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Abstract

Let PD(R) be the family of continuous positive definite functions on R. For an integer n > 1, a f ∈ PD(R)

is called n-divisible if there is g ∈ PD(R) such that gn = f . Some properties of infinite-divisible and n-divisible

functions may differ in essence. Indeed, if f is infinite-divisible, then for each integer n > 1, there is an unique g

such that gn = f , but there is a n-divisible f such that the factor g in gn = f is generally not unique. In this paper,

we discuss about how rich can be the class {g ∈ PD(R) : gn = f } for n-divisible f ∈ PD(R) and obtain precise

estimate for the cardinality of this class.
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1 Introduction

We start with some notations and definitions. Let Z, N, R and C be the families of integers,

positive integers, real and complex numbers, respectively. In the sequel, M(R) denotes the

Banach algebra of bounded regular complex-valued Borel measures on R with the convolution

as multiplication. M(R) is equipped with the usual total variation norm ‖µ‖ of µ ∈ M(R). The

Fourier-Stieltjes transform of µ ∈ M(R) is given by

µ̂(x) =

∫

R
e−ixtdµ(t).

A function f : R→C is said to be positive definite if

m

∑
j,k=1

f (x j − xk)c jck ≥ 0

for each m ∈ N and all c1, . . . ,cm ∈ C, x1, . . . ,xm ∈ R. Any such a function satisfies

f (−x) = f (x) (1)

for all x ∈ R.

Positive definite functions on groups have a long history and have many applications in proba-

bility theory and such areas as stochastic processes [1]; harmonic analysis [3], potential theory

[5] and spectral theory [2]. See [10] for other applications and details. The analysis of the

properties of positive definite functions has a vast literature, and the above list is only a small

sample.
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We will denote by PD(R) the family of continuous nontrivial (6≡ 0) positive definite functions

on R. Note that if positive definite f is continuous in a neighborhood of the origin, the it

is uniformly continuous in R (see, e.g., [4, Corollary 1.4.10]). Bochner’s theorem gives a

description of f ∈ PD(R) in terms of the Fourier transform. Namely, according to this theorem

(see, e.g., [9, p. 71]), a continuous function f : R → C is positive definite if and only if there

exists a nonnegative µ f ∈ M(R) such that f (x) = µ̂ f (x), x ∈ R. This statement implies, in

particular, that

| f (x)| ≤ f (0) = ‖µ f ‖ (2)

for all x ∈ R. If, in addition, positive µ f ∈ M(R) satisfies ‖µ f ‖ = 1, then on the language of

probability theory, such a µ f and the function f (x) = µ̂ f (−x), x ∈ R, are called a probability

measure and its characteristic function, respectively (see, e.g., [17, p.p. 8-9]).

Recall that in the probability theory a random variable ξ is called n-divisible for certain n ∈ N,

n > 1, if there exist independent and identically distributed random variables ξ1, . . . ,ξn such

that ξ1 + · · ·+ ξn has the sane distribution as ξ . In terms of the characteristic function f of a

real-valued random variable, this means that f is n-divisible if there exists g ∈ PD(R) such that

f (x) = gn(x) (3)

for all x ∈ R. Next, f ∈ PD(R) is said to be infinite-divisible if it is n-divisible for each n ∈ N,

n ≥ 2.

In the sequel, PDn(R) and PD∞(R) denotes the families of n-divisible and infinite divisible

functions in PD(R), respectively. An early overview over divisibility of distributions is given

in [12]. Until very recently, the vast majority of divisible positive definite functions or divisible

distributions considered in the literature are also infinite-divisible. Important applications of

n-divisibility is in modelling, for example of bug populations in entomology [7], or in financial

aspects of various insurance models [14] and [15].

The motivation for our investigation comes: (i) partly from the fact that properties of functions

in PD∞(R) has a rich literature (see, e.g., [8] and [13]), but the n-divisible functions have been

studied much less; (ii) partly from the fact that some properties of functions from PD∞(R) and

from PDn(R) may differ in essence. One of those properties is the following: if f ∈ PD∞(R),

then for each n ∈ N, n > 1, there is an unique g ∈ PD(R) such that gn = f , but there is n-

divisible f such that the factor g in gn = f is generally not unique. In this paper, we study the

following problems: (i) how rich can be the class {g ∈ PD(R) : gn = f}; (ii) what properties

of f determine the size of {g ∈ PD(R) : gn = f}. We present several precise estimates for the

cardinality of this class. Also, the main results are validated via illustrative examples.

More precise, for n ∈ N, n > 1 and f ∈ PDn(R), we wish to study the family

Dn( f ) = {g ∈ PD(R) : gn = f} (4)

and the quantity card(Dn( f )), i.e., the cardinality of Dn( f ). Note that there exists f ∈ PDn(R)\

PD∞(R) such that the factor g in (3) will generally not unique. It turns out that card(Dn( f ))
2



depends on n and in some way also depends on the geometric structure of the zeros set N f =

{x ∈ R : f (x) = 0} of f ∈ PDn(R) (see our Theorem 1 below). The essential support S f of

f ∈ PD(R) is defined by S f = R\N f . Combining (1) with (2), gives

0 ∈ S f and −S f = S f . (5)

Since functions f ∈ PD(R) are continuous on R, it follows that S f is an open subset of R.

Therefore, S f can be represented as a finite or infinite union S f =
⋃

j∈Σ E j, where {E j} j∈Σ is the

family of all open connected components of S f . In the sequel, comp(S f ) denotes the cardinality

of Σ. According to (5), we see that either there is an k ∈ N such that comp(S f ) = 2k− 1 or

comp(S f ) = ∞.

Theorem 1. Let n ∈ N, n ≥ 2, and let f ∈ PDn(R). Assume that

comp(S f ) = 2k−1 (6)

for some k ∈ N. Then

card(Dn( f ))≤ nk−1. (7)

The following theorem shows that the estimate (7) is accurate.

Theorem 2. For each n ∈ N, n ≥ 2, each k ∈ N, and any open subset E of R which satisfies

0 ∈ E, −E = E and comp(E) = 2k−1, (8)

there exists f ∈ PDn(R) such that S f = E and

card(Dn( f )) = nk−1. (9)

We will present two examples of f ∈ PDn(R) such that (9) is satisfied. In order to make the

examples easier to understand, we will consider only small values of k. For α > 0, set

Λα(x) = max{(1−|x|)α ; 0}, (10)

x ∈ R. Note that Λα ∈ PD(R) if and only if α ≥ 1 (see, e.g., [16, p. 282]). We start with the

case where S f is a bounded subset of R.

Example 3. For n ∈ N, n > 1, let

f1(x) = Λn(x)

+
1

23n

[(
Λ1(x−π −1)+Λ1(x−2π +1)

)n

+
(

Λ1(x+π +1)+Λ1(x+2π −1)
)n

]

+
1

24n

[(
(Λ1(x−11)+Λ1(x−12)+Λ1(x−13)+Λ1(x−14)

)n

+
(

Λ1(x+11)+Λ1(x+12)+Λ1(x+13)+Λ1(x+14)
)n

]
. (11)
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Then comp(S f1
) = 5, since

S f1
= (−15,−10)∪ (−2π ,−π)∪ (−1,1)∪ (π ,2π)∪ (10,15). (12)

Moreover, f1 ∈ PDn(R) and

card(Dn( f1)) = n5. (13)

Now let us give an example of f ∈ PDn(R) such that S f has an unbounded components.

Example 4. For any a > 15 and n ∈ N, n > 1, let

f2(x) = f1(x)+
1

22n

( ∞

∑
r=1

1

2r
Λ1(x−a− r)

)n

+

( ∞

∑
r=1

1

2r
Λ1(x+a+ r)

)n

, (14)

where f1 was defined by (11). Then comp(S f2
) = 7, since

S f2
= (−∞,−a)∪ (−15,−10)∪ (−2π ,−π)∪ (−1,1)∪ (π ,2π)∪ (10,15)∪ (a,∞). (15)

Moreover, f2 ∈ PDn(R) and

card(Dn( f2)) = n7. (16)

Theorem 5. Suppose that an open subset E of R satisfies

0 ∈ E, −E = E and comp(E) = ∞. (17)

Let {E j} j∈Σ be the family of open connected components of E. Assume that there is σ > 0 such

that

inf
j∈Σ

(
sup

a,b∈E j

|a−b|
)
= 2σ . (18)

Then, for any n ∈ N, n ≥ 2, there exists f ∈ PDn(R) such that S f = E and

card(Dn( f )) = ∞. (19)

2 Preliminaries and Proofs

If ν,µ ∈ M(R), then the convolution ν ∗µ is defined by

ν ∗µ(E) =

∫

R
ν(E − x)dµ(x)

for each Borel subset E of R. Note that

ν̂ ∗µ = ν̂ · µ̂. (20)

In particular, for any n ∈ N, (̂
µ∗n

)
=

(
µ̂
)n

, (21)

where the convolution power µ∗n is defined as the n-fold iteration of the convolution of µ with

itself.
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The Lebesgue space L1(R) can be identified with the closed ideal in M(R) of measures abso-

lutely continuous with respect to the Lebesgue measure dx on R. Namely, if ϕ ∈ L1(R), then ϕ

is associated with the measure

µϕ(E) =
∫

E
ϕ(t)dt

for each Borel subset E of R. Hence ϕ̂(x) =
∫
R e−itxϕ(t)dt. In particular, if µ = ϕ(t)dt, where

ϕ ∈ L1(R) and ϕ is such that ‖ϕ‖L1(R) = 1 and ϕ ≥ 0 on R, then ϕ is called the probability

density function of µ , or the probability density for short.

We define the inverse Fourier transform by

qψ(t) =
1

2π

∫

R
eit xψ(x)dx,

t ∈ R. Then the inversion formula (̂ψ̌) = ψ holds for suitable ψ ∈ L1(R).

Proof of Theorem 1. The conditions (5) and (6) imply that there exists a sequence of real

numbers

0 < b0 < a1 < b1 < a2 < b2 < · · ·< ak−1 < bk−1 (22)

such that

S f =
(−(k−1)⋃

j=−1

E j

)⋃
E0

⋃(k−1⋃

j=1

E j

)
, (23)

where E0 = (−b0,b0), E j = (a j,b j) and E− j =−E j = (−b j,−a j) for j = 1,2, . . . ,k−1. Note

that in (22) also might be bk−1 =+∞. Let g ∈ Dn( f ). Then it is immediate that S f = Sg and

|g(x)|n = | f (x)| (24)

for all x ∈ S f . Fix any E j ⊂ S f in (23). Since E j is an open connected component of S f , we

have that there are two continuous functions u f , j,ug, j : E j → (−π ,π ] such that

f (x) = | f (x)|eiu f , j(x) and g(x) = |g(x)|eiug, j(x) (25)

for all x ∈ E j. Using the identity gn = f , it follows from (24) and (25) that, for each for

j ∈ {−(k−1), . . . ,k−1}, there exists some integer m j in {0, . . . ,n−1} such that

n ·ug, j(x) = u f , j(x)+2πm j (26)

for all x ∈ E j. Therefore, for any x ∈ S f , we have

g(x) =
k−1

∑
j=−(k−1)

|g(x)|χE j
(x)eiug, j(x) =

k−1

∑
j=−(k−1)

| f (x)|
1/n
+ χE j

(x)e(iu f , j+2πm j)/n(x), (27)

where χE j
is the indicator function of the set E j and | f (x)|

1/n
+ denotes the positive nth root of

positive number | f (x)|, x ∈ S f . We claim that m0 = 0. Indeed, (2) implies that f (0) and g(0) are

positive numbers. Then (25) implies that u f ,0(0)= ug,0(0)= 0. Combining this with (26), yields
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the claim. Next, applying the property (1), we get that m− j =−m j for all j ∈ {0,1, . . . ,k−1}.

Therefore, we conclude from (27) that

g(x) = | f (x)|
1/n
+ χE0

(x)+
k−1

∑
j=1

| f (x)|
1/n
+

(
χE j

(−x)e−(iu f , j(x)+2πm j)/n

+χE j
(x)e(iu f , j(x)+2πm j)/n

)
(28)

for all x ∈ Sg. Finally, keeping in mind that each m j, j = 1,2, . . . ,k−1, may take any value in

{0,1, . . . ,n−1}, we obtain from (28) the estimate (7). Theorem 1 is proved.

Remark 6. Of course, we are not claiming that each of nk−1th possible functions in (28) belongs

to PD(R).

Remark 7. In the proof of Theorem 1 we concerned with the so-called problem of phase re-

trieval (see the equality (24)), i.e., the problem of the recovery of a measure µ given the ampli-

tude | f | of its Fourier transform f = µ̂ . This problem is well known in various fields of science

and engineering, including crystallography, nuclear magnetic resonance and optics (see, for

example, survey [4]).

Proof of Theorem 2. Note that as in the proof of Theorem 1, in light of (8), we see that there

exists a sequence of real numbers (22) such that

E =
(−(k−1)⋃

j=−1

E j

)⋃
E0

⋃(k−1⋃

j=1

E j

)
, (29)

Let us split our proof into two cases. First we consider the case when all E j in (29) are finite

intervals. Denote by 2σ the minimal length of E j, j =−(k−1), . . . ,k−1, i.e.,

2σ = min
{

2b0; min
1≤ j≤k−1

(b j −a j)
}
. (30)

Let ϕ ∈ PD(R). Assume, in addition, that ϕ is real-valued on R and

Sϕ = (−σ ,σ). (31)

For example, we can take ϕ(x) =Λα(x/σ), where the truncated power function Λα was defined

by (9). Next, for each j ∈ {1,2, . . . ,k−1}, we take any sequence of real numbers {τ j,s}
m( j)
s=1 such

that

a j +σ = τ j,1 < τ j,2 < · · ·< τ j,m = b j −σ . (32)

In addition, we assume that

τ j,(s+1)− τ j,s < 2σ (33)

for all s = 1, . . . ,m( j). Then we define the function

u j(x) =
m( j)

∑
s=1

ϕ(x− τ j,s), (34)
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x ∈ R. Now (32) and (33) imply that u j is supported on [a j,b j] = E j and Su j
= E j. Since

ϕ ∈ PD(R) is real-valued on R and satisfies (31), we conclude that ϕ is even and positive on

Sϕ . Therefore, the function (34) and the function

u j(−x) =
m( j)

∑
s=1

ϕ(x+ τ j,s) (35)

are strictly positive on E j and on E− j =−E j, respectively.

Let us define the function u0 such that it is supported on [−b0,b0] = E0 and Su0
= E0. To this

end, we take any sequence {θi}
r
i=0 of real numbers such that

−b0 +σ = θr < .. .θ1 < θ0 = 0 (36)

and

θi −θi+1 < 2σ (37)

for i = 0, . . . , l −1. Next, for an arbitrary sequence of positive numbers {ωi}
l
i=0, we define

u0(x) =
l

∑
i=0

ωi

(
ϕ(x−θi)+ϕ(x+θi)

)
, (38)

x ∈ R. Of course, (36) and (37) imply that u0 is supported on [−b0,b0] = E0 and Su0
= E0.

Finally, given any fixed sequence of positive numbers numbers {α j}
k−1
j=1, we set

u(x) = u0(x)+
k−1

∑
j=1

α j

(
u j(x)+u j(−x)

)
, (39)

x ∈ R.

We claim that u ∈ PD(R) and Su = E. First, as real-valued function ϕ ∈ PD(R) satisfies (31),

it follows from (29)-(33) and from, (36)-(37) that u is continuous on R and

Su =
k⋃

j=−k

E j = E.

Second, since u is continuous and compactly supported, it follows that u ∈ L1(R). Therefore,

the inverse Fourier transform of u is well-defined. Hence

qu(t) = qu0(t)+
k−1

∑
j=1

(
α j qϕ(t)

m( j)

∑
s=1

2cos(τ j,s · t)
)

= 2qϕ(t)

[
l

∑
i=0

ωi cos(θi · t)+
k−1

∑
j=1

(
α j

m( j)

∑
s=1

cos(τ j,s · t)
)]

= 2qϕ(t)

[
ω0 +

l

∑
i=1

ωi cos(θi · t)+
k−1

∑
j=1

(
α j

m( j)

∑
s=1

cos(τ j,s · t)
)]

. (40)
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Let us fix the previously chosen positive numbers ω1, . . . ,ωk and α1, . . . ,αk−1. Then we increase

if necessary, the value of ω0 in such a way that

ω0 >
l

∑
i=1

ωi +
k−1

∑
j=1

α jm j. (41)

Bochner’s theorem shows that qϕ(t)≥ 0 for all t ∈ R, since ϕ ∈ PD(R). Combining (31) with

(41), we see that qu is nonnegative on R and qu 6≡ 0. In addition, we conclude (see, e.g., [1,

p. 409]) that qu ∈ L1(R). Thus, applying the Fourier transform to qu and using again Bohner’s

theorem, we see that u is continuous nontrivial positive definite, i.e., u ∈ PD(R). This proves

our claim.

Define

f (x) = un
0(x)+

k−1

∑
j=1

αn
j

(
un

j(x)+un
j(−x)

)
, (42)

x ∈R. We claim that f satisfies the hypotheses of Theorem 2. Let us first prove that f ∈ PD(R).

Indeed, from (22) we see that the essential support Su of u, defined by (39), can be represented

as the union
⋃k−1

j=−(k−1) E j of a family of pairwise disjoint sets E j = Su j
, j =−(k−1) . . . ,k−1.

Therefore,

un(x) = un
0(x)+

k−1

∑
j=1

αn
j

(
un

j(x)+un
j(−x)

)
, (43)

x ∈ R. We have already proven that u ∈ PD(R). On the other hand, it is well known that for

each n ∈ N and any ζ ∈ PD(R), it follows that χn ∈ PD(R). Thus, un ∈ PD(R). Combining

this fact with (36), we conclude that f ∈ PD(R) and S f = Su =
⋃k−1

j=−(k−1) E j = E.

Second, we will prove that the function f defined by (43) has the property (9). To this end,

let Zn denote the group Zn = Z�nZ∼= {0,1, . . . ,n−1}. Given Λ = (p1, p2, . . . , pk−1) ∈ Zk−1
n ,

define

gΛ(x) = u0(x)+
k−1

∑
j=1

α j

(
ei2π p j/nu j(x)+ e−i2π p j/nu j(−x)

)
, (44)

x ∈ R. We claim that gΛ ∈ Dn( f ). By the same argument as before for the function u defined

by (39), we see that gΛ ∈ L1(R). Therefore, |gΛ is well-defined and

|gΛ(t) = 2qϕ(t)

[
ω0 +

l

∑
i=1

ωi cos(θi · t)+
k−1

∑
j=1

(
α j

m( j)

∑
s=1

cos

(
τ j,s · t +

2π p j

n

))]
, (45)

t ∈ R. Now using (41), we get that |gΛ(t) ≥ 0 for all t ∈ R and |gΛ 6≡ 0. Hence, by Bochner’s

theorem it follows that gΛ ∈ PD(R). Next,

gn
Λ(x) = un

0(x)+
k−1

∑
j=1

αn
j

((
ei2π p j/nu j(x)

)n

+

(
e−i2π p j/nu j(−x)

)n)

= un
0(x)+

k−1

∑
j=1

αn
j

(
u j(x)

n +u j(−x)n

)
, (46)
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x ∈ R. Combining this representation with (42) and (43), we see that gΛ ∈ Dn( f ), which yields

our claim.

Finally, again using the fact that SgΛ
is the union of a family of pairwise disjoint sets Su j

,

j = −(k − 1), . . . ,k − 1, we conclude from (44) that gΛ ≡ gΛ1
for some Λ,Λ1 ∈ Zk−1

n , if and

only if Λ = Λ1. This proves (9) in the case where each E j in (28) is a finite interval.

Now we consider the second case with bk−1 =∞, i.e., if in (28) we have Ek−1 =(ak−1,∞). Using

the same ϕ ∈PD satisfying (31), we define the functions u0 and u j, j=−(k−2), . . . ,−1,1, . . . ,k−

2 by (38) and (34)-(35), respectively. For j = k−1, let us take an arbitrary sequence of positive

numbers {γr}
∞
r=1 such that

∞

∑
r=1

γr = 1. (47)

Then we define

uk−1(x) =
∞

∑
r=1

γrϕ(x−ak − rσ), (48)

x ∈ R. Obviously, supp(uk−1) = Ek−1 and Suk−1
= Ek−1. Next, for the function u, defined by

(39), it follows from (40) that

qu(t) = 2qϕ(t)

[
ω0 +

l

∑
i=1

ωi cos(θi · t)+
k−2

∑
j=1

(
α j

m( j)

∑
s=1

cos(τ j,s · t)
)

+αk−1

∞

∑
r=1

γr cos
(
(ak−1 + rσ)t

)]
. (49)

Again, for fixed positive numbers ω1, . . .ωk, α1, . . . ,αk−1, and γ1,γ2, . . . , we take the value of

ω0 in such a way that

ω0 >
l

∑
i=1

ωi +
k−2

∑
j=1

α jm j +αk−1. (50)

Combining (31) with (50), we conclude from (49) that qu is nonnegative on R and qu 6≡ 0. Thus,

u ∈ PD(R). Finally, we claim that the function f defined by (42) also satisfies the hypotheses

of Theorem 2 in our case with Ek−1 = (ak−1,∞). The proof of this claim is exactly the same as

that of the first case. Therefore, we skip the details of this proof. Theorem 2 is proved.

Proof of Example 3. We claim that there are u0, u1, u2 and α1, α2 such that the function in

(11) coincides with the function defined by (43). Indeed, set ϕ = Λ1, j = 3, m1 = 2, m2 = 4 and

τ11 = π +1, τ12 = 2π −1, τ21 = 11, τ22 = 12, τ23 = 13, τ24 = 14.

Since σ defined by (30) is equal now to 1, then τ js defined above satisfies (32) and (33). Next,

set

v1(x) = Λ1(x−π −1)+Λ1(x−2π +1)

and

v2(x) = Λ1(x−11)+Λ1(x−12)+Λ1(x−13)+Λ1(x−14).

9



For v0 = Λ1, α1 = 1/8 and α2 = 1/16, let v be given by

v(x) = Λ1(x)+
1

8

(
v1(x)+ v1(−x)

)
+

1

16

(
v2(x)+ v2(−x)

)
.

It is easily seen that Λ1, v1 and v2 are supported on a family of pairwise disjoint sets. Therefore,

vn(x) = Λn(x)+
1

8

(
vn

1(x)+ vn
1(−x)

)
+

1

16

(
vn

2(x)+ vn
2(−x)

)
, (51)

since Λn
1 = Λn. Next,

Svn = Sv = (−15,−10)∪ (−2π ,−π)∪ (−1,1)∪ (π ,2π)∪ (10,15). (52)

The function vn coincides with the function in (11) and is defined by the same rules as in (43).

Our claim is proved.

Now, it is enough to show that v ∈ PD(R). Indeed,

qv(t) = 2qΛ1(t)

[
1+

2

∑
j=1

(
α j

m( j)

∑
s=1

cos(τ js · t)
)]

= 2qΛ1(t)

[
1+

1

8

(
cos(τ11t)+ cos(τ12t)

)

+
1

16

(
cos(τ21t)+ cos(τ22t)+ cos(τ23t)+ cos(τ24t)

)]
≥ qΛ1(t)≥ 0 (53)

for all t ∈ R, since Λ1 ∈ PD(R). Therefore, Bochner’s theorem shows that v ∈ PD(R).

By repeating the finally part of the proof of Teorema 2, we complete the proof of Example 3.

Proof of Example 4. This example concerns the case that was considered in the second part

of the proof of Theorem 2, i.e., when S f contains two unbounded components (−∞,−a) and

(a,∞). Also, as in the proof of Theorem 2, is enough to show that (47) and (50) are satisfied.

Indeed, (47) is clear, since γr = 1/2r, r = 1,2, . . . . We conclude from (11) and (14) that

k = 4, σ = 1, m1 = 2, m2 = 4, ω0 = 1,ω1 = ·= 0,α1 =
1

8
, α1 =

1

16
and α3 =

1

4
.

Therefore, a simple calculation shows that (50) is also satisfied. This completes the proof.

Proof of Theorem 5. We will prove this theorem using essential the same techniques as in

the proof of Theorem 2. Therefore, we sketch the proof only. From (17) and (18) we have that

there exits an infinite sequence

0 < b0 < a1 < b1 < a2 < b2 < · · ·< ∞ (54)

such that

E =
⋃

j∈Z

E j, (55)

where E0 = (−b0,b0) and E j = (a j,b j) = −E− j for each j ∈ N. Moreover, from (18) we see

that

min
{

2b0; inf
j∈N

(b j −a j)
}
= 2σ > 0. (56)
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Let ϕ ∈ PD(R) be the same function satisfying (31). For j = 0 and for j ∈ N, we define the

functions u0 and u j by (34) and (38). respectively. Note that the sequences {τ js}
m( j)
s=1 and {θi}

l
i=0

satisfy (32)-(33) and (35)-(37), respectively. For any j ∈ N, let us define

α j =
1

2 jm( j)
∣∣E j

∣∣ , (57)

where |E j| is the length of E j, i.e., |E j|= sup{|a−b| : a,b ∈ E j}. Note that the condition (18)

guarantees that {α j} j∈N is a well-defined sequence of positive numbers. Set

u(x) = u0(x)+ ∑
j∈N

α j

(
u j(x)+u j(−x)

)
, (58)

x ∈ R. Combinnig (2), (34), (38) with (57), we get

|u(x)| ≤ 2ϕ(0)

[( l

∑
i=0

ωi

)
IE0

(x)+ ∑
j∈N

( 1

2 j|E j|
IE j

(x)
)]

(59)

for any x ∈ R. Here, ID(x) denotes the indicator function of a subset D ⊂ R. Hence,

‖ϕ‖L1(R) ≤ 2ϕ(0)

[
2b0

l

∑
i=0

ωi +1

]
.

Therefore, ϕ ∈ L1(R) and

qu(t) = 2qϕ(t)

[
ω0 +

l

∑
i=1

ωi cos(θi · t)+ ∑
j∈N

(
α j

m( j)

∑
s=1

cos(τ js · t)
)]

. (60)

Again, for fixed positive numbers ω1, . . .ωk, we take the value of ω0 in such a way that

ω0 >
l

∑
i=1

ωi +
1

2σ
. (61)

Combining this condition with (56 and (57), we conclude that the function qu in (51) is nonneg-

ative on R and qu 6≡ 0. Thus, u ∈ PD(R). Define

f (x) = un
0(x)+ ∑

j∈N

αn
j

(
un

j(x)+un
j(−x)

)
, (62)

x ∈ R. Next, for Λ = (p1, p2, . . .) ∈ Z∞, set

gΛ(x) = u0(x)+ ∑
j∈N

α j

(
ei2π p j/nu j(x)+ e−i2π p j/nu j(−x)

)
, (63)

x ∈ R. We claim that: (i) f ∈ PD(R); (ii) E defined by(55) satisfies (17) and (18); (iii)

gΛ ∈ Dn( f ). The proofs of these claims is exactly the same as in the case of functions f and

gΛ defined by (42) and (44), respectively.

Finally, again using the fact that S f = Su and therefore, SgΛ
= Su are the unit of a family of

pairwise disjoint sets Su j
, j ∈Z, where u− j(x) = u j(−x), j ∈N, we see from (63) that gΛ ≡ gΛ1

for some Λ,Λ1 ∈ Z∞, if and only if Λ = Λ1. This proves (19) and therefore completes the proof

our theorem.
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3 Conclusion

We study the n-divisible functions in PD(R), where PD(R) denotes the family of continuous

positive definite functions on the real line R. While there is a rich literature on infinite-divisible

functions in PD(R), for an integer n > 1, properties of n-divisible functions from PD(R) have

been studied much less. Surprisingly, it appears that some properties of infinite-divisible and

n-divisible functions f ∈ PD(R) may differ in essence. In this paper, we examine one such

property, which has not yet been discussed in detail in the literature. More precisely, if f ∈

PD(R) infinite-divisible, then it is well-known that, for each integer n > 1, there is an unique

g ∈ PD(R), such that gn = f . On the other hand, there is n-divisible f such that the factor g in

gn = f is generally not unique. For n-divisible f ∈ PD(R), we study the following questions:

(i) how rich can be the class Dn( f ) = {g ∈ PD(R) : gn = f}; (ii) what properties of f determine

the size of Dn( f ). We present several precise estimates for the cardinality of Dn( f ). Also, the

main results are validated via illustrative examples.
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[4] Bisgaard, T., Sasvári, Z.: Characteristic Functions and Moment Sequences, Nova Science

Publishing, New York, (2000).

[5] Fuglede, B.: Boundary minimum principles in potential theory.Math. Ann. 210, 213–226

(1974).

[6] Hewitt, E., Stromberg, K.: Real and Abstract Analysis. A modern treatment of the theory

of functions of a real variable. Springer-Verlag, New York-Heidelberg (1975).

[7] Katti, S. K.: Infinite divisibility of discrete distributions III. Colloquia Mathematica So-

cietatis Janos Bolyai. Debrecen Hungary, 165-171 (1977).

12



[8] Klebanov, L.B., AV Kakosyan, A.V., Volchenkova, I.V.: Inequalities for m-Divisible

Distributions and Testing of Infinite Divisibility. arXiv preprint arXiv:1904.07604v1, 1-8

(2019).

[9] Lukacs, E.: Characteristic Functions, 2nd edn. Hafner Publishing Co., New York (1970).

[10] Sasvári, Z.: Positive definite and definitizable functions. Mathematical Topics, 2.

Akademie Verlag, Berlin (1994).

[11] Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase

retrieval with application to optical imaging. IEEE signal processing magazine. May, 87-

109 (2015).

[12] Steutel, F., Kent, J.: Infinite divisibility in theory and practice, Scand. J. Stat. 6(2) 57–64

(1979).

[13] Steutel, F., van Harn, K.: Infinite divisibility of probability distributions on the real line.

Monographs and Textbooks in Pure and Applied Mathematics, 259. Marcel Dekker, Inc.,

New York (2004).

[14] Thorin, O.: On the infinite divisibilityof the Pareto distribution, Scand. Actuar. J. 1977(1)

(jan1977) 31–40.

[15] Thorin, O.:On the infinite divisibility of the lognormal distribution, Scand. Actuar. J.

1977(3) (mar1977) 121–148.

[16] Trigub, R.M., Bellinsky, E.S.: Fourier analysis and approximation of functions. Kluwer,

Dordrecht (2004).

[17] Ushakov, N. G.: Selected topics in characteristic functions. Modern Probability and

Statistics. VSP, Utrecht, (1999).

13

http://arxiv.org/abs/1904.07604

	1 Introduction
	2 Preliminaries and Proofs
	3 Conclusion

