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Abstract. In this paper, we demonstrate that the realm of near-vector spaces enables us to
address non-linear problems while also providing access to most of the tools that linear algebra
offers. We establish fundamental results for near-vector spaces, which serve to extend classical
linear algebra into the realm of near-linear algebra. Within this paper, we finalize the algebraic
proof that for a given scalar group F , any non-empty F -subspace that remains stable under
addition and scalar multiplication constitutes an F -subspace. We prove that any quotient
of a near-vector space by an F -subspace is itself a near-vector space, along with presenting
the First Isomorphism Theorem for near-vector spaces. In doing so, we obtain comprehensive
descriptions of the span. By defining linear independence outside the quasi-kernel, we introduce
a new concept of basis. We also establish that near-vector spaces are characterized based on
the presence of a scalar basis.
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Introduction

Dr. André introduced the notion of near-vector spaces (see [1]). Prof. Howell and her students
significantly contributed to the study of near-vector spaces (see, for instance, [3] and [4]).

The world around us is clearly nonlinear. However, when we step outside the realm of linear
algebra, things can become very complex. As we will explore throughout this paper, the world
of near-vector spaces allows us to work with nonlinear problems and yet grants access to most
of the tools linear algebra offers.

The goal of this paper is to develop a basic theory of near-linear algebra inspired by classical
linear algebra. Here, we establish some fundamental results. Given a scalar group F (see
Definition 1.1), we define F -subspaces of F -spaces simply by requiring closure under scalar
multiplication and addition (see Definition 1.4). We then prove that an F -subspace of a near-
vector space is itself a near-vector space (the first author had already proven this result over
division rings, and the proof here directly generalizes this result; meanwhile, it was generalized
by different means in [6]). Another significant result is that any quotient of a near-vector space
by an F -subspace is also a near-vector space. This result enables us to establish the First
Isomorphism Theorem for near-vector spaces. We explore the notion of linear independence
outside the quasi-kernel; this notion allows us to define near-vector spaces in terms of the
existence of a scalar basis, resulting in an intriguing new notion of basis.

In the first section of the paper, we introduce the preliminary material. We propose a new
way to define near-vector spaces by introducing the notion of a scalar group and a scalar
group action. This alternative perspective on near-vector spaces will make it easier for us
to manipulate them. We also review a few essential elementary properties that will be of
significance throughout the paper.

Section 2 focuses on the span, basis, and linear independence of near-vector spaces. We
develop fundamental tools to study near-vector spaces, identifying differences between classical
linear algebra and near-linear algebra by exploring the properties of span and linear indepen-
dence. We regard elements in the quasi-kernel as scalar elements, shedding more light on
the importance of the definition of the quasi-kernel in near-linear algebra theory (see Definition
1.5). We provide different characterizations of linear independence outside the quasi-kernel (see
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Lemma 2.9). We introduce two notions of a basis: an F -basis and a scalar F -basis (see Def-
inition 2.14). These bases encapsulate some of the fundamental distinctions between classical
linear algebra and near-linear algebra.

In section 3, we present the key technical results of the paper (see Theorem 3.2 and Corollary
3.15). The first result explicitly describes the span of any vector as a direct sum of elements
from the quasi-kernel. The formula involves the notion of the dimension of an element. The
proof provides a constructive way to obtain such an element as a direct sum of quasi-kernel
elements. An application of this result leads to proving that we can construct a scalar F -basis
(see Lemma 3.4). An important observation is that, unlike classical linear algebra, not all
F -bases have the same cardinality. Particularly, we prove the Replacement Theorem for scalar
F -bases (see Lemma 3.8). Another fundamental result of this section asserts that a near-vector
space over a scalar group F is simply a pair (V,µ) where V is an abelian group and µ is a
scalar group action admitting a scalar F -basis (see Theorem 3.11). The second key technical
result is trivial in classical linear algebra but nontrivial in near-linear algebra; it compares the
spans of non-zero elements v and w, where w ∈ Span(v).

In section 4, the work done in the previous section leads to four results that hold true in
classical linear algebra and remain valid for near-vector spaces. The first result is that any F -
subspace is a near-vector space (see Theorem 4.1). The second result is that any quotient by an
F -subspace is also a near-vector space (see Theorem 4.2). From this, we deduce the one-to-one
correspondence between the F -subspace and the kernel of a linear map of near-vector spaces
(see Corollary 4.4). Finally, we establish the First Isomorphism Theorem for near-vector spaces
(see Theorem 4.5).

Section 5 discusses how any near-vector space can be viewed as a module over a scalar
group algebra. The notion of span for near-vector spaces coincides with the span concept with
respect to this module. This description offers more insight into near-linear algebra. We derive
a geometric interpretation of the quasi-kernel at the section’s conclusion.

1. Preliminary material

Prof. Janelidze conceptualized the initial version of the following definition. This definition
will aid in the manipulation of near-vector spaces more effectively.

Definition 1.1. A scalar group F is a tuple F = (F, ⋅,1,0,−1) where (F, ⋅,1) is a monoid,
0,−1 ∈ F , 0 ⋅ α = 0 = α ⋅ 0 for all α ∈ F , {±1} is the solution set of the equation x2 = 1, and
(F /{0}, ⋅,1) is a group. For all α ∈ F , we denote −α as the element (−1) ⋅ α.

Remark 1.2. A monoid formed by adding a zero element to a group is often referred to as a
"group with zero". It’s worth noting that Definition 1.1 essentially defines a group with zero
in which the equation x2 = 1 possesses precisely two distinct solutions.

We can define the concept of the action of a scalar group as follows.

Definition 1.3. Let V = (V,+) be an abelian group, (F, ⋅,1,0,−1) be a scalar group, and
µ ∶ F × V → V be a map that assigns (α, v) to α ⋅ v.



NEAR-LINEAR ALGEBRA 4

(1) We denote the map µ as an action of F on V . In this paper, when we refer to an
action as µ, we will use α ⋅ v to denote the image of an element (α, v) in F ×V through
µ.

(2) We define an action µ as a left semigroup action if, for all α,β ∈ F , and v ∈ V , it
holds that α ⋅ (β ⋅ v) = (α ⋅ β) ⋅ v and 1 ⋅ v = v.

(3) We define a semigroup action µ as free if the action is free, meaning that for any
α,β ∈ F , and v ∈ V , if α ⋅ v = β ⋅ v, then it follows that v = 0 or α = β.

(4) We define an action µ as compatible with the Z-structure of V if the following
conditions are met:
● µ acts by endomorphisms, meaning that for all α ∈ F , v,w ∈ V , the equation
α ⋅ (v +w) = α ⋅ v + α ⋅w holds,
● −1 acts as −id, which implies that for all v ∈ V , −1 ⋅ v = −v,
● 0 acts trivially, meaning that for all v ∈ V , 0 ⋅ v = 0.

(5) We define an action µ as a left scalar group action if it is a left semigroup action
compatible with the Z-structure of V .

Definition 1.4. Let F be a scalar group. An F -space is a pair (V,µ) where V is an abelian
additive group and µ ∶ F × V → V is a left scalar group action. When there is no confusion, we
will simply denote (V,µ) as V and µ(α, v) as α ⋅ v, for all α ∈ F and v ∈ V . We say that W is
an F -subspace of V if W is a nonempty subset of V that is closed under addition and scalar
multiplication.

Next, we define the notion of the quasi-kernel of an F -space.

Definition 1.5. Let V be an F -space. We define the quasi-kernel of V to be

Q(V ) = {v ∈ V ∣ ∀α,β∈F∃γ∈F [α ⋅ v + β ⋅ v = γ ⋅ v]}.
We can also define a semigroup action on the right. In this paper, we will restrict ourselves

to left near-vector spaces. All of our results will also apply to right near-vector spaces. The
definition below is equivalent to [1, Definition 4.1] of a near-vector space using the terminologies
introduced in Definition 1.3.

Definition 1.6. A left near-vector space over a scalar group F is an F -space (V,µ) such
that the left scalar group action µ is free and Q(V ) generates V seen as an additive group. Any
trivial abelian group has a near-vector space structure through the trivial action. We refer to
such a space as a trivial near-vector space over F . We denote a trivial near-vector space
as {0}.

In the following, a left near-vector space is simply referred to as a near-vector space and F

denotes a scalar group and V denotes a near-vector space over the scalar group F unless stated
differently.

Remark 1.7. (1) The freeness of the action µ is usually referred to as the fixed point-free
property in near-vector space theory literature.

(2) The fixed point-free property can be translated in terms of the stabilizer as follows. For
all v ∈ V , we have that the set of elements of F that stabilize v is described as follows:

StabF (v) = {F if v = 0;

{1} if v ≠ 0.

(3) Q(V ) is stable by scalar multiplication (see [1, Lemma 2.2]).
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We provide illustrative examples of near-vector spaces that deviate from traditional vector
spaces, highlighting their unique characteristics.

Examples 1.8. We provide three examples of near-vector spaces. The first example involves
a near-vector space over a scalar group that constitutes the underlying multiplicative group of
a field. The second example pertains to a near-vector space over a scalar group that is the
underlying multiplicative group of a near-field. We denote [a]n the equivalence class of the
integer a modulo n or simply [a] when n is clear from context.

(1) Consider the scalar group (R, ⋅), where 1 serves as the identity element, −1 serves as
the additive inverse, 0 serves as the zero element, and multiplication is the usual mul-
tiplication in R. This scalar group is the underlying multiplicative group of the field(R,+, ⋅). We can define an action by endomorphism of R on R3 as follows:

α ☆ (x, y, z) = (αx,αy,α3z)
for α ∈ R and (x, y, z) ∈ R3. (R3,☆) becomes a near-vector space with these operations.
Notably,

Q(R3,☆) = {α(1,1,0) ∣ α ∈ R} ∪ {α(0,0,1) ∣ α ∈ R} ,
thus making the quasi-kernel of (R3,☆) the union of two R-subspaces: {α(1,1,0) ∣ α ∈ R}
and {α(0,1,1) ∣ α ∈ R}.

(2) Consider the scalar group (Z5, ⋅), where [1] serves as the identity element, [4] serves
as the additive inverse, [0] serves as the zero element, and multiplication is the usual
multiplication in Z5. This scalar group is the underlying multiplicative group of the
field (Z5,+, ⋅). We define an action by endomorphism of Z5 on Z2

5
as follows:

α ⋆ (x, y) = (αx,−αy)
for α ∈ Z5 and (x, y) ∈ Z2

5
. (Z2

5
,⋆) becomes a near-vector space with these operations.

Notably,

Q(Z2

5,⋆) = {α([1], [0]) ∣ α ∈ Z5} ∪ {α([0], [1]) ∣ α ∈ Z5},
thus making the quasi-kernel of (Z2

5
,⋆) the union of two Z5-subspaces: {α([1], [0]) ∣ α ∈

Z5} and {α([0], [1]) ∣ α ∈ Z5}. However, (Z2
5
,⋆) is not a vector space, as evidenced by

the fact that ([1], [2])([1], [1]) = ([3], [2]) ≠ ([3],3) = [1]([1], [1]) + [2]([1], [1]).
(3) Consider the finite field (GF (32),+, ⋅) (see also [10]). We have

GF (32) ∶= {[0], [1], [2], γ, [1] + γ, [2] + γ, [2]γ, [1] + [2]γ, [2] + [2]γ},
where γ is a root of x2 + [1] ∈ Z3[x]. The operations on GF (32) are defined as follows:

([a] + [b]γ) + ([c] + [d]γ) = ([a] + [c]) + ([b] + [d])γ,
for all [a], [b], [c], [d] ∈ Z3, and the usual multiplication is depicted in Table 1.

We introduce a new operation ○ on GF (32)2 as follows:

x ○ y ∶= { x ⋅ y if x is a square in (GF (32),+, ⋅)
x ⋅ y3 otherwise.

This operation is also presented in Table 2. We have that (GF (32),+,○) is a near-field
and (GF (32),○) a scalar group.

By defining an action by endomorphism ◇ of GF (32) on (GF (32))2 as

α ◇ (x1, x2) = (α ○ x1, α ○ x2),
we create the near-vector space ((GF (32))2,◇). Additionally,

Q((GF (32))2,◇) = {λ(d1, d2) ∣ λ ∈ GF (32) and d1, d2 ∈ GF (3)}.
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⋅ [0] [1] [2] γ [1] + γ [2] + γ [2]γ [1] + [2]γ [2] + [2]γ

[0] [0] [0] [0] [0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] γ [1] + γ [2] + γ [2]γ [1] + [2]γ [2] + [2]γ

[2] [0] [2] [1] γ [2] + [2]γ 1 + [2]γ γ [2] + γ [1] + γ

γ [0] γ [2]γ [2] [2] + γ [2] + [2]γ [1] [1] + γ [1] + [2]γ

[1] + γ [0] [1] + γ [2] + [2]γ [2] + γ [2]γ [1]3 [1]3 + [2]3γ [2]3 γ

[2] + γ [0] [2] + γ [1] + [2]γ [2] + [2]γ [1] γ [2] + γ [2]γ [2]

[2]γ [0] [2]γ γ [1] [1] + [2]γ [1] + γ [2] [2] + [2]γ [2] + γ

[1] + [2]γ [0] [1] + [2]γ [2] + γ [1] + γ [2] [2]γ [2] + [2]γ γ [1]

[2] + [2]γ [0] [2] + [2]γ [1] + γ [2] + γ [1] [2] [1] + [2]γ [2]γ γ

Table 1. Multiplication table for the field GF (32)

○ [0] [1] [2] γ [1] + γ [2] + γ [2]γ [1] + [2]γ [2] + [2]γ

[0] [0] [0] [0] [0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] γ [1] + γ [2] + γ [2]γ [1] + [2]γ [2] + [2]γ

[2] [0] [2] [1] [2]γ [2] + [2]γ [1] + [2]γ γ [2] + γ [1] + γ

γ [0] γ [2]γ [2] [2] + γ [2] + [2]γ [1] [1] + γ [1] + [2]γ

[1] + γ [0] [1] + γ [2] + [2]γ [1] + [2]γ [2] γ [2] + γ [2]γ [1]

[2] + γ [0] [2] + γ [1] + [2]γ [1] + γ [2]γ [2] [2] + [2]γ [1] γ

[2]γ [0] [2]γ γ [1] [1] + [2]γ [1] + γ [2] [2] + [2]γ [2] + γ

[1] + [2]γ [0] [1] + [2]γ [2] + γ [2] + [2]γ γ [1] [1] + γ [2] [2]γ

[2] + [2]γ [0] [2] + [2]γ [1] + γ [2] + γ [1] [2]γ [1] + [2]γ γ [2]

Table 2. Multiplication table for the near-field GF (32)

For more detailed proof, refer to [9, Section 2.3]. However, this is not a vector space,
simply noting that ([1]+γ)([1], [2]+γ) = ([1]+γ, γ) ≠ ([1]+γ, [1]) = [1]([1], [2]+γ)+
γ([1], [2] + γ).

We will utilize Example 1.8 (1) to elucidate the properties of near-vector spaces throughout
this paper. Analogous observations can be drawn from the remaining examples. The analysis
of the other two instances provided in Example 1.8 is left to the readers.

The concept of the quasi-kernel enables the introduction of an abelian group operation on
F . This operation, outlined in the ensuing definition, transforms F into a near-field (see [1,
Lemma 2.4]).
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Definition 1.9. [1, Section 2] For any v ∈ Q(V )/{0} and α,β ∈ F , we denote α +v β as the
unique γ ∈ F such that α ⋅v+β ⋅v = γ ⋅v. Given a family (αi)i∈{1,⋯,n} of elements in F , we signify
by v∑n

i=1 αi the sum α1 +v α2 +v ⋯+v αn.

Remark 1.10. For α,β ∈ F and v ∈ Q(V )/{0}, it holds that α +v β = 0 if and only if α = −β.
This equivalence stems from the following reasoning: Let α,β ∈ F and v ∈ Q(V )/{0}. Assume
α +v β = 0. Then (α +v β) ⋅ v = α ⋅ v + β ⋅ v = 0, implying that α ⋅ v = −β ⋅ v. Due to the
fixed point free property of V , it follows that α = −β. Conversely, let α = −β. This leads to
α ⋅ v +β ⋅ v = α ⋅ v −α ⋅ v = 0. Since v ∈ Q(V ), we have α ⋅ v +β ⋅ v = (α+v β) ⋅ v. Consequently, we
have (α +v β) ⋅ v = 0 = 0 ⋅ v, and α +v β = 0 by the fixed point free property of V .

In the realm of near-vector space theory, a new concept for the dimension of an element
emerges.

Definition 1.11. [7, Definition 3.5] For v ∈ V /{0}, the dimension of an element v, denoted
by dim(v), is the minimum number of distinct elements in Q(V ) such that v can be expressed
as a sum of those elements. For v = 0, we set dim(v) = 0.

Although elementary once stated, the following lemma is pivotal in proving the main results.

Lemma 1.12. If A is a non-empty finite subset of Q(V ), and +a = +b for all a, b ∈ A, then
∑a∈A a ∈ Q(V ).
Proof. Let α,β ∈ F . Assume +a = +b for all a, b ∈ A. Let + ∶= +a for all a ∈ A. Then,

α ⋅∑
a∈A

a + β ⋅∑
a∈A

a = ∑
a∈A

α ⋅ a +∑
a∈A

β ⋅ a = ∑
a∈A

(α +a β) ⋅ a
= ∑

a∈A

(α + β) ⋅ a = (α + β) ⋅∑
a∈A

a

and thus, ∑a∈A a ∈ Q(V ). �

Definition 1.13. We write A⊆finB to indicate that A is a finite subset of B.

The subsequent lemma, while relatively straightforward to prove once introduced, plays a
fundamental role in the underlying concepts of the main results.

Lemma 1.14. Let v ∈ V . There is Θ⊆finQ(V ) with ∣Θ∣ = dim(v) such that v = ∑q∈Θ q (see
Definition 1.11). Then, for all q, q′ ∈ Θ such that q ≠ q′, we have +q ≠ +q′ .

Proof. Let v ∈ V . Let Θ⊆finQ(V ) with ∣Θ∣ = dim(v) such that v = ∑q∈Θ q. We proceed by
contradiction. Assume there exist q, q′ ∈ Θ with q ≠ q′ and +q = +q′ . By Lemma 1.12, q + q′ ∈
Q(V ), contradicting the minimality of dim(v). �

Remark 1.15. (1) If W and W ′ are F -subspaces of V with W ⊆ W ′, then Q(W ) = W ∩

Q(W ′). Particularly, Q(W ) =W ∩Q(V ) and Q(W ) ⊆ Q(W ′).
(2) When W is an F -subspace of V , the action µ that imparts V with its near-vector

space structure over the scalar group F also induces a left scalar group free action
µ∣W ∶ F ×W → W by restricting the map µ to F ×W . At this stage, it may not be
evident that the quasi-kernel of W generates W as an abelian group. We will prove this
in Theorem 4.1.

To describe spans of near-vector spaces, the subsequent terminology is required.
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Definition 1.16. For an F -space V , let {Si}i∈I be a family of subsets of V . We define the
sum of the family {Si}i∈I as follows:

∑
i∈I

Si = {∑
j∈J

sj ∣ J⊆finI, sj ∈ Sj, for all j ∈ J} .
The empty sum is denoted as ∑v∈∅ v = 0. If for every J⊆finI, sj , s′j ∈ Sj for all j ∈ J such that

∑j∈J sj =∑i∈J s
′

j , then ∑i∈I Si is termed a direct sum, denoted as ⊕i∈ISi. The family {Si}i∈I is
referred to as additively independent when the sum ∑i∈I Si is a direct sum.

Demonstrating that the sum of subspaces remains a subspace, as stated by the following
lemma, is a straightforward task.

Lemma 1.17. Consider a family {Wi}i∈I of F -subspaces of V . The set ∑i∈I Wi is likewise an
F -subspace of V .

The First Isomorphism Theorem for near-vector spaces will be established. The ensuing
definitions introduce the concepts of homomorphism, kernel, and image in this context. It’s
important to note that these definitions mirror those used in classical linear algebra.

Definition 1.18. Given near-vector spaces V and V ′ over the same scalar group F , a morphism
of near-vector spaces f ∶ V → V ′ is referred to as a linear map. In other words, for all x, y ∈ V
and α ∈ F :

(1) f(x + y) = f(x) + f(y);
(2) f(α ⋅ x) = α ⋅ f(x).

Throughout this paper, we assume that f ∶ V → V ′ is a linear map, with V and V ′ consistently
denoting near-vector spaces over the same scalar group F .

Definition 1.19. Given a linear map f ∶ V → V ′, we define the kernel of f as the set

Ker(f) = {v ∈ V ∣ f(v) = 0},
and the image of f as the set

Im(f) = {f(v) ∣ v ∈ V }.
Similar to the principles in classical linear algebra, we can establish that the kernel and image

of a linear map also conform to the structure of an F -space.

Lemma 1.20. For a linear map f ∶ V → V ′, the set Ker(f) is an F -subspace of V , and Im(f)
is an F -subspace of V ′.

2. Linear independence, span and basis

The concept of the span for F -spaces aligns closely with the definition of span for vector
spaces. Here, we introduce the notion of span for any F -space. It’s important to note that the
fixed point free property and the quasi-kernel have no impact on the following definitions.

Definition 2.1. [7, Definition 3.2] Consider an F -space V . We define the span of a set S

as the intersection W of all non-empty subsets of V that are closed under addition and scalar
multiplication and contain the set S. This span is denoted as Span(S).
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Remark 2.2. For an F -space V and a subset S ⊆ V , the following observations hold:

(1) If A ⊆ V and A ⊆ Span(S), then Span(A) ⊆ Span(S), given that Span(A) is the smallest
F -subspace containing A and Span(S) is a non-empty subset of V closed under addition
and scalar multiplication that contains S.

(2) When S = ∅, it follows that Span(S) = {0}.
(3) For all α ∈ F /{0} and v ∈ V , Span(α ⋅ v) = Span(v).

Just as in classical linear algebra, the span of a set in F -spaces corresponds precisely to the
set of linear combinations of its elements. The only distinction lies in the complexity of the
linear combinations.

Lemma 2.3. Let V be an F -space, and S ⊆ V . Then, the set Span(S) can be expressed as
follows:

Span(S) ={∑
a∈A

(na

∑
i=1

αa,i ⋅ a)∣A⊆finS,na ∈ N, αa,i ∈ F,∀a ∈ A,∀i ∈ {1,⋯, na}}
=∑

s∈S

Span(s).

Proof. Let S ⊆ V and define

L(S) ∶= {∑
a∈A

(na

∑
i=1

αa,i ⋅ a)∣A⊆finS,na ∈ N, αa,i ∈ F,∀a ∈ A, ∀i ∈ {1,⋯, na}} .
We aim to show that L(S) ⊆ Span(S). By the definition of Span(S), it’s given that S ⊆
Span(S). Furthermore, since Span(S) represents the intersection of all non-empty subsets
of V that are closed under addition and scalar multiplication and contain S, it also satisfies
these properties, thus making it closed under linear combinations. Thus, L(S) ⊆ Span(S),
as desired. For the reverse inclusion, we observe that L(S) contains S and is closed under
addition and scalar multiplication. This yields Span(S) ⊆ L(S), considering that Span(S) is the
smallest non-empty subset of V closed under addition and scalar multiplication and containing
S. As Span(S) is a non-empty subset of V closed under addition and scalar multiplication and
containing S, we deduce that ∑s∈S Span(s) ⊆ Span(S). Since S ⊆ ∑s∈S Span(s), we have, by
applying Remark 2.2, Span(S) ⊆ ∑s∈S Span(s). As a result, we obtain Span(S) = ∑s∈S Span(s).

�

Definition 2.4. Consider an F -space V and S ⊆ V . An element of the form ∑a∈A (∑na

i=1αa,i ⋅ a)
according to the notations in Lemma 2.3 is referred to as a linear combination of elements
of S.

Remark 2.5. For an F -space V and s ∈ V , the set Span(s) can be described as:

Span(s) = { n

∑
i=1

αs,i ⋅ s∣n ∈ N, αs,i ∈ F and i ∈ {1,⋯, n}} .

Next, we delve into the definition of linear independence beyond the context of the quasi-
kernel.

Definition 2.6. In an F -space V , let S ⊆ V . S is considered linearly independent if
0 ∉ S and for any non-empty subset A⊆finS, along with na ∈ N and αa,i ∈ F where a ∈ A and
i ∈ {1,⋯, na}, if ∑a∈A (∑na

i=1αa,i ⋅ a) = 0, then ∑na

i=1αa,i ⋅a = 0 for all a ∈ A. An element v is scalar
if Span(v) = F ⋅ v.
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Remark 2.7. (1) If S ⊆ Q(V ), then we show in Lemma 2.11 that the definition of linear
independence in 2.6 is equivalent to the standard definition of linear independence in
near-vector space theory (see [1, Theorem 3.1]).

(2) Clearly, v is scalar if and only if for all w ∈ V such that F ⋅w ⊆ Span(v), we have w ∈ F ⋅v.
(3) Note that by definition, ∅ is a linearly independent set.

We can now establish that the concept of a scalar element is tantamount to asserting that
the element belongs to the quasi-kernel, provided V is a near-vector space.

Lemma 2.8. The following assertions are equivalent.

(1) v is scalar;
(2) F ⋅ v = F ⋅w, for all w ∈ Span(v)/{0};
(3) v ∈ Q(V ).

Proof. (1) ⇒ (2): Let w ∈ Span(v)/{0}. Then, by assumption, w ∈ F ⋅ v, implying the existence
of α ∈ F /{0} such that w = α ⋅ v. Consequently, F ⋅w = F ⋅ v.

(2) ⇒ (3): Suppose α,β ∈ F . When α⋅v+β ⋅v = 0, we have α⋅v+β ⋅v = 0⋅v ∈ F ⋅v. Alternatively,
if α ⋅ v +β ⋅ v ∈ Span(v)/{0}, we get α ⋅ v +β ⋅ v ∈ F ⋅ v due to the equality F ⋅ v = F ⋅ (α ⋅ v +β ⋅ v).
Hence v ∈ Q(V ).

(3) ⇒ (1): Let x ∈ Span(v). Then, by Lemma 2.3, x = ∑n
i=1αi ⋅ v for n ∈ N and αi ∈ F

where i ∈ {1,⋯, n}. We proceed with an induction on n to establish ∑n
i=1αi ⋅ v = (v∑n

i=1αi) ⋅ v.
The base case n = 1 is straightforward. For the inductive step, assume that for some n ∈ N,
∑n

i=1 αi ⋅v = (v∑n
i=1 αi) ⋅v holds for all αi ∈ F where i ∈ {1,⋯, n}. Let αi ∈ F where i ∈ {1,⋯, n+1}.

We prove that ∑n+1
i=1 αi ⋅ v = (v∑n+1

i=1 αi) ⋅ v. Given that v ∈ Q(V ), we deduce that

n+1

∑
i=1

αi ⋅ v =
n

∑
i=1

αi ⋅ v + αn+1 ⋅ v = (v n

∑
i=1

αi) ⋅ v + αn+1 ⋅ v = (v n

∑
i=1

αi +v αn+1) ⋅ v,
by the induction hypothesis. This completes the argument and establishes that x ∈ F ⋅v, thereby
proving that v is scalar. �

The following lemma provides justification for why the chosen notion of linear independence
is appropriate for generalizing the concept outside the quasi-kernel.

Lemma 2.9. Let V be an F -space and S ⊆ V . The following statements are equivalent.

(1) S is linearly independent;
(2) 0 ∉ S and for any non-empty A⊆finS and αa ∈ Span(a) where a ∈ A, if ∑a∈A αa = 0, then

αa = 0 for all a ∈ A;
(3) 0 ∉ S and Span(S) = ⊕s∈S Span(s);
(4) 0 ∉ S and for every subset T of S, Span(T ) ∩ Span(S/T ) = {0};
(5) 0 ∉ S and for every s ∈ S, Span(s) ∩ Span(S/{s}) = {0};
(6) 0 ∉ S and {Span(s)}s∈S is additively independent.

Proof. (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5) ∶ These implications are evident.
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(5)⇒ (6) ∶ If S = ∅, then the result is clear. When S is not empty, we argue by contradiction.
Suppose that {Span(s)}s∈S is linearly dependent. Then, there exists B⊆finS non-empty and
αb ∈ Span(s) for all b ∈ B such that ∑b∈B αb = 0, and the α′bs are non-zero. Let’s say αb0 ≠ 0. It’s
important to note that αb0 ≠ 0 implies B/{b0} is non-empty. Then, αb0 = ∑x∈B/{b0}(−αx) with
αx ∈ Span(x) for all x ∈ B/{b0}, and so αb0 ∈ Span(S/{b0}). This means αb0 ∈ Span(S/{b0}) ∩
Span(b0), which contradicts our initial assumption.

(6)⇒ (1) ∶ If S = ∅, then the result follows from the definition of linear independence. When
S is not empty, suppose that there exists A⊆finS non-empty, na ∈ N, and αa,i ∈ F where a ∈ A and
i ∈ {1,⋯, na} such that ∑a∈A (∑na

i=1αa,i ⋅ a) = 0. Since {Span(s)}s∈S is additively independent, it
follows that ∑na

i=1αa,i ⋅ a = 0 for all a ∈ A. �

Remark 2.10. (1) Clearly, by definition, for any v ∈ V /{0}, {v} is linearly independent.
(2) Let S ⊆ V . In contrast to classical linear algebra, in near-vector space theory, t ∉

Span(S) is not equivalent to Span(t) ∩ Span(S) = {0}. For example, consider Example
1.8 (1). We have that Span((1,0,1)) = R×{0}×R and Span((0,1,1)) = {0}×R×R. It’s
important to note that (1,0,1) ∉ Span((0,1,1)) since for any (x, y, z) ∈ Span((0,1,1)),
the x-coordinate is trivial. However, (0,0,1) ∈ Span((1,0,1)) because

(0,0,1) = 3
√
4

3
√
3
⋅ (1,0,1) − 1

3
√
6
⋅ (1,0,1) − 1

3
√
6
⋅ (1,0,1)

and (0,0,1) ∈ Span((0,1,1)) since

(0,0,1) = 3
√
4

3
√
3
⋅ (0,1,1) − 1

3
√
6
⋅ (0,1,1) − 1

3
√
6
⋅ (0,1,1),

so
Span((1,0,1)) ∩ Span((0,1,1)) ≠ {(0,0,0)}.

This illustrates that in near-vector space theory, the span behaves differently than in
classical linear algebra. Specifically, we can decompose V as follows: W1 = {(x, y,0) ∣
x, y ∈ R} and W2 = {(0,0, z) ∣ z ∈ R}. W1 and W2 are F -subspaces of V and V =
W1 ⊕W2. Additionally, Q(V ) = W1 ∪W2. Furthermore, if v ∈ Wi for some i ∈ {1,2},
then Span(v) = F ⋅ v. It’s clear that dim(v) equals the minimal number of non-zero wi’s
when v = w1 +w2, where wi ∈Wi and i ∈ {1,2}.

(3) Given S ⊆ V and q ∈ Q(V ), then q ∉ Span(S) is equivalent to Span(q) ∩ Span(S) = {0}.
(4) In (2), we have seen that there could be elements t in V outside of Span(S) for some

S subset of V and still have S ∪ {t} be linearly dependent. However, if S is a linearly
independent subset of V and q ∈ Q(V ) with q ∉ Span(S), then {q} ∪ S is linearly
independent. This is immediately evident due to the direct sum property established in
the statement (3) of Lemma 2.9.

(5) Let S ⊆ V . It’s worth noting that S being linearly independent is not equivalent to the
following statement: for all A⊆finS non-empty, αa ∈ F where a ∈ A, ∑a∈A αa ⋅a = 0 implies
αa = 0 for all a ∈ A. For instance, using the same example as in (2), consider the vectors(1,0,1) and (0,0,1). Suppose that for some α,β ∈ R, we have

α ⋅ (1,0,1) + β ⋅ (0,0,1) = (0,0,0).
Then, α3 + β3 = 0, and since α = 0, we deduce that α = β = 0. However, as seen in (2),(0,0,1) ∈ Span((1,0,1)), so the set {(1,0,1), (0,0,1)} is not linearly independent.

(6) Let v ∈ V /{0} and Θ ⊆ Q(V ) with ∣Θ∣ = dim(v) such that v = ∑q∈Θ q. It follows that Θ

is linearly independent. This can be easily proved by contradiction.

The following result describes the span of elements in the quasi-kernel.
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Lemma 2.11. Let S ⊆ Q(V ). Then Span(S) = ∑s∈S F ⋅ s. Moreover, the following statements
are equivalent:

(1) S is linearly independent;
(2) for any non-empty A⊆finS and αa ∈ F where a ∈ A, if ∑a∈Aαa ⋅ a = 0, then αa = 0 for all

a ∈ A
(3) 0 ∉ S and Span(S) =⊕s∈S F ⋅ s;
(4) 0 ∉ S and s ∉ Span(S/{s});
(5) 0 ∉ S and {F ⋅ s}s∈S is additively independent.

Proof. Suppose S ⊆ Q(V ). By Lemma 2.8, Span(s) = F ⋅ s for any s ∈ Q(V ). Therefore,
Span(S) = ∑s∈S F ⋅ s follows from Lemma 2.3, and the equivalence of statements (1) to (5)
directly follows from Lemma 2.9. �

Let’s now define a general notion of a generating set that allows us to consider sets outside
of an F -subspace.

Definition 2.12. Let V be an F -space and W be an F -subspace of V . A subset S of V is
called a generating set for W if W ⊆ Span(S).
Remark 2.13. (1) Note that ∅ is a generating set for {0}.

(2) When S ⊆W , then S is a generating set of W if and only if Span(S) =W .
(3) When V is a near-vector space, Q(V ) is a generating set for V .

Now we can define two notions of a basis: the F -basis and the scalar F -basis. In classical
linear algebra, these two concepts coincide. However when considering near-vector spaces, this
distinction becomes fundamental.

Definition 2.14. Let V be an F -space.

(1) The set S is called an F -basis for V (or simply basis when there is no confusion) if
S ⊆ V , S is a generating set for V , and S is linearly independent.

(2) A scalar F -basis (or simply scalar basis when there is no confusion) is a set that is
a basis whose elements are scalar.

(3) V is said to be finite-dimensional if V admits a finite scalar F -basis.
(4) When V is a finite-dimensional near-vector space, we say that a basis B is a minimal

(resp. maximal) basis for V , if ∣B∣ = min{∣C ∣ ∣ C basis of V } (resp. ∣B∣ = max{∣C ∣ ∣
C basis of V }).

Remark 2.15. Note that ∅ is a scalar F -basis for {0}.

3. Key span results

The two main results of this paper are Theorem 3.2 and Corollary 3.15. These results
illuminate the fundamental principles of the theory of near-vector spaces. The significance of
Theorem 3.2 becomes evident in the proof of Theorem 4.1, establishing the proposition that
any F -subspace is indeed a near-vector space. Meanwhile, Corollary 3.15 plays a pivotal role
in the demonstration of Theorem 4.2, which asserts that a quotient by an F -subspace also
constitutes a near-vector space. Notably, the initial establishment of Theorem 4.1 was achieved
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within the framework of division rings in [5]. Subsequently, its validity was extended to general
cases through a geometric approach in [6]. Independently, in this paper, we present a direct
generalization of the version in [5] to prove Theorem 4.1.

Upon sharing our paper on arXiv, we became aware of Dr. Wessels’ work [11, Theorem 3.3.7].
However, we wish to acknowledge that the proof of Theorem 4.2 as presented in [11, Theorem
3.3.7] has been identified as incomplete. This issue has been acknowledged and agreed upon
by the authors involved. Specifically, upon closer examination, Dr. Marques identified a crucial
missing element in their argument. This critical component is adequately provided by our
Corollary 3.15, which essentially acts as the missing link required to achieve the completeness
of the proof presented in [11]. We are also grateful to Prof. Wadsworth for his insightful
suggestions, which prompted us to reorganize the initial proof of Theorem 3.2 and led us to
incorporate the following lemma as part of our revised approach.

Lemma 3.1. Let v ∈ V /{0} and Θ ⊆ Q(V ) with ∣Θ∣ = dim(v) such that v = ∑q∈Θ q. For every
w ∈ Span(v), we define γq,w ∈ F for all q ∈ Θ such that w = ∑q∈Θ γq,w ⋅ q and Γw ∶= {γq,w ∣ γq,w ≠
0, q ∈ Θ}. Let s ∈ Span(v) such that ∣Γs∣ = min{∣Γw∣ ∣ w ∈ Span(v)/{0}}. Then,

(1) s ∈ Q(V );
(2) Span(Θ) = Span({s} ∪Θ/{q0}), for all q0 ∈ Θ such that γq0,s ≠ 0.

Proof. Let Θ ⊆ Q(V ) with ∣Θ∣ = dim(v) such that v = ∑q∈Θ q and s ∈ Span(v) such that
s = ∑q∈Γs

γq ⋅ q and ∣Γs∣ =min{∣Γw∣ ∣ w ∈ Span(v)/{0}}.
(1) We denote ∣Γs∣ by m. If m = 1, then s ∈ Q(V ). Consider m ≥ 2. Suppose that
+γq ⋅q = +γq′ ⋅q′ for all q, q′ ∈ Γs. Then s ∈ Q(V ) by Lemma 1.12. Now, suppose that there
exists q1, q2 ∈ Γs such that +γq1 ⋅q1 ≠ +γq2 ⋅q2. Then, we can choose some α,β ∈ F such that
α+γq1 ⋅q1 β ≠ α+γq2 ⋅q2 β. Let t = α ⋅ s+β ⋅ s− (α+γq1 ⋅q1 β) ⋅ s, so that t ∈ Span(s) ⊆ Span(v).
Then

t = ∑
q∈Γs

δq ⋅ (γq ⋅ q)
where δq = (α +γq ⋅q β) −γq ⋅q (α +γq1 ⋅q1 β), for all q ∈ Γs. So, δq1 = 0 while δq2 ≠ 0. Hence,
t ≠ 0, since Γs is linearly independent. This contradicts the minimality assumption. So,
the final case cannot occur, proving (1).

(2) By (1), we have s ∈ Q(V ). We set Θ′ ∶= {s} ∪Θ/{q0} where q0 ∈ Θ such that γq0 ≠ 0.
We have Span(Θ) = Span(Θ′). Indeed, Θ′ ⊆ Span(Θ) proving the inclusion Span(Θ′) ⊆
Span(Θ). In the other inclusion, we prove that Θ ⊆ Span(Θ′). It is enough to prove
that q0 ∈ Span(Θ′), which is the case, since q0 = γ−1q0 (s −∑q∈Θ/{q0} γq ⋅ q).

�

Theorem 3.2. Let v ∈ V /{0}. There is Θ ⊆ Q(V ) with ∣Θ∣ = dim(v) such that v =∑q∈Θ q and

Span(v) = Span(Θ) =⊕
q∈Θ

F ⋅ q.

Proof. We prove the theorem by induction on dim(v). When dim(v) = 1, then v ∈ Q(V ) and one
can simply take Θ = {v}. Now assume that dim(v) > 1. Suppose that the theorem is satisfied
for any v ∈ V /{0} such that dim(v) < k. We prove that the result remains true for any v ∈ V /{0}
such that dim(v) = k. Let v ∈ V such that dim(v) = k. By Lemma 3.1, we can choose Θ ⊆ Q(V )
such that Θ ∩ Span(v) ≠ ∅, ∣Θ∣ = dim(v) and Span(v) = Span(Θ). Say q0 ∈ Span(v) ∩ Θ.
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Since v ∈ Span(Θ), we can write v = γ0 ⋅ q0 + w where γ0 ∈ F and w ∈ Span(Θ/{q0}). Then,
dim(w) ≤ k − 1 < dim(v). The induction hypothesis on dim(v) yields that there is Θw ⊆ Q(V )
with ∣Θw∣ = dim(w) and Span(Θw) = Span(w). Let Θv = {q0} ∪Θw ⊆ Q(V ). Then, Span(v) ⊆
Span(Θv), since v = γ0 ⋅ q0 +w with q0,w ∈ Span(Θv). For the reverse inclusion, we observe that
w ∈ Span(v) since w = v−γ0⋅q0 and q0 ∈ Span(v) by definition. So that Span(w) ⊆ Span(v). Now,
since Span(Θw) = Span(w) and q0 ∈ Span(v), we can deduce that Θv ⊆ Span(v). Thus we obtain
Span(v) = Span(Θv). Finally, ∣Θv∣ = ∣Θw∣+1 = dim(w)+1 = dim(v). Since Span(Θ) =⊕q∈ΘF ⋅ q

(by Lemma 2.11), the result follows. �

Remark 3.3. Let v ∈ V /{0}. By Theorem 3.2, there is Θ ⊆ Q(V ) with ∣Θ∣ = dim(v) such that
v = ∑q∈Θ q and Θ ⊆ Q(Span(v)). Moreover, Θ is a scalar basis for Span(v).

The following lemma is an adaptation of the classical linear algebra proof for near-vector
spaces, which shows that any vector space admits a basis (see for instance [8, Theorem 7.2.2]).
The proof will make use of Zorn’s Lemma (see for instance [2, Theorem 3.5.6]).

Lemma 3.4. Let S ⊆ Q(V ) be a generating set for V . Then there exists B ⊆ S such that B is
a scalar basis.

Proof. When V = {0}, then S = ∅ is a basis for V . Suppose that V ≠ {0}. Consider the set
L of all linearly independent subsets of S. Then L is non-empty. Indeed, there is a non-zero
element s in S, since V ≠ {0}, so that {s} ⊆ S is a linearly independent set. Let C be a chain
L1 ⊆ L2 ⊆ ⋯ ⊆ Li ⊆ Lj ⊆ ⋯ where Li ⊆ L for each i ∈ I. We now prove that ⋃i∈I Li is an
upper bound for C. We have that Li ⊆ ⋃i∈I Li for all i ∈ I. We want to show that ⋃i∈I Li is
a linearly independent set. Since 0 ∉ Li for all i ∈ I, 0 ∉ ⋃i∈I Li. Let A = {a1,⋯, an} ⊆ ⋃i∈I Li

with A being non-empty, na ∈ N with a ∈ A, for all αa,k ∈ F where a ∈ A and k ∈ {1,⋯, na} such
that ∑a∈A (∑na

k=1αa,k ⋅ a) = 0. Then for each j ∈ {1,⋯, n}, we have aj ∈ Lij for some ij ∈ I. Let
i0 = max{ij ∣ j ∈ {1,⋯, n}}. Then A ⊆ Li0 . Since Li0 is a linearly independent set, this implies
that ∑na

k=1αa,k ⋅a = 0 and so ⋃i∈I Li is linearly independent. Therefore ⋃i∈I Li is an upper bound
for L. Therefore, by Zorn’s Lemma, L has a maximal element, say B. We prove that B is a
basis for V . To do this, it is enough to prove that B is a generating set of V , since we already
know that B is linearly independent. We argue by contradiction. Suppose B is not a generating
set of V . Then there exists v ∈ V such that v ∉ Span(B). Thus, {v}∪B is linearly independent
since v ∈ Q(V ), by Remark 2.10, (4). Also, B ⊊ {v} ∪B, contradicting the maximality of B.
Therefore B is a generating set of V , and B is a scalar basis for V . �

Remark 3.5. (1) Note that Lemma 3.4 is generally not true if S is a generating set of
V that contains elements that are not scalar. For example, consider the near-vector
space example given in Remark 2.10, (2). Note that {(1,0,1), (0,1,1)} generates V ,
since Span({(1,0,1), (0,1,1)}) = V . Indeed, we have V ⊆ Span({(1,0,1), (0,1,1)})
since {(1,0,0), (0,1,0), (0,0,1)} is a scalar basis for V and {(1,0,0), (0,1,0), (0,0,1)} ⊆
Span({(1,0,1), (0,1,1)}). However, {(1,0,1), (0,1,1)} is not linearly independent, since(0,0,1) ∈ Span((1,0,1))∩Span((0,1,1)) (as shown in Remark 2.10, (2)). Since (1,0,1)
and (0,1,1) do not generate V , no proper subset of {(1,0,1), (0,1,1)} generates V .
Hence, no subset of {(1,0,1), (0,1,1)} is a basis of V .

(2) Not all F -bases have the same cardinality. Indeed, using the same example as in Re-
mark 2.10, (2), we have {(1,0,0), (0,1,1)} as a basis for R3 equipped with the scalar
multiplication ☆. Also, {(1,0,0), (0,1,0), (0,0,1)} is a scalar basis. However, these two
bases do not have the same cardinality.
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Since a near-vector space is generated by its quasi-kernel, the following corollary can be
deduced from Lemma 3.4.

Corollary 3.6. Every near-vector space admits a scalar basis.

The subsequent lemma establishes that scalar bases are also maximal bases. This can be
readily demonstrated, given that we have previously established in Theorem 3.2 that any ele-
ment in V can be expressed as a direct sum of scalar elements.

Corollary 3.7. When V is a finite-dimensional near-vector space, any scalar basis for V is also
a maximal basis.

The ensuing result is an adaptation of the Replacement Theorem for vector spaces, tailored
for near-vector spaces (see for instance [8, Theorem 7.2.1]).

Lemma 3.8. Let S,T⊆finQ(V ), where S is linearly independent and Span(S) ⊆ Span(T ). Then,∣S∣ ≤ ∣T ∣ and there exists T0 ⊆ T such that Span(S ⊍ T0) = Span(T ), where S ⊍ T0 denotes the
disjoint union of S and T0.

Proof. Consider an element s ∈ S. Since S ⊆ Span(S) ⊆ Span(T ), it follows that s ∈ Span(T ).
Since T ⊆ Q(V ), as established in Lemma 2.11, we can express s = ∑t∈T αt ⋅ t, where αt ∈ F for
all t ∈ T . As s ≠ 0, at least one of the αt’s must be non-zero; let’s denote this as αt1 ≠ 0 with
t1 ∈ T . Consequently, we have t1 = α−1t1 (s −∑t∈T /{t1} αt ⋅ t). This implies t1 ∈ Span({s}∪T /{t1}),
which leads to T ⊆ Span({s} ∪ T /{t1}). Therefore, Span(T ) ⊆ Span({s} ∪ T /{t1}) by virtue
of Remark 2.2. As s ∈ Span(T ), we then have {s} ∪ T /{t1} ⊆ Span(T ). This implies that
Span({s} ∪ T /{t1}) ⊆ Span(T ) according to Remark 2.2. Ultimately, we deduce Span({s} ∪
T /{t1}) = Span(T ). By applying this process recursively to each element of S, we obtain
Span(T ) = Span(S ∪ T ′), where T ′ ⊆ T and ∣T ′∣ = ∣T ∣ − ∣S∣. This yields ∣S∣ ≤ ∣T ∣. By setting
T0 = T ′/(S ∩ T ′), we ensure Span(T ) = Span(S ⊍ T0). �

A direct consequence of Lemma 3.8 is the following corollary.

Corollary 3.9. Every scalar basis has the same cardinality.

Remark 3.10. Let v ∈ V /{0}. For any Θ ⊆ Q(V ) such that Span(v) = ⊕q∈ΘF ⋅ q, it follows that∣Θ∣ = dim(v). This conclusion can be drawn from the fact that Θ is both linearly independent
and generates Span(v), thus making Θ a scalar basis for Span(v). By Corollary 3.9, we deduce
that every scalar basis has the same cardinality, and the equality ∣Θ∣ = dim(v) emerges from
Theorem 3.2 and Remark 3.3. In other words, for any scalar basis Θ, ∣Θ∣ = dim(v).

With the aforementioned concepts established, a near-vector space can be understood as an
abelian group endowed with a scalar group action that possesses a scalar basis.

Theorem 3.11. Let V be an F -space. Then V is a near-vector space over F if and only if V
admits a scalar basis over F .

Proof. Assume V is a near-vector space over F . Consequently, by Corollary 3.6, V possesses a
scalar basis over F . Conversely, assume V admits a scalar basis over F . Let B = {bi}i∈I be a
scalar basis for V over F . As a result, the scalar group action is free. Specifically, if α ∈ F and
v ∈ V such that α ⋅ v = v, we can deduce, via the definition of scalar basis and Lemma 2.8, that
B ⊆ Q(V ). Additionally, there exists C⊆finB with αc ∈ F for all c ∈ C such that v = ∑c∈C αc ⋅ c.
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Consequently, the equation α ⋅v = v can be rewritten as: α ⋅v = α ⋅(∑c∈C αc ⋅ c) = ∑c∈C(α ⋅αc) ⋅c =
∑c∈C αc ⋅ c = v. Equivalently, we have ∑c∈C(α ⋅ αc +c (−αc)) ⋅ c = 0. This implies that α ⋅ αc = αc,
as C is a linearly independent set. This, in turn, is equivalent to αc = 0 for all c ∈ C or α = 1,
given that F /{0} forms a group. Finally, in light of the scalar basis definition, it is clear that
V is additively generated by Q(V ). Hence, V is a near-vector space over F . �

The following theorem provides a characterization for equality of spans:

Theorem 3.12. Let v ∈ V /{0} and w ∈ Span(v). The following statements are equivalent:

(1) Span(v) = Span(w);
(2) dim(v) = dim(w);
(3) For every scalar basis Θ of Span(v), if w = ∑q∈Θ γq ⋅ q where γq ∈ F for all q ∈ Θ, then

γq ≠ 0 for all q ∈ Θ.

Proof. (1) ⇒ (2) ∶ The equivalence dim(v) = dim(w) holds true due to all scalar bases of
Span(v) having the same cardinality, as stated by Corollary 3.9.

(2)⇒ (3) ∶ Let Θ be a scalar basis of Span(v) and suppose w = ∑q∈Θ γq ⋅ q where γq ∈ F for
all q ∈ Θ. Since ∣Θ∣ = dim(v), as per Remark 3.10, γq ≠ 0 for all q ∈ Θ, lest it contradict the
definition of dim(w), given that ∣Θ∣ = dim(v) = dim(w).
(3) ⇒ (1) ∶ Utilizing Theorem 3.2, we deduce the existence of Θv and Θw⊆finQ(V )/{0},

with ∣Θv∣ = dim(v) and ∣Θw∣ = dim(w), that allow us to express Span(v) = ⊕q∈Θv
F ⋅ q and

Span(w) = ⊕q∈Θw
F ⋅ q. Since Span(w) ⊆ Span(v), there exists Θ ⊆ Q(V )/Span(w), such that

Span(v) = (⊕q∈Θw
F ⋅ q)⊕ (⊕q∈ΘF ⋅ q) = Span(w)⊕ (⊕q∈ΘF ⋅ q) ,

owing to Lemma 3.8. Consequently, Θw ∪ Θ and Θv form scalar bases for Span(v). This
means that w = ∑q∈Θw∪Θ

γq ⋅ q, where γq ∈ F for all q ∈ Θw ∪ Θ. As ∣Θw∣ = dim(w), it follows
that γq = 0 for all q ∈ Θ. For assumption (3) to be satisfied, Θ must be empty, and thus
Span(v) = Span(w). �

Corollary 3.13. Let v ∈ V /{0}. Suppose that for all w ∈ Span(v)/{0}, (F,+w, ⋅) is a division
ring. Let A⊆finF . There is Θ ⊆ Q(V )/{0} such that Span(v) = ⊕q∈ΘF ⋅ v (see Theorem 3.2).
Then Span(v) = Span(∑α∈Aα ⋅ v) if and only if q∑α∈A α ≠ 0 for all q ∈ Θ.

Proof. We notice that

∑
α∈A

α ⋅ v = ∑
α∈A

α ⋅ (∑
q∈Θ

q) = ∑
q∈Θ

(q ∑
α∈A

α) ⋅ q.
Because ∣Θ∣ = dim(v), according to Remark 3.10, if q∑α∈Aα = 0 for some q ∈ Θ, then dim(∑α∈A α⋅

v) < dim(v). This implies Span(v) ≠ Span(∑α∈Aα ⋅ v), as indicated by Theorem 3.12. Con-
versely, if q∑α∈Aα ≠ 0 for all q ∈ Θ, by the Decomposition Theorem (see [1, Lemma 4.13]), we
can express V = ∑r

i=1 Vi as the regular decomposition of V , where Vi are the regular components
of V for i ∈ {1,⋯, r}. As per [5, Theorem 4.2], for any distinct q, q′ ∈ Θ, there are distinct
integers iq and iq′ ∈ {1,⋯, r} such that q ∈ Viq and q′ ∈ Viq′

. Consequently, q∑α∈Aα ⋅ q ∈ Viq .

According to [5, Theorem 4.5], this results in Span(∑α∈Aα ⋅v) = ⊕q∈Θ(q∑α∈Aα) ⋅q. This leads to∣Θ∣ = dim(v) = dim(∑α∈Aα ⋅ v). Thus, Span(v) = Span (∑α∈Aα ⋅ v), by virtue of Theorem 3.12,
as desired. �
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From the proof of Corollary 3.13, we can observe certain interesting facts that are explained
in the subsequent remark.

Remark 3.14. Let v ∈ V /{0}. Suppose that for all w ∈ Span(v)/{0}, (F,+w, ⋅) is a division ring.

(1) Let A⊆finF . By Theorem 3.2, there exists Θ ⊆ Q(V )/{0} such that Span(v) = ⊕q∈ΘF ⋅ v.
As indicated by the proof of Corollary 3.13, we have

Span(∑
α∈A

α ⋅ v) = ⊕q∈Θ0
F ⋅ q

where Θ0 = {q ∈ Θ ∣ q∑α∈A α ≠ 0}. In particular, dim(∑α∈A α ⋅ v) = ∣Θ0∣.
(2) By the proof of Corollary 3.13, dim(v) is always less than or equal to the number of

regular components of V .

The subsequent corollary, derived from Theorem 3.12, unveils the structural characteristics
of the span formed by a linear combination of two elements.

Corollary 3.15. Let v ∈ V /{0} and α,β ∈ F such that α ≠ β. Then Span(v) = Span(α ⋅ v −β ⋅ v).
Moreover, dim(v) = dim(α ⋅ v − β ⋅ v).
Proof. Consider a scalar basis Θ for Span(v). With Remark 3.10 implying ∣Θ∣ = dim(v). We
have v = ∑q∈Θ γq ⋅ q, where γq ∈ F for all q ∈ Θ. For all q ∈ Θ, γq ≠ 0 due to the definition of
dim(v). Consequently, α ⋅ v − β ⋅ v = ∑q∈Θ δq ⋅ q, where δq = (α −γq ⋅q β) ⋅ γq for all q ∈ Θ. Because
γq ≠ 0 for all q ∈ Θ and α ≠ β, this implies δq ≠ 0. By virtue of Theorem 3.12, we then deduce
Span(v) = Span(α ⋅ v − β ⋅ v). �

In the following remark, we illustrate that when forming a linear combination of v involving
more than two terms, the span of v might not match the span of this linear combination, even
when the linear combination is non-trivial.

Remark 3.16. Building upon the same example as presented in Remark 2.10 (2), we can observe
that

Span((0,1,1)) ≠ Span( 3
√
4

3
√
3
☆ (0,1,1) − 1

3
√
6
☆ (0,1,1) − 1

3
√
6
☆ (0,1,1)) = Span((0,0,1)),

even though
3
√
4

3
√
3
+(0,0,1) (− 1

3
√
6
)+(0,0,1) (− 1

3
√
6
) = (4

3
−

1

6
−

1

6
)1/3 = 1 ≠ 0. This confirms that Corollary

3.15 does not hold for a linear combination of more than 2 terms. This discrepancy arises from
the fact that the condition α ≠ −β is sufficient to imply α +q β = 0 for all q ∈ Q(V ), whereas
such a condition is not available for three or more terms.

4. Proving the First Isomorphism Theorem for near-vector spaces

We can now firmly establish the non-trivial result that any F -subspace, as defined at the
beginning of the paper, is itself a near-vector space. This result emerges as a corollary of
Theorem 3.2.

Theorem 4.1. Let W ⊆ V . Then W is an F -subspace of V if and only if W is a near-vector
space over F with the same operations as V .
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Proof. Let W ⊆ V . Suppose W is an F -subspace of V . We only need to prove that the quasi-
kernel of W generates W as an abelian group. Let w ∈ W /{0}. Then by Theorem 3.2, there
is Θ⊆finQ(V ) with ∣Θ∣ = dim(w) such that w = ∑q∈Θ q and Span(w) = Span(Θ). By Remark
1.15 and Remark 3.3, Θ ⊆ Q(Span(w)) ⊆ Q(W ). Therefore, Q(W ) generates W as an additive
group. This proves that W is a near-vector space with respect to the same operations as V .
The converse is clear. �

We can also assert that any quotient of a near-vector space by an F -subspace is a near-vector
space. This emerges as a corollary of Corollary 3.15.

Theorem 4.2. For any F -subspace W of V , the quotient set V /W is a near-vector space over
F with the operations induced from those of V . In particular, the quotient map π ∶ V → V /W
is a linear map with kernel W .

Proof. As usual, we define the addition ⊕ and the scalar multiplication ⊙ on V /W as follows:
For any v,w ∈ V , α ∈ F ,

(v +W )⊕ (w +W ) ∶= (v +w) +W
and

α⊙ (v +W ) ∶= (α ⋅ v) +W.

It is routine to prove that these operations are well-defined and induce on V /W the structure
of an F -space.

We need to prove that the scalar group action on V /W is free, which means that if α⊙(v+W ) =
β ⊙ (v +W ), then α = β or v +W = W . This is equivalent to stating that if α ⋅ v − β ⋅ v ∈ W ,
then α = β or v ∈ W . Let v ∈ V , α,β ∈ F be such that α ⋅ v − β ⋅ v ∈ W and α ≠ β. Then
Span(α ⋅ v − β ⋅ v) ⊆W and v ∈ Span(α ⋅ v − β ⋅ v) by Corollary 3.15. Hence, v ∈W .

It only remains to prove that Q(V /W ) generates V /W as an abelian group. For this, it
is enough to show that π(Q(V )) ⊆ Q(V /W ). Suppose x ∈ π(Q(V )). Then x = π(v), where
v ∈ Q(V ). Since v ∈ Q(V ), for all α,β ∈ F , there exists γ ∈ F such that α ⋅ v + β ⋅ v = γ ⋅ v.
Because π is a linear map, we have

α ⋅ π(v) + β ⋅ π(v) = π(α ⋅ v) + π(β ⋅ v) = π(α ⋅ v + β ⋅ v) = π(γ ⋅ v) = γ ⋅ π(v).
As V ⊆ V /W , it follows that π(v) ∈ Q(V /W ). �

Remark 4.3. In the proof of Theorem 4.2, we show that π(Q(V )) ⊆ Q(V /W ). This result
can be generalized to any linear map. That is, given a linear map f ∶ V → W , we have
f(Q(V )) ⊆ Q(W ).

From the results above, we can deduce the classical correspondence between the kernel of
linear maps and F -subspaces.

Corollary 4.4. Let W ⊆ V . Then W is an F -subspace of V if and only if W is the kernel of
a linear map φ ∶ V → V ′.

We can now conclude this section by stating the First Isomorphism Theorem for near-vector
spaces.

Theorem 4.5. Let f ∶ V → V ′ be a linear map. Then V /Ker(f) ≅ Im(f).
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5. Near-vector spaces as modules over a ring

In this section, we explore the concept of viewing a near-vector space as a module over a
ring.

Definition 5.1. We introduce the notion of a scalar group algebra denoted by Z[F ] as
ZF /I, where

(1) ZF represents the semigroup algebra of the semigroup F . Specifically, ZF is a free
Z-module generated by the linearly independent set {xα}α∈F . This algebra gains a
Z-algebra structure through the multiplication operation on ZF , which is naturally
induced by the group multiplication on F .

(2) I denotes the ideal of ZF generated by x0 − 0.

An element of Z[F ] is denoted as ∑α∈Λ nα ⋅xα, where Λ⊆finF , nα ∈ N, and xα is the equivalence
class of xα in the quotient ZF /I, with α ∈ Λ.

Remark 5.2. We note that a scalar group algebra is a specific instance of a contracted semigroup
ring.

However, viewing a near-vector space as a module over a ring requires further consideration.

Lemma 5.3. Every near-vector space (V,µ) over the scalar group F naturally possesses a
Z[F ]-module structure. This structure is defined by the action µZ[F ] ∶ Z[F ] × V → V , mapping(∑α∈Λ nα ⋅ xα, v) to ∑α∈Λ µ(α,nα ⋅ v), where Λ⊆finF , and nα ∈ N, with α ∈ Λ.

Remark 5.4. It should be noted that for any v ∈ V , we have

Span(v) = SpanZ[F ](v)
and for all v ∈ Q(V ),

StabZ[F ](v) = {∑
α∈Λ

nα ⋅ xα ∣ v ∑
α∈Λ

(v nα

∑
i=1

α) = 1, n ∈ N,Λ⊆finF,α ∈ F and nα ∈ N,∀a ∈ Λ} .

However, this perspective doesn’t always induce a near-vector space structure over the scalar
group F , unless certain conditions are met, such as having a scalar basis. To elaborate, consider
the following lemma:

Lemma 5.5. If V is a Z[F ]-module, then it is possible to regard V as an F -space. This is
achieved through the scalar group action µ ∶ F × V → V , defined as (α, v)↦ µZ[F ](xα, v).

Let µZ[F ] be the module action induced by the scalar group action on the near-vector space
V as stated in Lemma 5.3. We denote L = {F ⋅ v ∣ v ∈ V } as the set of "lines" passing through
the origin. The module action µZ[F ] induces an action of Z[F ] on L as follows:

µL (∑
α∈Λ

nα ⋅ xα, F ⋅ v) ∶= F ⋅ µZ[F ] (∑
α∈Λ

nα ⋅ xα, v) ,
where Λ⊆finF , and nα ∈ N for all α ∈ Λ, and v ∈ V .

This insight reveals that the elements within the quasi-kernel are capable of generating lines
that maintain their linearity even when subjected to the Z[F ]-action µL induced by elements
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that transform a non-zero vector v into a non-zero element. Essentially, under this specific
action of Z[F ], the dimension of v remains constant. These scalar elements serve as a robust
basis for constructing a conventional geometric coordinate system. For instance, in Remark
2.10, (2), the basis {(1,0,0), (0,1,0), (0,0,1)} satisfies this criterion.
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