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Abstract In this article, we study the notion of gH-Hadamard derivative for interval-valued functions (IVFs)

and its applications to interval optimization problems (IOPs). It is shown that the existence of gH-Hadamard

derivative implies the existence of gH-Fréchet derivative and vise-versa. Further, it is proved that the exis-

tence of gH-Hadamard derivative implies the existence of gH-continuity of IVFs. We found that the com-

position of a Hadamard differentiable real-valued function and a gH-Hadamard differentiable IVF is gH-

Hadamard differentiable. Further, for finite comparable IVF, we prove that the gH-Hadamard derivative of

the maximum of all finite comparable IVFs is the maximum of their gH-Hadamard derivative. The proposed

derivative is observed to be useful to check the convexity of an IVF and to characterize efficient points of an

optimization problem with IVF. For a convex IVF, we prove that if at a point the gH-Hadamard derivative

does not dominate to zero, then the point is an efficient point. Further, it is proved that at an efficient point,

the gH-Hadamard derivative does not dominate zero and also contains zero. For constraint IOPs, we prove

an extended Karush-Kuhn-Tucker condition by using the proposed derivative. The entire study is supported

by suitable examples.
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1 Introduction

In the study of general behavior of a real-world problem, such as static or dynamic, deterministic or proba-

bilistic, linear or nonlinear, convex or nonconvex, etc., several mathematical tools have been developed. In

many cases, the knowledge about the underlying parameters, which influences the system’s mathematical

behavior, is imprecise or uncertain. Generally, one cannot measure the parameters affected by imprecision or

uncertainties with exact values. In such situations, the parameters cannot be modeled by a real number. We

usually overcome this deficiency by using fuzzy sets, interval, or stochastic values. Interval analysis is based

on representing an uncertain variable as an interval, which is a natural way of incorporating the uncertainties

of parameters. As mathematical functions play a crucial role in modeling realistic problems, we analyze a

special derivative of interval-valued functions (IVFs) in this article.

Three important aspects of a function are monotonicity, convexity and differentiability. In the study of

monotonicity and convexity [1] of an IVF, an appropriate ordering of intervals is the prime issue. Unlike

the real numbers, intervals are not linearly ordered. Due to which the whole paradigm of analyzing an

IVF changes and the development of calculus for IVF is not just trivial extensions of the corresponding

counterpart for conventional real-valued functions. The same reason makes the development of optimization

with IVFs difficult since the very optimality notion requires an ordering of the function values.

Most often optimization with IVFs [4,12,32] have been analyzed with respect to a partial ordering [21].

Some researchers [3, 13, 24] used ordering relations of intervals based on the parametric comparison of

intervals. In [9], an ordering relation of intervals is defined by a bijective map from the set of intervals to

R2. However, the ordering relations of intervals [3,9,13] can be derived from the relations described in [21].

Recently, Ghosh et al. [15] investigated variable ordering relations for intervals and used them in interval

optimization problems (IOPs).

To observe the properties of an IVF, calculus plays an essential role. Initially, to develop the calculus

of IVFs, Hukuhara [20] introduced the concept of differentiability of IVFs with the help of H-difference of

intervals. However, the definition of Hukuhara differentiability (H-differentiability) is found to be restrictive

(see [4]). To remove the deficiencies of H-differentiability, Bede and Gal [2] defined strongly generalized

derivative (G-derivative) for IVFs and derived a Newton-Leibnitz-type formula. In order to formulate the

mean-value theorem for IVFs, Markov [26] introduced a new concept of difference of intervals and de-

fined differentiability of IVFs by using this difference. In [32], Stefanini and Bede defined the generalized

Hukuhara differentiability (gH-differentiability) of IVFs by using the concept of generalized Hukuhara dif-

ference. In defining the calculus of IVFs, the concepts of gH-derivative, gH-partial derivative, gH-gradient,

and gH-differentiability for IVFs have been developed in [14, 32, 33].

To derive a Karush-Kuhn-Tucker (KKT) condtion for IOPs, Guo et al. [19] defined gH-symmetric deriva-

tive for IVFs. Ghosh [16] analyzed the notion of gH-differentiability of multi-variable IVFs to propose the

Newton method for IOPs. The concept of second-order differentiability of IVFs is introduced by Van [35] to

study the existence of a unique solution of interval differential equations. Lupulescu [25] defined delta gen-

eralized Hukuhara differentiability on time scales by using gH-difference. Chalco et al. [6] introduced the

concept of π-derivative for IVFs that generalizes Hukuhara derivative and G-derivative, and proved that this

derivative is equivalent to gH-derivative. In [34], Stefanini and Bede defined level-wise gH-differentiability

and generalized fuzzy differentiability by LU-parametric representation for fuzzy-valued functions. Kalani et

al. [23] analyzed the concept of interval-valued fuzzy derivative for perfect and semi-perfect interval-valued

fuzzy mappings to derive a method for solving interval-valued fuzzy differential equations using the exten-

sion principle. Recently, Ghosh et al. [12] and Chauhan et al. [8] have provided the idea of gH-directional

derivative, gH-Gâteaux derivative, gH-Fréchet derivative, and gH-Clarke derivative of IVFs to derive the

optimality conditions for IOPs.
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Despite of many attempts to develop calculus for IVFs, the existing ideas are not adequate to retain

two most important features of classical differential calculus—linearity of the derivative with respect to the

direction and the chain rule. Although Ghosh et al. [12] proposed some optimality conditions for IOPs by

using gH-directional and gH-Gâteaux derivatives, but these derivatives are not sufficient to preserve the

continuity of IVFs (see Example 5.1 of [12]) and chain rule for the composition of IVFs (see Example 2

of this article). Even though gH-Fréchet derivative in [12] preserves linearity and continuity but it does not

hold the chain rule for the composition of IVFs whose lower and upper functions are equal at each points

(see example for Proposition 3.5 [30]). With the help of the derivative of lower and upper functions, some

articles [22, 29, 37] reported KKT condition to characterize efficient solutions of constraint IOPs. However,

the derivative used in [22,29,37] are very restrictive because this derivative is very difficult to calculate even

for very simple IVF (see Example 1 of [5]). However, in this article, we derive KKT condition of constraint

IOPs by gH-Hadamard derivative which do not depend on the existence of the Hadamard derivative of lower

and upper functions. Also, proposed derivative retains the linearity of the derivative with respect to direction,

the existence of continuity as well as the chain rule of derivative.

1.1 Motivation and Contribution

In conventional nonsmooth optimization theory, one of the mostly used idea of derivative is Hadamard

derivative which is applied to characterize optimal solutions. An explicit expression of the derivative of an

extremum with respect to parameters can be obtained with the help of Hadamard derivative. So, it works

well for most differentiable optimization problems including convex or concave problems. Correspondingly,

in interval analysis and interval optimization, we expect to have a notion of the Hadamard derivative for

interval-valued functions. In addition, from the literature on the analysis of IVFs, one can notice that the

study of Hadamard derivative for IVFs have not been developed so far. However, the basic properties of this

derivative might be beneficial for characterizing and capturing the optimal solutions of IOPs.

In this article, we define gH-Hadamard derivative of IVFs. It is proved that if an IVF is gH-Hadamard dif-

ferentiable, then IVF is gH-continuous. By using the proposed concept of gH-Hadamard derivative, we prove

that a gH-Fréchet differentiable IVF is gH-Hadamard differentiable and vise-versa. Further, we characterize

the convexity of IVFs with the help of gH-Hadamard derivative. Besides, with the help of gH-Hadamard

derivative, we provide a necessary and sufficient condition for characterizing the efficient solutions to IOPs.

Further, for constraint IOPs, we derive the extended KKT necessary and sufficient condition to characterize

the efficient solutions.

1.2 Delineation

The rest of the article is demonstrated in the following sequence. The next section covers some basic ter-

minologies and notions of convex analysis and interval analysis, followed by the convexity and calculus of

IVFs. Also, a few properties of intervals, gH-directional and gH-Fréchet derivatives of an IVF are discussed

in Section 2. In Section 3, we define the gH-Hadamard derivative of IVF and observe that the existence of

gH-Hadamard derivative implies the existence of gH-Fréchet derivative and vise-versa. Further, it is found

that the existence of gH-Hadamard derivative implies gH-continuity. In the same section, it is shown that

proposed derivatives are useful to check the convexity of an IVF. In Section 4, we prove that at a point, in

which gH-Hadamard derivative does not dominate zero is an efficient point of an IVF. Further, it is observed

that at an efficient point of IVF, gH-Hadamard derivative must contain zero. In Section 5, a few properties of

the cone of descent direction and cone of feasible direction are given. Also, we prove the extended necessary
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and sufficient optimality condition for constraint IOPs in the same section. Finally, the last section concludes

and draws future scopes of the study.

2 Preliminaries and Terminology

This section is devoted to some basic notions on intervals. Also, we present basic convexity and calculus of

IVFs which will be used throughout the paper. We also use the following notations.

– X is a real normed linear space with the norm ‖ · ‖
– S is a nonempty subset of X

– R denotes the set of real numbers

– R+ denotes the set of nonnegative real numbers

– I(R) is the set of all compact intervals (that is, closed and bounded intervals)

– I(R)n is the set of vectors whose componants are compact intervals

2.1 Arithmetic of Intervals and their Dominance Relation

Throughout the article, we denote the elements of I(R) by bold capital letters: A,B,C, . . .. We represent an

element A of I(R) in its interval form with the help of the corresponding small letter in the following way:

A = [a,a], where a and a are real numbers such that a ≤ a.

Let A,B ∈ I(R) and λ ∈ R. Moore’s [27, 28] interval addition, subtraction, product, division and scalar

multiplication are denoted by A⊕B, A⊖B, A⊙B, A⊘B, and λ ⊙A, respectively. In defining A⊘B, it is

assumed that 0 /∈ B.

Since A⊖A 6= 0 for any nondegenerate interval (whose lower and upper limits are not equal) A, we use

the following concept of difference of intervals in this article.

Definition 1 [31] Let A and B be two elements of I(R). The gH-difference between A and B, denoted by

A⊖gH B, is defined by the interval C such that

A = B⊕C or B = A⊖C.

It is to be noted that for A = [a, a] and B =
[

b, b
]

,

A⊖gH B =
[

min{a− b,a− b}, max{a− b,a− b}
]

and A⊖gH A = 0.

In the following, we provide a domination relation for intervals based on a minimization type optimiza-

tion problems: a smaller value is better.

Definition 2 [21] Let A = [a,a] and B = [b,b] be two intervals in I(R).

(i) B is said to be dominated by A if a ≤ b and a ≤ b, and then we write A � B.

(ii) B is said to be strictly dominated by A if either ‘a ≤ b and a < b’ or ‘a < b and a ≤ b’, and then we

write A ≺ B.

(iii) If B is not dominated by A, then we write A � B; if B is not strictly dominated by A, then we write

A ⊀ B.

(iv) If A is dominated by B or B is dominated by A, then A and B are said to be comparable.
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(v) If A � B and B � A, then we say that none of A and B dominates the other, or A and B are not

comparable.

Notice that if B is strictly dominated by A, then B is dominated by A. Moreover, if B is not dominated

by A, then B is not strictly dominated by A.

Lemma 1 For A and B in I(R),

(i) If B ⊀ 0 and B � A, then A ⊀ 0,

(ii) If A⊕B ⊀ 0 and B � 0, then A ⊀ 0.

Proof See A

Definition 3 [7] Let A = [a, ā] = {a(t) : a(t) = a+ t(ā− a),0 ≤ t ≤ 1} and B = [b, b̄] = {b(t) : b(t) =
b+ t(b̄− b),0 ≤ t ≤ 1} be two elements of I(R). Then, B is said to be better strictly dominated by by A if

a(t)< b(t) for all t ∈ [0,1], and then we write A < B.

Lemma 2 [7] Let A = [a,a] and B = [b,b] be in I(R). Then A < B if and only if a < b and a < b.

Definition 4 [28] A function ‖·‖I(R) : I(R)→R+ defined by

‖A‖I(R) = max{|a|, |ā|}, for all A = [a,a] ∈ I(R),

is called a norm on I(R).

Definition 5 For two comparable intervals A and B of I(R) with A � B, their maximum is max{A,B}= B.

2.2 Convexity and Calculus of IVFs

A function F : S → I(R) is known as an IVF. For each x ∈S , F can be presented by the following interval:

F(x) =
[

f (x), f (x)
]

,

where f and f are real-valued functions on S such that f (x) ≤ f (x) for all x ∈ S . Also, F is said to be

degenerate IVF if f (x) = f (x) for all x ∈ S .

If S is convex, then the IVF F is said to be convex [36] on S if for any x1, x2 ∈ S ,

F(λ1x1 +λ2x2)� λ1 ⊙F(x1)⊕λ2 ⊙F(x2) for all λ1,λ2 ∈ [0,1] with λ1 +λ2 = 1.

The IVF F : S → I(R) is said to be gH-continuous [14] at a point x̄ of S if

lim
‖d‖→0
x̄+d∈S

(F(x̄+ d)⊖gH F(x̄)) = 0.

If F is gH-continuous at each point x in S , then F is said to be gH-continuous on S .

Lemma 3 [36] F is a convex IVF on a convex set S ⊆ X if and only if f and f are convex on S .

Definition 6 [12] Let S be a linear subspace of X . The function F : S → I(R) is said to be linear if

(i) F(λ x) = λ ⊙F(x) for all x ∈ S and all λ ∈ R, and
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(ii) for all x, y ∈ S ,

‘either F(x)⊕F(y) = F(x+ y)’ or ‘none of F(x)⊕F(y) and F(x+ y) dominates the other ’.

Lemma 4 Let S be a linear subspace of X and F : S → I(R) be a linear IVF. Then, the following results

hold.

(i) If F(x)⊀ 0 for all x ∈ S , then 0 and F(x) are not comparable.

(ii) If F(x)� 0 for all x ∈ S , then F(x) = 0.

Proof See B

Definition 7 [12] Let S be a nonempty subset of Rn and F : Rn → I(R) be an IVF. A point x̄ ∈ S is said

to be an efficient point of the IOP

min
x∈S⊂Rn

F(x) (2.1)

if F(x)⊀ F(x̄) for all x ∈ S .

Definition 8 [11] Let f be a real-valued function on a nonempty subset S of X . Let x̄ ∈ S and h ∈ X .

If the limit

lim
λ→0+

1

λ
( f (x̄+λ h)− f (x̄))

exists finitely, then the limit is said to be directional derivative of f at x̄ in the direction h, and it is denoted

by fD(x̄)(h).

Definition 9 [12] Let S be a nonempty open subset of X , F : S → I(R) be an IVF and x̄ ∈ S . Suppose

that there exists a gH-continuous and linear mapping G : X → I(R) with the following property

lim
‖h‖→0

‖F(x̄+ h)⊖gH F(x̄)⊖gH G(h)‖
I(R)

‖h‖
= 0,

then G is said to be gH-Fréchet derivative of F at x̄, and we write G = FF (x̄).

3 gH-Hadamard Derivative of Interval-valued Functions

In this section, we present the concept of gH-Hadamard derivative for IVFs. It is worth noting that if an IVF

F has a gH-Hadamard derivative at x̄, then F must be gH-continuous at x̄.

Definition 10 Let F be an IVF on a nonempty subset S of X . For x̄ ∈ S and v ∈ X , if the limit

FH (x̄)(v) := lim
λ→0+

h→v

1

λ
⊙ (F(x̄+λ h)⊖gH F(x̄))

exists and FH (x̄) is a linear IVF from X to I(R), then FH (x̄)(v) is called gH-Hadamard derivative of F at

x̄ in the direction v. If this limit exists for all v ∈ X , then F is said to be gH-Hadamard differentiable at x̄.

Remark 1 The limit FH (x̄)(v) exists if for all sequences {λn} and {hn} with λn > 0 for all n such that

limn→∞ λn = 0, limn→∞ hn = v,

lim
n→∞

1

λn

⊙ (F(x̄+λnhn)⊖gH F(x̄)) exists and the limit value is a linear IVF on S .
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Example 1 Let S = X =Rn and consider the IVF F(x) = ‖x‖2 ⊙C for all x ∈ Rn, where C ∈ I(R). Then

we calculate the gH-Hadamard derivative at x̄ = 0 for F.

For any x̄ ∈ S and v ∈ X , we see that

lim
λ→0+

h→v

1

λ
⊙ (F(x̄+λ h)⊖gH F(x̄)) = lim

λ→0+
h→v

1

λ
⊙
(

‖x̄+λ h‖2 ⊙C⊖gH ‖x̄‖2 ⊙C
)

= lim
λ→0+

h→v

1

λ
⊙
((

2x̄⊤(λ h)+ ‖λ h‖2
)

⊙C
)

= 2x̄⊤v⊙C, by gH-continuity of x̄⊤h⊙C.

Hence, FH (x̄)(v) = 2x̄⊤v⊙C and FH (x̄) is a linear IVF from X to I(R). Therefore, F is gH-Hadamard

differentiable at x̄ with FH (x̄)(v) = 2x̄⊤v⊙C .

Theorem 1 Let X =Rn, S be a nonempty subset of X , F be an IVF on S and x̄ ∈S . Then the following

statements are equivalent:

(i) F is gH-Fréchet differentiable at x̄.

(ii) F is gH-Hadamard differentiable at x̄.

Proof (i) =⇒ (ii). Since F is gH-Fréchet differentiable at x̄ ∈ S , there exists a gH-continuous and linear

IVF G such that

lim
λ→0+

‖F(x̄+λ h)⊖gH F(x̄)⊖gH G(λ h)‖
I(R)

‖λ h‖
= 0, for all h ∈ X \{0̂}

or, lim
λ→0+

1

λ
‖F(x̄+λ h)⊖gH F(x̄)⊖gH G(λ h)‖I(R) = 0, for all h ∈ X \{0̂}. (3.1)

Since G is linear, and thus G(λ h) = λ ⊙G(h), the equation (3.1) gives

lim
λ→0+

1

λ
⊙ (F(x̄+λ h)⊖gH F(x̄)⊖gH λ ⊙G(h)) = 0, for all h ∈ X \{0̂}

or, lim
λ→0+

1

λ
⊙ (F(x̄+λ h)⊖gH F(x̄)) = G(h), for all h ∈ X \{0̂}.

Since G is gH-continuous, we have

lim
λ→0+
h→v

1

λ
⊙ (F(x̄+λ h)⊖gH F(x̄)) = G(v).

Hence, F is gH-Hadamard differentiable at x̄.

(ii) =⇒ (i). As F is gH-Hadamard differentiable at x̄ ∈ S , FH (x̄)(v) exists for all v and FH (x̄) is a

linear IVF. Let

Q(h) =
1

‖h‖
⊙ (F(x̄+ h)⊖gH F(x̄)⊖gH FH (x̄)(h)) , h 6= 0̂.

Consider a sequence {hn} converging to 0. As W = {h/‖h‖ : h ∈ X ,h 6= 0̂} is a compact set, there exists a

subsequences {hnk
} and a point v̄ ∈ W such that wnk

=
hnk

‖hnk
‖ → v̄ ∈ W .
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Note that the sequence {tnk
}, defined by tnk

= ‖hnk
‖, converges to 0. Since FH (x̄)(v̄) exists and

FH (x̄)(wnk
)→ FH (x̄)(v̄) as k → ∞, we have

Q(hnk
) =

1

tnk

⊙
(

F(x̄+ tnk
wnk

)⊖gH F(x̄)
)

⊖gH FH (x̄)(wnk
)→ 0 as k → ∞.

This implies that limk→∞‖Q(hnk
)‖I(R) = 0.

As {hn} is an arbitrarily chosen sequence that converges to 0, lim‖h‖→0‖Q(h)‖I(R) = 0. Hence, F is gH-

Fréchet differentiable at x̄.

Remark 2 If X is infinite dimensional, then Theorem 1 is not true. For instance, see Example 1 of [38].

According to this example, there exists a degenerate IVF F which is gH-Hadamard differentiable at x̄ but

not gH-Fréchet differentiable at x̄.

Theorem 2 Let S be a nonempty subset of X = Rn. If the function F : S → I(R) has a gH-Hadamard

derivative at x̄ ∈ S , then the function F is gH-continuous at x̄.

Proof Since F is gH-Hadamard differentiable at x̄ ∈ S , F is gH-Fréchet differentiable at x̄ by Theorem 1.

Also, from Theorem 5.1 in [12], the function F is gH-continuous at x̄.

Remark 3 The converse of Theorem 2 is not true. For instance, consider the gH-continuous IVF F(x) =
‖x‖⊙C for all x ∈ Rn. Therefore, for any v ∈Rn and x̄ = 0, we see that

lim
λ→0+

h→v

1

λ
⊙ (F(x̄+λ h)⊖gH F(x̄)) = ‖v‖⊙C.

Hence, the limit value is not a linear IVF on S . Therefore, FH (x̄)(h) does not exist.

Remark 4 By the definitions of gH-directional (Definition 3.1 in [12]), gH-Gâteaux (Definition 4.3 in [12])

and gH-Hadamard (Definition 10) derivatives of IVF F, it is clear that if FH (x̄)(h) exists, then FD(x̄)(h)
and FG (x̄)(h) exist and they are equal to FH (x̄)(h). However, the converse is not true. For instance, consider

the IVF F : R2 → I(R) defined by

F(x,y) =

{

(

x6

(y−x2)2+x8

)

⊙ [3, 9], if (x,y) 6= (0,0),

0, otherwise.

For x̄ = (0,0) and arbitrary h = (h1,h2) ∈ R2, we have

lim
λ→0+

1

λ
⊙ (F(x̄+λ h)⊖gH F(x̄)) = lim

λ→0+

1

λ
⊙

((

λ 6h6
1

(λ h2 −λ 2h2
1)

2 +λ 8h8
1

)

⊙ [3, 9]

)

= 0.

Hence, F is gH-directional and gH-Gâteaux differentiable at x̄ with FD(x̄)(h) = FG (x̄)(h) = 0.

Let λn =
1
n

and hn = ( 1
n
, 1

n3 ) for n ∈ N. Then, for x̄ = (0,0), we have

lim
n→∞

1

λn

⊙ (F(x̄+λnhn)⊖gH F(x̄)) = lim
n→∞

n5 ⊙ [3,9]. (3.2)

Hence, FH (x̄)(0) does not exist.
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Theorem 3 Let S be a nonempty convex subset of Rn and the IVF F : S → I(R) has gH-Hadamard

derivative at every x̄ ∈ S . If the function F is convex on S , then

F(v)⊖gH F(x̄)⊀ FH (x̄)(v− x̄), for all v ∈ S .

Proof Since F is convex on S , for any x̄, h ∈ S and λ , λ ′ ∈ (0,1] with λ +λ ′ = 1, we have

F(x̄+λ (h− x̄)) = F(λ h+λ ′x̄)� λ ⊙F(h)⊕λ ′⊙F(x̄)

=⇒ F(x̄+λ (h− x̄))⊖gH F(x̄)� (λ ⊙F(h)⊕λ ′⊙F(x̄))⊖gH F(x̄)

=⇒ F(x̄+λ (h− x̄))⊖gH F(x̄)� λ ⊙ (F(h)⊖gH F(x̄))

=⇒
1

λ
⊙ (F(x̄+λ (h− x̄))⊖gH F(x̄))� F(h)⊖gH F(x̄).

From Theorem 2, F is gH-continuous. Thus, as λ → 0+ and h → v, we obtain

FH (x̄)(v− x̄)� F(v)⊖gH F(x̄), for all v ∈ S . (3.3)

If possible, let

F(v′)⊖gH F(x̄′)≺ FH (x̄′)(v′− x̄′) for some v′ ∈ X .

Then,

F(v′)⊖gH F(x̄′)≺ FH (x̄′)(v′− x̄′),

which contradicts (3.3). Hence,

F(v)⊖gH F(x̄)⊀ FH (x̄)(v− x̄), for all v ∈ S .

Remark 5 The converse of Theorem 3 is not true. For example, let us consider the IVF F : R→ I(R) defined

by

F(x) = [−4x2,6x2].

At x̄ = 0 ∈ R, for arbitrary v ∈ R, we have

FH (x̄)(v) = lim
λ→0+

h→v

1

λ
⊙ (F(x̄+λ h)⊖gH F(x̄)) = 0.

Hence, F(v)⊖gH F(x̄)⊀ FH (x̄)(v− x̄) for all v ∈ R. However, f is not convex on R. Thus, from Lemma 3,

F is not convex on R.

Remark 6 For a convex IVF F on S ⊂ Rn, the inequality ‘FH (x̄)(v− x̄)⊖gH FH (v)(v − x̄) � 0 for all

x̄,v ∈ S ’ is not true. For instance, consider the convex IVF F : R→ I(R) defined by

F(x) = [x2,3x2].

At x̄ ∈ R, for arbitrary v ∈ R, we have FH (x̄)(v− x̄) = 2x̄(v− x̄)⊙ [1,3]. For x̄ = 1 and v = 2, we obtain

FH (x̄)(v− x̄)⊖FH (v)(v− x̄) = [−10,2]� 0.

Theorem 4 Let F : Rn → I(R) be an IVF and x̄ ∈ Rn. Then, for a given direction v ∈ Rn, the following

statements are equivalent:

(i) F is gH-Hadamard differentiable at x̄;
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(ii) There exists a linear IVF L : Rn → I(R) such that for any path f : R → Rn with f (0) = x̄ for which

fD(0)(1) exists, we have

(F◦ f )D(0)(1) = L(x̄)(v), where v = fD(0)(1).

Proof (i) =⇒ (ii). Let {δn} be a sequence of positive real numbers with δn → 0+ and hn =
1
δn
( f (δn)− f (0))

for all n ∈ N. Since fD(0)(1) exists, we have

lim
n→∞

hn = lim
n→∞

1

δn

⊙ ( f (δn)− f (0)) = fD(0)(1) = v. (3.4)

If F is gH-Hadamard differentiable at x̄, then

FH (x̄)(v) = lim
n→∞

1

δn

⊙ (F(x̄+ δnhn)⊖gH F(x̄))

= lim
n→∞

1

δn

⊙ (F( f (δn))⊖gH F( f (0))) , since f (0) = x̄ and hn =
1

δn

( f (δn)− f (0))

= lim
n→∞

1

δn

⊙ ((F◦ f )(δn)⊖gH (F◦ f )(0)) .

Hence, (F◦ f )D(0)(1) =FH (x̄)(v). Due to the linearity of FH (x̄)(v) onRn, by taking L(x̄)(v) =FH (x̄)(v),
we get the desired result.

(ii) =⇒ (i). If possible, assume that F is not gH-Hadamard differentiable at x̄. Then, there exist sequences

hn → v and δn → 0+ such that

‘ either lim
n→∞

1

δn

⊙ (F(x̄+ δnhn)⊖gH F(x̄)) does not exist’ or ‘limit value is not linear IVF on Rn’.

(3.5)

Since hn → v and δn → 0+, for every ε > 0 there exist a natural number N and a real number a such that

‖hn‖ ≤ a, ‖hn − v‖< ε, and δn < ε/a for all n > N. (3.6)

By using the sequences {hn} and {δn}, we construct a function f : R→Rn as follows:

f (δ ) =











x̄+ δv, if δ ≤ 0,

x̄+ δhn, if δn ≤ δ < δn−1,n ≥ 2,

x̄+ δh1, if δ ≥ δ1.

Thus the function f yields f (0) = x̄ and fD(0)(1) = v (for details, see p. 92 in [11]). By hypothesis,

(F◦ f )D(0)(1) exists and equals to L(x̄)(v), where v = fD(0)(1). From the construction of f , we have

lim
n→∞

1

δn

⊙ ((F◦ f )(δn)⊖gH (F◦ f )(0)) = L(x̄)(v)

or, lim
n→∞

1

δn

⊙ (F( f (δn))⊖gH F( f (0))) = L(x̄)(v)

or, lim
n→∞

1

δn

⊙ (F(x̄+ δnhn)⊖gH F(x̄)) = L(x̄)(v),

which contradicts to (3.5). Therefore, F is gH-Hadamard differentiable at x̄.
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Theorem 5 (Chain rule). Let H : Rm → Rn be a vector-valued function and F : Rn → I(R) be an IVF.

Assume that for a point x̄ ∈ Rm and direction v ∈ Rm,

(a) HD(x̄)(v) exists for all v ∈ Rm, and

(b) FH (ȳ)(z) exists, where ȳ = H(x̄) and z = HD(x̄)(v).

Then,

(i) (F ◦H)D(x̄)(v) exists and (F ◦H)D(x̄)(v) = FH (ȳ)(z)
(ii) if HH (x̄)(v) exists, then (F◦H)H (x̄)(v) exists and

(F◦H)H (x̄)(v) = FH (ȳ)(z̄), where ȳ = H(x̄), z̄ = HH (x̄)(v).

Proof (i) For δ > 0, define

Q(δ ) =
1

δ
⊙
(

F(H(x̄+ δv))⊖gH F(H(x̄))
)

and θ (δ ) =
1

δ

(

H(x̄+ δv)−H(x̄)
)

. (3.7)

Then,

Q(δ ) =
1

δ
⊙
(

F(H(x̄)+ δθ (δ ))⊖gH F(H(x̄))
)

. (3.8)

Since θ (δ )→ HD(x̄)(v) as δ → 0+, from (3.7), (3.8) and the hypothesis (b), we have

FH (ȳ)(z) = lim
δ→0+

1

δ
⊙ (F(H(x̄+ δv))⊖gH F(H(x̄))) , where ȳ = H(x̄),z = HD(x̄)(v)

= lim
δ→0+

1

δ
⊙ ((F◦H)(x̄+ δv)⊖gH (F◦H)(x̄)))

= (F◦H)D(x̄)(v).

(ii) For δ > 0 and h ∈Rm, define

Q′(δ ,h) =
1

δ
⊙ (F(H(x̄+ δh))⊖gH F(H(x̄))) and Φ(δ ,h) =

1

δ
(H(x̄+ δh)−H(x̄)) . (3.9)

Then,

Q′(δ ,h) =
1

δ
⊙ (F(H(x̄)+ δΦ(δ ,h))⊖gH F(H(x̄))) . (3.10)

Since Φ(δ ,h)→ HH (x̄)(v) as δ → 0+ and h → v, from (3.9), (3.10) and the hypothesis (b), we have

FH (ȳ)(k̄) = lim
δ→0+
h→v

1

δ
⊙
(

F(H(x̄+ δh))⊖gH F(H(x̄))
)

, where ȳ = H(x̄), z̄ = HH (x̄)(v)

= lim
δ→0+
h→v

1

δ
⊙
(

F◦H)(x̄+ δh)⊖gH (F◦H)(x̄))
)

= (F◦H)H (x̄)(v).

The weaker assumption—the existence of GD(x̄)(v) and FD(ȳ)(k) with ȳ = G(x̄),k = GD(x̄)(v)—is not

sufficient to prove Theorem 5. For the proof of this theorem, we require a strong assumption (b) of Theorem

5. This is illustrated by the following example that the composition F ◦G, of a gH-Gâteaux differentiable

IVF F and a Gâteaux differentiable vector-valued function G, is not gH-Gâteaux differentiable and even not

gH-directional differentiable in any direction v 6= 0.



12 Chauhan, R. S. et al.

Example 2 Consider the IVF F : R2 → I(R) defined by

F(x,y) =

{

(

x6

(y−x2)2+x8

)

⊙ [2, 6], if (x,y) 6= (0,0),

0, otherwise,

and the vector-valued function G : R→R2 by G(x) = (x,x2) for all x ∈ R.

It is clear that G is Gâteaux differentiable function at x̄ = 0 in every direction. Note that ȳ = G(x̄) = (0,0)
and for any h ∈R2, we have

lim
λ→0+

1

λ
⊙ (F(ȳ+λ h)⊖gH F(ȳ)) = lim

λ→0+

1

λ
⊙

((

λ 6h6
1

(λ h2 −λ 2h2
1)

2 +λ 8h8
1

)

⊙ [2, 6]

)

= 0.

Then, due to the linearity and gH-continuity of the limit value, F is also gH-Gâteaux differentiable IVF at

ȳ = G(x̄).
The composition of F and G is

H(x) = (F◦G)(x) =

{

(

1
x2

)

⊙ [2, 6], if (x,y) 6= (0,0),

0, otherwise.

Since for h 6= 0,

lim
λ→0+

1

λ
⊙ (H(x̄+λ h)⊖gH H(x̄)) = lim

λ→0+

1

λ 3h
⊙ [2,6]

does not exist, H = F◦G is not gH-directional differentiable IVF at G(x̄) = 0 in any direction h 6= 0.

Theorem 6 Let I be a finite set of indices and Fi : X → I(R) be a family of IVFs such that FiH (x̄)(h)
exists for all h ∈X . For each x ∈X , let the intervals in {Fi(x) : i ∈ I} be comparable. If F(x) = max

i∈I
Fi(x)

for all x ∈ X , then,

FH (x̄)(h) = max
i∈A (x̄)

FiH (x̄)(h), where A (x̄) = {i ∈ I : Fi(x̄) = F(x̄)}.

Proof Let x̄ ∈ X and d ∈ X be such that x̄+λ d ∈ X for λ > 0. Then,

Fi(x̄+ δd) � F(x̄+ δd), for all i ∈ I

or, Fi(x̄+ δd)⊖gH F(x̄) � F(x̄+ δd)⊖gH F(x̄), for all i ∈ I

or, Fi(x̄+ δd)⊖gH Fi(x̄) � F(x̄+ δd)⊖gH F(x̄), for each i ∈ A (x̄)

or, lim
δ→0+
d→h

1

δ
⊙ (Fi(x̄+ δd)⊖gH Fi(x̄)) � lim

δ→0+
d→h

1

δ
⊙ (F(x̄+ δd)⊖gH F(x̄))

or, max
i∈A (x̄)

FiH (x̄)(h) � FH (x̄)(h). (3.11)

To prove the reverse inequality, we claim that there exists a neighbourhoodN (x̄) such that A (x)⊂A (x̄) for all x∈
N (x̄). Assume on contrary that there exists a sequence {xk} in X with xk → x̄ such that A (xk) 6⊂ A (x̄).
We can choose ik ∈ A (xk) but ik /∈ A (x̄). Since A (xk) is closed, ik → ī ∈ A (xk). By gH-continuity of F,

we have

Fī(xk) = F(xk) =⇒ Fī(x̄) = F(x̄),
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which contradicts to ik /∈ A (x̄). Thus, A (x)⊂ A (x̄) for all x ∈ N (x̄).
Let us choose a sequence {δk},δk → 0 such that x̄+ δkd ∈ N (x̄) for all d ∈ X . Then,

Fi(x̄) � F(x̄), for all i ∈ I

or, F(x̄+ δkd)⊖gH F(x̄)� F(x̄+ δkd)⊖gH Fi(x̄), for all i ∈ A (x̄)

or, F(x̄+ δkd)⊖gH F(x̄)� Fi(x̄+ δkd)⊖gH Fi(x̄), for all i ∈ A (x̄+ δkd)

or, lim
k→∞
d→h

1

δk

⊙ (F(x̄+ δkd)⊖gH F(x̄))� lim
k→∞
d→h

1

δk

⊙ (Fi(x̄+ δkd)⊖gH Fi(x̄))

or, FH (x̄)(h)� max
i∈A (x̄)

FiH (x̄)(h). (3.12)

From (3.11) and (3.12) , we obtain

FH (x̄)(h) = maxFiH (x̄)(h) for all i ∈ A (x̄).

4 Characterization of Efficient Solutions

In this section, we present some characterizations of efficient solutions for IOPs with the help of the proper-

ties of gH-Hadamard differentiable IVFs.

Theorem 7 (Sufficient condition for efficient points). Let S be a nonempty convex subset of X and F :

S → I(R) be a convex IVF. If the function F has a gH-Hadamard derivative at x̄ ∈ S in the direction v− x̄

with

FH (x̄)(v− x̄)⊀ 0, for all v ∈ X , (4.1)

then x̄ must be an efficient point of the IOP (2.1).

Proof Assume that x̄ is not an efficient point of F. Then, there exists at least one y ∈ S such that for any

λ ∈ (0,1], we have

λ ⊙F(y)≺ λ ⊙F(x̄),

or, λ ⊙F(y)⊕λ ′⊙F(x̄)≺ λ ⊙F(x̄)⊕λ ′⊙F(x̄), where λ ′ = 1−λ ,

or, λ ⊙F(y)⊕λ ′⊙F(x̄)≺ (λ +λ ′)⊙F(x̄) = F(x̄).

Due to the convexity of F on S , we have

F(x̄+λ (y− x̄)) = F(λ y+λ ′x̄)� λ ⊙F(y)⊕λ ′⊙F(x̄)≺ F(x̄),

or, F(x̄+λ (y− x̄))⊖gH F(x̄)≺ 0,

or, FH (x̄)(v− x̄)� 0. (4.2)

Now we have the following two possibilities.

• Case I: If FH (x̄)(v− x̄) = 0, then FD(x̄)(v− x̄) = 0 and

f
D
(x̄)(v− x̄) = 0 and f D(x̄)(v− x̄) = 0. (4.3)

Due to Lemma 3, f and f are convex on S . From (4.3), we observe that x̄ is a minimum point

of f and f . Consequently, x̄ is an efficient point of F. This contradicts to our assumption that x̄

is not efficient point of F.
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• Case II: If FH (x̄)(v− x̄)≺ 0, then this contradicts the assumption that FH (x̄)(v− x̄)⊀ 0 for all v ∈X .

Hence, x̄ is the efficient point of the IOP (2.1).

Remark 7 The relation (4.1) can be seen as a variational inequality for interval-valued functions. For details

as variational inequalities, we refer [1]. The converse of Theorem 7 is not true. For example, consider X =
R, S = [−1,2], and the convex IVF F : S → I(R) defined by

F(x) = [4x2 − 4x+ 1,2x2+ 75].

At x̄ = 0 and for v ∈ X , FH (x̄)(v) = v⊙ [−4,0] for all v ∈ X .

From Figure 1, it is clear that x̄ = 0 is an efficient solution of the IOP (2.1). However, for all v > 0 we have

FH (x̄)(v)≺ 0.

f

f

- 4 - 2 2 4 6
X

50

100

150

Y

O

Fig. 1: IVF F of Remark 7

Theorem 8 (Necessary condition for efficient points). Let S be a linear subspace of X , F : S → I(R) be

an IVF and x̄ ∈ S be an efficient point of the IOP (2.1). If the function F has a gH-Hadamard derivative at

x̄ in every direction v ∈ S , then

FH (x̄)(v− x̄)⊀ 0, for all v ∈ S .

Proof Since the point x̄ is an efficient point of the function F, for any h ∈ S and λ > 0, we have

F(x̄+λ (h− x̄))⊖gH F(x̄)⊀ 0. (4.4)

If FH (x̄)(v− x̄)� 0, then due to linearity of FH (x̄) on S , we have FH (x̄)(v− x̄) = 0 by (ii) of Lemma 4.

Therefore, FH (x̄)(v− x̄)⊀ 0 for all v ∈ S .
If FH (x̄)(v− x̄)⊀ 0, then the result holds.

Remark 8 One may think that in Theorem 8, instead of considering the fact that the IVF F is defined on a

linear subspace of S , we may take F being defined on any nonempty convex subset of S . However, this

assumption is not sufficient. For instance, consider X =R, S = [−1,7], and the convex IVF F : S → I(R)
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defined by F(x) = [x2 − 4x+ 4,x2 + 5]. Then at x̄ ∈ S , FH (x̄)(v) = 2v⊙ [x̄− 2, x̄] for all v ∈ X . Note that

x̄ = 0 is an efficient point of IOP (2.1) because F(y) ⊀ F(x̄) for all y ∈ S . However, FH (x̄)(v) ≺ 0 for all

v > 0.

Theorem 9 Let S be a nonempty subset of X , F : S → I(R) be an IVF, and x̄ ∈ S be an efficient point

of the IOP (2.1). If the IVF F has a gH-Hadamard derivative at x̄ in every direction v ∈ S , then there exist

no v ∈ S such that FH (x̄)(v− x̄)< 0.

Proof Since the point x̄ is an efficient point of the function F, for any h ∈ S and λ > 0, we have

F(x̄+λ (h− x̄))⊖gH F(x̄)⊀ 0.

This implies that

lim
λ→0+

1

λ
max{ f (x̄+λ (h− x̄))− f (x̄), f (x̄+λ (h− x̄))− f (x̄)} ≥ 0. (4.5)

From (4.5) and Lemma 2, there is no v ∈ S such that FH (x̄)(v− x̄)< 0.

Theorem 10 . Let S be a linear subspace of X , F : S → I(R) be an IVF, and x̄ ∈ S be an efficient point

of the IOP (2.1). If the IVF F has a gH-Hadamard derivative at x̄ in every direction v ∈ S , then

0 ∈ FH (x̄)(v), for all v ∈ S .

The converse holds if F is convex on X .

Proof Let x̄ be an efficient point of IOP (2.1). Then, by Theorem 8, we have FH (x̄)(v) ⊀ 0 for all v ∈ S .
Due to linearity of FH (x̄) and v=−h, we obtain FH (x̄)(h)⊁ 0 for all h∈S . Hence, 0 ∈ FH (x̄)(v) for all

v ∈ S .
Conversely, let F be convex on S and assume that F has a gH-Hadamard derivative at x̄ in every direction

w ∈ X . Let 0 ∈ FH (x̄)(w) for all w ∈ X . Then, due to linearity of FH (x̄) on S , we have

FH (x̄)(w)⊀ 0 and 0 ⊀ FH (x̄)(w) for all w.

Hence, x̄ is efficient point of IOP (2.1) by Theorem 7.

5 Fritz John and Karush-Kuhn-Tucker Optimality Conditions

In this section, we derive an extended KKT necessary and sufficient optimality conditions to characterize

efficient solutions of IOPs.

Lemma 5 Let F : Rn → I(R) be a gH-Hadamard differentiable IVF at x̄ in the direction v ∈ Rn with

FH (x̄)(v)≺ 0. Then, there exists δ > 0 such that for each λ ∈ (0,δ ),

F(x̄+λ v)≺ F(x̄).

Proof Since FH (x̄)(v)≺ 0, there exist δ ,δ ′ > 0 such that for all h ∈Rn, we have

1

λ
⊙ (F(x̄+λ h)⊖gH F(x̄))≺ 0, λ ∈ (0,δ ) and ‖v− h‖< δ ′.

Due to gH-continuity of F at v, we get

F(x̄+λ v)⊖gH F(x̄)≺ 0, ∀ λ ∈ (0,δ ),

which implies F(x̄+λ v)≺ F(x̄), ∀ λ ∈ (0,δ ).
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Definition 11 Let F : Rn → I(R) be a gH-Hadamard differentiable IVF at x̄. Then, the set of descent direc-

tions at x̄ is defined by

F̂(x̄) = {d ∈Rn : FH (x̄)(d)≺ 0}.

As for any d in F̂(x̄), λ d ∈ F̂(x̄) for all λ > 0, the set F̂(x̄) is called the cone of descent direction.

Definition 12 [18] Given a nonempty set S ⊆Rn and x̄ ∈ S . At x̄, the cone of feasible directions of S is

defined by

Ŝ (x̄) = {d ∈Rn : d 6= 0, x̄+λ d ∈ S , ∀ λ ∈ (0,δ ) and for some δ > 0}.

Lemma 6 Let S ⊆Rn and F :Rn → I(R) be a gH-Hadamard differentiable IVF at x̄∈S . If x̄ is an efficient

solution of the IOP (2.1), then F̂(x̄)∩ Ŝ (x̄) = /0.

Proof Assume contrary that F̂(x̄)∩ Ŝ (x̄) 6= /0 and d ∈ F̂(x̄)∩ Ŝ (x̄). By Lemma 5 and Definition 12, there

exist δ1,δ2 > 0 such that

x̄+λ d ∈ S for all λ in (0,δ1) and F(x̄+λ d)≺ F(x̄) for all λ in (0,δ2).

Taking δ = min{δ1,δ2}, we see that for all λ ∈ (0,δ ),

x̄+λ d ∈ S and F(x̄+λ d)≺ F(x̄).

This is contradictory to x̄ being a local efficient point. Hence, F̂(x̄)∩ Ŝ (x̄) = /0.

Lemma 7 For i = 1,2, . . . ,m, let Gi : Rn → I(R) be IVF, X be a non-empty open set in Rn, and S =

{x ∈ X : Gi(x)� 0 for i = 1,2, . . . ,m}. Let x̄ ∈ S and I(x̄) = {i : Gi(x̄) = 0}. For all i ∈ I(x̄), assume that Gi

is gH-Hadamard differentiable at x̄ and gH-continuous for i /∈ I(x̄), define

Ĝ(x̄) = {d : GiH (x̄)(d)(x̄)≺ 0 for all i ∈ I(x0)}.

Then, Ĝ(x̄)⊆ Ŝ (x̄), where Ŝ (x̄) = {d ∈Rn : d 6= 0, x̄+αd ∈ S ∀α ∈ (0,δ ) for some δ > 0}.

Proof It is similar to proof of Lemma 3.1 in [18] for gH-Hadamard derivative, and therefore, we omit.

With the help of Lemma 7, we characterize an efficient solution of a constrained IOP. It is shown that at

a local efficient solution, the cones of descent direction and feasible direction have an empty intersection.

Theorem 11 Let S be a non-empty open set in Rn. Consider an IOP

min F(x)

such that Gi(x)� 0, for i = 1,2, . . . ,m

x ∈ S ,











(5.1)

where F :Rn → I(R) and Gi :Rn → I(R) for i= 1,2, . . . ,m. For a feasible point x0, define I(x0) = {i : Gi(x̄)=
0}. At x̄, let F and Gi, i ∈ I(x̄), be gH-Hadamard differentiable, and for i /∈ I(x̄), Gi be gH-continuous. If x̄

is a local efficient solution of (5.1), then

F̂(x̄)∩ Ĝ(x̄) = /0,

where F̂(x̄) = {d : FH (x̄)(d)(x̄)≺ 0} and Ĝ(x̄) = {d : GiH (x̄)(d)(x̄)≺ 0 for each i ∈ I(x̄)}.

Proof By Lemma 6 and Lemma 7, we obtain

x0 is a local efficient solution =⇒ F̂(x̄)∩ Ŝ (x̄) = /0 =⇒ F̂(x̄)∩ Ĝ(x̄) = /0.
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Theorem 12 (Extended Fritz John necessary optimality condition). Let S be a non-empty open set in Rn;

F : Rn → I(R) and Gi : Rn → I(R) for i = 1,2, . . . ,m be IVFs. Consider the IOP:

min F(x),

such that Gi(x)� 0, i = 1,2, . . . ,m

x ∈ S .











(5.2)

For a feasible point x̄, define I(x̄) = {i : Gi(x̄) = 0}. Let F and Gi be gH-Hadamard differentiable at x̄ for

i ∈ I(x̄) and gH-continuous for i /∈ I(x̄). If x̄ is a local efficient point of (5.2), then there exist constants

u0 and ui for i ∈ I(x̄) such that



























0 ∈

(

u0 ⊙FH (x̄)(d)⊕ ∑
i∈I(x̄)

ui ⊙GiH (x̄)(d)

)

,

u0 ≥ 0,ui ≥ 0 for i ∈ I(x̄),

(u0,uI) 6=
(

0,0
|I(x̄)|
v

)

,

where uI is the vector whose components are ui for i ∈ I(x̄).
Further, if Gi, for all i /∈ I(x̄), are also gH-Hadamard differentiable at x̄, then there exist constants u0,u1,u2, . . . ,um

such that






























0 ∈

(

u0 ⊙FH (x̄)(d)⊕
m

∑
i=1

ui ⊙GiH (x̄)(d)

)

,

ui ⊙Gi(x̄) = 0, i = 1,2, . . . ,m,

u0 ≥ 0,ui ≥ 0, i = 1,2, . . . ,m,

(u0,u) 6= (0,0m
v ) ,

where u is the vector (u1,u2, . . . ,um).

Proof Since x̄ is a local efficient point of (5.2), by Theorem 11, we get

F̂(x̄)∩ Ĝ(x̄) = /0,

or, ∄ d ∈ Rn s.t. FH (x̄)(d)≺ 0 and GiH (x̄)(d)≺ 0 ∀ i ∈ I(x̄),

or, FH (x̄)(d)⊀ 0 and GiH (x̄)(d)⊀ 0 ∀ d ∈ Rn and i ∈ I(x̄),

or, 0 ∈ FH (x̄)(d) and 0 ∈ GiH (x̄)(d) ∀ d ∈Rn and i ∈ I(x̄) by Lemma 4. (5.3)

We can chose nonzero vector p with p = [u0,ui]
⊤
i∈I(x̄) such that























0 ∈

(

u0 ⊙FH (x̄)(d)⊕ ∑
i∈I(x̄)

ui ⊙GiH (x̄)(d)

)

,

u0,ui ≥ 0 for i ∈ I(x0),

(u0,uI) 6= (0,0, · · · ,0) .

This proves the first part of the theorem.

For i ∈ I(x̄), Gi(x̄) = 0. Therefore, ui ⊙Gi(x̄) = 0. If Gi for all i /∈ I(x̄) are also gH-differentiable at x̄, by

setting ui = 0 for i /∈ I(x̄) the second part of the theorem is followed.
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Definition 13 [18] The set of m intervals {X1,X2, . . . ,Xm} is said to be linearly independent if for m real

numbers c1, c2, . . . , cm:

0 ∈ c1 ⊙X1 ⊕ c2 ⊙X2 ⊕ . . .⊕ cm ⊙Xm if and only if c1 = 0,c2 = 0, . . . ,cm = 0.

Theorem 13 (Extended Karush-Kuhn-Tucker necessary optimality condition). Let S be a non-empty open

set in Rn and F : Rn → I(R) and Gi : Rn → I(R), i = 1,2, . . . ,m, be IVFs. Suppose that x̄ is a feasible point

of the following IOP:

min F(x)

such that Gi(x)� 0, i = 1,2, . . . ,m

x ∈ S .











Define I(x̄) = {i : Gi(x̄) = 0}. Let

(i) F and Gi be gH-Hadamard differentiable at x̄ for all i ∈ I(x̄),
(ii) Gi be gH-continuous for all i /∈ I(x̄), and

(iii) the collection of intervals {GiH (x̄)(d) : i ∈ I(x̄)} be linearly independent.

If x̄ is a local efficient solution, then there exist constants ui ≥ 0 for all i ∈ I(x̄) such that

0 ∈

(

u0 ⊙FH (x̄)(d)⊕ ∑
i∈I(x̄)

ui ⊙GiH (x̄)(d)

)

If Gi’s, for i /∈ I(x̄), are also gH-differentiable at x̄, then there exist constants u1, u2, . . . , um such that























0 ∈

(

u0 ⊙FH (x̄)(d)⊕
m

∑
i=1

ui ⊙GiH (x̄)(d)

)

,

ui ⊙Gi(x̄) = 0, i = 1,2, . . . ,m,

ui ≥ 0, i = 1,2, . . . ,m.

Proof By Theorem 12, there exist real constants u0 and u′i for all i ∈ I(x̄), not all zeros, such that















0 ∈

(

u0 ⊙FH (x̄)(d)⊕ ∑
i∈I(x̄)

u′i ⊙GiH (x̄)(d)

)

,

u0 ≥ 0,u′i ≥ 0 for all i ∈ I(x̄).

(5.4)

Then, we must have u0 > 0. Since otherwise, the set {GiH (x̄)(d) : i∈ I(x̄)} will become linearly dependent.

Define ui = u′i/u0. Then, ui ≥ 0 for all i ∈ I(x̄) and

0 ∈

(

u0 ⊙FH (x̄)(d)⊕ ∑
i∈I(x̄)

ui ⊙GiH (x̄)(d)

)

.

For i ∈ I(x̄), Gi(x̄) = 0. Therefore, 0 ∈ ui ⊙Gi(x̄). If the functions Gi for i /∈ I(x̄) are also gH-Hadamard

differentiable at x0, then by setting ui = 0 for i /∈ I(x̄), the latter part of the theorem is followed.
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Theorem 14 (Extended Karush-Kuhn-Tucker sufficient condition for efficient points). Let S be a nonempty

convex subset of X ; F : S → I(R) and Gi : S → I(R), i = 1,2, · · · ,m be interval-valued gH-Hadamard

differentiable convex functions. Suppose that x̄ ∈ S is a feasible point of the following IOP:

min F(x)

such that Gi(x̄)� 0, i = 1,2, · · · ,m

x ∈ S .











(5.5)

If there exist real constants u1,u2, . . . ,um for which










FH (x̄)(v)⊕∑
m
i=1 ui ⊙GiH (x̄)(v)⊀ 0, for all v ∈ S ,

ui ⊙Gi(x̄) = 0, i = 1,2, · · · ,m

ui ≥ 0, i = 1,2, · · · ,m,

then x̄ is an efficient point of the IOP.

Proof By the hypothesis, for every v ∈ S satisfying Gi(v)� 0 for all i = 1,2, . . . ,m, we have

FH (x̄)(v− x̄)⊕
m

∑
i=1

uiGiH (x̄)(v− x̄)⊀ 0,

=⇒ (F(v)⊖gH F(x̄))⊕

(

m

∑
i=1

ui (Gi(v)⊖gH Gi(x̄))

)

⊀ 0

( by (3.3) of Theorem 3 and (i) of Lemma 1),

=⇒ (F(v)⊖gH F(x̄))⊕

(

m

∑
i=1

ui (Gi(v))

)

⊀ 0,

=⇒ F(v)⊖gH F(x̄)⊀ 0 from (ii) of Lemma 1,

=⇒ F(v)⊀ F(x̄).

Hence, x̄ is an efficient point of the IOP.

6 Application to Support Vector Machines

In many classification problems, the data set may not be precise and thus involves uncertainty. This may

be due to errors in measurement, implementation, etc. For example, let us assume that we want to predict

whether there will be rain tomorrow or not. The data we may require the wind speed, humidity levels,

temperature, etc. These variables usually have values in intervals like 10–13 km/hr wind speed, 40–50%

humidity, 30− 35oC temperature, etc. The standard Support Vector Machines (SVM) formulation is not

applicable for such data as these quantities are interval-valued. Thus, we formulate the SVM problem for the

interval-valued data set

{(XXX i,yi) | XXX i ∈ I(R)n, yi ∈ {−1,1}, i = 1,2, · · · ,m}

by

min
w,b

F(w,b) = 1
2
‖w‖2,

such that Gi(w,b) = [1,1]⊖gH yi ⊙
(

w⊤⊙XXX i ⊕ b
)

� 000, i = 1,2, . . . ,m.











(6.1)
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We note that the functions F and Gi are gH-Hadamard differentiable and convex. At x̄ = (w̄, b̄), in the

direction v = (w,b), we have

FH (x̄)(v) = w⊙ [w̄, w̄] and GiH (x̄)(d) =−(w⊙ (yi ⊙XXX i)⊕ byi) .

According to Theorem 13, for an efficient point (w̄, b̄) of (6.1), there exist nonnegative scalars u1,u2, . . . ,um

such that

0 ∈

(

w⊙ [w̄, w̄]⊕
m

∑
i=1

ui ⊙−(w⊙ (yi ⊙XXX i)⊕ byi)

)

, (6.2)

and 000 = ui ⊙Gi(w
∗,b∗), i = 1,2, . . . ,m. (6.3)

The condition (6.2) can be simplified as

000 ∈

(

[w∗,w∗]⊕
m

∑
i=1

(−uiyi)⊙XXX i

)

and
m

∑
i=1

uiyi = 0.

The data points XXX i for which ui 6= 0 are called support vectors. By (6.3), corresponding to any ui > 0, we have

Gi(w
∗,b∗) = 000. Thus, corresponding to w∗, the value of the bias b∗ is such a quantity that Gi(w

∗,b∗) = 000 for

all of those i ∈ {1,2, . . . ,m} for which ui > 0.

As the functions F and Gi are gH-Hadamard differentiable and convex, by Theorems 13 and 14, the set

of conditions by which we obtain the efficient solutions of the SVM IOP (6.1) are































000 ∈

(

[w,w]⊕
m

∑
i=1

(−uiyi)⊙XXX i

)

,

m

∑
i=1

uiyi = 0,

000 = ui ⊙Gi(w,b), i = 1,2, . . . ,m.

(6.4)

Corresponding to any of the value of w that satisfies (6.4), we define the set of possible values of the bias by

⋂

i: ui>0

{b | Gi(w,b) = 000} .

By using any solution w̄ and b̄ of (6.4) and (6), a classifying hyperplane and the SVM classifier function are

given by

w̄⊤XXX + b̄ = 000 and s∗(XXX) = sign
(

w̄⊤XXX + b̄

)

, where sign (·) denotes the sign function.

7 Conclusion and Future Directions

In this article, the concept of gH-hadamard derivative for IVFs has been studied (Definition 10). One can

trivially notice that in the degenerate case, the Definition 10 reduces to the respective conventional definition

for the real-valued functions (see [10,38]). It has been noticed that the gH-Hadamard derivative at any point

is the gH-Fréchet derivative at that point and vise-versa (Theorem 1). Also, a gH-Hadamard differentiable

IVF is found to be gH-continuous (Theorem 2). It has been shown that the gH-Hadamard derivative is helpful
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to characterize the convexity of an IVF (Theorem 3). It is also observed that the composition of a Hadamard

differentiable real-valued function and a gH-Hadamard differentiable IVF is gH-Hadamard differentiable

IVF and the chain rule is applicable (Theorem 5 and Theorem 4). Further, for a finite number of IVFs whose

values are comparable at each point, it has been proven that the gH-Hadamard derivative of maximum of all

finite comparable IVFs is the maximum of their gH-Hadamard derivative (Theorem 6).

In addition, it has been shown that if the objective function of an IOP is convex on the feasible set

S ⊆ X and gH-Hadamard derivative at x̄ ∈ S does not dominate to 0, then x̄ is an efficient point of that

IOP (Theorem 7). Further, it is proved that if the feasible set S is linear subspace of X and the objective

function of IOP is gH-Hadamard differentiable at an efficient point of IOP, then gH-Hadamard derivative

does not dominate to 0 (Theorem 8) and also contains 0 (Theorem 10). Moreover, for constraint IOPs, we

have proved extended KKT necessary and sufficient condition to characterize the efficient solutions by using

gH-Hadamard derivative (Theorem 13 and Theorem 14).

As an application of the proposed gH-Hadamard derivative, we have formulated and solved SVM prob-

lem for interval-valued data.

In analogy to the current study, future research can be carried out for other generalized directional

derivatives for IVFs, e.g., upper and lower Dini semiderivative, Hadamard semiderivative, upper and lower

Hadamard semiderivative, Michel-Penot, etc., and their relationships [11].

In parallel to the proposed analysis of IVFs, another promising direction of future research can be the

analysis of the fuzzy-valued functions (FVFs) as the alpha-cuts of fuzzy numbers are compact intervals [17].

Hence, we expect that some results for FVFs can be obtained in a similar way to this paper.

A Proof of Lemma 1

Proof Let A = [a,a] and B = [b,b].

(i) Since B ⊀ 0 and B � A, then

b ≥ 0 and b ≥ a =⇒ a ≥ 0 =⇒ A ⊀ 0.

(ii) Since A⊕B ⊀ 0 and B � 0, then

a+b ≥ 0 and b ≤ 0 =⇒ a ≥ 0 =⇒ A ⊀ 0.

B Proof of Lemma 4

Proof (i) If

F(x)⊀ 0 for all x ∈ S , (B.1)

then due to linearity of F, we have

F(x) = (−1)⊙F(−x)⊁ 0 for all x ∈ S (B.2)

since F(−x)⊀ 0 by (B.1). From (B.1) and (B.2), it is clear that 0 and F(x) are not comparable.
(ii) If F(x)� 0 for all x ∈ S , then due to linearity of F, we have F(x) = (−1)⊙F(−x)� 0 for all x ∈ S .

Hence, F(x) = 0.
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