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Abstract—Despite many distributed resource allocation
(DRA) algorithms have been reported in literature, it is still
unknown how to allocate the resource optimally over multi-
ple interacting coalitions. One major challenge in solving
such a problem is that, the relevance of the decision on
resource allocation in a coalition to the benefit of others
may lead to conflicts of interest among these coalitions.
Under this context, a new type of multi-coalition game is
formulated in this paper, termed as resource allocation
game, where each coalition contains multiple agents that
cooperate to maximize the coalition-level benefit while sub-
ject to the resource constraint described by a coupled
equality. Inspired by techniques such as variable replace-
ment, gradient tracking and leader-following consensus,
two new kinds of DRA algorithms are developed respec-
tively for the scenarios where the individual benefit of each
agent explicitly depends on the states of itself and some
agents in other coalitions, and on the states of all the game
participants. It is shown that the proposed algorithms can
converge linearly to the Nash equilibrium (NE) of the multi-
coalition game while satisfying the resource constraint
during the whole NE-seeking process. Finally, the validity
of the present allocation algorithms is verified by numerical
simulations.

Index Terms— Distributed resource allocation, dis-
tributed NE seeking, distributed optimization, multi-agent
system, multi-coalition game.

I. INTRODUCTION

T
HE past decade has witnessed a significant progress

on distributed resource allocation (DRA) over multi-

agent networks (MANs), where interacting individual agents

cooperate to make the best decision on allocating the group-

level resources via information exchange among neighboring

agents [1]. The task can be basically modeled as a distributed
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optimization problem regarding a group-level objective func-

tion while subject to the resource constraint described by

a coupled equality, and the problem has been extensively

studied from various aspects with discrete-time [2]–[8] and

continuous-time [9]–[14] DRA algorithms developed.

Considering the complex interactions of real-world net-

worked systems, the resource allocation problems of multiple

coalitions may be coupled with each other. For example, in

public finance management, when deciding the allocation of

a provincial government’s revenue fund for economic devel-

opment, the influence of other provinces’ economic devel-

opment would be taken into account, since cooperation and

competition may exist across provinces. In such cases, the

DRA problem of multiple coalitions cannot be decoupled into

several independent single-coalition DRA problems and solved

separately by employing existing DRA algorithms.

Inspired by the above observations, a new model is for-

mulated in this paper for the resource allocation problem of

multiple interacting coalitions. In this model, the inputs of each

individual agent’s objective function may include the states

of agents not only within but also outside the coalition. The

group-level objective function of each coalition is the sum

of objective functions of all the individual agents therein. In

each coalition, the individual agents cooperate to minimize the

group-level objective function while subject to the resource

constraint described by a coupled equality.

The proposed model can be viewed as a new type of multi-

coalition game, as it shares the core feature of capturing the

cooperation of agents that belongs to the same coalition and

the conflicts of interest among different coalitions. Existing

studies on multi-coalition games can be found in [15]–[22]

and the reference therein, which can be generally classified

into two categories according to whether or not intra-coalition

consistency constraints are involved. Specifically, the agent

states in each coalition are free of coupled constraints in one

category of studies [17]–[19], while in the other, are demand

to reach an agreement [15], [16], [20]–[22].

In the seminal work on games of MANs with coalition

structure [15], a two-network zero-sum game is formulated,

where the agents within each network should agree on a

common network state, and the two networks have opposite

objective regarding the optimization of a common function of

the network states; for this model, distributed Nash equilib-
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rium (NE) seeking algorithms are developed under fixed and

switching topologies respectively in [15] and [16]. Then, the

work is extended to non-cooperative games among multiple

coalitions in [17] with the intra-coalition demand of state

consistency removed, and a continuous-time NE computation

algorithm is designed based on gradient play and average

consensus protocol. Along this line, directed and switching

topologies are further considered in [18], and discrete-time

gradient-free algorithm design for the case with unknown

expressions of objective functions is studied in [19]. For multi-

coalition games with intra-coalition consistency constraints, a

generalized nonsmooth distributed NE seeking algorithm is

designed with continuous-time setting in [20]; while discrete-

time algorithms are developed under undirected and directed

network topologies in [21] and [22] respectively. It is worth

noting that, although multi-coalition games have been stud-

ied with several NE seeking algorithms developed, research

on the proposed multi-coalition game with coupled equality

constraint in the context of resource allocation has not been

reported yet.

In this paper, we propose a new model of multi-coalition

game for the study of DRA over multiple interacting coali-

tions. For the case that the individual benefit of each agent is

explicitly influenced by the states of itself and some agents

in other coalitions, a new kind of DRA algorithm is designed

based upon the techniques of variable replacement, gradient

descent, and leader-following consensus. Then, the more gen-

eral case is further investigated by redesigning the proposed

DRA algorithm based on the gradient tracking technique,

where the individual benefit of each agent is allowed to depend

explicitly on the states of all game participants. The proposed

algorithms are theoretically proven to converge linearly to the

NE of the proposed game while meet the equality constraints

during the iterations.

The main contribution of this paper lies in the following

aspects: (i) A new model of multi-coalition game is proposed,

which captures the cooperation of individual agents on re-

source allocation in each coalition as well as the conflicts of

interest among different coalitions. Our model includes the

commonly studied mathematical model for DRA problem over

MANs as a special case where all the agents are assumed to

be cooperative. (ii) Two new kinds of DRA algorithms are

designed and utilized such that the decisions of the agents

can converge linearly to the NE of the considered resource

allocation game. The methodology developed in this paper

generalizes the existing results on DRA over MANs, as the

developed algorithms could deal with the DRA problem in the

presence of conflicts of interests among different coalitions.

(iii) Another distinguished feature of the proposed algorithms

is that the resource constraints can be guaranteed at each iter-

ation, which enables the proposed algorithms to be executed

in an online manner. Such a feature plays an important role

in online solving various DRA problems or their variations

such as the distributed economic dispatch problem of smart

grid with multiple generating units subject to the constraint of

supply-demand balance.

The remainder of the paper is summarized as follows. In

Section II, the model of the game is formulated and the

property of the NE is analyzed. In Section III and IV, DRA

algorithms are developed for the special and general cases

of the model, respectively. Numerical examples are provided

in Section V to verify the effectiveness of the proposed

algorithms, and finally Section VI concludes the paper.

Notations. The sets of natural numbers, positive integers

and real numbers are respectively represented by N and N
+

and R. The set of n-dimensional real column vectors is denoted

by R
n. In and 1n are respectively the n-dimensional identity

matrix and the n-dimensional column vector with all the

entries being 1. Symbol ⊗ is the Kronecker product and ‖ · ‖
denotes the Euclidian norm. diag{B1, · · · , Bn} represents the

diagonal block matrix with the matrix Bi (i = 1, · · · , n) on

the ith diagonal block.

II. PROBLEM STATEMENT

A. Game Formulation

In this paper, we consider a class of DRA problems of

multiple interacting coalitions indexed by i ∈ I={1, · · · , N},

where N ∈ N
+ denotes the number of coalitions. Let Vi =

{ij|j = 1, · · · , ni} be the agent set of coalition i, with ij
representing the jth member in coalition i and ni ∈ N

+

denoting the number of the coalition members. Denote the

total number of the agents in these coalitions by nsum =
∑N

i=1
ni and the agent set of the problem by V = V1 ∪ · · · ∪

VN . The underlying communication topology among these

individual agents is described by an undirected graph G(V , E).
Each agent ij ∈ V possesses some local resource, denoted

Rij ∈ R. For each coalition i ∈ I, the members are required

to cooperatively make the best decision of re-allocating the

coalition resource, denoted Ri =
∑

ij∈Vi
Rij , with the goal of

achieving maximal coalition-level benefit. Denote the decision

(state) of agent ij by xij ∈ R and the collective decision (state)

of coalition i by xi = [xi1, xi2, · · · , xini
]T ∈ R

ni . Define

x = [xT1 , · · · ,xTN ]T ∈ R
nsum . If the coalition-level benefit

of each coalition i is affected by only the collective decision

of its members, i.e., xi, then, the DRA of the N coalitions

can be separated into N independent well-studied multi-agent

distributed optimization problem. However, in more general

competitive situations, the benefit of each coalition may be

influenced by the decisions of not only its members but

also the agents outside this coalition, and the conflicts of

interests among the coalitions make it necessary to investigate

this problem from a game-theoretic perspective. Within this

context, we formulate the resource allocation game as follows:

min
xij

fi(x) = min
xij

ni
∑

l=1

fil(x), ∀ij ∈ V ,

s.t.
∑

ij∈Vi

xij = Ri,
(1)

where fil : R
nsum → R and fi : R

nsum → R are respectively

the objective functions of agent il and coalition i, and other

symbols have been defined previously. Here, we consider the

minimization setting without loss of generality, since the case

of welfare maximization can be easily transformed into a

minimization problem. The study of this model has potential

applications in the fields of economics and engineering.
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Example 1 (Business Budget Allocation): Consider that

multiple firms, each of which has several product lines,

manufacture related products in a competitive market. The

revenue a product line generates will be influenced by the

budgets assigned to the product line well as other homogenous

product lines. Each firm wants to efficiently and effectively use

its resource to maximize its total revenue. Such a problem can

be modeled as the resource allocation game (1). �

In (1), the individual agent benefit is expressed by a function

of the decisions of all the game participants, i.e., fij(x). Note

that in some situations, the individual agent benefit can be

formulated as a function of the decisions of only the agent

itself and the agents in other coalitions, i.e., fij(xij ,x−i),
where x−i = [xT1 , · · · ,xTi−1,x

T
i+1, · · · ,xTN ]T , and the re-

source allocation game becomes

min
xij

fi(x) = min
xij

ni
∑

l=1

fil(xil,x−i), ∀ij ∈ V ,

s.t.
∑

ij∈Vi

xij = Ri.
(2)

Obviously, model (2) is a special case of (1), and an example

is given as follows.

Example 1 revisited (Business Budget Allocation): Consider

the problem of business budget allocation in Example 1. In

each firm, the product lines are heterogeneous, whose revenues

do not explicitly depend on the budgets for other product lines

in this firm, but only rely on the budgets for themselves and

the homogeneous product lines in other firms. Such a problem

can be modeled as the resource allocation game (2). �

Next, the definition of NE will be introduced. Let

(xi,x−i) , x for notational brevity. For each i ∈ I, define

the admissible set of the coalition decision as Ωi = {xi ∈
R
ni |1Tni

xi=Ri} and define Ω=
∏N

i=1
Ωi.

Definition 1 An NE of the resource allocation game (1) (game

(2)) is a vector x∗ = (x∗
i ,x

∗
−i) ∈ Ω with the property that

∀i ∈ I :

fi(x
∗
i ,x

∗
−i)≤fi(xi,x∗

−i), ∀xi ∈ Ωi.

Define the pseudo gradient function P : R
nsum → R

nsum as

P(·) = [(
∂f1
∂x1

(·))T , ( ∂f2
∂x2

(·))T , · · · , ( ∂fN
∂xN

(·))T ]T .

In this paper, the objective functions of all the agents in game

(1) and (2) are assumed to satisfy the following assumptions.

Assumption 1 For each agent ij ∈ V , the objective function

fij(·) is convex and continuously differentiable. Moreover,

∇fij(·) is Lipschitz with the constant lij .

Under Assumption 1, it is not difficult to derive that

∇fi(·) is Lipschitz with a constant li =
∑ni

j=1
lij , i.e.,

‖∇fi(a1)−∇fi(a2)‖≤li‖a1−a2‖, ∀a1,a2 ∈ R
nsum , which

is useful for the forthcoming algorithm design and the conver-

gence analysis.

Assumption 2 (Strictly Monotone Pseudo-gradient)

(a1−a2)
T (P(a1)−P(a2))≥µ‖a1−a2‖2, ∀a1,a2 ∈ R

nsum ,

where µ is a positive constant.

Assumptions 1 and 2 are quite common in the studies of dis-

tributed NE computation [17]–[19], [21], [22], which together

ensure the existence and the uniqueness of NE in games (1)

and (2).

B. Network Topology and the Associated Matrices

The underlying network topology among the nsum game

participants is depicted by an undirected graph G(V , E) with

V and E ⊆ V × V respectively denoting the node (agent) set

and the edge (communication link) set. A pair (ij, pq) ∈ E is

an edge of G if agent pq can receive information from agent

ij. If (ij, pq) ∈ E , then agent ij is called a neighbor of agent

pq. The graph G is assumed to be undirected, i.e., for any

(ij, pq) ∈ E , (pq, ij) ∈ E . A path from agent i1j1 to agent

iljl is a sequence of edges (imjm, im+1jm+1) ∈ E ,m =
1, · · · , l−1. The undirected graph G is called connected if

for any agent, there exist paths to all other agents. Define

the induced subgraph Gi(Vi, Ei) with the node set Vi and the

edge set Ei = {(ij, il)|(ij, il) ∈ E} ⊆ Vi × Vi. Obviously,

Gi characterizes the underlying topology among the agents in

coalition i. For each agent ij ∈ V , define the neighbor set

Nij = {lm|(lm, ij) ∈ E}, the intra-coalition neighbor set

N i
ij = {il|(il, ij) ∈ Ei}, the degree dij = |Nij | and the intra-

coalition degree diij = |N i
ij |.

The adjacency matrix of graph G is defined as A =
[apqij ]nsum×nsum

with aijij = 0, and apqij = 1 if (pq, ij) ∈ E
and 0 otherwise, where apqij denotes the element of A on

the (
∑i−1

k=1
nk+j)th row and the (

∑p−1

k=1
nk+q)th column.

Similarly, the adjacency matrix of the subgraph Gi (i ∈ I)
is defined by Ai = [ailij ]ni×ni

with ailij denoting the (j, l)-
entry of Ai. Obviously, A1, · · · , AN are the diagonal blocks

of A. The Laplacian matrix of Gi is defined as Li = [lilij ]ni×ni

with lijij =
∑ni

l=1
ailij and lilij = −ailij , j 6= l, where lilij denotes

the (j, l)-entry of Li.
Apart from the above matrices, a weighted adjacency matrix

of the graph G is further defined as W = [wpqij ]nsum×nsum

with wijij = 0, wpqij > 0 if (pq, ij) ∈ E and 0 otherwise, and

∀ij ∈ V ,
∑

pq∈V
wpqij +maxpq∈V{wpqij } < 1 (similar to the

superscripts and subscripts in entries of the adjacency matrix

A, wpqij denotes the element of W on the (
∑i−1

k=1
nk+j)th row

and the (
∑p−1

k=1
nk+q)th column). For example, the entries

wpqij ∀ij, pq ∈ V can be set as wpqij = apqij /hij , where hij >
dij +maxpq∈V{apqij } is a constant.

For each coalition i, a doubly-stochastic matrix associated

with graph Gi is defined as Ci = [cimij ]ni×ni
with cimij > 0

if im ∈ N i
ij ∪ {ij} and cimij = 0 otherwise. For example,

the entries of Ci can be set as cijij = 1 − diij/ni and cimij =
aimij /ni, ∀im 6= ij.

Assumption 3 The graph G is undirected and connected, and

all the sub-graphs Gi(i ∈ I) are undirected and connected.

C. Design Objective

In the previous subsections, the resource allocation problem

over multiple interacting coalitions has been formulated as a

multi-coalition game, and the communication topology among



4

the individual agents in these coalitions have also been de-

scribed. Specifically, each individual agent ij ∈ V is aware of

its own decision value xij and objective function fij , and it

can share the local information with its neighbors through the

communication network.

Next, distributed NE seeking algorithms will be developed

for the proposed resource allocation games (1) and (2) (i.e.,

the general and special cases). The design objective is to make

the collective agent decision x converge to the NE x∗ of the

proposed games, with the information utilization adapting to

the network topology G.

To proceed, we illustrate a property of the NE of game (1)

(game (2)) in the following lemma, which is helpful for the

NE seeking algorithm design.

Lemma 1 Suppose Assumptions 1-3 hold. A vector x∗ is the

NE of game (1) (game (2)) if and only if x∗ satisfies

Li
∂fi
∂xi

(x∗) = 0, ∀i ∈ I.

Proof: Define the Hamilton function for each coalition

Hi(xi, λi) = fi(x)+λi(1
T
ni
xi−Ri), where λi ∈ R is the

Lagrange multiplier. Note that Assumptions 1-3 hold. Then,

from the well-known Karush-Kuhn-Tucker (KKT) optimality

condition [23], one can obtain that, x∗ is the NE of game

(1) (game (2)) if and only if there exist a λi that satisfies
∂Hi

∂xi
(x∗, λi) =

∂fi
∂xi

(x∗)+λi1ni
= 0, ∀i ∈ I, which is further

equivalent to Li
∂fi
∂xi

(x∗) = 0, ∀i ∈ I.

III. DISTRIBUTED NE COMPUTATION FOR THE SPECIAL

CASE

Intuitively, the distributed NE computation design for the

special case described by model (2) is simpler than that for the

general case described by model (1), since less relevance of

the agents’ decisions to the individual objectives are involved

in the former. Therefore, we will first study the distributed

NE computation for the special case of the proposed resource

allocation game (model (2)). Based on the results in this

section, the issue for the general case of the proposed resource

allocation game (model (1)) will be investigated in the next

section.

A. Algorithm Design

To make the collective agent state converge to the NE in

game (2), the following distributed algorithm is designed for

each agent ij ∈ V ∀k ∈ N:

xij(k) =xij(0)−
∑

im∈N i
ij

(ηij(k)−ηim(k)), (3a)

ηij(k+1) =ηij(k)+α
∑

im∈N i
ij

(

∂fij(ξ
ij
ij (k), ξ

−i
ij (k))

∂xij

−∂fim(ξimim(k), ξ−iim(k))

∂xim

)

, (3b)

ξpqij (k+1) =w̄pqij ξ
pq
ij (k)+

∑

lm∈Nij

wlmij ξ
pq
lm(k)

+wpqij xpq(k), ∀pq ∈ V , (3c)

where xij(0) = Rij , ηij(0) = 0, α is a small

positive constant to be determined, ξpqij is an auxil-

iary variable computed by agent ij for estimating the

value of xpq , ξlij = [ξl1ij , · · · , ξlnl

ij ]T , ∀l ∈ I, ξ−iij =

[(ξ1ij)
T , · · · , (ξi−1

ij )T , (ξi+1

ij )T , · · · , (ξNij )T ]T , and w̄pqij =

1−∑

lm∈Nij
wlmij −wpqij . Note from the definition of param-

eters wpqij , ∀ij, pq ∈ V in Sec. II-B that w̄pqij > 0, ∀ij, pq ∈ V .

To rewrite the proposed algorithm (3) in a compact form,

we define the following vectors

ηi = [ηi1, · · · , ηini
]T ∈ R

ni ,

η = [(η1)
T , (η2)

T , · · · , (ηN )T ]T ∈ R
nsum ,

ξij = [ξ11ij , ξ
12
ij , · · ·, ξ1n1

ij , ξ21ij , · · ·, ξ2n2

ij , · · · , ξNnN

ij ] ∈ R
nsum ,

ξi = [(ξi1)
T , (ξi2)

T , · · · , (ξini
)T ]T ∈ R

ninsum ,

ξ = [(ξ1)
T , (ξ2)

T , · · · , (ξN )T ]T ∈ R
n2

sum ,

and the function P̆i : R
n2

i → R
ni :

P̆i(ξi) =[
∂fi
∂xi1

(ξi1),
∂fi
∂xi2

(ξi2), · · ·,
∂fi
∂xini

(ξini
)]T ∈ R

ni .

Obviously, P̆i(1ni
⊗x) = ∂fi

∂xi
(x). Note that for each agent in

game (2), the inputs of individual objective function include

the decisions of only itself and the agents in other coalitions.

Therefore, one has ∀ij ∈ V , ∀x ∈ R
nsum

∂fi
∂xij

(x) =

ni
∑

l=1

∂fil
∂xij

(xil,x−i) =
∂fij
∂xij

(xij ,x−i). (4)

Then, the proposed algorithm (3) can be rewritten in the

following compact form ∀i ∈ I:

xi(t) =xi(0)−Liηi(k), (5a)

ηi(k+1) =ηi(k)+αLiP̆i(ξi(k)), (5b)

ξ(k+1) =(W⊗Insum
+W̄ )ξ(k)+Ŵ

(

1nsum
⊗x(k)

)

, (5c)

where W has been defined in Sec. II-B, W̄ =
diag{w̄11

11 , · · · , w̄NnN

11 , w̄11
12 , · · · , w̄NnN

12 , · · · , w̄NnN

NnN
},

Ŵ = diag{w11
11 , · · · , wNnN

11 , w11
12 , · · · , wNnN

12 , · · · , wNnN

NnN
},

and (5b) is obtained by using (4).

Remark 1 In the forthcoming convergence analysis of the

proposed algorithm, we will show that (3a) ensures the satis-

faction of the equality constraint during the whole process of

NE seeking. The design of (3a) is inspired by the distributed

optimization algorithms for the resource allocation over a

single coalition in some existing literature, e.g., [12], [13].

Under (3a), the primal problem of finding the NE regrading

the objective functions of the variable x subject to the equality

constraints, can be converted to a problem regarding the

composite functions of the variable η without any constraint.

Noticing this, after the variable replacement of x by η, (3b)

can be viewed as a pseudo-gradient descent law for the

equivalent problem, with the collective state x estimated by

the leader-following consensus protocol (3c). The consensus-

based state estimation is quite common in distributed NE

seeking, since the collective state is required in the iteration of

each agent, while the information acquisition is subject to the

communication topology G. If there is only one coalition in the



5

problem (2), then, state estimation (3c) is no longer required,

and the proposed algorithm will degenerate into a single-

coalition DRA algorithm with linear convergence, which has

a similar structure to the DRA algorithms in [12], [13].

B. Convergence Analysis

From (5a) and (5b), one can get

xi(k+1)−xi(k) = −αL2
i P̆i(ξi(k)), (6)

which can be further rewritten as

x(k+1)−x(k) = −αL̂2P̆(ξ(k)), (7)

where L̂ = diag{L1, · · · , LN} and P̆(ξ) =
[P̆T1 (ξ1), · · · , P̆TN (ξN )]T .

Define the estimation errors

eξ=ξ−1nsum
⊗x. (8)

Combining (5c), (7) and (8), one can derive that

eξ(k+1)

=(W⊗Insum
+W̄ )ξ(k)+Ŵ

(

1nsum
⊗x(k)

)

−1nsum
⊗x(k+1)

=(W⊗Insum
+W̄ )(ξ(k)−1nsum

⊗x(k))
+(W⊗Insum

+W̄+Ŵ )
(

1nsum
⊗x(k)

)

−1nsum
⊗x(k+1)

=(W⊗Insum
+W̄ )eξ(k)−1nsum

⊗(x(k+1)−x(k))
=Meξ(k)+1nsum

⊗(αL̂2P̆(ξ(k))),
(9)

where M=W⊗Insum
+W̄ , and the third equality is obtained

by using the fact that (W⊗Insum
+W̄+Ŵ )(1nsum

⊗x) =
1nsum

⊗x. Since the graph G is connected, it is easy to verify

from Gershgorin’s circle theorem that M is a Schur matrix.

Therefore, there exist a symmetric positive definite matrices

WM such that MTWMM−WM=−In2
sum

.

Theorem 1 Suppose that Assumptions 1-3 hold. Under the

proposed DRA algorithm (3), the collective agent state x will

converge linearly to the NE of the resource allocation game

(2), if α satisfies

α≤min

{

γ

8µmax
i∈I

{l2i ‖Li‖4}
,

µ

2
∑N

i=1
(l2i ‖Li‖2)+γb

}

, (10)

where

γ = 4max
i∈I

{l2i ‖Li‖2}, b = nsum(2‖MTWM‖2+‖WM‖).

Moreover, the equality constraint in (2) is always satisfied

during the iterations.

Before presenting the proof of Theorem 1, we first introduce

some useful lemmas.

Lemma 2 Under Assumption 3 and the proposed algorithm

(3), for the function

Vξ(k)=eξ(k)
TWMeξ(k), (11)

the following inequality holds ∀k ∈ N:

Vξ(k+1)−Vξ(k) ≤ −1

2
‖eξ(k)‖2+α2b‖L̂2P̆(ξ(k))‖2.

The proof of Lemma 2 is reported in Appendix A.

Lemma 3 Under Assumptions 1-3 and the proposed algo-

rithm (3), for the function

Vx(k) =

N
∑

i=1

∥

∥

∥

∥

Li
∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

,

the following inequality holds ∀k ∈ N:

Vx(k+1)−Vx(k)

≤−2
(

µ−α
N
∑

i=1

(

l2i ‖Li‖2
)

)

α
∥

∥

∥
L̂2P̆(ξ(k))

∥

∥

∥

2

+
γ

4
‖eξ(k)‖2 .

The proof of Lemma 3 is shown in Appendix B.

Now, we are ready to present the proof of Theorem 1.

Proof of Theorem 1:

From (5a), one has 1Tni
xi(k)=1

T
ni
xi(0)=Ri, ∀k∈N, mean-

ing that the equality constraint in problem (2) is satisfied at

each iteration under the proposed algorithm.

Consider the following Lyapunov function:

V (k) = Vx(k)+γVξ(k), (12)

where Vξ(k), Vx(k), and γ have been defined in Lemmas 2, 3

and Theorem 1 respectively. From Lemmas 2 and 3, one has

V (k+1)−V (k)

≤−γ
4
‖eξ(k)‖2−

(

2µ−α
(

2

N
∑

i=1

(l2i ‖Li‖2)+γb
)

)

× α
∥

∥

∥
L̂2P̆(ξ(k))

∥

∥

∥

2

.

Recalling (10), one has α ≤ µ/
(

2
∑N

i=1
(l2i ‖Li‖2)+γb

)

. It

follows that

V (k+1)−V (k)

≤−γ
4
‖eξ(k)‖2−µα

∥

∥

∥
L̂2P̆(ξ(k))

∥

∥

∥

2

.
(13)

Furthermore, the following fact can be verified

−
∥

∥

∥
L̂2P̆(ξ(k))

∥

∥

∥

2

=−
N
∑

i=1

∥

∥

∥

∥

L2
i

(

P̆i(ξi(k))−
∂fi
∂xi

(x(k))+
∂fi
∂xi

(x(k))

)∥

∥

∥

∥

2

≤
N
∑

i=1

(∥

∥

∥

∥

L2
i

(

P̆i(ξi(k))−
∂fi
∂xi

(x(k))

)∥

∥

∥

∥

2

−1

2

∥

∥

∥

∥

L2
i

∂fi
∂xi

(x(k))

∥

∥

∥

∥

2 )

≤
N
∑

i=1

(

‖Li‖4 l2i ‖ξi(k)−1ni
⊗x(k)‖2

−λ2(L
2
i )

2

∥

∥

∥

∥

Li
∂fi
∂xi

(x(k))

∥

∥

∥

∥

2 )

≤max
i∈I

{‖Li‖4l2i }‖eξ(k)‖2−
1

2
min
i∈I

{λ2(L2
i )}Vx(k),

(14)
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where the first inequality is derived by using

− 2

(

L2
i

(

P̆i(ξi(k))−
∂fi
∂xi

(x(k))

))T (

L2
i

∂fi
∂xi

(x(k))

)

≤2

∥

∥

∥

∥

L2
i

(

P̆i(ξi(k))−
∂fi
∂xi

(x(k))

)∥

∥

∥

∥

2

+
1

2

∥

∥

∥

∥

L2
i

∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

,

the second inequality is obtained from (34) in the appendix,

and λ2(L
2
i ) denotes the smallest non-zero eigenvalue of the

matrix L2
i . Substituting (14) back into (13) yields

V (k+1)−V (k)

≤−
(γ

4
−µαmax

i∈I
{‖Li‖4l2i }

)

‖eξ(k)‖2

−µα
2
min
i∈I

{λ2(L2
i )}Vx(k).

Note from (10) that α ≤ γ/(8µmaxi∈I{‖Li‖4l2i }). It follows

that
V (k+1)−V (k)

≤−γ
8
‖eξ(k)‖2−

µα

2
min
i∈I

{λ2(L2
i )}Vx(k)

≤−ε1V (k),

where

ε1 = min{ 1

8‖WM‖ ,
µα

2
min
i∈I

{λ2(L2
i )}}.

The above inequality indicates that V (k) will converge to zero

with a linear rate O((1−ε1)k). Then, one can conclude from

Lemma 1 that x will converge linearly to x∗. �

IV. DISTRIBUTED NE COMPUTATION FOR THE GENERAL

CASE

In this section, we consider the general case described by

model (1) that the individual agent benefits may be effected

by the decisions of all the game participants. In this case, the

equation (4) is no longer valid, which implies that the proposed

algorithm in the previous section cannot ensure the collective

agent state converge to the NE. Based partly upon the results

provided in the last section, we will design a new algorithm

for the general case and present the convergence analysis.

A. Algorithm Design

To make the collective agent state converge to the NE in

game (1), a distributed algorithm is designed for each agent

ij ∈ V ∀k ∈ N as follows:

xij(k) =xij(0)−
∑

im∈N i
ij

(ηij(k)−ηim(k)), (15a)

ηij(k+1) =ηij(k)+β
∑

im∈N i
ij

(

ψijij (k)−ψimij (k)
)

, (15b)

ψilij(k+1) =
∑

im∈N i
ij

cimij ψ
il
im(k)+

∂fij
∂xil

(

ξij(k+1)
)

−∂fij
∂xil

(

ξij(k)
)

, ∀il ∈ Vi, (15c)

ξpqij (k+1) =w̄pqij ξ
pq
ij (k)+

∑

lm∈Nij

wlmij ξ
pq
lm(k)

+wpqij xpq(k), ∀pq ∈ V , (15d)

where β is a positive constant to be determined, xij(0) =

Rij , ηij(0)=0, ψilij(0) =
∂fij
∂xil

(ξij(0)), ∀il ∈ Vi, and other

variables are defined the same as in previous sections. In

this algorithm, each agent ij should update the variables

xij , ηij , ψ
i1
ij , · · · , ψini

ij , ξ
11
ij , · · · , ξNnN

ij .

Define the vectors

ψi = [ψi1i1 , ψ
i2
i1 , · · ·, ψini

i1 , ψi1i2 , · · · , ψini

i2 , · · · , ψini

ini
]T ∈ R

n2

i ,

ψ = [ψT1 ,ψ
T
2 , · · ·,ψTN ]T ∈ R

n2

1
+···+n2

N ,

and the function Qi : R
ninsum ֌ R

n2

i :

Qi(ξi)=

[

(
∂fi1
∂xi

(ξi1))
T , (

∂fi2
∂xi

(ξi2))
T , · · ·, (∂fini

∂xi
(ξini

))T
]T

.

Then, the proposed algorithm (15) can be rewritten in the

following compact form ∀i ∈ I:

xi(t) =xi(0)−Liηi(k), (16a)

ηi(k+1) =ηi(k)+βL̆iψi(k), (16b)

ψi(k+1) =(Ci⊗Ini
)ψi(k)+Qi(ξi(k+1))

−Qi(ξi(k)), (16c)

ξ(k+1) =(W⊗Insum
+W̄ )ξ(k)+Ŵ

(

1nsum
⊗x(k)

)

, (16d)

where L̆i = diag{(Li)1, · · · , (Li)ni
} with (Li)j denoting the

jth row of the matrix Li.

Remark 2 The difference between the algorithm (15) for the

general case and the algorithm (3) for the special case lies in

the design of auxiliary variables ηij , ∀ij ∈ V . As discussed in

Remark 1, under (15a), the primal problem with the resource

constraints can be converted to a new problem regarding

the composite function of η without any constraint, and then

solved based on pseudo-gradient descent. In such a design

approach, the update of ηij for each agent ij ∈ V requires

the information of ∂fi/∂xij and ∂fi/∂xim, ∀im ∈ N i
ij .

However, in the general case, since the equation (4) is no

longer valid, agent ij ∈ V cannot access the exact knowledge

of ∂fi/∂xij and ∂fi/∂xim, ∀im ∈ N i
ij . To overcome this

issue, the auxiliary variables ψilij ∀il ∈ Vi governed by

(15c) are skillfully integrated into the update of ηij in (15b),

where ψilij is computed by agent ij to estimate the value of

(1/ni) · (∂fi/∂xil)(x). The design of (15c) is inspired by the

gradient tracking technique in distributed optimization [24].

B. Analysis on Steady States

Define the following variables for notational brevity:

ψ̄i =
1

ni
(1Tni

⊗Ini

)

ψi ∈ R
ni ,

Q̄i(·) =
1

ni
(1Tni

⊗Ini
)Qi(·) ∈ R

ni .

Since the initial value of ψilij is set as ψilij(0) =
∂fij
∂xil

(ξij(0)),

one has ψi(0) = Qi(ξi(0)). Note that 1
T
ni
Ci = 1

T
ni

. Then,

one can derive from (16c) that

ψ̄i(k) = Q̄i(ξi(k)), ∀k ∈ N. (17)
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One can also obtain by definition that

Q̄i(1ni
⊗x) = 1

ni
· ∂fi
∂xi

(x). (18)

The above two equations are quite critical for the forthcoming

convergence analysis.

Next, we will present a steady-state analysis of the proposed

algorithm, which can facilitate the error system construction

and the convergence analysis. Suppose that the algorithm

variables xi(k), ψi(k) and ξ(k) will settle on some points

xi(∞), ψi(∞) and ξ(∞) respectively. Then, from (16b),

(16c), and (16d), the steady states satisfy

L̆iψi(∞) = 0, (19)

ψi(∞) = (Ci⊗Ini
)ψi(∞), (20)

(

In2
sum

−M
) (

ξ(∞)−1nsum
⊗x(∞)

)

= 0. (21)

One can obtain from (20) that ψi(∞) = 1ni
⊗τi, where τi is

a constant vector to be determined later. Since

(1Tni
⊗Ini

)ψi(∞) = (1Tni
⊗Ini

)(1ni
⊗τi) = niτi,

one has τi = ψ̄i(∞), which implies

ψi(∞) = 1ni
⊗ψ̄i(∞). (22)

Noting that
(

In2
sum

−M
)

is non-singular, one can get from (21)

that

ξ(∞) = 1nsum
⊗x(∞). (23)

Combining (17), (18), (22) and (23), one has

ψi(∞) = 1ni
⊗
(

1

ni
· ∂fi
∂xi

(x(∞)

)

.

Substituting the above equation into (19) yields

Li
∂fi
∂xi

(x(∞)) = 0.

Then one has x(∞) = x∗ from Lemma 1.

C. Error System Construction and Convergence

Analysis

Based on the analysis on steady states, we define the

convergence errors

eψi
(t) = ψi(t)−1ni

⊗ψ̄i(t),

and eψ = [eTψ1
, eTψ2

, · · ·, eTψN
]T . One can obtain from the

iteration of ψi in (16c) that:

eψi
(k+1)

=(Ci⊗Ini
)ψi(k)−1ni

⊗ψ̄i(k)+Qi(ξi(k+1))−Qi(ξi(k))

−1ni
⊗
( 1

ni
(1Tni

⊗Ini
)
(

Qi(ξi(k+1))−Qi(ξi(k))
)

)

=(Ci⊗Ini
)eψi

(k)+Qi(ξi(k+1))−Qi(ξi(k))

−
(

1ni
1
T
ni

ni
⊗Ini

)

(

Qi(ξi(k+1))−Qi(ξi(k))
)

=
(

C̄i⊗Ini

)

eψi
(k)+

(

Īi⊗Ini

) (

Qi(ξi(k+1))−Qi(ξi(k))
)

,
(24)

where C̄i = Ci−
1ni

1
T
ni

ni
, Īi = Ini

−1ni
1
T
ni

ni
, and the last

equality is derived by using the fact that

(
1ni

1
T
ni

ni
⊗Ini

)eψi
(k) = 0.

Under Assumption 3, one has limk→∞ Cki = 1ni
1
T
ni
/ni,

which further implies that limk→∞ C̄ki = 0. Then, it is obvious

that C̄i is a Schur matrix. Therefore, there exists a symmetric

positive definite matrix Wci such that C̄Ti WciC̄i−Wci =
−Ini

.

From (16a) and (16b), one has

xi(k+1)−xi(k) = −βLiL̆iψi(k), (25)

which can be rewritten in the following collective form

x(k+1)−x(k) = −βL̂ ˆ̆
Lψ(k), (26)

where L̂ = diag{L1, · · · , LN} and
ˆ̆
L = diag{L̆1, · · · , L̆N}.

Then, under the algorithm designed in this section, for the

estimate error eξ defined in (8), one can derive the following

equality ∀k ∈ N:

eξ(k+1)=Meξ(k)+1nsum
⊗(βL̂

ˆ̆
Lψ(k)), (27)

where M has been defined in the previous section.

Theorem 2 Suppose that Assumptions 1-3 hold. Under the

proposed DRA algorithm (15), the collective agent state x will

converge linearly to the NE of the resource allocation game

(1), if β satisfies

β ≤ min

{

µ

2
(

∑N
i=1

(l2i ‖Li‖2/ni)+γξb
) ,

γψ

8µmax
i∈I

{‖LiL̆i‖2}
,

γξ
8µmax

i∈I
{‖Li‖4(

∑ni

j=1
l2ij)/n

2
i }

}

,

(28)

where

γψ =4max
i∈I

{ni‖L̆i‖2}, b = nsum(2‖MTWM‖2+‖WM‖),

γξ =4
(

max
i∈I

{ 1

ni
(

ni
∑

j=1

l2ij) ‖Li‖2}+2γψ max
i∈I,ij∈Vi

{(2‖C̄Ti Wci Īi‖2

+‖ĪTi Wci Īi‖)l2ij}‖Insum
−M‖2

)

.

Moreover, the equality constraint in (1) is always satisfied

during the iterations.

Before proceeding, we present some useful lemmas.

Lemma 4 Under Assumption 3 and the proposed algorithm

(15), for the function Vξ(k) defined in (11), the following

inequality holds ∀k ∈ N:

Vξ(k+1)−Vξ(k) ≤ −1

2
‖eξ(k)‖2+β2b‖L̂ ˆ̆Lψ(k)‖2.

The proof of this lemma is omitted, as it is similar to that of

Lemma 2.

Lemma 5 Under Assumption 3 and the proposed algorithm

(15), for the function

Vψ(k) = eψ(k)
TWceψ(k),
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where Wc = diag{Wc1⊗In1
, · · · ,WcN⊗InN

}, the following

inequality holds ∀k ∈ N:

Vψ(k+1)−Vψ(k)

≤−1

2
‖eψ(k)‖2+2 max

i∈I,ij∈Vi

{(2‖C̄Ti Wci Īi‖2+‖ĪTi Wci Īi‖)l2ij}

× ‖Insum
−M‖2‖eξ(k)‖2.

The proof of Lemma 5 is reported in Appendix C.

Lemma 6 Under Assumption 3 and the proposed algorithm

(15), for the function

V̄x(k) =

N
∑

i=1

1

2ni

∥

∥

∥

∥

Li
∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

,

the following inequality holds ∀k ∈ N:

V̄x(k+1)−V̄x(k)

≤−(
µ

β
−

N
∑

i=1

l2i ‖Li‖2
ni

)β2

∥

∥

∥
L̂
ˆ̆
Lψ(k)

∥

∥

∥

2

+max
i∈I

{ 1

ni
(

ni
∑

j=1

l2ij) ‖Li‖2
}

‖eξ(k)‖2 +
γψ
4

‖eψ(k)‖2 .

The proof of Lemma 6 is given in Appendix D.

Now we are in the position to demonstrate Theorem 2.

Proof of Theorem 2:

Consider the following Lyapunov function

Ṽ (k) = V̄x(k)+γψVψ(k)+γξVξ(k),

where Vξ(k), Vψ(k), and V̄x(k) have been defined in

(11), Lemmas 5 and 6 respectively, and γψ, γξ have been

given in Theorem 2. One can obtain from (28) that β ≤
µ/

(

2
(
∑N

i=1
(l2i ‖Li‖2/ni)+γξb

)

)

. Then, combining Lemmas

4, 5 and 6 yields

Ṽ (k+1)−Ṽ (k)

≤−µβ
2

∥

∥

∥
L̂
ˆ̆
Lψ(k)

∥

∥

∥

2

−γψ
4
‖eψ(k)‖2−

γξ
4
‖eξ(k)‖2.

(29)

Noting by definitions of L̆i and eψi
, one has

L̆ieψi
= L̆i(ψi−1ni

⊗ψ̄i) = L̆iψi−Liψ̄i. (30)

From (17) and (30), one can derive that

−
∥

∥

∥
L̂
ˆ̆
Lψ(k)

∥

∥

∥

2

= −
N
∑

i=1

∥

∥

∥
LiL̆iψi(k)

∥

∥

∥

2

=−
N
∑

i=1

∥

∥

∥

∥

Li

(

L̆ieψi
(k)+LiQ̄i(ξi)−

1

ni
Li
∂fi
∂xi

(x(k))

)

+
1

ni
L2
i

∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

.

(31)

Then, by taking similar steps as in (14), one can get

−
∥

∥

∥
L̂
ˆ̆
Lψ(k)

∥

∥

∥

2

≤
N
∑

i=1

(
∥

∥

∥

∥

Li
(

L̆ieψi
(k)+LiQ̄i(ξi)−

1

ni
Li
∂fi
∂xi

(x(k))
)

∥

∥

∥

∥

2

− 1

2n2
i

∥

∥

∥

∥

L2
i

∂fi
∂xi

(x(k)))

∥

∥

∥

∥

2 )

≤
N
∑

i=1

(

2‖LiL̆ieψi
(k)‖2+2

∥

∥

∥

∥

L2
i Q̄i(ξi)

− 1

ni
L2
i

∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

−λ2(L
2
i )

2n2
i

∥

∥

∥

∥

Li
∂fi
∂xi

(x(k)))

∥

∥

∥

∥

2 )

≤2max
i∈I

{‖LiL̆i‖2}‖eψ(k)‖2−min
i∈I

{λ2(L
2
i )

ni
}V̄x

+2max
i∈I

{
‖Li‖4

∑ni

j=1
l2ij

n2
i

}‖eξ(k)‖2,
(32)

where (35) in the appendix is used in the last step. Substituting

(32) back into (29) yields

Ṽ (k+1)−Ṽ (k)

≤µβmax
i∈I

{‖LiL̆i‖2}‖eψ(k)‖2 −
µβ

2
min
i∈I

{λ2(L
2
i )

ni
}V̄x

+µβmax
i∈I

{
‖Li‖4(

∑ni

j=1
l2ij)

n2
i

}‖eξ(k)‖2

−γψ
4
‖eψ(k)‖2−

γξ
4
‖eξ(k)‖2

≤−µβ
2

min
i∈I

{λ2(L
2
i )

ni
}V̄x−

γψ
8
‖eψ(k)‖2−

γξ
8
‖eξ(k)‖2

≤− ε2Ṽ (k),

where

ε2 = min

{

µβ

2
min
i∈I

{λ2(L
2
i )

ni
}, 1

8‖Wc‖
,

1

8‖WM‖

}

,

and the second last inequality can be obtained since β satisfies

(28). Then, by taking similar steps as in the proof of Theorem

1, one can derive that x will converge to x∗ with a linear rate

O((1−ε2)k) . �

Remark 3 Distinct from existing results on DRA over MANs

with cooperative agents, the proposed algorithms (3) and (15)

can deal with the DRA problem with conflicts of interest among

the agents as well as the influence of some agents’ decisions

on other agents’ individual benefits. Moreover, under proposed

algorithms, the intra-coalition coupled equality constraints

can be satisfied at each iteration. Such a feature is favorable

in online solving some practical problems such as economic

dispatch of smart grid with multiple generating units, where

balancing the power supply and demand while seeking the

optimal solution is highly desired.

V. NUMERICAL SIMULATIONS

Numerical examples are provided in this section to test

the effectiveness of the proposed algorithms. Consider three

coalitions that contain four, five and six agents respectively,
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Fig. 1. The underlying network topology among the game participants
in cases 1 and 2.
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Fig. 2. The agent states xij ,∀ij ∈ V under the proposed algorithm
(3) in Case 1.
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Fig. 3. The values of coalition-level objective functions fi(x),∀i ∈ I

under the proposed algorithm (3) in Case 1.
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Fig. 4. The sum of agent states within each coalition∑
ij∈Vi

xij ,∀i ∈ I under the proposed algorithm (3) in Case 1 .
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Fig. 5. The agent states xij ,∀ij ∈ V under the proposed algorithm
(15) in Case 2.
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Fig. 6. The values of coalition-level objective functions fi(x),∀i ∈ I

under the proposed algorithm (15) in Case 2.

i.e., N = 3, I = {1, 2, 3}, n1 = 4, n2 = 5, n3 = 6. The

network topology is shown in Fig. 1. In the following, we

consider two cases that can be described by model (1) and (2)

respectively.

In Case 1, the objective function of each agent ij ∈ V is

fij(xij ,x−i) = (xij − bij)
2+

1

2
xijyij ,

where y11=x31, y12=x21 + x32, y13=x22 + x33, y14=x23 +
x34, y21=x12 + x32, y22=x13 + x33, y23=x14 +
x34, y24=x35, y25=x36, y31=x11, y32=x12 +
x21, y33=x13 + x22, y34=x14 + x23, y35=x24, y36=x25,

0 500 1000 1500 2000
80

100

120

140

160

180

200

Fig. 7. The sum of agent states within each coalition∑
ij∈Vi

xij ,∀i ∈ I under the proposed algorithm (15) in Case 2 .
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and b11=20, b12=30, b13=40, b14=50, b21=50, b22=40,

b23=30, b24=20, b25=30, b31=b32=b33=b34=b35=b36=20.

The quantities of resources in the three coalitions are

R1 = 100, R2 = 150, and R3 = 120, respectively. Note that

in this case, the inputs of the individual objective function

for each agent include only the states of itself and agents

in other coalitions. One can directly calculate out the NE

x∗=[14.12, 15.29, 28.63, 41.96, 47.44, 34.11, 20.78, 18.5,

29.17, 26.89, 14.73, 14.73, 14.73, 25.79, 23.12]T and the

values of the coalition-level objective functions at the NE

f∗
1=2554, f∗

2=2746, f∗
3=2326. The initial collective state is

x(0)=[25, 25, 25, 25, 30, 30, 30, 30, 30, 20, 20, 20, 20, 20, 20]T .

We employ the proposed algorithm (3) for the special case

with the algorithm parameter set as α=0.02. The simulation

result is presented in Figs. 2-4, which show that the agent

states converge fast to the NE and the resource constraints

are satisfied during the whole process.

In Case 2, the objective function of each agent ij ∈ V is

fij(x) = 5(xij − dij)
2+

1

2
xijyij ,

where y11=x12 + x21 + x31 + x32, y12=x11 + x21 + x31 +
x32, y13=x22 + x23 + x33 + x34, y14=x24 + x25 + x35 +
x36, y21=x11 + x12 + x31 + x32, y22=x13 + x23 + x33 +
x34, y23=x13 + x22 + x33 + x34, y24=x14 + x25 + x35 +
x36, y25=x14 + x24 + x35 + x36, y31=x11 + x12 + x21 +
x32, y32=x11 + x12 + x21 + x31, y33=x13 + x22 + x23 +
x34, y34=x13 + x22 + x23 + x33, y35=x14 + x24 + x25 +
x36, y36=x14 + x24 + x25 + x35, and d11=20, d12=30,

d13=40, d14=50, d21=50, d22=40, d23=30, d24=20, d25=30,

d31=d36=20, d32=d35=30, d33=d34=40. The quantities of

resources in the three coalitions are the same as in Case 1. By

direct calculation, one can obtain the NE x∗=[9.08, 20.19,

29.27, 41.46, 48.78, 35.07, 23.96, 15.54, 26.65, 10.14, 21.25,

28.87, 28.87, 21.0, 9.89]T , and the values of the coalition-level

objective functions at the NE are f∗
1=6598, f∗

2=7295, f∗
3 =

9347, respectively. The proposed algorithm (15) for the general

case is employed with the algorithm parameter set as β=0.01,

and the simulation results are presented in Figs. 5-7, showing

that the agent states achieve fast convergence to the NE while

satisfying the resource constraints.

VI. CONCLUSION

In this paper, the problem of distributed resource alloca-

tion over multiple interacting coalitions is investigated by

developing game-theoretic approaches. To characterize the

cooperation of individual agents on resource allocation in each

coalition as well as the conflicts of interest among different

coalitions, a new type of multi-coalition game is formulated.

Inspired by techniques such as variable replacement, gradient

tracking and leader-following consensus, two new kinds of

DRA algorithms are developed respectively for the scenarios

where the individual benefit of each agent explicitly depends

on the states of itself and some agents in other coalitions,

and on the states of all the game participants. One favourable

feature of the designed DRA algorithms is that the resource

constraints can be satisfied during the whole allocation pro-

cess. Furthermore, linear convergence of the proposed DRA

algorithms is successfully established. In the future, we will

consider the cases with directed topologies and time-varying

objective functions.

APPENDIX

A. Proof of Lemma 2

From (9), one has

Vξ(k+1)−Vξ(k)
=eTξ (tk)(MTWMM−WM)eξ(tk)

+2eTξ (tk)MTWM(1nsum
⊗(αL̂2P̆(ξ(k))))

+(1nsum
⊗(αL̂2P̆(ξ(k))))TWM(1nsum

⊗(αL̂2P̆(ξ(k))))

≤−‖eξ(k)‖2+2
√
nsum‖MTWM‖‖eξ(k)‖‖αL̂2P̆(ξ(k))‖

+nsum‖WM‖‖αL̂2P̆(ξ(k))‖2

≤−1

2
‖eξ(k)‖2+α2b‖L̂2P̆(ξ(k))‖2.

B. Proof of Lemma 3

First, one can easily obtain

∥

∥

∥

∥

Li
∂fi
∂xi

(x(k + 1))

∥

∥

∥

∥

2

−
∥

∥

∥

∥

Li
∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

=

∥

∥

∥

∥

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

+2

(

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

)T

× Li
∂fi
∂xi

(x(k)).

(33)

From (6), one can derive that

2

(

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

)T

Li
∂fi
∂xi

(x(k))

=2

(

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

)T

Li

(

P̆i(ξi)

+
∂fi
∂xi

(x(k))−P̆i(ξi)
)

=− 2

α

(

∂fi
∂xi

(x(k + 1))− ∂fi
∂xi

(x(k))

)T

(xi(k+1)−xi(k))

+2

(

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

)T

× Li

(

∂fi
∂xi

(x(k))−P̆i(ξi)
)

≤− 2

α

(

∂fi
∂xi

(x(k + 1))− ∂fi
∂xi

(x(k))

)T

(xi(k+1)−xi(k))

+

∥

∥

∥

∥

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

+

∥

∥

∥

∥

Li

(

∂fi
∂xi

(x(k))−P̆i(ξi)
)∥

∥

∥

∥

2

.
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Note that under Assumption 1, one has
∥

∥

∥

∥

P̆i(ξi(k))−
∂fi
∂xi

(x(k))

∥

∥

∥

∥

=

√

√

√

√

ni
∑

j=1

(

∂fi
∂xij

(ξij(k))−
∂fi
∂xij

(x(k))

)2

≤

√

√

√

√

ni
∑

j=1

∥

∥∇fi(ξij(k))−∇fi(x(k))
∥

∥

2

≤li ‖ξi(k)−1ni
⊗x(k)‖ .

(34)

Combining the above three formulas yields

Vx(k+1)−Vx(k)

≤− 2

α
(P(x(k+1))−P(x(k)))T (x(k+1)−x(k))

+2

N
∑

i=1

∥

∥

∥

∥

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

+

N
∑

i=1

∥

∥

∥

∥

Li

(

∂fi
∂xi

(x(k))−P̆i(ξi)
)∥

∥

∥

∥

2

≤−2µ

α
‖x(k+1)−x(k)‖2

+2

N
∑

i=1

(

l2i ‖Li‖2‖x(k+1)−x(k)‖2
)

+

N
∑

i=1

(

l2i ‖Li‖2 ‖ξi(k)−1ni
⊗x(k)‖2

)

≤−2
(

µ−α
N
∑

i=1

(l2i ‖Li‖2)
)

α
∥

∥

∥
L̂2P̆(ξ(k))

∥

∥

∥

2

+max
i∈I

{l2i ‖Li‖2} ‖eξ(k)‖2 ,

which completes the proof.

C. Proof of Lemma 5

One can derive from the iteration of eψi
in (24) that

Vψ(k+1)−Vψ(k)

=
N
∑

i=1

(

eTψi
(k)

(

(C̄Ti WciC̄i−Wci)⊗Ini

)

eψi
(k)

+2eTψi
(k)(C̄Ti Wci Īi⊗Ini

) (Qi(ξi(k+1))−Qi(ξi(k)))

+ (Qi(ξi(k+1))−Qi(ξi(k)))
T
(ĪTi Wci Īi⊗Ini

)

× (Qi(ξi(k+1))−Qi(ξi(k)))

)

≤
N
∑

i=1

(

−‖eψi
(k)‖2+1

2
‖eψi

(k)‖2

+2‖C̄Ti Wci Īi‖2‖Qi(ξi(k+1))−Qi(ξi(k))‖2

+‖ĪTi Wci Īi‖‖Qi(ξi(k+1))−Qi(ξi(k))‖2
)

=−1

2
‖eψ(k)‖2+

N
∑

i=1

(2‖C̄Ti Wci Īi‖2+‖ĪTi Wci Īi‖)

× ‖Qi(ξi(k+1))−Qi(ξi(k))‖2.

Under Assumption 1, one has

‖Qi(ξi(k+1))−Qi(ξi(k))‖2 ≤max
ij∈Vi

{l2ij} ‖ξi(k+1)−ξi(k)‖2 .

Combining the above inequalities yields

Vψ(k+1)−Vψ(k)

≤−1

2
‖eψ(k)‖2+

N
∑

i=1

(2‖C̄Ti Wci Īi‖2+‖ĪTi Wci Īi‖)

× max
ij∈Vi

{l2ij}‖ξi(k+1)−ξi(k)‖2

≤−1

2
‖eψ(k)‖2+ max

i∈I,ij∈Vi

{(2‖C̄Ti Wci Īi‖2+‖ĪTi Wci Īi‖)l2ij}

× ‖ξ(k+1)−ξ(k)‖2

≤−1

2
‖eψ(k)‖2+2 max

i∈I,ij∈Vi

{(2‖C̄Ti Wci Īi‖2+‖ĪTi Wci Īi‖)l2ij}

× ‖Insum
−M‖2‖eξ(k)‖2,

where the last inequality is obtained by recalling (8), (26), and

(27).

D. Proof of Lemma 6

One can derive that

2

(

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

)T

Li
∂fi
∂xi

(x(k))

=2

(

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

)T (

niL̆iψi(k)

+niLiψ̄i(k)−niL̆iψi(k)

+Li
∂fi
∂xi

(x(k))−niLiQ̄i(ξi(k))

)

=−2ni
β

(

∂fi
∂xi

(x(k + 1))− ∂fi
∂xi

(x(k))

)T

(xi(k+1)−xi(k))

+2

(

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

)T

×
(

Li

(

∂fi
∂xi

(x(k))−niQ̄i(ξi(k))

)

−niL̆ieψi
(k)

)

≤−2ni
β

(

∂fi
∂xi

(x(k + 1))− ∂fi
∂xi

(x(k))

)T

(xi(k+1)−xi(k))

+

∥

∥

∥

∥

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

+2

∥

∥

∥

∥

Li

(

∂fi
∂xi

(x(k))−niQ̄i(ξi(k))

)∥

∥

∥

∥

2

+2
∥

∥

∥
niL̆ieψi

(k)
∥

∥

∥

2

,

where the first equality is obtained from (17), the second

equality is obtained from (16a), (16b) and (30). Combining

the above formula and (33) yields
∥

∥

∥

∥

Li
∂fi
∂xi

(x(k + 1))

∥

∥

∥

∥

2

−
∥

∥

∥

∥

Li
∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

≤−2ni
β

(

∂fi
∂xi

(x(k + 1))− ∂fi
∂xi

(x(k))

)T

(xi(k+1)−xi(k))

+2

∥

∥

∥

∥

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

+2

∥

∥

∥

∥

Li

( ∂fi
∂xi

(x(k))−niQ̄i(ξi(k))
)

∥

∥

∥

∥

2

+2
∥

∥

∥
niL̆ieψi

(k)
∥

∥

∥

2

.
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Under Assumption 1, one has
∥

∥

∥

∥

∂fi
∂xi

(x(k))−niQ̄i(ξi(k))

∥

∥

∥

∥

≤
ni
∑

j=1

∥

∥

∥

∥

∂fij(ξij(k))

∂xi
−∂fij(x(k))

∂xi

∥

∥

∥

∥

≤
ni
∑

j=1

lij‖ξij(k)−x(k)‖

≤

√

√

√

√

ni
∑

j=1

l2ij ·
∥

∥eξi(k)
∥

∥.

(35)

Based on the above formulas, the following can be derived:

V̄x(k+1)−V̄x(k)

≤− 1

β

N
∑

i=1

(

∂fi
∂xi

(x(k + 1))− ∂fi
∂xi

(x(k))

)T

(xi(k+1)−xi(k))

+

N
∑

i=1

1

ni

(
∥

∥

∥

∥

Li
∂fi
∂xi

(x(k + 1))−Li
∂fi
∂xi

(x(k))

∥

∥

∥

∥

2

+

∥

∥

∥

∥

Li

(

∂fi
∂xi

(x(k))−niQ̄i(ξi(k))

)∥

∥

∥

∥

2

+
∥

∥

∥
niL̆ieψi

(k)
∥

∥

∥

2
)

≤−µ
β
‖x(k+1)−x(k)‖2 +

N
∑

i=1

1

ni

(

l2i ‖Li‖2 ‖x(k+1)−x(k)‖2

+(

ni
∑

j=1

l2ij) ‖Li‖2
∥

∥eξi(k)
∥

∥

2
+n2

i ‖L̆i‖2 ‖eψi
(k)‖2

)

≤−(
µ

β
−

N
∑

i=1

l2i ‖Li‖2
ni

)β2

∥

∥

∥
L̂
ˆ̆
Lψ(k)

∥

∥

∥

2

+max
i∈I

{ 1

ni
(

ni
∑

j=1

l2ij) ‖Li‖2
}

‖eξ(k)‖2

+max
i∈I

{ni‖L̆i‖2} ‖eψ(k)‖2 ,

which completes the proof.
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[24] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric convergence
for distributed optimization over time-varying graphs,” SIAM J. Optim.,
vol. 27, no. 4, pp. 2597–2633, 2017.

http://arxiv.org/abs/2106.11684
http://arxiv.org/abs/2005.06923

	I Introduction
	II Problem Statement
	II-A Game Formulation
	II-B Network Topology and the Associated Matrices
	II-C Design Objective

	III Distributed NE computation for the special case
	III-A Algorithm Design
	III-B Convergence Analysis

	IV Distributed NE computation for the general case
	IV-A Algorithm Design
	IV-B Analysis on Steady States
	IV-C Error System Construction and Convergence Analysis

	V Numerical simulations
	VI Conclusion
	Appendix
	A Proof of Lemma 2
	B Proof of Lemma 3
	C Proof of Lemma 5
	D Proof of Lemma 6

	References

