H1

τ (Γ, T ) are
identified in H1

τ (Γ, G), which then has 2 elements.

Example A.1.3. Let Γ = Z/mZ and assume that τ is the trivial diagram automorphism. Then
H1
τ (Γ, G) is identified with the quotient of Tm (the m-th torsion of the torus T ) by the Weyl

group W of G. For instance, when G = SLn and m = 2, then

H1
τ (Γ,SLn) =

⌈
n+ 1

2

⌉
.

Similarly, for general m and for G = SL2 we have

H1
τ (Γ,SL2) =

⌈
m+ 1

2

⌉
.

It was proved by Adams and Täıbi [AT18] that the Galois cohomology of real groups is
isomorphic to H1

θ(Γ, GC) for the holomorphic involutions arising from Cartan involutions,
and they determined the cardinality of those H1

θ(Γ, GC). In [BT21], Borovoi and Timashev
computed the Galois group of real groups in terms of Kac labels when m = 2. This is similar
to what we will do for general m in what follows.

A.1.4. Description through alcove. In this section we further describe H1
τ (Γ, G) as representing

equivalence classes of rational points in the fundamental alcove for X∗(T )
τ . We first begin

with some notation that we use throughout.
Let τ be a diagram automorphism on G of order r (possibly trivial). Let Gτ be the fixed

subgroup of τ in G. Then, Gτ is connected and simple. Following [HK18, p.8], set

θ0 =





highest root of G if r = 1;

highest short root of Gτ if r > 1 and G 6= A2ℓ;

2 · highest short root of Gτ if r = 2 and G = A2ℓ .

Let θ̌0 be the dual of θ0, in other words:

θ̌0 =





highest short coroot of G if r = 1;

highest coroot of Gτ if r > 1 and G 6= A2ℓ;
1
2 · highest coroot of G

τ if r = 2 and G = A2ℓ .

Let M̌ be the lattice spanned by W τ · θ̌0. Then

M̌ =





coroot lattice of G if r = 1;

lattice of long coroots of Gτ if r > 1 and G 6= A2ℓ;

2 · lattice of long coroots of Gτ if r = 2 and G = A2ℓ .

We consider the affine Weyl group W τ
a := M̌ ⋊W τ , which naturally acts on X∗(T )

τ
R. Then

the quotient X∗(T )
τ
R/W

τ
a is in bijection with the fundamental alcove

A(Gτ ) = {λ ∈ X∗(T )
τ
R such that (λ, βi) ≥ 0 for 1 ≤ i ≤ ℓ and (λ, θ0) ≤ 1} ,

where β1, . . . , βℓ are the simple roots ofGτ . In what follows we will use the notation Ar/m(G
τ ),

or simply Ar/m, to denote the finite set A(Gτ ) ∩ r
mX∗(T )

τ , for non zero integers r and m.
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Lemma A.1.5. Let Γ = 〈γ〉 be the cyclic group of order m and assume that γ acts on the
simple algebraic group G via a diagram automorphism τ of order r. Assume that char(k) does
not divide m. Then there is a surjective map

φ : Ar/m → H1
τ (Γ, G)

which is an isomorphism when G is simply connected.

Proof. We first of all note that

Ar/m ∼=
r
mX∗(T )

τ

M̌ ⋊W τ
,

so that, in view of Theorem 3.3.1, it will be enough to show that lattice Nτ (X∗(T )) con-
tains M̌ . Let Tsc denote the maximal torus of the simply connected cover Gsc of G preseved
by τ . Since X∗(Tsc) equals the coroot lattice and X∗(T

τ
sc) = X∗(Tsc)

τ , one can directly
show that Nτ (X∗(Tsc)) is naturally identified with M̌ (e.g. using the computations of Exam-
ple A.1.1). Since Nτ (X∗(Tsc)) ⊂ Nτ (X∗(T )), the above argument shows that M̌ is contained
in Nτ (X∗(T )). �

Example A.1.6. Let G be a group of type A3 and τ be its non trivial diagram automorphism
of order 2. Let m = 2k be the cardinality of the cyclic group Γ. From Lemma A.1.5 it follows
that H1

τ (Γ, G) is in bijection with A2/2k when G is simply connected, i.e. for G = SL4. The
group Gτ is of type C2, with simple roots {α, β} and with highest shortest root θ0 = α + β.
If the group is simply connected, then X∗(T

τ ) is spanned by the coroots α̌ = α
2 and β̌ = β.

Then, an element A
k α̌+ B

k β ∈
1
kX∗(T

τ ) belongs to A2/2k if and only if

2A−B ≥ 0 − 2A+ 2B ≥ 0 B ≤ k.

This implies that A and B are necessarily integers between 0 and k. We can therefore compute
that

|H1
τ (Γ,SL4)| = |A2/2k| =

{
(ℓ+ 1)2 k = 2ℓ

(ℓ+ 1)(ℓ + 2) k = 2ℓ+ 1.

One can similarly compute the cardinality of H1
τ (Γ,SL6), where Γ is the cyclic group of order

2k and τ acts on SL6 via the non trivial diagram automorphism. One obtains

|H1
τ (Γ,SL6)| =





ℓ(ℓ+ 1)(ℓ + 2)

3
k = 2ℓ

(ℓ+ 1)(ℓ+ 2)(ℓ+ 3)

3
k = 2ℓ+ 1

.

We have seen in the example above how Lemma A.1.5 allows us to translate the problem of
computing H1

τ (Γ, G) into counting the number of integer solutions of a system of inequalities.
These inequalities are explicitly found using the Cartan matrix of the group Gτ .

We use this point of view to describe H1
τ (Γ, G) for G of adjoint type. We first set up

some notation. If the group G is of type Xn and τ has order r, then the coefficients ai of

θ0 =
∑ℓ

i=1 aiβi for the group Gτ are the Kac’s labels at the i-th vertex of the (twisted) affine

Dynkin diagram of type X
(r)
n (see [Kac90, Tables Aff 1, Aff 2 and Aff 3, at pages 54 and

55]), except when G is of type A2ℓ and τ has order 2. In this latter case, θ0 =
∑ℓ

i=1 2βi, or

equivalently ai corresponds to Kac’s label of A
(2)
2ℓ at the (i− 1)-st vertex.
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Using this notation, we define Sr/m(G
τ ), or simply denoted Sr/m, to be the set whose

elements are an (ℓ+ 1)-tuple (si)i=0,1,··· ,ℓ of integers, satisfying

si ≥ 0 for all i ∈ {0, . . . , ℓ}, and

ℓ∑

i=0

aisi =
m

r
,

where a0 = 1 (this is again Kac’s label at the 0-th vertex of the (twisted) affine Dynkin

diagram, except in case A
(2)
2ℓ , where it is Kac’s label at the ℓ-th vertex).

Lemma A.1.7. Let Γ = 〈γ〉 be the cyclic group of order m and assume that γ acts on the
simple algebraic group G via a diagram automorphism τ of order r. Assume that char(k) does
not divide m. If G is of adjoint type, then Ar/m ∼= Sr/m.

Proof. SinceG is of adjoint type, thenX∗(T
τ ) is spanned by the coweights ˇ̟ 1, . . . , ˇ̟ ℓ, so every

element λ ∈ Ar/m can be written as r
m

∑ℓ
i=1 si ˇ̟ i for some integers si. From (λ, βi) ≥ 0 we

deduce that si ≥ 0 for all i ∈ {1, . . . , ℓ}. Moreover, (λ, θ) ≤ 1 is equivalent to
∑ℓ

i=1 siai ≤
m
r ,

that is s0 :=
m
r −

∑ℓ
i=1 siai ≥ 0. �

We introduce the equivalence relation ∼ on Sr/m which is induced by the outer automor-
phisms of the affine Dynkin diagrams (possibly twisted). For example, if the affine Dynkin
diagram has no outer symmetry, then the equivalence relation is trivial. If, for instance, G is
of type A2ℓ−1 and the order r of σ is 2, the equivalence relation ∼ is given by

(si) ∼ (s′i) if and only if s0 = s′1, s1 = s′0, and si = s′i for i ≥ 2.

Let Sr/m/∼ be the set of the equivalence classes of ∼.

Proposition A.1.8. Under the assumptions of Lemma A.1.7, there is a natural bijection

H1
τ (Γ, G)

∼= Sr/m/∼ .

Proof. By Lemma A.1.7, there is a natural bijection

(15)
r
mX∗(T )

τ

M̌ ⋊W τ
∼= Sr/m.

We will split the proof in three cases.
Case I. When τ is trivial, equivalently r = 1, we have that M̌ is the coroot lattice Q̌ of

G, so that the left hand side of (15) is 1
mX∗(T )/Waff , where Waff is the affine Weyl group

Q̌ ⋊ W . Moreover, since G is adjoint, X∗(T ) equals to the coweight lattice P̌ of G. Let
Ωa be the normalizer of the set of all affine simple reflections of Waff . It is known that the
extended affine Weyl group P̌ ⋊W is isomorphic to the semidirect productWaff ⋊Ωa [Bou02,
§2.3]. In particular, Ωa is the group of all outer automorphisms of Waff , and the map (15) is
Ωa-equivariant.

Observe that we have the following bijections:

H1
τ (Γ, G)

∼=
r
mX∗(T )

(P̌ ⋊W )
∼=

( r
mX∗(T )

Waff

)
/(P̌ /Q̌).

The action of P̌ /Q̌ on r
mX∗(T )/Waff is equivalent to the action of Ωa, via the natural iso-

morphism Ωa ∼= P̌ /Q̌ [Bou02, §2.3]. It follows that, there is a natural bijection H1
τ (Γ, G)

∼=
Sr/m/∼.

Case II. When (G, r) = (A2ℓ, 2), (E6, 2), (D4, 3), there are no outer symmetry in the asso-

ciated affine Dynkin diagram A
(2)
2ℓ , E

(2)
6 ,D

(3)
4 . Moreover, a direct computation allows us to

compare M̌ with Nτ (X∗(T )):
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(G, r) M̌ Nτ (X∗(T ))

(A2ℓ, 2)

〈
2̟1 −̟2, (− ˇ̟ i−1 + 2 ˇ̟ i − ˇ̟ i+1)i=2,...,ℓ−2,

− ˇ̟ ℓ−2 + 2 ˇ̟ ℓ−1 − 2 ˇ̟ ℓ,− ˇ̟ ℓ−1 + 2 ˇ̟ ℓ

〉
〈( ˇ̟ i)i=1,...,ℓ−1, 2 ˇ̟ ℓ〉

(E6, 2)

〈
4 ˇ̟ 1 − 2 ˇ̟ 2, 2 ˇ̟ 1 − 4 ˇ̟ 2 + 4 ˇ̟ 3

2 ˇ̟ 2 − 2 ˇ̟ 3 + ˇ̟ 4, ˇ̟ 3 − 2 ˇ̟ 4

〉
〈2 ˇ̟ 1, 2 ˇ̟ 2, ˇ̟ 3, ˇ̟ 4〉

(D4, 3) 〈2 ˇ̟ 1 − 3 ˇ̟ 2, 3 ˇ̟ 1 − 6 ˇ̟ 2〉 〈 ˇ̟ 1, 3 ˇ̟ 3〉

This shows that Nτ (X∗(T )) = M̌ . This also completes the proof the theorem in these cases.

Case III. We are left to consider other two cases, i.e. when (G, r) is (A2ℓ−1, 2), or (Dℓ+1, 2).
Denote by X∗(T )τ the quotient of X∗(T ) by the operator 1− τ . Note that there is a natural

map X∗(T )τ → X∗(T )
τ given by λ̄ 7→

∑r−1
i=0 τ

i(λ), where λ is any lift λ̄ in X∗(T ). This gives
rise to the following bijections (in these two cases):

X∗(T )τ ∼= Nτ (X∗(T )), Q̌τ ∼= Nτ (Q̌) = M̌.

It induces the following isomorphisms:

Nτ (X∗(T ))/M̌ ∼= X∗(T )τ/Q̌τ ∼= (X∗(T )/Q̌)τ

of abelian groups. By the calculation in [BH20, Table 2.11], (X∗(T )/Q̌)τ ∼= Z/2Z. Thus,
Nτ (X∗(T ))/M̌ ∼= Z/2Z. By the argument similar to the case when r = 1, the action of
Nτ (X∗(T ))/M̌ on r

mX∗(T )
τ/M̌ exactly corresponds to the only nontrivial outer automor-

phisms on the twisted affine Dynkin diagrams of types A
(2)
2ℓ−1 and D

(2)
ℓ+1. This concludes the

proof. �

A.1.9. Revisit Kac’s classification of finite order automorphisms. Let G be a simple algebraic
group over k of characteristic p and let σ be an automorphism on G such that σm = 0 for
some positive integer m. When p = 0, it is a classical result of Kac [Kac90, Theorem 8.6] that
σ, up to conjugation, is classified by elements in Sr/m/ ∼. In fact, from our computation of

H1
τ (Γ, G), the same classification holds for general characteristic p such that p does not divide

m.
Given a diagram automorphism τ on G, we consider the set

Aut(G)τ,m := {σ ∈ Aut(G) |σm = 1, σ̄ = τ̄ in Out(G)},

where Out(G) := Aut(G)/Gad is the group of outer automorphisms, and σ̄ and τ̄ are the
images of σ and τ in Out(G). Let Aut(G)τ,m/∼ be the conjugation classes of Aut(G)τ,m by
Gad. Then, there is a natural bijection

(16) H1
τ (Γ, Gad) ∼= Aut(G)τ,m/ ∼

given by [g] 7→ Adg ◦ τ . Having described the left hand side of (16) in Proposition A.1.8 in
terms of Sr/m/∼, we obtain Kac’s classification over a field of possibly positive characteristic.

Theorem A.1.10. Let G be a simple group over an algebraically closed field of characteristic
p ≥ 0. Let τ be a diagram automorphism of G whose order divides m. If p does not divide
m, then there is a natural bijection Aut(G)τ,m/∼ ∼= Sr/m/∼.
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A.2. From diagram automorphisms to general automorphisms. In the previous sec-
tions, we have seen how to compute H1(Γ, G) under the assumption that the Γ acts via
diagram automorphisms only. We explore here what happens when we drop this assumption.

For this purpose, in this section we denote by m the order of the cyclic group Γ and assume
that char(k) does not divide m. We use the letters σ or τ to denote automorphisms of G such
that σm = τm = 1. As before H1

σ(Γ, G) (and H1
σ(Γ, G)) denotes the non abelian cohomology

of Γ with coefficients in G, where we assume that the generator γ of Γ acts by σ (resp. τ).
We first of all note that, from the very definition of non-abelian group cohomology, we

obtain the following result.

Lemma A.2.1. Assume that σ2 = Adh ◦ σ1 ◦ Adh−1 for some h ∈ G. Then, the map
Adh : H

1
σ1(Γ, G)→ H1

σ2(Γ, G) is a bijection.

We further observe the following result.

Lemma A.2.2. Let σ and τ be automorphisms of G as above and such that σ = Adg ◦ τ for

some g ∈ Gτ . The multiplication map − · g : G→ G induces a bijection G/∼σ
∼=

// G/∼τ .

This induces an isomorphism H1
σ(Γ, G)

∼=
// H1

τ (Γ, G) if and only if gm = 1.

Proof. We are only left to show the last assertion. By definition, we have that a ∈ Z1
σ(Γ, G)

is equivalent to aσ(a) . . . σm−1(a) = 1. This amounts to

1 = a gτ(a)g−1 g2τ2(a)g−2 . . . gm−1τm−1(a)gm−1 = (ag) τ(at) τ2(at) . . . τm−1(at)gm,

so that ag ∈ Z1
τ (Γ, G) if and only if gm = 1, as claimed. �

Corollary A.2.3. Let G be an adjoint group, and let σ1 and σ2 be two automorphisms of G.
If σ̄1 = σ̄2 ∈ Out(G), then H1

σ1(Γ, G) = H1
σ2(Γ, G).

Remark A.2.4. We have seen in Corollary 4.1.5 that, under slightly more restrictive assump-
tions on char(k), every finite automorphism σ of G admits a decomposition as Adt ◦ τ for
some diagram automorphism τ and t ∈ T τ . Moreover we can ensure that tm = 1 if and only
if |Z(Gτ,0)| = 1. This happens when (G, |τ |) are of type (A2ℓ, 2), (E6, 2), or (D4, 3). In these
cases then Lemma A.2.2 implies that H1

σ(Γ, G) = H1
τ (Γ, G) whenever σ̄ = τ̄ ∈ Out(G).

Example A.2.5. Let σ be involution on SLn given by σ(g) = (gt)−1, i.e. the one sending a
matrix to the inverse of its transpose. Take Γ = Z/2Z. By linear algebra, H1

σ(Γ,SLn) consists
of one element. It is well-known that when n = 2i + 1 with i ≥ 1, then σ is a diagram
automorphism preserving a Borel subgroup (different from the group of upper-triangular
matrices). We can see that this calculation agrees with the calculation in Example A.1.2.
When n = 2i with i ≥ 1, the automorphism σ is not a diagram automorphism and in
this case, the cardinality of H1

σ(Γ,SLn) does not coincide with the cardinality of H1
τ (Γ,SLn),

where τ is the diagram automorphism of SLn of order 2 for n ≥ 3, and the trivial diagram
automorphism for SL2.

Let G be the group PGLn and let σ be the involution as above. Let g be an invertible
matrix in GLn and denote by ḡ is equivalence class in PGLn. The condition ḡσ(ḡ) = 1
holds if and only if there exists a non zero scalar λ ∈ k such that gt = λg. This implies
that λ2 = 1, thus λ = ±1. If n = 2i + 1, λ = 1, as there is no invertible anti-symmetric
matrix. It follows that when n = 2i+1, the set H1

σ(Γ,PGLn) has one element. When n = 2i,
instead, g can be either symmetric or anti-symmetric matrices and this determines two distinct
elements of H1

σ(Γ,PGLn). Note that the cardinalities of these cohomology spaces agree with
the calculation in Example A.1.2 and with Corollary A.2.3.
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