
Punctured Binary Simplex Codes as LDPC codes
Massimo Battaglioni

Dept. of Information Engineering
Marche Polytechnic University

Ancona, Italy
m.battaglioni@staff.univpm.it

Giovanni Cancellieri
Dept. of Information Engineering

Marche Polytechnic University
Ancona, Italy

g.cancellieri@staff.univpm.it

Abstract—Digital data transfer can be protected by means of
suitable error correcting codes. Among the families of state-of-
the-art codes, LDPC (Low Density Parity-Check) codes have
received a great deal of attention recently, because of their
performance and flexibility of operation, in wireless and mobile
radio channels, as well as in cable transmission systems. In this
paper, we present a class of rate-adaptive LDPC codes, obtained
as properly punctured simplex codes. These codes allow for the
use of an efficient soft-decision decoding algorithm, provided
that a condition called row-column constraint is satisfied. This
condition is tested on small-length codes, and then extended
to medium-length codes. The puncturing operations we apply
do not influence the satisfaction of the row-column constraint,
assuring that a wide range of code rates can be obtained. We
can reach code rates remarkably higher than those obtainable
by the original simplex code, and the price in terms of minimum
distance turns out to be relatively small, leading to interesting
trade-offs in the resulting asymptotic coding gain.

Index Terms—Golomb rulers, LDPC codes, Minimum Dis-
tance, Simplex codes

I. INTRODUCTION

Simplex codes are duals of Hamming codes [1]. In poly-
nomial representation, for a binary finite field, they exhibit a
parity-check matrix H where a primitive binary polynomial
h(x) shifts along a diagonal trace, from left to right, by one
position each row. On the cyclic code length N , the tern
describing simplex codes is [N, k, d], where N = 2k − 1
is the block length and dmin = 2k−1 is the code minimum
distance. All the 2k − 1 non-null codewords have weight
dmin [2]. Precisely, such non-null code words represent all the
possible cyclic shifts of the same maximum-length pseudo-
random binary sequence [3]. The parity-check polynomial
h(x) has degree k, with coefficients h0 = hk = 1, and can be
interpreted as the generator polynomial of a Hamming code
(the dual of our code) having the same cyclic code length N .
In Fig. 1 the general form of such an H matrix is shown. It
exhibits N columns and N − k rows.

It is possible to choose a shorter code length n, with n < N ,
by eliminating external rows and hence external columns. This
operation is called puncturing [4] and can be repeated as many
times as one wishes. So n becomes a variable, whereas k does
not change. After s elementary row-column eliminations, the
punctured code is described by the new tern [n, k, d′], with
n = N − s, and the number of rows in the new parity-check
matrix H′ is reduced to r = n − k. Finally, d′ is the new
minimum distance. After this construction, the rows of the

Fig. 1. General form of the parity-check matrix of (punctured) simplex codes.
Out of the main diagonal band, only 0 symbols are present. Effects of s = 2
row-column eliminations, starting from the bottom right.

parity-check matrix remain all linearly independent, so that
H′ still has full rank.

The code rate k
n can be easily synthesized, leading to

a rate-adaptive coding system. It is unavoidable that the
new minimum distance d′ becomes smaller and smaller, for
increasing values of s. Nevertheless, the main drawback of
simplex codes, on their cyclic length N , that is a very low code
rate, can be partially overcome. The problem of predicting
word weight distributions and new minimum distances d′ for
punctured binary simplex codes has been already faced [5],
[6]. Nevertheless, a research question remains open, regarding
an efficient low-complexity soft-decision decoding procedure,
able to exploit the good design characteristics of these codes.
The main contribution of the present paper is in the inter-
pretation of the parity-check matrix of simplex codes as a
sparse matrix. Owing to this, the decoding algorithms which
are suitable for Low-Density Parity-Check (LDPC) codes, can
be adopted. In this context, the conditions for satisfying row-
column constraint [7] will be investigated, in order to assure
a straightforward decoding procedure, e.g. by means of the
sum-product algorithm [8]. The availability of primitive poly-
nomials to be chosen as h(x) will be verified. Furthermore,
a circulant expansion procedure [7] in designing the final
form of the H matrix will be suggested. Some simulations of
the code performance on an Additive White Gaussian Noise
(AWGN) channel will demonstrate feasibility of the proposed
solution. The arguments are organized as follows. In Section
II we provide some preliminary considerations. In Section III
we obtain some theoretical results. In Section IV some word
weight distributions are calculated, allowing to predict the
progressive performance improvement for increasing values of
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k. In Section V we provide some numerical results, in terms
of BER curves. Finally, we draw some concluding remarks in
Section VI.

II. PRELIMINARIES

A Golomb ruler is a sequence of non-negative integers such
that every difference of two integers in the sequence is distinct.

The Hamming weight of a vector is defined as the number
of non-zero symbols it contains and is simply called weight
in the following.

In this paper, we only consider binary LDPC codes. LDPC
codes are a family of linear codes characterized by parity-
check matrices having a relatively small number of non-zero
entries compared to the number of zeros. Namely, if an LDPC
H ∈ Fr×n2 has full rank r < n and row and column weight in
the order of log(n) and log(r), respectively, then it defines
an LDPC code with length n and dimension k = n − r,
with code rate R = k

n . If all the rows of H have the
same weight, we denote it as wc. The associated code is
C =

{
c ∈ Fnq |cH> = 0

}
, where > denotes transposition. The

number of codewords of weight w is denoted as A(w).
The row-column constraint in the parity-check matrix of

an LDPC code expresses the condition of not having four 1-
symbols in the vertices of a rectangular geometry, forming a
4-length closed cycle in that matrix. It is well known that soft-
decision decoding algorithms, like the sum-product algorithm,
exhibit convergence problems when working on parity-check
matrices containing the aforementioned 4-length cycles.

In the following, we consider punctured simplex codes as
LDPC codes, represented by parity-check matrices as those
in Fig. 1, described by a primitive parity-check polynomial
h(x) = 1+h1x+. . .+h2x

k−1+xk of degree k and weight w,
where hi is either 0 or 1. We define the vector h containing the
his, for i ∈ {0, . . . , k}. We also define the vector p of length
w, containing {i ∈ {0, . . . , k}|hi = 1} in ascending order.
In other words, p is the support of the vector containing the
coefficients of the polynomial. Finally, we define the vector s
of length w− 1, such that si = pi+1− pi, i ∈ {0, . . . , w− 2}.
The following result holds.

Theorem 1 A necessary and sufficient condition for the satis-
faction of the row-column constraint for a punctured simplex
code is that the corresponding p, derived from the primitive
parity-check polynomial h(x), is a Golomb ruler.

Proof: A 4-length cycle exists in H if and only if there
exist two pairs (i1, i2), (i3, i4) such that hi1 = hi2 = hi3 =
hi4 = 1 and i2 − i1 = i4 − i3, being (i1, i2, i3, i4) different
one another, except that it might be i1 = i4.

Each entry of p corresponds to a non-zero coefficient of
h(x). Then, if p is a Golomb ruler, by definition, there cannot
exist two pairs of different indices (j1, j2) and (j3, j4) such
that pj2−pj1 = pj4−pj3 . However, if p contains pk, for some
k, then, by definition, hpk = 1. Therefore, if p is a Golomb
ruler, there cannot exist two pairs (i1, i2), (i3, i4) such that
hi1 = hi2 = hi3 = hi4 = 1 and i2− i1 = i4− i3. This implies

that, if p is a Golomb ruler, H cannot contain 4-length cycles
and therefore satisfies the row-column constraint.

In order to prove that this condition is necessary we need
to show that, if p is not a Golomb ruler, then H does not
satisfy the row-column constraint. If p is not a Golomb ruler,
then there exist two pairs (j1, j2) and (j3, j4) such that pj2 −
pj1 = pj4 − pj3 , also implying that hpj1 = hpj2 = hpj3 =
hpj4 = 1. This is the condition of existence of a 4-length
cycle, which corresponds to the dissatisfaction of the row-
column constraint.

Now we will consider the properties emerging from an
inspection of all the binary primitive polynomials for k ∈
{3, . . . , 8}. Since they are formed by couples of reciprocal
asymmetric polynomials [2], in Table I we report only one
element for each couple. The notation adopted consists of
representing the binary expressions of any polynomial. The
number of different polynomials, on average, grows with k,
but in this very small sample it is possible to recognize various
typical well-known properties.

The weight w of primitive polynomials is always an odd
integer number, not smaller then 3. For many values of k,
primitive polynomials with weight w = 3 are present. This
is not true in few cases, say for k = 8, where the minimum
weight is 5. Nevertheless 5-weight primitive polynomials, as
what is known for k up to 10, 000, are always present when
3-weight polynomials are not [9]. We are interested in fixing
conditions able to assure that the row-column constraint is
satisfied.

III. ANALYSIS OF THE PROPERTIES OF PUNCTURED
SIMPLEX CODES

In this section we study the properties of the considered
codes, first focusing on parity-check polynomials with weight
3, and then generalizing the obtained results.

A. Codes characterized by parity-check polynomials of weight
3

Although the case of a 3-weight primitive polynomial
gives only poor performance, we will investigate this case
in detail, with the purpose of understanding the mechanisms
of possible low-weight code word existence. The following
property holds.

Theorem 2 Given a primitive polynomial of weight w = 3,
the row-column constraint is always satisfied on a punctured
simplex code.

Proof: The proof easily follows from the fact that prim-
itive polynomials are always asymmetrical and are character-
ized by h0 = hk = 1. Given this, we have

p = [0, s0, k],

where s0 6= k
2 because of the asymmetry. Then, p is a Golomb

ruler characterized by differences s0, s1 = k − s0 and k,
and the parity-check matrix constructed with h(x) satisfies
the row-column constraint, because of Theorem 1.



TABLE I
ALL THE PRIMITIVE POLYNOMIALS (REPRESENTING ALSO THEIR RECIPROCALS) FOR k ∈ {3, . . . , 8}.

k N All the primitive polynomials, in binary representation

3 7 1101

4 15 11001

5 31 101001, 110111, 101111

6 63 1100001, 1010111, 1110011, 1101101

7 127 11000001, 10010001, 11110001, 10111001, 11100101, 11010101, 10110101, 11111101, 11110111

8 255 100011101, 100101011, 101100011, 101101001, 101100011, 111110101, 111001111

We can observe how the only degree of freedom in the
design of a k-degree 3-weight polynomial is in the choice of
the central non-null power coefficient. Many properties char-
acterizing punctured simplex codes of rate 1

2 are independent
of this choice.

Lemma 1 In a 1
2 -rate punctured simplex code characterized

by a 3-weight parity-check polynomial, among the 2k columns
of the resulting H matrix, k have weight 1 and k have weight
2.

Proof: Using the symbolism in the proof of Theorem
2, we have the situation depicted in Fig. 2, where the di-
agonal solid lines in the matrix represent symbols 1. Then,
we note that the leftmost s0 columns have weight 1 (and
support 0, 1, . . . , s0 − 1, respectively) the central k columns
have weight 2, and the rightmost s1 columns have weight 1
and support (s0 = k − s1, . . . , k − 1, respectively). Being
s0 + s1 = k, we have proved the thesis.

Fig. 2. Structure of the parity-check matrix for code rate 1
2

and a 3-weight
parity check polynomial

Notice that the supports of the 1-weight columns cover
the whole set {0, 1, . . . , k − 1} without repetitions. This
consideration leads to the following result.

Theorem 3 Any 1
2 -rate punctured simplex code, constructed

from a 3-weight parity-check polynomial exhibits minimum
distance dmin = 3.

Proof: We have proven in Theorem 2 that 1
2 -rate punc-

tured simplex codes constructed from a 3-weight parity-
check polynomial respect the row-column constraint. In other

words, there are no 4-length cycles in the parity-check matrix.
Moreover, by construction, all the columns of weight 1 have a
different support. This implies that there cannot exist a pair of
columns summing up (modulo 2) to 0. Therefore, dmin > 2.
Moreover, given any 2-weight column in the central portion of
H, with support {j1, j2}, by construction (see proof of Lemma
1) there exist a 1-weight column on the leftmost portion of
H with support j1 and a 1-weight column on the rightmost
portion of H with support j2. Then, these three columns sum
up to zero modulo 2, implying that dmin ≤ 3. So, we have
dmin = 3.

Corollary 1 In the word weight distribution A(w) of a 1
2 -rate

punctured simplex code, constructed from a 3-weight parity-
check polynomial, A(3) = k for k > 3, independent of the
choice of s0.

Proof: Codewords of weight 3 in 1
2 -rate punctured sim-

plex codes constructed from a 3-weight parity-check polyno-
mial can only have support given by the indexes of

1) three columns of H of weight 1, summing up to 0
modulo 2;

2) two columns of H of weight 1 and one of weight 2,
summing up to 0 modulo 2;

3) two columns of H of weight 2 and one of weight 1,
summing up to 0 modulo 2;

4) three columns of weight 2 summing up to 0 modulo 2.
However, since all the columns of H of weight 1 have a
different support, they cannot sum up to 0 modulo 2 and Case
1) is not possible. Case 3) is also impossible, since the sum
modulo 2 of two columns of weight 2 has either weight 2 or
4, and therefore the sum modulo 2 with a 1-weight column
cannot produce an all-zero vector. In order to study case 4),
we notice that the k central columns in Fig. 2 form a 2k-
length cycle. Since k > 3 by hypothesis, these columns do
not contain 6-length cycles, and therefore 3-weight codewords.
Therefore, also case 4) cannot occur. In case 2), we have k
columns of weight 2 and for each of them there exists a pair
of columns of weight 1 such that these three columns sum up
to 0 modulo 2, as shown in the proof of Theorem 3. Therefore,
A(3) = k, independent of the value of s0.

The case of a 1
2 -rate punctured simplex code, constructed

from a 3-weight parity-check polynomial for k = 3 is



particular, since the 3 central columns form a 6-length cycle,
and therefore A(3) = 4. This [6, 3, 3] code turns out to be the
well-known one-time punctured simplex code, which is self-
dual and equivalent to the 1-time shortened Hamming code,
with the same original length N = 7, whose overall weight
distribution is A(0) = 1, A(3) = 4, A(4) = 3.

B. Codes characterized by parity-check polynomials with
higher weights

Also 5-weight polynomials, and even 7-weight polynomials,
if k is high enough, can exhibit all different separations (i.e.,
the associated p is a Golomb ruler) and hence satisfy the row-
column constraint. For example, with k = 16, the coefficients
of the 5-weight primitive polynomial are 10001000000001011.
It is easy to check that the associated p = [0, 4, 13, 15, 16] is
a Golomb ruler. In a similar way, with k = 121, the 7-weight
primitive polynomial identified by the following exponents
of non-null coefficients p = [0, 8, 25, 105, 115, 116, 121] is a
Golomb ruler. Therefore, owing to Theorem 1, the row-column
constraint is satisfied in both cases. Furthermore, qualitatively
speaking, the absence of equalities requires the collection of a
greater number of columns in the syndrome sum cancellation
procedure for finding low-weight codewords, so intrinsically
increasing the codeword weight.

In Fig. 3 the structure of the H matrix for code rate 1
2 and

a 5-weight parity check polynomial is schematically shown.
The differences between consecutive elements of p are named
s0, s1, s2, s3 and s0 + s1 + s2 + s3 = k. It is possible to draw
the following extension of Lemma 2.

Fig. 3. Structure of the parity-check matrix for code rate 1
2

and a 5-weight
parity check polynomial

Lemma 2 In an 1
2 -rate punctured simplex code character-

ized by a w-weight parity-check polynomial, among the 2k
columns of the resulting H matrix, si + sj have weight
i+1 and the same number characterizes those having weight
w − j − 1, where i ∈ {0, . . . , w−32 }, j ∈ {

w−1
2 , . . . , w − 2}

and i+ j = w − 2.

Proof: Similar to the proof of Lemma 1.
The choice of the three central non-null powers in h(x)

influences here the overall performance of the code. In spite
of this consideration, the following property is verified about
the average column weight < wc > in the parity-check matrix,

which represents an important parameter in order to evaluate
decoding complexity.

Theorem 4 In a punctured simplex code having parity-check
polynomial weight w, length n = αk, dimension k, code rate
R = 1

α = k
n , the average column weight < wc >= w(1−R),

independent of the vector of differences s.

Proof: The thesis follows from the following equality

< wc >= (α− 2)
k

n
w +

w−2∑
i=0

si
w

n
,

due to the fact that (α− 2)k columns have weight w and the
remaining ones are as in a 1

2 -rate code. Then, by considering
that k =

∑w−2
i=0 si, we obtain

< wc >= (α− 2)Rw +Rw,

from which the thesis easily follows.
About the expected increase of the minimum distance dmin,

for a certain choice of w and vector of differences s, as long as
the code rate R is reduced with respect to 1

2 , it can be justified
by the following qualitative considerations, supported by a
polynomial approach [10]. Owing to the properties of simplex
codes, the cofactor g(x) of h(x) with respect to the binomial
xN +1 is a long sequence of binary symbols, forming all the
possible combinations of k elements except the one formed
by k consecutive 0-symbols. Code rate reduction from 1

α to
1
α′ , with α′ = α + 1, implies the addition to all the previous
codewords of k consecutive symbols taken from the vector of
coefficients of g(x). In such packet of additional k symbols
there will be at least one 1-symbol, so leading to the increment
of one unit in the previous minimum distance. Nevertheless,
in the next section, some examples of much higher increments
will be presented.

IV. WORD WEIGHT DISTRIBUTIONS

As long as the weight of h(x) increases the performance
in terms of minimum distance and word weight distribution
A(w) progressively improve. In Table II, we show the weight
distributions (for low weights) of three codes, all derived from
the same 3-weight h = 10010001, which is characterized by
k = 7, selecting different values of the block length n, in order
to have code rate R = 1

2 ,
1
3 ,

1
4 . The minimum distance dmin

grows from dmin = 3 to dmin = 5 and finally to dmin = 9.
Also the asymptotic coding gain, for a soft-decision decoding,
that is the parameter G∞ = Rdmin, has been calculated. All
the possible polynomials with weight 3 show the same word
weight distribution, up to A(5) at code rate 1

2 . Some small
differences appear at lower code rates.

With h(x) having weight 5, the particular choice of h(x)
can induce remarkable behavior differences. In Table III we
have considered a 5-weight primitive polynomial characterized
by k = 16. Its binary representation is 10001000000001011
and the associated p is a Golomb ruler. In this case, we obtain
a minimum distance growing from dmin = 5 to dmin = 10 and



TABLE II
COEFFICIENTS A(w) OF THE WORD WEIGHT DISTRIBUTIONS OBTAINED WITH THE THREE PUNCTURED SIMPLEX CODES [14, 7, 3], [21, 7, 5], [28, 7, 9]

ALL DERIVED FROM THE SAME 3-WEIGHT h = 10010001, ASYMPTOTIC CODING GAIN G∞ AND AVERAGE COLUMN WEIGHT < wc >.

n k R dmin G∞ A(w) < wc >

14 7 1
2

3 1.8 dB A(3) = 7, A(4) = 7, A(5) = 7, A(6) = 21 1.5

21 7 1
3

5 2.2 dB A(5) = 1, A(6) = 11, A(7) = 3, A(8) = 4 2

28 7 1
4

9 3.5 dB A(9) = 7, A(10) = 7, A(11) = 6, A(12) = 7 2.25

TABLE III
COEFFICIENTS A(w) OF THE WORD WEIGHT DISTRIBUTIONS OBTAINED WITH THE THREE PUNCTURED SIMPLEX CODES [32, 16, 5], [48, 16, 10],

[64, 16, 16], ALL DERIVED FROM THE SAME 5-WEIGHT h = 10001000000001011, ASYMPTOTIC CODING GAIN G∞ AND AVERAGE COLUMN WEIGHT
< wc >.

n k R dmin G∞ A(w) < wc >

32 16 1
2

5 4 dB A(5) = 2, A(6) = 22, A(7) = 67 2.5

48 16 1
3

10 5.2 dB A(10) = 4, A(11) = 12, A(12) = 3 3.33

64 16 1
4

16 6 dB A(16) = 3, A(17) = 11, A(18) = 17 3.75

finally to dmin = 16. Correspondingly, G∞ increases from 4
dB to 6 dB.

Considering that we are dealing with very small block
lengths, the results obtained appear encouraging. In particular,
the code identified by the tern [64, 16, 16] is characterized
by the same parameters as the direct product of a pair of
extended Hamming codes [8, 4, 4], but the coefficient A(16)
is here much smaller.

In both the shown examples, the number of low-weight code
words appears very small, yielding a relatively rapid reaching
of the asymptotic coding gain G∞. In Fig. 4 we show the
Truncated Union Bound (TUB) on the Bit Error Rate (BER)
as a function of the Signal-to-Noise Ratio (SNR), for the codes
in Table III, computed as

BERTUB ≈
d∗∑

w=dmin

1

2

w

n
A(w)erfc

(√
w
k

n

Eb
N0

)
,

where dmin ≤ d∗ ≤ n. Clearly, the larger d∗, the tighter the
TUB to the complete union bound (obtained for d∗ = n). The
considered values of d∗ are 7, 12 and 18, respectively.

V. NUMERICAL SIMULATIONS

In this section we have simulated the performance of some
punctured simplex codes of rate 1

2 , by means of Monte
Carlo simulations of Binary Phase Shift Keying (BPSK) trans-
missions over an Additive White Gaussian Noise (AWGN)
channel. We have adopted a decoding algorithm of the belief
propagation family, commonly used to decode LDPC codes.
Namely, we have considered the sum-product decoding algo-
rithm [8], performing 100 iterations. The complexity of this
algorithm grows linearly with the (average) column weight of
the input parity-check matrix (see [11, Section II]).

The first considered code, C1, is defined by a 7-weight
parity-check polynomial, characterized by k = 121, such
that p = [0, 8, 25, 105, 115, 116, 121], which is a Golomb
ruler and, therefore, C1 satisfies the row-column constraint.
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Fig. 4. Union bound for the codes in Tables III.

The second considered code, C2, is defined by a 7-weight
parity-check polynomial, characterized by k = 240, such that
p = [0, 25, 31, 138, 150, 160, 240], which is a Golomb ruler,
too.

Finally, we have derived a third code, C3, from C1, by
applying the so-called circulant expansion technique, which
was first proposed in [12] (though on different matrices) and
further investigated in [7]. In a nutshell, when using this
technique, each 1-symbol of the starting parity-check matrix
is substituted by a circulant permutation matrix of side p, and
each 0-symbol is substituted by an all-zero matrix of side
p. This is known to improve the error rate performance of
the starting code (see [13] for a performance evaluation with
increasing values of p). In this case, we have used matrices of
side p = 7. The ith 1-symbol in each row of the parity-check
matrix of C1 has been substituted by a circulant permutation
matrix, such that the support of its first column is i, when i
is odd, and (2i mod 7) when i is even. The resulting code



C3 is quasi-cyclic and has dimension k = 121 · 7 = 847. Its
parity-check matrix does not contain 4-length cycles, since the
circulant expansion technique preserves the satisfaction of the
row-column constraint [14].

The performance of these codes in terms of BER is shown
in Fig. 5. We notice that, with respect to the uncoded case,
the proposed codes obtain a relatively large gain. Moreover,
Fig. 5 confirms that punctured simplex codes can be efficiently
decoded as LDPC codes, significantly reducing the decoding
latency and complexity.
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Fig. 5. Bit error rate performance of codes C1, C2 and C3, as a function of
the SNR.

We have also considered a fourth code, C4, defined by a
7-weight parity-check polynomial, characterized by k = 75,
such that p = [0, 2, 21, 29, 60, 72, 75], and compared it with
two of the LDPC codes considered in [15], having k = 64:
an accumulate-repeat-jagged-accumulate (ARJA) LDPC code
and an accumulate-repeat-3-accumulate (AR3A) LDPC code.
The results are shown in Fig. 6, where we notice that our
newly designed code has comparable block length and error
rate performance with codes widely employed in standards.
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Fig. 6. Codeword error rate performance of codes C4 and two codes from
[15], as a function of the SNR.

VI. CONCLUSION

For any value of the cyclic length N = 2k − 1 char-
acterizing a binary simplex code, a family of rate adaptive
LDPC codes can be found. This property follows from the
existence of a w-weight parity-check primitive polynomial.
If such a polynomial also corresponds to a Golomb ruler,
the parity-check matrix of the code does not contain 4-length
cycles, which are known to degrade the code performance in
terms of error rate when belief propagation-based algorithm
are used for decoding. If the parity-check polynomial is not
associated to a Golomb ruler, the residual 4-length cycles can
be eliminated by properly substituting each non-zero symbol
in the parity-check matrix with a circulant permutation matrix,
leading to a code with larger length but the same code rate.
This method might also be used with the purpose of increasing
the code minimum distance. So, with code lengths of the order
of some thousands, asymptotic coding gains as large as 10 dB
are expected to be reached and even rapidly approached. We
leave this analysis for future works.
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