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Optimality conditions and Lagrange multipliers for

shape and topology optimization problems

Dan Tiba∗

Abstract

We discuss first order optimality conditions for geometric optimization prob-
lems with Neumann boundary conditions and boundary observation. The methods
we develop here are applicable to large classes of state systems or cost functionals.

Our approach is based on the implicit parametrization theorem and the use
of Hamiltonian systems. It establishes equivalence with a constrained optimal
control problem and uses Lagrange multipliers under a new simple constraint
qualification. In this setting, general functional variations are performed, that
combine topological and boundary variations in a natural way.

Keywords: Hamiltonian systems, optimal control, implicit parametrization, func-
tional variations

MSC: 49K10, 49Q10

1 Introduction

Let O be a family of subdomains in D ⊂ R2, a given bounded domain. We discuss the
first order necessary optimality conditions for the following optimal design problem:

Min
Ω∈O

∫

∂Ω

j(σ, yΩ(σ))dσ, (1.1)

subject to

−∆yΩ + yΩ = f in Ω, (1.2)

∂yΩ

∂n
= 0 on ∂Ω. (1.3)
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Here, f ∈ L2(D) is given and j(·, ·) is a Carathéodory mapping . More assumptions
will be imposed as needed. We work in dimension two since the Poincaré-Bendixson
theorem [18], [10] is employed in our periodicity argument for the associated Hamiltonian
systems appearing in the description of the unknown geometry. Dimension two is an
important case in optimal design. Except this (essential) detail, the proofs are valid in
arbitrary dimension. Moreover, they can be easily extended to other shape optimization
problems and our choice for the case (1.1)-(1.3) is motivated by its intrinsic difficulty.

The literature on topology optimization is very rich and we quote just the mono-
graphs [1], [5], [17] (and their references) devoted to this subject. There are many
approaches: the topological derivative based on asymptotic analysis of shape function-
als in domains with holes, the SIMP method which uses a relaxation procedure, the
homogenization approach, level set techniques. In this paper, we also use level set func-
tions, but no Hamilton-Jacobi equation is needed and no ”evolution” of the level sets is
taken into account.

Our main tools are general functional variations for the geometry and ordinary differ-
ential Hamiltonian systems, via implicit parametrizations of the shapes. In this respect,
we refer to [22], [14], [16] where such ideas were introduced. Applications to numerical
approaches in optimal design can be found in [23], [12], [11].

This paper uses as well recent developments from [13], for instance the differen-
tiability of the period for Hamiltonian systems, with respect to functional variations.
However, the key point here is the application of a Lagrange multipliers rule, while in
[13] a penalization approximation process plays an essential role. We also quote the pa-
per [2], where Lagrange multipliers are obtained under interiority conditions. Moreover,
we are not employing topological asymptotic properties for elliptic equations as in [17],
[9] and we use another topological derivative [16], [13], that allows the application of
gradient algorithms [11], [12].

In this setting, the equivalence of shape optimization problems with certain optimal
control problems involving mixed constraints of a special form, is obtained. This may
be viewed as a fixed domain approach, but here we have even an equivalence property,
not just approximation properties as usual in the literature, [16], [17].

Another important point is that our methodology, using functional variations, pro-
vides at the computational level simultaneous topological and boundary variations of
the unknown geometry. They are not prescribed, but automatically chosen by the al-
gorithm. As a fixed domain approach it also has clear implementation advantages: the
mesh, the mass matrix need not to be updated during the iterations. Such properties
are discussed as well, for instance in [17], for approximation procedures via different
techniques.

It is here that we investigate, for the first time, the impact of general functional
variations in the derivation of the necessary optimality conditions in optimal design
problems. These necessary conditions have a purely analytic character, that is the
geometry is absent from their formulation. We also underline the Frechet differentiability
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of the operators that we use and the fact that such smooth operations can even generate
or close holes, see Rem.3.1.

The plan of the paper is as follows. In the next section, we discuss some preliminaries
and the optimal control formulation. In Section 3, we obtain abstract optimality condi-
tions via a Lagrange multiplier rule, under a simple constraint qualification condition.
The optimality conditions are detailed in the last section.

Among the advantages of our methodology, we mention its purely analytic character,
the generality of the employed variations and the intimate relationship with optimal
control theory. We also underline its applicability at the computational level, [13], [16].
As drawbacks, we indicate the dimension two setting and certain regularity hypotheses,
both due to the application of the Poincaré-Bendixson theory.

2 Preliminaries and equivalence

Let g ∈ C(D) be some given function. To it, we associate the open set Ωg ⊂ D:

Ωg = int{x ∈ D; g(x) ≤ 0} (2.4)

that may be not connected and its components may be not simply connected. Notice
as well that the set

G = {x ∈ D; g(x) = 0} (2.5)

may be of positive Lebesgue measure, in this very general framework.
In order to select some connected (not necessarily simply connected) component of

Ωg, we fix a point x ∈ D and define the domain Ωg to be the component that contains
x in its closure (it may be void). If it is nonvoid, then g ∈ C(D) satisfies

g(x) ≤ 0. (2.6)

In fact, in many examples of shape optimization problems, the following supplemen-
tary geometric constraint is imposed on the admissible domains Ωg:

E ⊂ Ωg ⇒ g(x) ≤ 0 on E,

where E ⊂ D is some given set. Therefore, the condition (2.6) and the definition of
the domain Ωg are natural. In the sequel, Ωg is always the connected component of the
open set defined in (2.4), satisfying x ∈ Ωg and (2.6).

It is obvious that more regularity of Ωg is necessary in order that (1.1)-(1.3) make
sense. We assume that g ∈ C1(D) and (see (2.5)):

|∇g(x)| > 0, ∀x ∈ G. (2.7)
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We also impose the condition

g(x) > 0, ∀x ∈ ∂D (2.8)

which ensures that ∂Ωg ∩ ∂D = ∅. We denote by F ⊂ C1(D) the family of functions
satisfying (2.6), (2.7), (2.8). It is a cone in C1(D).

By the implicit functions theorem, we get that ∂Ωg is of class C1 and

Ωg = {x ∈ D, g(x) < 0}, (2.9)

∂Ωg = G and has null Lebesgue measure. Relation (2.9) assumes that g > 0 outside the
domain Ωg, that can be obtained by adding to g the squared distance function to Ωg

multiplied by a convenient constant. Obviously, an infinity of g ∈ F yield the same Ωg.
If more regularity is imposed on F , then ∂Ωg becomes more regular. In general,

∂D is assumed to have the same regularity. The family O of all admissible domains
for the minimization problem (1.1)-(1.3) is generated by the above procedure starting
from the level functions g ∈ F . These domains are not necessarily simply connected
and that’s why our approach allows topology optimization in combination with shape
optimization. We also underline that O is a rich family of admissible domains, that is
the problem (1.1)-(1.3) is meaningful, see [8], Ch.2.

Denote by Vε = {x ∈ D; d(x,G) < ε} ⊂ D an ε-neighbourhood of G; and Gλ =
{x ∈ D, (g + λh)(x) = 0}, where ε > 0, h ∈ F , λ ∈ R.

Proposition 2.1 Let F ⊂ C(D). There is λ(ε) > 0 such that, for λ ∈ R, |λ| < λ(ε),
we have Gλ ⊂ Vε.

Proposition 2.2 Let F ⊂ C2(D). Under conditions (2.6), (2.7), (2.8), G is a fi-
nite union of closed curves, without self intersections and disjoint from ∂D, globally
parametrized by the solution of the Hamiltonian system:

x′
1(t) = −∂1g(x1(t), x2(t)), t ∈ I, (2.10)

x′
2(t) = ∂1g(x1(t), x2(t)), t ∈ I, (2.11)

x(0) = (x1(0), x2(0)) = x0, (2.12)

where x0 is a point on each component of G and I is an interval around the origin, de-
pending on the respective component. Moreover, the solution of (2.10)-(2.12) is unique.

Remark 2.1 Prop.2.1 and Prop.2.2 are very similar to results proved in [23]. A partial
(local) extension to arbitrary dimension and the uniqueness result can be found in [22].
In particular, F is a cone and, for any g, r ∈ F , we get g + λr ∈ F for λ ≥ 0 small,
under the conditions of Prop.2.2 with (2.6) replaced by: there is x ∈ D such that
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g(x) = 0, ∀g ∈ F . (2.13)

The trajectories of the Hamiltonian system (2.10)-(2.12) are closed, that is periodic
and I may be choosen I = [0, Tg], the main period interval, depending on each compo-
nent of G, [23]. Condition (2.7) gives the Poincaré-Bendixson hypothesis (the absence
of equilibrium points on the trajectories) for this system. The Hamiltonian structure
has, in fact, the property not to allow the presence of a limit cycle and the solutions are
periodic, see [18], Ch.5, section 28.

It turns out that the shape optimization problem (1.1)-(1.3) is equivalent with the
following constrained optimal control problem, defined in D:

Min
g,u

Tg∫

0

j(zg(t), yg(zg(t)))|z
′
g(t)|dt (2.14)

−∆yg + yg = f + g2+u in D, (2.15)

yg = 0 on ∂D, (2.16)

Tg∫

0

|∇yg(zg(t)) · ∇g(zg(t))|
2dt = 0. (2.17)

In (2.14)-(2.17), zg(t) = (z1g (t), z
2
g(t)) denotes the unique solution of the Hamiltonian

system (2.10)-(2.12), Constraint (2.17) is a simplified equivalent form of (1.3):

0 =

∫

∂Ωg

∣∣∣∣
∂yΩg

∂n

∣∣∣∣
2

dσ =

∫

G

∣∣∣∣
∂yΩg

∂n

∣∣∣∣
2

dσ =

Tg∫

0

|∇yg(zg(t)) · ∇g(zg(t))|
2

|∇g(zg(t))|2
|z′g(t)|dt. (2.18)

If G has several connected components, then (2.18) and (2.17) are finite sums (see
Prop.2.2) of such integrals and an initial condition should be fixed on each component
of G, for the Hamiltonian system. The same is valid for the cost index (2.14) which is
an equivalent form of (1.1) and may take as well the form of a finite sum if G = ∂Ωg

has several connected components as it happens in topology optimization.

Theorem 2.1 For any g ∈ F ⊂ C2(D) there is ug measurable in D, not unique, such
that g2+ug ∈ L2(D) and the solution of (2.15), (2.16) coincides in Ωg with the solution
of (1.2), (1.3) and satisfies (2.17). The associated costs (1.1), (2.14) coincide as well.
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Proof
Since ∂Ωg is in C2 under conditions F ⊂ C2(D) and (2.7), then the unique solution

y of (1.2), (1.3) satisfies y ∈ H2(Ωg). Let ỹ ∈ H2(D \Ωg) be such that ỹ = y, ∂ỹ
∂n

= 0 on
∂Ωg and ỹ = 0 on ∂D. This is possible due to the trace theorem and ỹ is not unique.

We denote

ug =
−∆ỹ − f

g2+
in D \ Ωg

and 0 in Ωg. Here, we may assume g > 0 in D \ Ωg without loss of generality.
The concatenation of y and ỹ satisfies (2.15), (2.16), (2.17) in D and g2+ug ∈ L2(D)

by construction.
The equality of the costs (1.1), (2.14) is obvious. ✷

Remark 2.2 This statement is a variant of the similar results used in other cases in
[11], [12], [13]. It proves the equivalence of the shape optimization problem (1.1)-(1.3)
with the constrained optimal control problem (2.14)-(2.17) defined in D. Notice as well
that, although in (1.3) the Neumann condition is considered, the equivalent formulation
in D uses the Dirichlet condition in (2.16).

The existence of some (local) optimal domain Ω∗ is assumed in this paper, as it is
usual in the discussion of optimality conditions, [4]. For general existence results, under
minimal geometric regularity assumptions (the segment property), we quote [15], [20].

3 Differentiability and Lagrange multipliers

In the sequel, we shall use the so called ”reduced” problem for the optimal control
problem, instead of the formulation given by (2.14)-(2.17) and (2.10)-(2.12). We denote
by A : L2(D) → H2(D) ∩H1

0 (D) the isomorphism defined by the Dirichlet problem in
D and (2.15), (2.16) can be written as yg = A(f + g2+u). Then, the constrained optimal
control problem can be written as

Min
g,u

Tg∫

0

j(zg(t), A(f + g2+u)(zg(t)))|z
′
g(t)|dt, (3.19)

Tg∫

0

∣∣∇A(f + g2+u)(zg(t)) · ∇g(zg(t))
∣∣2 dt = 0. (3.20)

The notations Tg, zg are explained in §2 and relations (3.19), (3.20) define the reduced
problem.

To fix the ideas and without losing generality, we assume now that Ω∗ (a local
”optimal” domain) is double connected (it has one hole). Then, its boundary ∂Ω∗ has
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exactly two components: one ”exterior” component and one ”interior” component. To
further simplify the writing, we assume that the cost functional (3.19) is defined just on
the ”exterior” component. However, the constraint (3.20) has to be satisfied on all the
components of ∂Ω∗. We denote by zg, ẑg the solutions of the Hamiltonian system (2.10)-
(2.12) corresponding to some given initial conditions x, x̂, on these two components.

Min
g,u

T̂g∫

0

j(ẑg(t), A(f + g2+u)(ẑg(t)))|ẑ
′
g(t)|dt, (3.21)

T̂g∫

0

∣∣∇A(f + g2+u)(ẑg(t)) · ∇g(ẑg(t))
∣∣2 dt+

T g∫

0

∣∣∇A(f + g2+u)(zg(t)) · ∇g(zg(t))
∣∣2 dt = 0.

(3.22)

In (3.21), (3.22), the notations T̂g, T g are, respectively, the main periods associated to
the two Hamiltonian systems used here. All the above considerations from this section
are based on Prop.2.1, Prop.2.2, Thm.2.1. In case ∂Ω∗ has more components, then
initial conditions have to be chosen on each of them and the corresponding Hamiltonian
systems have to be included in the state system governing the optimal control problem.

In fact, we discuss about the optimal domain Ω∗, just for intuition. The problem
(3.21), (3.22) has no reference to the geometry and we denote by [g∗, u∗] ∈ F × L2(D)
some (local) optimal pair for (3.21) and satisfying (3.22). As F ⊂ C1(D), we get
(g∗+)

2 ∈ C(D) and (g∗+)
2u∗ is in L2(D) (the assumption on u∗ is here slightly stronger

than in §2).
In this analytic setting, we can define functional variations [14], [16], around [g∗, u∗],

g∗ + λh, u∗ + λv, where λ ∈ R, h ∈ F and v ∈ L2(D). We underline that the condition
u∗ ∈ L2(D) allows to consider variations v ∈ L2(D), independently of g∗, ensuring that
the right-hand side in (2.15) is in L2(D).

If F is given by (2.7), (2.8) and (2.13) (in the form (3.23) below), then g∗ + λh ∈ F
for |λ| small, due to the compactness of ∂D, G and the Weierstrass theorem. That
is, the above variations are ”admissible” (the question of the constraint (3.22) will be
handled via the Lagrange multipliers). We also assume that the above structure (3.21),
(3.22) of the cost and of the constraint (one interior and one exterior component of the
boundary) remains the same for the considered perturbed controls g∗ + λh, u∗ + λv,
for |λ| small. This is reasonable due to Prop.2.1: the topological structure of ∂Ω∗ is
maintained under the above small perturbations.

We know that g∗(x) = g∗(x̂) = 0 by the above choice of the initial conditions for
(2.10)-(2.12). We take the variations h ∈ F , around g∗, satisfying as well

h(x) = h(x̂) = 0. (3.23)
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In fact, (3.23) should be understood in the sense that any points x, x̂ ∈ G∗ = ∂Ω∗

(one on each of the two components of G∗) such that (3.23) is fulfilled, may be used.
That is the class of variations h ∈ F taken into account, is rich.

Remark 3.1 Such variations are also used in the numerical experiments from [11], [12],
[13] and the condition (3.23) is easy to handle at the numerical level, to obtain descent
directions. The number of holes can change during the iterations, both by adding new
holes or by closing existing holes. Although functional variations are used both here (for
optimality conditions) and in computational examples, one should distinguish between
the two situations. Here, λ → 0 and we have stability properties for the topology, while
in the case of experiments, λ is chosen according to the descent property of the cost
functional and it is not necessarily ”small”. Then, topological changes may appear.

It is possible, in principle, to remove condition (3.23) by defining xλ = projG∗

λ
(x),

x̂λ = projG∗

λ
(x̂) and, automatically, we get (g+λh)(xλ) = (g+λh)(x̂λ) = 0. But, the aim

of this section is to prove differentiability properties, for instance of the mapping zg(·)
depending on g (and on the initial conditions x, x̂, xλ, x̂λ). It is clear that differentiability
properties of the projG∗

λ
(·) or of the corresponding dist(·) function have to be valid in

this setting. However, as shown, for instance, in Delfour and Zolesio [[8], p. 169] this
may not be true. In order to avoid such technicalities, we have imposed (3.23), which
still ensures a large class of variations.

We denote by xλ = (x1λ, x2λ) the solution of the perturbed Hamiltonian system

x′
1λ = −∂2g(x1λ, x2λ)− λ∂2h(x1λ, x2λ), (3.24)

x′
2λ = ∂1g(x1λ, x2λ) + λ∂1h(x1λ, x2λ), (3.25)

(x1λ(0), x2λ(0)) = x0. (3.26)

In (3.24)-(3.26) and in (2.10)-(2.12) we assume x0 to be either x or x̂ and (3.23) is
fulfilled. Let wλ = xλ−x

λ
.

Proposition 3.1 Let g, h ∈ C2(D). Then, xλ → x in C1(0, T )2 and wλ → w = (w1, w2)
in C1(0, T )2. The limit w satisfies the system in variations:

w′
1 = −∇∂2g(x) · w − ∂2h(x) in [0, T ], (3.27)

w′
2 = ∇∂1g(x) · w + ∂1h(x) in [0, T ], (3.28)

w(0) = (w1(0), w2(0)) = (0, 0). (3.29)
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Proof
Both (3.24)-(3.26) and (2.10)-(2.12) have periodic solutions, by the above arguments.

Due to this, the stability property xλ → x in C1(0, T )2, for some arbitrary T > 0 is
standard, Barbu [3], Pontryagin [18]. Subtracting (3.24)-(3.26) and (2.10)-(2.12) we
obtain

w′
1λ = −

1

λ
[∂2g(xλ)− ∂2g(x)]− ∂2h(xλ) in [0, T ], (3.30)

w′
2λ =

1

λ
[∂1g(xλ)− ∂1g(x)] + ∂1h(xλ) in [0, T ], (3.31)

wλ(0) = (w1λ(0), w2λ(0)) = (0, 0). (3.32)

The mean value theorem allows to replace the parentheses in (3.30), (3.31), respec-
tively by ∇∂2g(θλ) ·wλ, ∇∂1g(ηλ) ·wλ, where θλ(t), ηλ(t) are some points on the segment
between xλ(t) and x(t) and θλ(t) → x(t), ηλ(t) → x(t) as λ → 0.

Moreover, ∇∂2g(θλ), ∇∂1g(ηλ) have respectively the limits ∇∂1g(x), ∇∂2g(x) and
∂2h(xλ) → ∂2h(x), ∂1h(xλ) → ∂1h(x) under our assumptions, as λ → 0.

From (3.30)-(3.32) and their equivalent formulation using θλ, ηλ, we obtain that {wλ}
is bounded in C(0, T )2 via the Gronwall lemma. It is also bounded in C1(0, T )2 due
to the above convergences. The Arzela-Ascoli theorem gives wλ → w in C(0, T )2, on
a subsequence. One can pass to the limit wλ → w in C1(0, T )2, in fact, and obtain
(3.27)-(3.29). Since the solution of the linear system (3.27)-(3.29) is unique, the limit is
valid without taking subsequences. ✷

Remark 3.2 This is a modification of Prop. 6 in [21]. If g, h ∈ F , then T > 0 is
arbitrary due to Prop.2.2. Moreover, the nonlinear operator zg : C2(D) → C1(0, T )2

is Gâteaux differentiable and its Gâteaux differential is linear bounded, due to (3.27)-
(3.29), [21]. It is also continuous with respect to g ∈ C2(D), that is the nonlinear
operator zg(·) is Fréchet differentiable in the points of F ⊂ C2(D).

Proposition 3.2 We have:

A(f + g2+u) : C
2(D)× L2(D) → H2(D) ∩H1

0(D)

∇A(f + g2+u) : C
2(D)× L2(D) → H1(D)2

are Fréchet differentiable.

This is obvious due to the properties of the operator A and of the positive part.

We denote by C̃2(D) = {g ∈ C2(D); g(x̂) = g(x) = 0}, a Banach space under the
same norm as in C2(D). It is clear that F ⊂ C̃2(D) is an open cone, due to (2.7) and

9



(2.8). Notice that (2.7) is equivalent with |g(x)| + |∇g(x)| > 0 in D and Weierstrass
theorem can be applied here too.

By Prop.3.1 and Prop.3.2, it yields that the nonlinear trace operatorA(f+g2+u)(zg(·)) :

[F ⊂ C̃2(D)]× L2(D) → H3/2(G), given by g, u → yg|G, is Fréchet differentiable. Sim-
ilarly z′g : F ⊂ C̃2(D) → C(0, T )2, ∇g(zg(·)) : F ⊂ C̃2(D) → C1(G)2 (trace of ∇g),

∇A(f + g2+u)(zg(·)) : [F ⊂ C̃2(D)] × L2(D) → H1/2(G)2 (trace of ∇yg) are Fréchet
differentiable. In case G∗ = ∂Ω∗ has more connected components, then in (3.23) more
initial conditions have to be considered and the definition of C̃2(D) has to be adapted
accordingly.

Proposition 3.3 ([13]) Under condition (2.7), the functional Tg : F ⊂ C̃2(D) → R

(the period) is Fréchet differentiable.

In [13], the Gâteaux differentiability of the period Tg is proved in Prop.4.2. The
Fréchet differentiability follows by arguments as in Rem.3.2.

We denote by J : F × L2(D) ⊂ C̃2(D) × L2(D) → R and S : F × L2(D) ⊂
C̃2(D) × L2(D) → R, the integral functionals appearing respectively in (3.21), (3.22)
(the functional S is the sum of the two integral functionals appearing in (3.22)).

Corollary 3.1 Assume that j(·, ·) ∈ C1(R2 × R). Then J, S : F × L2(D) ⊂ C̃2(D) ×
L2(D) → R are Fréchet differentiable.

We denote by S ′, J ′ their Fréchet differentials, respectively. More details and argu-
ments, concerning the above properties, will be discussed in the next section.

We consider now the shape optimization problem (1.1)-(1.3) (in its equivalent control
formulation (2.10)-(2.12), (2.14)-(2.17)), in the following abstract form:

Min
g∈F ,u∈L2(D)

{J(g, u); S(g, u) = 0}, (3.33)

where F ⊂ C̃2(D) satisfies the assumptions (2.7), (2.8) and (3.23) follows automatically
by the definition of C̃2(D).

We have slightly restricted the set of admissible auxiliary controls u ∈ L2(D) with
respect to the assumptions of Thm.2.1. But we underline that the class of admissible
geometries, described by F ⊂ C̃2(D), is not modified. However, the constraint (2.17)
may restrict the set of admissible controls quite severely. We recall that [g∗, u∗] is some
(local) optimal control pair, assumed to exist and we denote by W ∗ the closed linear
one dimensional subspace in C̃2(D)× L2(D) generated by [g∗, u∗].

It is known that a one dimensional subspace in a Banach space admits a comple-
mentary subspace. This is due to the Hahn-Banach theorem, [24]. In our case W ∗ =
{λ[g∗, u∗]; λ ∈ R} and we define ϕ0 : W ∗ → R, ϕ0(λ[g

∗, u∗]) = λ a linear continuous
functional. It may be extended to a linear continuous functional ϕ : C̃2(D)×L2(D) → R
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such that ϕ([g∗, u∗]) = 1. Then P : C̃2(D)×L2(D) → W ∗, P ([g, u]) = ϕ([g, u])[g∗, u∗] is
a projection operator and the complementary subspace is V ∗ = (I−P )(C̃2(D)×L2(D)),
i.e. C̃2(D)× L2(D) = V ∗ ⊕W ∗.

We assume that S : C̃2(D)× L2(D) = V ∗ ⊕W ∗ → R has its partial derivative with
respect to W ∗, ∂W ∗S(g∗, u∗) : W ∗ → R, an isomorphism (see [7], Ch.7).

As W ∗ has dimension one, this is equivalent to the directional derivative in [g∗, u∗]
along λ[g∗, u∗] to satisfy:

S ′(g∗, u∗)(g∗, u∗) 6= 0. (3.34)

We have proved:

Theorem 3.1 Under condition (3.34), if [g∗, u∗] is a (local) minimizer of (3.33), there
is k ∈ R, k 6= 0, such that

J ′(g∗, u∗) + kS ′(g∗, u∗) = 0. (3.35)

This is the classical Lagrange multipliers approach, under the simple constraint qual-
ification (3.34), for equality constrained minimization problems, [7], Ch.7. Important
here is that F × L2(D) is an open subset of C̃2(D)× L2(D).

Remark 3.3 There are other techniques based on regularization or penalization proce-
dures and involving interiority hypotheses [4], [6], [2] in various forms, but not possible
to be applied here. Moreover, the one dimensional character of (3.34) provides simplic-
ity, as much as possible in this context. Another advantageous point is that, although
obtaining (3.34) uses essentially the decomposition V ∗ ⊕W ∗, the result of (3.1) is ex-
pressed in terms of the original formulation (3.33). The fact that the optimal pair is
involved in (3.34) is standard in the literature, [4], [7].

In the next section, we shall explain (3.35) in full details.

4 Optimality conditions

In this section we maintain the hypothesis that F ⊂ C̃2(D) and (2.7), (2.8), (3.34) are
satisfied. Moreover, to simplify the setting and to fix the ideas, we assume that the
boundary of the optimal domain ∂Ω∗ = G∗ has just two components. The functional
variations g∗+λh, h ∈ F are satisfying (3.23), for some points x̂, x on these components.

In fact, for any g ∈ F and h ∈ C̃2(D), we have g + λh ∈ F for λ sufficiently small,
depending on g, h. The variations u∗ + λv are supposed to satisfy just v ∈ L2(D). We
denote by (H) all these conditions.

It is a standard result (see [11]) that the corresponding equation in variations asso-
ciated to (2.15), (2.16) around [g∗, u∗] is

11



Proposition 4.1 The limit of qλ = 1
λ
(y[g∗,u∗]+λ[h,v] − y[g∗,u∗]) exists in H2(D) and satis-

fies

−∆q + q = (g∗+)
2v + 2g∗+u

∗h in D, (4.36)

q = 0 on ∂D. (4.37)

Prop.4.1 together with Prop.3.1 give the system in variations of the state system
(2.10)-(2.12), (2.15), (2.16), on each component of ∂Ω∗. Due to the periodicity of
the Hamiltonian system, the equation (3.27), (3.28) are valid on any interval [0, T ].

Following [13], we also have the formulas for the differentials of the main periods T̂g∗ , T g∗

(on each component of G∗), with respect to functional variations, completing Prop.3.3.
Below, we use the simplified notation Tg∗ .

Proposition 4.2 We have

lim
λ→0

Tg∗+λh − Tg∗

λ
= −

w2(Tg∗)

(z2g∗)
′(Tg∗)

, (4.38)

if (z2g∗)
′(Tg∗) 6= 0.

Notice that (2.7) yields either this condition or (z1g∗)
′(Tg∗) 6= 0 and in the latter case,

relation (4.38) has to be replaced by

lim
λ→0

Tg∗+λh − Tg∗

λ
= −

w1(Tg∗)

(z1g∗)
′(Tg∗)

. (4.39)

We denote by θ(g∗, h) this limit, in general.
We give now a detailed formulation of Cor.3.1.

Proposition 4.3 Under the assumptions (H), consider the directional derivative of S :
C2(D)× L2(D) → R for perturbations g∗ + λh, u∗ + λv, λ ∈ R, v ∈ L2(D), h ∈ C̃2(D)
satisfying h(x) = h(x̂) = 0 for some points x, x̂ ∈ G∗ (situated on each of the two
components of G∗, corresponding to g∗). It is given by:

θ̂(g∗, h)|∇A(f + (g∗+)
2u∗)(x̂) · ∇g∗(x̂)|2 + 2

Tg∗∫

0

∇A(f + (g∗+)
2u∗)(ẑg∗(t)) · ∇g∗(ẑg∗(t))

[
∇A(f + (g∗+)

2u∗)(ẑg∗(t)) · ∇h(ẑg∗(t)) +∇q(ẑg∗(t)) · ∇g∗(ẑg∗(t))+

+H
[
A(f + (g∗+)

2u∗)(ẑg∗(t))
]
ŵ(t) · ∇g∗(ẑg∗(t))+

+∇A(f + (g∗+)
2u∗)(ẑg∗(t)) ·H [g∗(ẑg∗(t))] ŵ(t)

]
dt+ (4.40)
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θ(g∗, h)|∇A(f + (g∗+)
2u∗)(x) · ∇g∗(x)|2 + 2

Tg∗∫

0

∇A(f + (g∗+)
2u∗)(zg∗(t)) · ∇g∗(zg∗(t))

[
∇A(f + (g∗+)

2u∗)(zg∗(t)) · ∇h(zg∗(t)) +∇q(zg∗(t)) · ∇g∗(zg∗(t))+

+H
[
A(f + (g∗+)

2u∗)(zg∗(t))
]
w(t) · ∇g∗(zg∗(t))+

+∇A(f + (g∗+)
2u∗)(zg∗(t)) ·H [g∗(zg∗(t))]w(t)

]
dt.

The notation H [·] is the Hessian matrix and θ̂, θ are associated to (4.38) or (4.39) in
the points x̂, x respectively . Similarly, ŵ, w refer to the vector solutions of (3.27)-(3.29)
associated respectively to the two components of G∗.

Proof
It is enough to examine the first term in the definition (3.22) of S:

lim
λ→0

1
λ

[Tg∗+λh∫
0

∣∣∇A(f + (g∗ + λh)2+(u
∗ + λv))(ẑg∗+λh(t)) · ∇(g∗ + λh)(ẑg∗+λh(t))

∣∣2 dt−

−
Tg∗∫
0

∣∣∇A(f + (g∗+)
2u∗)(ẑg∗(t)) · ∇g∗(ẑg∗(t))

∣∣2 dt
]
.

Here ẑg∗ , ẑg∗+λh denote the solution of the Hamiltonian system (2.10), (2.11), re-
spectively of the corresponding perturbed Hamiltonian system, with initial condition
x̂ ∈ G∗ ∩G∗

λ.
We notice first that

1
λ

Tg∗+λh∫
Tg∗

∣∣∇A(f + (g∗ + λh)2+(u
∗ + λv))(ẑg∗+λh(t)) · ∇(g∗ + λh)(ẑg∗+λh(t))

∣∣2 dt →

→ θ̂(g∗, h)
∣∣∇A(f + (g∗+)

2u∗)(x̂) · ∇g∗(x̂)
∣∣2 ,

due to Prop.4.2, the regularity assumptions and the mean value theorem for integrals.
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Concerning the integrals over [0, Tg∗ ], we have (we indicate one case):

1
λ

{Tg∗∫
0

∣∣∣∣∇A(f + (g∗ + λh)2+(u
∗ + λv))(ẑg∗+λh(t)) · ∇(g∗ + λh)(ẑg∗+λh(t))

∣∣∣∣
2

dt−

−
Tg∗∫
0

∣∣∣∣∇A(f + (g∗+)
2u∗)(ẑg∗(t)) · ∇g∗(ẑg∗(t))

∣∣∣∣
2

dt

}
→

→ 2
Tg∗∫
0

∇A(f + (g∗+)
2u∗)(ẑg∗(t)) · ∇g∗(ẑg∗(t))

[
∇A(f + (g∗+)

2u∗)(ẑg∗(t))·

·∇h(ẑg∗(t)) +∇q(ẑg∗(t)) · ∇g∗(ẑg∗(t))+

+H

[
A(f + (g∗+)

2u∗)(ẑg∗(t))

]
ŵ(t) · ∇g∗(ẑg∗(t))+

+∇A(f + (g∗+)
2u∗)(ẑg∗(t)) ·Hg∗(ẑg∗(t))ŵ(t)

]
dt.

This ends the proof. ✷

In a similar manner, we establish

Proposition 4.4 Assume that j ∈ C1(R3) and the conditions (H) hold. Then, the
directional derivative of J at [g∗, u∗] in the direction [h, v] ∈ F×L2(D) ⊂ C̃2(D)×L2(D)
is given by

Tg∗∫

0

∇1j(ẑg∗(t), A(f + (g∗+)
2u∗)(ẑg∗(t))) · ŵ(t)

∣∣ẑ′g∗(t)
∣∣ dt+

+

Tg∗∫

0

∂2j(ẑg∗(t), A(f + (g∗+)
2u∗)(ẑg∗(t)))

[
∇A(f + (g∗+)

2u∗)(ẑg∗(t))·

· ŵ(t) + q(ẑg∗(t))

] ∣∣ẑ′g∗(t)
∣∣ dt+

+

Tg∗∫

0

j(ẑg∗(t), A(f + (g∗+)
2u∗)(ẑg∗(t)))

ẑ′g∗(t) · ŵ
′(t)∣∣ẑ′g∗(t)
∣∣ dt+

+ θ̂(g∗, h)j(x̂, A(f + (g∗+)
2u∗)(x̂)). (4.41)

In (4.41), ∇1j(·, ·) denotes the gradient of j with respect to the first two arguments
and ∂2j(·, ·) denotes the derivative of j with respect to the last argument. We have
also assumed that the cost J is defined just on the ”exterior” component of G∗, that
contains x̂. The proof follows the same lines as for (4.40). It can be found in [13], in a
more general context.
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We can now formulate the adjoint system associated to the constrained control prob-
lem (2.10)-(2.12), (2.14)-(2.17). We also use Thm.3.1, that is the existence of the La-
grange multiplier k ∈ R such that (3.35) is satisfied. We first define the adjoint system
associated to the elliptic equation (2.15), (2.16) and to the terms containing q from
(4.40), (4.41):

2k

Tg∗∫

0

∇A(f + (g∗+)
2u∗)(ẑg∗(t)) · ∇g∗(ẑg∗(t))∇q(ẑg∗(t)) · ∇g∗(ẑg∗(t))dt+

+ 2k

Tg∗∫

0

∇A(f + (g∗+)
2u∗)(zg∗(t)) · ∇g∗(zg∗(t))∇q(zg∗(t)) · ∇g∗(zg∗(t))dt+

+

Tg∗∫

0

∂2j(ẑg∗(t), A(f + (g∗+)
2u∗))(ẑg∗(t))q(ẑg∗(t))

∣∣ẑ′g∗(t)
∣∣ dt =

=

∫

D

p(x)(−∆q(x) + q(x))dx, (4.42)

for any q ∈ H2(D) ∩H1
0 (D).

Notice that, in (4.42), q plays the role of an arbitrary test function and the last term
in the left-hand side in (4.42) can be rewritten as

∫

Ĝ∗

∂2j(σ, y
∗(σ))q(σ)dσ, (4.43)

where Ĝ∗ is the component of G∗ containing x̂ and y∗ is the solution of (2.15), (2.16)
associated to g∗, u∗. This is also valid for the other terms there, by multiplying and
dividing by |ẑ′g∗(t)| = |∇g∗(ẑg∗(t))|.

Then, (4.42) can be rewritten as:

2k

∫

G∗

∇y∗(σ) · ∇g∗(σ)
∂q

∂n
dσ +

∫

Ĝ∗

∂2j(σ, y
∗(σ))q(σ)dσ =

=

∫

D

p(x)(−∆q(x) + q(x))dx, ∀q ∈ H2(D) ∩H1
0 (D). (4.44)

In (4.44), we also use that ∇g∗(·)
|∇g∗(·)|

is the unit normal vector to G∗, that is we replace
∂q
∂n

= ∇q(σ) · ∇g∗(σ) 1
|∇g∗(σ)|

.
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The first two terms in (4.42) are written as one term since G∗ has two components.
If the right-hand side in (4.36) is denoted by µ ∈ L2(D), the correspondence µ →

q defined by (4.36), (4.37) is an isomorphism between L2(D) and H2(D) ∩ H1
0 (D).

Consequently, the left-hand side in (4.44) is a linear continuous functional of µ ∈ L2(D)
and there is a unique p ∈ L2(D) such that (4.44) is satisfied, by the Riesz theorem.

The function p ∈ L2(D) is called a very weak solution (solution by transposition) of
the elliptic equation

−∆p+ p = ξ in D, (4.45)

where ξ is a functional in the dual of H2(D) ∩ H1
0 (D), expressed by the sum of the

boundary integrals in (4.44). To (4.45), the null condition on ∂D is formally added.
We formulate now the adjoint system that takes into account the terms with w,w′,

θ̂(g∗, h), θ(g∗, h) from (4.40), (4.41). Notice that the term w′ may be replaced via (3.27),
(3.28) by quantities including just w and ∇h. In fact, we define the adjoint systems
corresponding to (3.27)-(3.29). It is to be underlined that in (3.27)-(3.29), the state x

is to be replaced by ẑg∗ , respectively zg∗ (corresponding to the respective component of
G∗, taken into account).

Moreover, in relations (4.40), (4.41), we shall not use the terms containing ∇h (in-
cluding the ones appearing from the rewriting of w′).

Finally, we write the adjoint system corresponding to the component ofG∗ containing
x̂. The adjoint state here is m̂ = [m̂1, m̂2]:

− m̂′(t) = M̂∗(t)m̂(t) +∇1j(ẑg∗(t), A(f + (g∗+)
2u)(ẑg∗(t)))

∣∣ẑ′g∗(t)
∣∣+

+ ∂2j(ẑg∗(t), A(f + (g∗+)
2u∗)(ẑg∗(t)))∇A(f + (g∗+)

2u∗)(ẑg∗(t))
∣∣ẑ′g∗(t)

∣∣+

+ j(ẑg∗(t), A(f + (g∗+)
2u∗))(ẑg∗(t))M̂

∗(t)
ẑ′g∗(t)∣∣ẑ′g∗(t)

∣∣+

+ 2k∇A(f + (g∗+)
2u∗)(ẑg∗(t)) · ∇g∗(ẑg∗(t))

{
H∗

[
A(f + (g∗+)

2u∗)(ẑg∗(t))
]
∇g∗(ẑg∗(t))+

+H∗g∗(ẑg∗(t))∇A(f + (g∗+)
2u∗)(ẑg∗(t))

}
, (4.46)

m̂1(Tg∗) = 0, m̂2(Tg∗) = −
1

(ẑ2g∗)
′(Tg∗)

[
j(x̂, A(f + (g∗+)

2u∗))(x̂)+

+

∣∣∣∣∇A(f + (g∗+)
2u∗)(x̂) · ∇g∗(x̂)

∣∣∣∣
2]
. (4.47)

In (4.46), M̂ is the matrix appearing implicitly in (3.27), (3.28) for x(t) = ẑg∗(t) and

M̂∗ is its adjoint (and H∗ is the adjoint as well).
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On the component of G∗ containing x, the adjoint system is simpler since (4.41)
is not defined on it. The notations use the natural modification of the notations from
(4.46), (4.47):

−m′(t) = M
∗
(t)m(t) + 2k∇A(f + (g∗+)

2u∗)(zg∗(t))·

· ∇g∗(zg∗(t))

{
H∗

[
A(f + (g∗+)

2u∗)(zg∗(t))

]
∇g∗(zg∗(t))+

+H∗g∗(zg∗(t))∇A(f + (g∗+)
2u∗)(zg∗(t))

}
, (4.48)

m1(Tg∗) = 0, m2(Tg∗) = −
1

(z2g∗)
′(Tg∗)

∣∣∣∣∇A(f + (g∗+)
2u∗)(x) · ∇g∗(x)

∣∣∣∣
2

. (4.49)

The adjoint system consists of the equations (4.44)-(4.49). In case G∗ has more
components, more equations have to be added in (3.27), (3.28) and in the adjoint system.

Theorem 4.1 Under the assumptions (H), there is k 6= 0 such that

Tg∗∫

0

j(ẑg∗(t), A(f + (g∗+)
2u∗))(ẑg∗(t))

ẑ′g∗(t)∣∣ẑ′g∗(t)
∣∣ · (−∂2h(ẑg∗(t)), ∂1h(ẑg∗(t)))+

+ 2k

Tg∗∫

0

∇A(f + (g∗+)
2u∗)(ẑg∗(t)) · ∇g∗(ẑg∗(t))∇A(f + (g∗+)

2u∗)(ẑg∗(t)) · ∇h(ẑg∗(t))dt+

+ 2k

Tg∗∫

0

∇A(f + (g∗+)
2u∗)(zg∗(t)) · ∇g∗(zg∗(t))∇A(f + (g∗+)

2u∗)(zg∗(t)) · ∇h(zg∗(t))dt+

+

∫

D

p(x)
[
(g∗+)

2v + 2g∗+u
∗h
]
dx+

Tg∗∫

0

m(t) · (−∂2h(zg∗(t)), ∂1h(zg∗(t)))dt+

+

Tg∗∫

0

m̂(t) · (−∂2h(ẑg∗(t)), ∂1h(ẑg∗(t)))dt = 0. (4.50)

for any v ∈ L2(D), h ∈ F ⊂ C̃2(D) such that there are x̂, x ∈ G∗ situated respectively
on each component of G∗, with h(x̂) = h(x) = 0.
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This follows by Thm.3.1, Prop.4.3, Prop.4.4 and the definitions of the adjoint systems
(4.44)-(4.49) and the systems in variations (3.27)-(3.29), respectively (4.36), (4.37). The
relation (4.50) expresses the so-called maximum principle for the problem (3.21), (3.22),
which is a slight modification of the original shape optimization problem (1.1)-(1.3),
in the sense that in its equivalent form (2.14)-(2.17) we restrict the class of admissible
controls to be u ∈ L2(D).

Relation (4.50) together with the adjoint systems (4.44)-(4.49) and the state system
(2.15), (2.16) give the optimality conditions for this problem.

Remark 4.1 We use functional variations and optimal control methods and we don’t
impose explicitly classical boundary variations or topological variations [19], [17]. In the
statement of Thm. 4.1, such variations are intimately combined and the formulation
has a purely analytic character, i.e. no geometric condition is involved in it. Moreover,
in the recent article [13], it is shown that the gradient behind our approach can be ef-
fectively used in numerical experiments, including both topology and shape optimization.
The corresponding algorithm chooses automatically the type of variation (that is not
prescribed) in each iteration and may perform both topological and boundary variations
simultaneously.

References

[1] G. Allaire, Conception optimale de structures, Springer Verlag, Berlin, 2007.

[2] S. Amstutz and M. Ciligot-Travain, Optimality conditions for shape and topology
optimization subject to a cone constraint, SIAM J. Control Optim., 48 (2010), pp.
4056-4077.
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