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Abstract

Inverse design of transport equations can be addressed by using a gradient-

adjoint methodology. In this methodology numerical schemes used for the

adjoint resolution determine the direction of descent in its iterative algorithm,

and consequently the CPU time consumed by the inverse design. As the

CPU time constitutes a known bottleneck, it is important to employ light and

quick schemes to the adjoint problem. In this regard, we proposed to use the

Modified Method of Characteristics (MMOC). Despite not preserving identity

conservation, the MMOC is computationally competitive. In this work we

investigated the advantage of using the MMOC in comparison with the Lax-

Friedrichs and Lax-Wendroff schemes for the inverse design problem. By testing

the Doswell frontogenesis equation, we observed that the MMOC can provide

more efficient and accurate computation under some simulation conditions.

Keywords: Characteristics-based method, inverse design, Doswell frontogenesis.

2020 MSC: 00-01, 99-00

1. Introduction

The problem of inverse design of transport equations can be addressed by

using gradient-adjoint methodologies. Recently, Morales-Hernandez and Zuazua
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[1] investigated the convenience of using low-order numerical schemes for the

adjoint resolution in the gradient-adjoint methodology. They focused on linear

scalar transport equations with heterogeneous time-independent flux functions.

Morales-Hernandez and Zuazua analysed the numerical resolution of the

adjoint problem by means of first-order and second-order numerical schemes.

They concluded that first-order schemes are the best choices when dealing with

smooth functions since second-order schemes introduce high frequencies and

spurious oscillations in the solution. In addition, first-order schemes require

shorter CPU times than second-order ones.

The numerical scheme used for the adjoint resolution determines the descent

direction in the gradient-adjoint method [1], and consequently it influences the

CPU time consumed by the iterative algorithm. As the CPU time constitutes a

known bottleneck, we proposed a characteristic-based method, the called Modified

Method of Characteristics (MMOC) [2], for efficient adjoint resolutions. The

MMOC is based on the characteristic curves and so is very computationally

competitive for linear transport equations. Zhang et al. [3] has demonstrated

that the MMOC is feasible and reliable in forward and inverse simulations of

underwater explosion, for example.

The Doswell frontogenesis problem is a linear equation in which a non-uniform

and time-dependent flow gives rise a challenging solution to be simulated. It

allows to assess the performance of inverse design simulations in the treatment

of moving vortex-type surfaces in two dimensions. The Doswell frontogenesis

equation can be used to describe the presence of horizontal temperature gradients

and fronts in the context of meteorological dynamics.

We performed numerical simulations in order to investigate the MMOC for

solving the Doswell frontogenesis problem. In this work the adjoint problem

is also a linear equation, worthing the use of the characteristic-based method.

For comparisons with the MMOC, we used the first-order Lax-Friedrichs (LF )

and the second-order Lax-Wendroff (LW ) schemes. The MMOC provided

shorter CPU time and smaller error than the LF and LW schemes, under

some simulation conditions. Thus, the MMOC can be an efficient and accurate
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scheme for addressing the inverse design problem.

This work is presented as follows: this introduction is followed by a summa-

rized development of the gradient-adjoint methodology for the problem of inverse

design of transport equations. Next, the MMOC is introduced for solving linear

transport equations. Afterwards, the efficiency and accuracy of the MMOC

is evaluated in comparison with the LF and LW for the Doswell frontogenesis

equation. Finally, the conclusions about the performance of the MMOC are

presented.

2. The gradient-adjoint methodology

Consider the following transport problem with a given time-independent

vector field v = v(x):

∂u

∂t
+∇ · (vu) = 0, u(x, 0) = u0. (1)

Obviously, the solution u = u(x, t) exists and it is unique and can be

determined by means of the method of characteristics provided v is smooth

enough (say, C1). In this case, for all initial datum u0 ∈ L2(R2) there exists a

unique solution in the class C([0, T ];L2(R2)).

The inverse design problem can be stated as follow: given Ω ⊂ R2, and a

target function u∗ = u∗(x), determine the initial condition u0 such that the

corresponding solution of Eq. (1) satisfies u(x, T ) = uT for all x ∈ Ω.

This problem can be easily addressed from the point of view of optimal

control. To this end, let us introduce the following functional measuring the

quadratic error with respect to the target function uT :

J(u0) =
1

2

∫
Ω

(u(·, T )− uT )2 dx. (2)

The inverse design problem then translates in the following optimization one:

û0 = min
u0∈L2(RN )

J(u0). (3)
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This problem (3) is typically solved via a gradient descent (GD) algorithm as

follows:

û0 = lim
k→+∞

uk0

uk+1
0 = uk0 − η∇J(uk0). (4)

We then need to compute the gradient ∇J . To this end, let us first rewrite

Eq. (1) in non-divergence form, that is
∂u

∂t
+ v · ∇u = 0,

u(x, 0) = u0.

Let us now introduce the Lagrangian

L(u, σ) :=
1

2

∫
Ω

(u(·, T )− uT )2 dx +

∫ T

0

∫
Ω

σ

(
−∂u
∂t
− v · ∇u

)
dxdt

and compute the directional derivative δL(u, σ) as

δL(u, σ) =

∫
Ω

(u(·, T )− uT )δu(·, T ) dx +

∫ T

0

∫
Ω

σ

(
−∂δu
∂t
− v · ∇δu

)
dxdt.

(5)

We now integrate by parts the last term in the above expression, obtaining∫ T

0

∫
Ω

σ

(
−∂δu
∂t
− v · ∇δu

)
dxdt

=−
∫

Ω

σ(·, T )δu(·, t) dx +

∫
Ω

σ(·, 0)δu(·, 0) dx

+

∫ T

0

∫
Ω

(
∂σ

∂t
+ v · ∇σ

)
δu dxdt.

We then obtain from Eq. (5) that

δL(u, σ) =

∫
Ω

(
u(·, T )− u∗ − σ(·, T )

)
δu(·, T ) dx +

∫
Ω

σ(·, 0)δu(·, 0) dx

+

∫ T

0

∫
Ω

(
∂σ

∂t
+ v · ∇σ

)
δu dxdt

or, equivalently,

δL(u, σ) =

∫
Ω

σ(·, 0)δu(·, 0) dx
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with the constraint that σ is a solution of the adjoint (backward) equation
∂σ

∂t
+ v · ∇σ = 0,

σ(x, T ) = u(x, T )− uT .
(6)

This, in particular, tells us that the gradient ∇J is given by

∇J = σ(·, 0)

and, consequently, the iterative scheme (4) becomes

uk+1
0 = uk0 − ησ k(0)

where, in each iteration, we need to solve the following coupled system
∂uk

∂t
+∇ · (vuk) = 0, uk(x, 0) = uk0

∂σ k

∂t
+ v · ∇σ k = 0, σ k(x, T ) = uk(x, T )− uT .

(7)

The GD algorithm is based on iterating a loop, where the transport equation

(1) is solved in a forward sense, while the adjoint equation (6), which is of

hyperbolic nature as well, is solved in a backward sense.

3. The MMOC

Characteristic-based methods provide computationally efficient approxima-

tions of the solution of linear transport equations. Douglas and Russel [2]

introduced an Eulerian-Lagrangian scheme based on the characteristic curve,

called MMOC, to develop fast solvers for transport equations. Despite the

MMOC does not preserve, as an algebraic identity, a desired conservation law

associated with the underlying physical problem, it allows for using large time

steps in a simulation without loss of accuracy [4, 5].

Considering that the velocity field is divergence-free (∇ · v = 0), the Eq. (1)

in non-conservative form is

∂u

∂t
+ v · ∇u = 0. (8)
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The solution of Eq. (6) is essentially along the characteristic curves of the

transport operator ∂/∂t+ v · ∇, so that it is appropriate to introduce differenti-

ation in this characteristic direction. Let

∂/∂t+ v · ∇ = ψ
∂

∂τ
, ψ(u) =

√
1 + ‖v‖2, (9)

in which the direction τ depends on x.

Let us consider the discretization of Eq. (6) in time. Denote the time step

∆t > 0 and consider the approximation of the solution at times tn = n∆t. In

the standard MMOC, the characteristic derivative is approximated by

ψ
∂u

∂τ
≈ ψ(u(x, tn))

u(x, tn+1)− u(x, tn)√
‖x− x‖2 + (∆t)2

=
u(x, tn+1)− u(x, tn)

∆t
, (10)

where the predecessor position is

x = x(x) = x− v(x)∆t. (11)

Let un(x) denote the continuous in space approximation to u(x, tn). For the

predecessor position, the transported function is defined as

un(x) = u(x, tn). (12)

As the continuous in space approximation for Eq. (10) is

un+1(x)− un(x)

∆t
= 0, (13)

then the MMOC scheme is given by

un+1(x) = un(x). (14)

For two-dimensional problems, an approximation to the transported function un

is evaluated as the pointwise bilinear interpolant of un(x) at the nearest-four

grid points that are neighbors of x [6].
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4. Numerical simulations

We performed simulations of the Doswell frontogenesis problem, in which

v = (−yw, xw) is the velocity field of a steady circular vortex with angular

velocity

w =
vT√
x2 + y2

, (15)

where vT is the tangential velocity given by

vT = v sech2(
√
x2 + y2) tanh(

√
x2 + y2), (16)

where v is a value for which the maximum value of vT never exceeds the unity.

We set v = 2.59807 for resulting vT = 1.0, and centered the vortex at the origin

in order to define, for the Eq. (1), the following initial condition [7] [8]:

u(x, y, 0) = tanh(
y

δ
), (17)

where δ is a constant representing the smoothness of the front zone. A value

of δ = 1.0 generates a smooth solution, and a value of δ = 1.0 × 10−6 gives a

sharp front in the initial condition. The solution is considered smooth if it is

differenciable everywhere on its domain. The exact solution for this condition is

given by

u(x, y, t) = tanh(
y cos(wt)− x sin(wt)

δ
), (18)

For our simulations, the time step was restricted by the CFL condition [9],

which can be expressed for equal grid-spacing by

∆t = CFL
∆x

max v
, CFL ≤ 1.0, (19)

where ∆x (= ∆y) is the space step, and v is the component velocity. The

Courant number in the simulations was set CFL = 0.5.
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Let uni denote the numerical approximation to u(xi, t
n), at grid points. The

accuracy is evaluated through the computation of some error in the simulations.

The root mean squared (RMS) error of the numerical schemes is given by

e(u) =

√√√√ 1

N

N∑
i=1

(uni − u(xi, tn))2, (20)

where N is the number of grid points.

The LF and LW schemes were used for comparisons of computational

performance. Table 1 describes the numerical schemes for one-dimensional

problems. The convergency and accuracy properties of the schemes must be

proved in order to gain confidence in the numerical result. Theoretical analysis

of convergence and accuracy of the LF and LW schemes for linear advection

problems can be found in [10]. Under the CFL condition, the LF scheme is

accurate of O(∆t+ ∆x2), and the LW scheme, O(∆t2 + ∆x2). In [11], it was

shown that the rate of convergence of the MMOC scheme for linear advection

problems is optimal with continuous piecewise linear approximating spaces.

In this case, the accuracy of the MMOC scheme is of O(∆t + ∆xr), with

r = min(s, 1), where s is related to the smoothness of the solution.

Table 1: Description of the one-dimensional schemes.

Scheme Formulation

LF un+1
i = 1

2

(
uni+1 + uni−1

)
− 1

2vi
∆t
∆x

(
uni+1 − uni−1

)

LW un+1
i = uni − 1

2vi
∆t
∆x

(
uni+1 − uni−1

)
+ 1

2v
2
i

∆t2

∆x2

(
uni+1 − 2uni + uni−1

)

MMOC un+1
i = u(xi, t

n), xi = xi − vi∆t

For two-dimensional problems, we used dimensional splitting. In this approach

a two-dimensional problem is split into two one-dimensional problems, and each

one is solved sequentially by using an one-dimensional scheme [9].

8



4.1. Forward simulations

First, forward simulations were carried out in order to check the order of

magnitude of the RMS error, which results are compared with two cases found

in the literature. In Case 1 [12], the problem was simulated using a second-order

space-centered scheme and a third-order Runge-Kutta time-stepping scheme for

the domain Ω = [−5, 5]2, smoothness of the front zone δ = 0.05, v = 2.58, and

T = 4.5s. In Case 2 [13], it was used the Lax-Wendroff scheme on structured

rectilinear grid for the domain Ω = [−4, 4]2, smoothness of the front zone δ = 2.0,

v = 2.5974, and T = 4.0s. Table 2 presents the error according to the space step.

The results from our LW scheme are in good agreement with both cases. We

remark that the definition of RMS error in Case 2 is slightly different from the

Eq. (20).

Table 2: Error checking in forward simulations.

∆x Case 1 LW

0.02 8.4× 10−2 7.0× 10−2

0.04 1.4× 10−1 1.0× 10−1

0.08 1.7× 10−1 1.4× 10−1

∆x Case 2 LW

0.08 3.4× 10−4 1.5× 10−4

0.16 1.1× 10−3 7.8× 10−4

0.32 3.7× 10−3 3.5× 10−3

Next, forward simulations were carried out for the domain Ω = [−5, 5]2

considering that the smoothness of the front zone is δ = 1.0, and v = 2.59807.

In this condition, the solutions over the time are moving smooth vortex-type

surfaces. The initial condition and exact solution at T = 4.0s can be seen in

Fig. 1.

The RMS error in numerical solutions with the domain Ω discretized by

160×160 grid, at different times can be seen in Table 3. The error increases as the

simulation time is increased, for all schemes. The LF scheme provides the largest
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Figure 1: The initial condition (left) and exact solution at T = 4.0s (right) with δ = 1.0.

error at all times, since it introduces high numerical diffusion as a first-order

scheme. The LW scheme is more accurate than the others, in spite of producing

spurious oscillations at the vortex zone. The MMOC scheme introduces some

numerical errors due to the bilinear interpolation. It is known that interpolation

may cause numerical dispersion and attenuation in characteristic-based methods

[14].

Table 3: Error over time in the forward simulation.

LF LW MMOC

T (s) e(uT )

4.0 1.40× 10−1 1.64× 10−2 6.14× 10−2

6.0 1.89× 10−1 3.70× 10−2 1.00× 10−1

8.0 2.24× 10−1 6.65× 10−2 1.26× 10−1

Another performance measure of numerical schemes is the order of accuracy.

The higher the order of accuracy, the faster the numerical error is reduced as

∆x decreases. The order of accuracy can be computed by [15]

p(u) =
ln e(u)|2∆x − ln e(u)|∆x

ln 2
. (21)

A convergence study of the error in space discretization was conducted by solving

the Doswell frontogenesis problem in forward sense. The error and order of

accuracy in numerical solutions at T = 4.0s are showed in Table 4.

10



Table 4: Convergence study in the forward simulation.

LF

∆x e(uT ) p(uT )

0.5 2.78× 10−1 −

0.25 2.24× 10−1 0.31

0.125 1.79× 10−1 0.32

0.0625 1.40× 10−1 0.35

0.03125 1.07× 10−1 0.39

0.015625 7.60× 10−2 0.49

LW

∆x e(uT ) p(uT )

0.5 1.56× 10−1 −

0.25 9.69× 10−2 0.69

0.125 4.17× 10−2 1.22

0.0625 1.64× 10−2 1.35

0.03125 6.74× 10−3 1.28

0.015625 2.98× 10−3 1.17

MMOC

∆x e(uT ) p(uT )

0.5 1.57× 10−1 −

0.25 1.20× 10−1 0.39

0.125 8.97× 10−2 0.42

0.0625 6.14× 10−2 0.55

0.03125 3.83× 10−2 0.68

0.015625 2.21× 10−2 0.79

The decrease of the error as a function of the grid refinement is observed for

all schemes, indicating that the numerical solutions tend to converge to the exact

solution. The LW scheme provides the highest order of accuracy, followed by

the MMOC scheme. The LW scheme achieves the maximum order of accuracy

11



with ∆x = 0.0625 (160× 160 grid). The LW scheme exhibits order of accuracy

slightly greater than 1 because of the spurious oscillations within the numerical

solution. In computational applications where the order of accuracy is measured

’experimentally’, the estimation of the order of accuracy might be inaccurate

when solving problems in which the solution is not sufficiently smooth.

4.2. Inverse design simulations

The GD algorithm for addressing the problem of inverse design is divided

into two steps: forward and backward resolutions. In the first, the primitive

equation is numerically solved forward in time; in the next, the adjoint equation

is solved backward in time. It is compulsory to solve the primitive equation

by means of high-order schemes to guarantee sufficient accuracy in simulations.

However, high-order schemes provide spurious oscillations when solving the

adjoint equation. These spurious oscillations slow down the convergence of the

algorithm. In [1] it was showed the convenience of using a first-order scheme for

solving the adjoint equation, both in terms of accuracy and efficiency.

Thus, our inverse design simulations was performed by using the LW scheme

in the resolution in forward sense, and the LW and MMOC schemes for the

adjoint problem, denoting the two numerical strategies by LW − LW and

LW −MMOC, respectively. The use of the LF scheme was discarded since

it provides high numerical diffusion. In tests with LW − LF , large errors was

observed for both inicial condition and target function.

The GD algorithm was run assuming ε = 0.5 as gradient step size, the exact

solution at T = 4.0s as target function, and u0 = 0.0 as initial guess. Moreover,

we choosed the stopping criterion to be the L2 relative error between current

and previous solutions in the GD algorithm with tolerance TOL = 10−4.

Considering the domain Ω = [−5, 5]2 discretized by 160× 160 grid, the exact

solution at T = 4.0s, and the smoothness of the front zone δ = 1.0, the initial

condition and target function for the numerical strategies can be observed in

Fig. 2. There is a trace of spurious oscillations near the vortex zone in the initial

condition with the LW − LW ; this effect is reduced with the LW −MMOC.
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Figure 2: The initial condition (left) and target solution at T = 4.0s (right) with δ = 1.0, by

LW − LW (top) and LW −MMOC (bottom).

The computational performance of the numerical strategies is shown in Table

5. For the sake of clarity in the comparison, the best results are highlighted in

bold font. Despite the LW −MMOC provides the most accurate simulation for

the initial condition, the LW − LW is the most computationally efficient. As

expected, the LW−LW have the most accurate simulation for the target function,

since second-order schemes are more convenient to the forward resolution. The

good performance with the LW − LW in smooth solutions is already expected

once the LW scheme presented the higher order of accuracy.

Table 5: Inverse design simulation with δ = 1.0.

Strategy Iteration CPU time (s) e(u0) e(uT )

LW − LW 40 151.1 1.71× 10−2 1.37× 10−3

LW −MMOC 66 254.2 1.33× 10−2 8.46× 10−3
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In order to check the effect of some parameters on the computational per-

formance of the numerical strategies, more severe situations were tested for

the inverse design simulation by changing the grid-spacing, solution time and

smoothness of the front zone. The Table 6 shows the alternative situations used

for this study.

Table 6: The alternative situations for the simulation study.

Situation Grid T ime (s) Smoothness

Standard 160× 160 4.0 1.0

Coarser grid 80× 80 4.0 1.0

Longer time 160× 160 8.0 1.0

Sharper front 160× 160 4.0 1.0× 10−6

Firstly, an alternative simulation is performed with a coarser grid. In Table 7,

it is showed the performance of the numerical strategies considering the domain

discretized by 80× 80 grid. In this coarser grid, the LW −MMOC provides a

better computational performance than the LW −LW . Multi-scale features will

be eventually be developed in the solution of the Doswell frontogenesis problem,

which is beyond the resolution of the grid being considered [16]. Fine scale

features are developed near the origin, where the vortex flow is strongest. The

coarse resolution of the fine scale features by second-order schemes provides

spurious oscillations within the solution [12]. This justify the worst result of the

LW − LW for the coarser grid.

Table 7: The alternative simulation with 80× 80 grid.

Strategy Iteration CPU time (s) e(u0) e(uT )

LW − LW 278 133 6.18× 10−2 6.21× 10−3

LW −MMOC 157 76 2.91× 10−2 2.21× 10−2

Secondly, an alternative simulation is performed by assuming the exact

solution at T = 8.0s as target function. As time evolves, the multi-scale features

in the solution are exacerbated. Thus, a challenging situation is posed to the
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LW −LW , once it introduces high frequencies and spurious oscillations near the

vortex zone, where there are more fine scale features. The results of performance

of the numerical strategies are shown in Table 8. The LW −MMOC provides

the best computational performance.

Table 8: The alternative simulation with target function at T = 8.0s.

Strategy Iteration CPU time (s) e(u0) e(uT )

LW − LW 455 3445.5 1.07× 10−1 1.18× 10−2

LW −MMOC 362 2789.5 4.42× 10−2 7.22× 10−2

Lastly, the inverse design simulation of the Doswell frontogenesis problem

is performed with the smoothness of the front zone δ = 1.0 × 10−6. For this

situation, sharp fronts are expected to appear over the time. It is well known

that solutions with sharp fronts where high frequencies and spurious oscillations

play an important role require a filtering or smoothing operator to eliminate the

undesirable oscillations that appear when trying to solve the adjoint problem in

backward sense. First-order schemes as the MMOC for the adjoint resolution

play the same role of a filtering or smoothing operator to eliminate the undesirable

oscillations [17, 18, 19]. The initial condition and exact solution at T = 4.0s

with δ = 1.0× 10−6 are shown in Fig. 3.

Figure 3: The initial condition (left) and solution at T = 4.0s (right) with δ = 1.0× 10−6.

As the LW − LW introduces high frequencies and spurious oscillations in

sharp front solutions, the convergence in the GD algorithm is slower achieved.
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Thus, a maximum number of iteration of 300 was implemented for this simulation.

The result of performance of the numerical strategies are shown in Table 9. Once

more, the LW −MMOC provides the best computational performance.

Table 9: The alternative simulation with δ = 1.0× 10−6.

Strategy Iteration CPU time (s) e(u0) e(uT )

LW − LW 300 1132.5 3.03× 10−1 6.67× 10−2

LW −MMOC 251 966.1 1.21× 10−1 1.09× 10−1

The initial condition and target function at T = 4.0s from the numerical

strategies with δ = 1.0× 10−6 are illustrated in Fig. 4. There are high spurious

oscillations near the vortex zone in the solutions by the LW −LW , while effects

of dissipation are noted in the vortex zone with the LW −MMOC. In both

initial condition and target function the shape of the solution is better defined

with the LW −MMOC.

5. Conclusions

The problem of inverse design of linear transport equations can be addressed

by using several strategies combining the schemes LW and MMOC. The

performance of the numerical strategies depends on the test case under simulation

in which fronts and discontinuities can be propagated over the space and time.

In the inverse design simulations of the Doswell frontogenesis problem, we

considered as a reference for comparisons the following situation: the domain

discretized by 160× 160 grid, the exact solution at T = 4.0s as target function,

and the smoothness of the front zone δ = 1.0. Under this situation, the LW−LW

showed to be more computationally efficient than the LW −MMOC, in spite

of the last one be more accurate with respect to the initial condition.

However, we have identified alternative situations in which the LW−MMOC

provides shorter CPU time and higher accuracy than the LW − LW , in the

inverse design simulation of the Doswell frontogenesis problem. These results

were obtained when considering coarser grid, target function at longer time, and
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Figure 4: The initial condition (left) and solution at T = 4.0s (right) with δ = 1.0× 10−6, by

LW − LW (top) and LW −MMOC (bottom).

sharper front solution. In these alternative situations, the second-order scheme

introduced high frequencies and spurious oscillations in the solutions. Thus, the

LW −MMOC have presented the most efficient and accurate computation in

more severe situations used for the inverse design simulation.

The MMOC is a promising characteristic-based scheme for addressing the

problem of inverse design of linear transport equations, under some simulation

conditions. The computational performance with this numerical scheme are to

be checked for nonlinear transport equations.

Acknowledgements

Part of this research was carried out at the Fundacion Deusto and University

of Deusto with the financial support of the DyCon Project (ERC Advanced Grant

2015 H2020-694126) and Brazilian agency FAPERJ (Grant E-26/203.107/2019).

17



References

References

[1] M. Morales-Hernandez, E. Zuazua, Adjoint computational methods for 2d

inverse design of linear transport equations on unstructured grids, Compu-

tational and Applied Mathematics (2019) 167–192.

[2] J. Douglas, T. F. Russell, Numerical methods for convection dominated

diffusion problems based on combining the method of characteristics with

finite element or finite difference procedures, SIAM J. Numer. Anal. (1982)

871–885.

[3] C. Zhang, X. Li, C. Yang, A modified method of characteristic and its

application in forward and inversion simulations of underwater explosion,

AIP Advances (2016) 1–14.

[4] J. Douglas, C. S. Huang, F. Pereira, The modified method of characteristics

with adjusted advection for an immiscible displacement problem, Lecture

Notes in Pure and Applied Mathematics (1999) 53–74.

[5] R. Ewing, H. Wang, A summary of numerical methods for time-dependent

advection dominated partial differential equations, Journal of Computational

and Applied Mathematics (2001) 423–445.

[6] J. Douglas, F. Furtado, F. Pereira, On the numerical simulation of water-

flooding of heterogeneous petroleum reservoirs, Computational Geosciences

(1997) 155–190.

[7] C. A. Doswell, A kinematic analysis of frontogenesis associated with a

nondivergent vortex, Journal of the Atmospheric Sciences (1983) 1442–1248.

[8] V. S. K. Nair, High-order numerical schemes for compressible flows, Ph.D.

thesis, Delft University of Technology, Illinois, VS, US (2016).

[9] R. J. Leveque, Finite difference methods for ordinary and partial differential

equations, SIAM, Philadelphia, US, 2007.

18



[10] J. C. Strikwerda, Finite difference schemes and partial differential equations,

SIAM, Philadelphia, US, 2004.

[11] C. N. Dawson, T. F. Dupont, M. F. Wheeler, The rate of convergence of

the modified method of characteristics for linear advection equations in one

dimension, Technical Report 88-3 (1988) 1 – 11.

[12] K.-A. Tan, R. P. Morison, L. M. Leslie, A comparison of high-order explicit

and non-oscillatory finite difference advection schemes for climate and

weather models, Meteorology and Atmospheric Physics (2005) 251–267.

[13] N. Ahmad, Z. Boybeyi, R. Lohner, A. Sarma, A godunov-type finite-volume

scheme for flows on the meso- and micro-scales, American Institute of

Aeronautics and Astronautics (2005) 1 – 20.

[14] J. Twyman, Transient flow analysis using the method of characteristics moc

with five-point interpolation scheme, Obras y Proyectos (2018) 62–70.

[15] N. Ahmad, F. Proctor, Advection of microphysical scalar in terminal area

simulation system (tass), in: Annals of 49th AIAA Aerospace Sciences

Meeting, The Organization, Orlando, USA, 2011.

[16] V. Titarev, E. Toro, Finite volume weno schemes for three dimensional

conservation laws, Journal Computational Physics (2004) 238 – 260.

[17] G. Dogan, P. Morin, R. H. Nochetto, M. Verani, Discrete gradient flows for

shape optimization and applications, Computational Methods in Applied

Mechanical Engineering (2007) 3898 – 3914.

[18] S. Everdoza, E. Zuazua, On the numerical approximation of exact controls

for waves, Springer Briefs in Mathematics, ISBN 978-1-4614-5808-1, 2013.

[19] E. Zuazua, Propagation, observation, and control of waves approximately

by finite difference methods, SIAM Rev 47(2) (2005) 197 – 243.

19


	1 Introduction
	2 The gradient-adjoint methodology
	3 The MMOC
	4 Numerical simulations
	4.1 Forward simulations
	4.2 Inverse design simulations

	5 Conclusions

