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ABSTRACT
This paper focuses on the decentralized optimization (minimization and saddle
point) problems with objective functions that satisfy Polyak- Lojasiewicz condition
(PL-condition). The first part of the paper is devoted to the minimization problem
of the sum-type cost functions. In order to solve a such class of problems, we propose
a gradient descent type method with a consensus projection procedure and the in-
exact gradient of the objectives. Next, in the second part, we study the saddle-point
problem (SPP) with a structure of the sum, with objectives satisfying the two-sided
PL-condition. To solve such SPP, we propose a generalization of the Multi-step Gra-
dient Descent Ascent method with a consensus procedure, and inexact gradients of
the objective function with respect to both variables. Finally, we present some of
the numerical experiments, to show the efficiency of the proposed algorithm for the
robust least squares problem.
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1. Introduction

In this paper, firstly we study a sum-type minimization problem

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where the functions fi are generally non-convex and stored separately by nodes in
a communication network, which is represented by a non-directed graph G = (E, V ).
The graph G, possibly, can have a change over time structure. This problem, where the
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object function depends on distributed data is typed as a decentralized optimization
problem. We assume that f satisfies the well-known Polyak- Lojasiewicz condition (for
brevity, we write PL-condition). This condition was originally introduced by Polyak
[28], who proved that it is sufficient to show the global linear convergence rate for the
gradient descent without assuming convexity. The PL-condition is very well studied by
many researchers in many different works for many different settings of optimization
problems and has been theoretically verified for objective functions of optimization
problems arising in many practical problems. For example, it has been proven to be
true for objectives of over-parameterized deep networks [6], learning LQR models [9],
phase retrieval [37], Generative adversarial imitation learning of linear quadratic (see
Example 3.1 in [3]). More discussions of PL-condition and many other simple problems
can be found in [15].

This type of problems arises in different areas: distributed machine learning [17],
resource allocation problem [13] and power system control [31].

The problem (1) can be reformulated as a problem with linear constraints. For this,
let us assign each agent in the network a personal copy of parameter vector xi ∈ Rd

(column vector) and introduce

X :=
(
x⊤1 . . . x⊤n

)⊤
∈ Rn×d, F (X) =

n∑
i=1

fi (xi) . (2)

Now we equivalently rewrite problem (1) as

min
X∈Rn×d

F (X) =

n∑
i=1

fi(xi), s.t. x1 = · · · = xn, (3)

where it has the same optimal value as problem (1). This reformulation increases the
number of variables but induces additional constraints at the same time.

Let us denote the set of consensus constraints C = {X|x1 = · · · = xn}. Also, for
each X ∈ Rn×d denote the average of its columns x = 1

n

∑n
i=1 xi ∈ Rd and introduce

its projection onto constraint set

X =
1

n
1n1

⊤
nX = ΠC(X) =

(
x⊤ . . . x⊤

)⊤
∈ Rn×d.

Note that C is a linear subspace in Rn×d, and therefore projection operator ΠC is
linear.

Secondly, we study the saddle-point problem with a structure of the sum

min
x∈Rdx

max
y∈Rdy

{
ϕ(x, y) =

1

n

n∑
i=1

ϕi(x, y)

}
, (4)

where functions ϕi(·, ·) are non-convex (with respect to the variable x for each y) and
smooth (i.e., with Lipschitz-continuous gradient). These functions can be calculated
only separately in different nodes in the communication network, which is represented
by a non-directed graph G.

Problems of type (4) arise in many applications, such that Generative adversarial
network [10], adversarial training [18], and fair training [3]. In our work with problem
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(4), we assume that ϕ(·, y) and −ϕ(x, ·) satisfy the PL-condition (see Assumption
(2.2), below).

Let y(x) := arg maxy∈Rdy ϕ(x, y), and let we set fi(x) := ϕi(x, y(x)), then problem
(4) can be rewritten in the form of the minimization problem (1), i.e.,

min
x∈Rdx

{
max
y∈Rdy

{
ϕ(x, y) =

1

n

n∑
i=1

ϕi(x, y)

}}
= min

x∈Rdx

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
. (5)

Let Cx :=
{
X ∈ Rn×dx |x1 = . . . = xn

}
, Cy :=

{
Y ∈ Rn×dy |y1 = . . . = yn

}
and

Φ(X,Y) :=
n∑

i=1
ϕi(xi, yi). So, we can rewrite (4), in the similar way like [32, 33],

in the following form

min
X∈Cx

max
Y∈Cy

Φ(X,Y). (6)

Similarly to the first proposed minimization problem (1), note that the problem (4),
also can be rewritten in the same form

min
X∈Cx

F (X) =

n∑
i=1

fi(xi). (7)

So, for solving the problem (5) (which is equivalent to problem (6)), we can try
to use some gradient type algorithms, at each iteration of the used algorithm, we
calculate the inexact gradient of ϕ(x, ·) for each x ∈ Rdx in order to solve the (inner)
maximization problem in (5).

In practice, Multi-step Gradient Descent Ascent (MGDA) algorithm and its modi-
fications are widely used to solve the problem (4) (see e.g. [10, 11, 23]), as important
algorithms for the considered type of saddle-point problems. In [25], authors demon-
strate the effectiveness of MGDA on a class of games in which one of the players
satisfies the PL-condition and another player has a general non-convex structure. At
the same time, [41] shows that one step of gradient descent ascent demonstrates good
performance and has theoretical guarantees for convergence in two-sided PL-games.

Finally, we mention that the main difference between distributed problems from
usual optimization problems is to keep every agent’s vectors to their average. It is
approached through communication steps, where the communication can be performed
in different scenarios. In our work, we will consider the time-varying network with
changeable edges set and use the standard consensus procedure (see Subsec. 2.2) when
the agent’s vectors are averaged by multiplying by a weighted matrix of the graph at
the current moment.

1.1. Related works

The decentralized algorithm makes two types of steps: local updates and information
exchange. Local steps may use gradient [19, 26, 29, 30, 35, 42] or sub-gradient [27]
computations. In primal-only methods, the agents compute gradients of their local
functions and alternate taking gradient steps and communication procedures. Under
cheap communication costs, it may be beneficial to replace a single consensus iteration
with a series of information exchange rounds. Such methods as MSDA [34], D-NC [14],
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and Mudag [42] employ multi-step gossip procedures. In order to achieve acceptable
complexity bounds, one may distribute accelerated methods directly [7, 14, 19, 30, 42]
or use a Catalyst framework [21]. Accelerated methods meet the lower complexity
bounds for decentralized optimization [12, 22, 34]. As usual, by complexity we mean
a sufficient number of iterations of the algorithm that guarantee the solution of the
problem with a given accuracy.

Consensus restrictions x1 = . . . = xn may be treated as linear constraints, thus
allowing for a dual reformulation of problem (1). Dual-based methods include dual
ascent and its accelerated variants [34, 38, 40, 44]. Primal-dual approaches like ADMM
[2, 39] are also implementable in decentralized scenarios. In [35], the authors developed
algorithms for non-smooth convex objectives and provided lower complexity bounds
for this case, as well.

Changing topology for time-varying networks requires new approaches to decen-
tralized methods and a more complicated theoretical analysis. The first method with
provable geometric convergence was proposed in [26]. Such primal algorithms as the
Push-Pull Gradient Method [29] and DIGing [26] are robust to network changes and
have theoretical guarantees of convergence over time-varying graphs. Recently, a dual
method for time-varying architectures was introduced in [24].

In [33], it was studied the problem of decentralized optimization with strongly con-
vex smooth objective functions. The authors investigated accelerated deterministic
algorithms under time-varying network constraints with a consensus projection proce-
dure. The distributed stochastic optimization over time-varying graphs with consensus
projection procedure was studied in [32]. The consensus projection procedure made it
possible to use more acceptable parameters of smoothness and strong convexity in the
complexity estimates. The main goal of this paper is to investigate a similar consensus
projection approach for problems with PL-condition. Note that approach [32, 33] is
based on the well-known concept of the inexact (δ, L, µ)-oracle. But in the PL-case,
we will use inexact gradients with additive noise to describe the consensus projection
procedure.

1.2. Our contributions

Summing up, the contribution of this paper is as follows.

• We study the sum-type minimization problem when the objective function sat-
isfies the PL-condition. To solve a such class of problems, we propose a gradient
descent type method with consensus projection procedure (see Algorithm 2) and
access to only inexact gradient. We consider two cases of gradient inexactness:
the bounded deterministic inexactness and the sum of random noise with de-
terministic bias. We estimated the sufficient communication steps and iterations
number to approach the required quality concerning the function and the dis-
tance between the agent’s vectors and their average for both cases.

• We study the decentralized saddle-point problem (with the structure of a sum)
when the objective function satisfies the two-sided PL-condition. For solving a
such generalized class of problems, we proposed a generalization of the MGDA
method (see Algorithm 3) with a consensus procedure. We provided an estima-
tion for the sufficient number of iterations for inner and outer loops to approach
the acceptable quality concerning the function. Also, we estimate the commu-
nication complexity to a distance between the agent’s vectors and their average
for both cases to be small enough. Additionally, we research the influence of
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interference on the convergence of the proposed Algorithm 3. We suppose that
the inexactness in the gradient can be separated into deterministic noise with
the bounded norm and zero-mean noise with the finite second moment.

• We present some numerical experiments, which demonstrate the effectiveness
of the proposed algorithms, for the Least Squares and Robust Least Squares
problems.

2. Fundamentals and Assumptions for the problems under consideration

Throughout the paper, ⟨·, ·⟩ denotes the inner product of vectors or matrices. Cor-
respondingly, by ∥ · ∥, we denote the 2-norm for vectors or the Frobenius norm for
matrices.

At the first, for the minimization problem (1) (or its equivalent (3)), we assume

Assumption 2.1 (Lipschitz smoothness). For every i = 1, . . . , n, the function fi is
Li-smooth, for some Li > 0.

Under this assumption, we find that the function F (X) (see (2)) is Ll-smooth on

Rn×d, where Ll = max
1≤i≤n

Li, and Lg-smooth on C, where Lg = 1
n

n∑
i=1

Li. The constant

Ll is called a local constant and Lg is called a global constant.

Assumption 2.2 (PL-condition). The function f satisfies the PL-condition, i.e., it
holds the following inequality

f(x) − f∗ ≤ 1

2µ
∥∇f(x)∥2, ∀x ∈ Rd, (8)

for some µ > 0, and f∗ is the optimal value of the function f .

Also under this assumption, we find that f satisfies the quadratic growth condition
(QG-condition) (see [15]):

∥x− x∗∥2 ≤ 2

µ
(f(x) − f∗) ; ∀x ∈ Rd, (9)

where x∗ is the nearest point to the optimal solution of the minimization problem
under consideration.

At the second, for the saddle-point problem (4), let us introduce the following
assumption.

Assumption 2.3 (Lipschitz smoothness). For every i = 1, . . . , n, the function ϕi(·, ·)
is differentiable with respect to its both variables and smooth, i.e., the following in-
equalities hold

∥∇xϕi(x1, y1) −∇xϕi(x2, y2)∥ ≤ Lxx,i∥x1 − x2∥ + Lxy,i∥y1 − y2∥,
∥∇yϕi(x1, y1) −∇yϕi(x2, y2)∥ ≤ Lyx,i∥x1 − x2∥ + Lyy,i∥y1 − y2∥,

for all x1, x2 ∈ Rdx , y1, y2 ∈ Rdy and Lxx,i, Lyy,i, Lxy,i, Lyx,i ∈ R∗
+.

Note, that if Assumption 2.3 is satisfied, then it will be also satisfied for the function
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Φ(·, ·) on Rn×dx ×Rn×dy with constants Lxx,g, Lyx,g, Lxy,g, Lyy,g, and on Cx ×Cy, with

constants Lxx,l, Lyx,l, Lxy,l, Lyy,l, where Lab,l = max
1≤i≤n

Lab,i, Lab,g = 1
n

n∑
i=1

Lab,i, and

ab ∈ {xx, yy, xy, yx}.

2.1. Inexact gradient oracle

We will divide the inexactness of the gradient into random noise and a deterministic
bias. To describe this noise, we will use the following definition.

Definition 2.4 ((δ, σ2)-biased gradient oracle). Let δ > 0, σ > 0 and ξ be a random
variable with probability distribution D. (δ, σ2)-biased gradient oracle is a map g :
Rd ×D → Rd, such that

∥Eξg(x, ξ) −∇f(x)∥ ≤ δ, Eξ ∥g(x, ξ) − Eξg(x, ξ)∥2 ≤ σ2.

In other words, we suppose that the inexactness of the gradient contains two parts:
bias and noise. At that, bias has a bounded norm and noise has bounded the second
moment.

2.2. Consensus procedure

We consider a sequence of non-directed communication graphs
{
Gk =

(
V,Ek

)}∞
k=0

and

a sequence of corresponding mixing matrices {Wk}∞k=0 associated with it. We assume
the following assumptions.

Assumption 2.5. Mixing matrix sequence {Wk}∞k=0 satisfies the following properties:

• (Decentralized property) If (i, j) /∈ Ek, then [Wk]ij = 0.
• (Double stochasticity) Wk1n = 1n, and 1⊤nW

k = 1⊤n .
• (Contraction property) There exist τ ∈ Z++ and λ ∈ (0, 1) such that for every
k ≥ τ − 1, it holds the following inequality∥∥∥Wk

τX−X
∥∥∥ ≤ (1 − λ)

∥∥X−X
∥∥ ,

where Wk
τ = Wk . . .Wk−τ+1.

The last property in Assumption (2.5) is a generalization of several well-known
cases: time-static connected graph, sequence of the connected graph and τ -connected
graph sequence [26]. A stochastic variant of this contraction property is also studied
in [16].

During every communication round, the agents exchange information according to
the rule

xk+1
i = wk

ii +
∑

(i,j)∈Ek

wk
ijx

k
j .

In matrix form, this update rule writes as Wk+1 = WkXk. The contraction property
in Assumption (2.5) is needed to ensure geometric convergence of Algorithm 1 to the
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average of nodes’ initial vectors, i.e., to x0. In particular, the contraction property
holds for τ -connected graphs with Metropolis weights choice for Wk, i.e.,

[
Wk

]
ij

=


1/
(

1 + max{dki , dkj }
)

if (i, j) ∈ Ek,

0 if (i, j) /∈ Ek,

1 −∑(i,m)∈Ek

[
Wk

]
im

if i = j,

(10)

where dki denotes the degree of node i in graph Gk.

Algorithm 1 Consensus.

Require: Initial point Z0 ∈ C, number of communication rounds T .
1: Take current time moment t0 from global variable.
2: for k = 0, . . . , T − 1 do
3: Zk+1 := Wt0+k Zk.
4: end for
5: Update global variable with current time moment: t0 = t0 + T .
6: return ZT .

Note, that the contraction property guarantee that after T = Nτ steps of Algorithm
1 one obtains the point Z0 such that

∥ZT − Z
0∥ = ∥WNτ+t0 . . .W t0Z0 − Z

0∥ ≤ (1 − λ)N∥Z0 − Z
0∥.

In other words, the consensus procedure converges with any accuracy because of con-
traction property in Assumption 2.5.

3. Algorithm for PL-minimization problem

In this section, we focus on the minimization problem 3 (which is equivalent to
problem (1)). For this, we propose an algorithm (listed as Algorithm 2) using the
inexact gradient. The proposed algorithm is a gradient-type method, that uses a
(δ, 0)-biased gradient oracle ∇̃F (X) without noise. This condition can be rewritten

as
∥∥∥∇̃F (X) −∇F (X)

∥∥∥ ≤ δ, where ∇F (X) = (∇f1(x1), . . . ,∇fn(xn))⊤ ∈ Rd×n de-

notes the gradient of F at X. Note, that the considered inexact gradient in Algorithm

2 is a usual additively inexact gradient. Further, we note X
k

and ∇̃F (Xk) as averaged

Xk and ∇̃F (Xk) over consensus.

Algorithm 2 Decentralized gradient descent with consensus subroutine.

Require: Starting point X0 ∈ C, step size γ > 0, number of steps N , the sequence of
number for communication rounds {T k}N−1

k=0 in consensus.
1: for k = 0, . . . , N − 1 do
2: Zk+1 = Xk − γ∇̃F (Xk),
3: Xk+1 = Consensus(Zk+1, T k).
4: end for
5: return XN .
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Indeed, after the k-th iteration of Algorithm 2 we have a point Xk+1 ≈ X
k+1

=

X
k−γ∇̃F (Xk). If we assume that at each iteration, Xk is close enough to its projection

on C, i.e.,
∥∥∥Xk −X

k
∥∥∥2 ≤ δ′ for some δ′ > 0, then we can estimate the new inexactness.

So, in the fact, it is a variant of gradient method for problem (3) with an additively

inexact gradient. At the same time, xk+1 = xk−γ∇̃f(xk) is the usual gradient method
for minimizing the function f (i.e., for the problem (1)) with an additively inexact

gradient ∇̃f(xk) = 1
n

n∑
i=1

∇̃fi(x
k
i ).

Let us introduce the following constant characterizes the distance from consensus
space to points generated by Algorithm.

√
D = γ

∥∥∥∇F (X
∗
)
∥∥∥+

√
δ′ +

(
γ +

1

µ

)
∆ + γLg

√
2

µ

(
1 − µ

Lg

)(
F (X

0
) − F ∗

)
, (11)

where γ = 1
Lg

. Using this value we can prove the following theorem.

Theorem 3.1. Choose some ε > 0, define D > 0 as in (11), and set ∆ = δ +
Ll

√
δ′, γ = 1

Lg
. Under Assumptions (2.1) and (2.2), Algorithm 2 requires

N =

⌈
Lg

µ
log

(
f(x0) − f∗

ε

)⌉
gradient computation at each node, T = τ

⌈
1
2λ log D

δ′

⌉
communication steps at each

iteration and Ntot = N · T communication steps to yield XN such that

f(xN ) − f∗ ≤ ε +
∆2

2µn
, and

∥∥∥XN −X
N
∥∥∥ ≤

√
δ′. (12)

Proof. Firstly, let us estimate the inexactness for inexact gradient ∇̃F (Xk) in the
following way: ∥∥∥∇̃F (Xk) −∇F (X

k
)
∥∥∥ ≤ δ + Ll

√
δ′.

Using this result we can obtain the similar estimate for ∇̃f(xk) = 1
n

n∑
i=1

∇̃fi(x
k
i ):

∥∥∥∇̃f(xk) −∇f(xk)
∥∥∥2 =

1

n

∥∥∥∇̃F (Xk) −∇F (X
k
)
∥∥∥2 =

(
δ + Ll

√
δ′
)2

n
. (13)

Using Assumption 2.2, inequality (13) and taking step size γ = 1
Lg

, we can estimate

the convergence rate of Algorithm 2 with respect to the function f , as follows

f(xk) − f∗ ≤
(

1 − µ

Lg

)k (
f(x0) − f∗)+

∆2

2µn
, (14)
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where ∆ = δ + Ll

√
δ′. Although at each iteration of Algorithm 2 we have access only

to Xk.
Now, let us find the sufficient communication step such that the following expression

is true ∥∥∥Xk −X
k
∥∥∥ ≤

√
δ′ =⇒

∥∥∥Xk+1 −X
k+1
∥∥∥ ≤

√
δ′. (15)

By the contraction property (see Assumption (2.5)) and using that Z
k+1

= X
k+1

,
we have ∥∥∥Xk+1 −X

k+1
∥∥∥ ≤ (1 − λ)⌊

Tk
τ ⌋
∥∥∥Xk+1 − Zk+1

∥∥∥ . (16)

Let us estimate the right-hand side of inequality (16).∥∥∥Xk+1 − Zk+1
∥∥∥ ≤

∥∥∥Xk − Zk+1
∥∥∥ ≤

∥∥∥Xk −Xk
∥∥∥+ γ

∥∥∥∇̃F (Xk)
∥∥∥

≤
√
δ′ + γ

∥∥∥∇̃F (Xk) −∇F (X
k
)
∥∥∥+ γ

∥∥∥∇F (X
k
) −∇F (X

∗
)
∥∥∥

+ γ
∥∥∥∇F (X

∗
)
∥∥∥

≤
√
δ′ + γ∆ + γLg

∥∥∥Xk −X
∗
∥∥∥+ γ

∥∥∥∇F (X
∗
)
∥∥∥ .

(17)

From quadratic growth condition (9), we have∥∥∥Xk −X
∗
∥∥∥2 = n

∥∥∥xk − x∗
∥∥∥2 ≤ 2n

µ

(
f(xk) − f∗

)
.

Further, using the convergence rate (14) we can estimate the value of
∥∥∥Xk −X

∗
∥∥∥2

in (17), as the following

∥∥∥Xk −X
∗
∥∥∥2 ≤ 2

µ

(
1 − µ

Lg

)k+1 (
F (X

0
) − F ∗

)
+

∆2

µ2
.

Therefore we have
∥∥∥Xk+1 − Zk+1

∥∥∥ ≤
√
D, where D is the constant defined according

to 11
Thus, for Tk = τ

⌈
1
2λ log D

δ′

⌉
, (15) will be satisfied. So, uniting (14) and the result

about communication steps per iteration gets the theorem statement.

Further, we consider the case when Algorithm 2 uses (δ, σ2)-biased gradient oracle

∇̃F (X) for arbitrary values δ and σ.
As in the previous, after the k-th iteration of Algorithm 2 we have a point Xk+1 ≈

X
k+1

= X
k − γ∇̃F (Xk). In this case, if we consider ∇̃F (Xk) as an approximation

of the exact gradient ∇F (X
k
), then will have three inexactness: inexactness caused

by X
k ̸= Xk, bias at point Xk and zero-mean noise at Xk. Note, that Xk is also a

random variable.
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Let us estimate the bias in ∇̃F (Xk) at the given point X
k
, as follows

√
n
∥∥∥Exk,ξ∇̃f(xk) −∇f(xk)

∥∥∥ =
∥∥∥EXk,ξ∇̃F (Xk) −∇F (X

k
)
∥∥∥

≤
∥∥∥EXk,ξ∇̃F (Xk) − EXk∇F (Xk)

∥∥∥+
∥∥∥EXk∇F (Xk) −∇F (X

k
)
∥∥∥

≤ EXk

∥∥∥Eξ∇̃F (Xk) −∇F (Xk)
∥∥∥+ EXk

∥∥∥∇F (Xk) −∇F (X
k
)
∥∥∥

≤ δ + LlEXk

∥∥∥Xk −X
k
∥∥∥ ,

where EXk and Eξ mean conditional mathematical expectations under variable Xk and

random variable ξ for the given X
k
. As a result, one requires EXk

∥∥∥Xk −X
k
∥∥∥2 ≤ δ′

for small bias of gradient. On the other hand, we can construct Algorithm 2 in such

a way that E
∥∥∥Xk −X

k
∥∥∥2 ≤ δ′ at all iterations. When we assume, that Consensus

procedure 1 guarantees E
∥∥∥Xk −X

k
∥∥∥2 ≤ δ′, we have the following estimation

E
∥∥∥Ex,ξ∇̃f(xk) −∇f(xk)

∥∥∥2 ≤ 2δ2 + 2L2
l δ

′

n
.

At the same time, we can estimate the random noise in a similar way (see Appendix
A) and it gets the following lemma.

Lemma 3.2. Let us assume that the functions fi meet Assumption 2.1 and for all

j ≤ k we have that E
∥∥∥Xj −X

j
∥∥∥2 ≤ δ′, where {Xj}j≤k. Then for the bias and noise

in the inexact gradient ∇̃f(xk), we have the following estimations

E
∥∥∥Ex,ξ∇̃f(xk) −∇f(xk)

∥∥∥2 ≤ 2δ2 + 2L2
l δ

′

n
,

and

E
∥∥∥Ex,ξ∇̃f(xk) − ∇̃f(xk)

∥∥∥2 ≤ 16L2
l δ

′ + 18σ2 + 16δ2

n
.

Note that the mathematical expectation E, above is not conditional. So, ∇̃f(xk)
is not a biased in the sense of Definition 2.4. Nevertheless, we can use the following
gradient method

xk = xk−1 − γg(xk, ξ), k = 1, 2, . . . (18)

where g(xk, ξ) = ∇f(xk) + n(xk, ξ) + b(xk) such that E ∥n(xk, ξ)∥2 ≤ σ2 and
E ∥b(xk)∥2 ≤ δ2. The convergence of such a method is given by the following lemma
(see Lemma 2 in [1]).

Lemma 3.3. Let f be a function that satisfies the PL-condition for a constant µ > 0
and be an L-smooth function. The gradient oracle g(xk, ξ) = ∇f(xk)+n(xk, ξ)+b(xk)
is such that E ∥n(xk, ξ)∥2 ≤ σ2 and E ∥b(xk)∥2 ≤ δ2. When γ ≤ 1

L , we can guarantee

10



that method (18) converges to f∗ in the following way

E [f(xk) − f∗] ≤ (1 − γµ)k (f(x0) − f∗) +
δ2

2µ
+

Lγσ2

2µ
. (19)

In the similar way, like for proof of Theorem 3.1, we can estimate required consensus

steps T for condition E
∥∥∥Xk −X

k
∥∥∥2 ≤ δ′ (see Appendix C). So, we can state the

following theorem.

Theorem 3.4. Let f be a function meets Assumption 2.2, the functions fi meet As-
sumption 2.1 and the map ∇̃F be a (δ, σ2)-biased gradient oracle. Define value D
as

D = 6γ2
∥∥∥∇F (X

∗
)
∥∥∥2 + 2δ′ + 6

(
γ2 +

1

µ2

)
∆2 +

12γ2L2
g

µ

(
1 − µ

Lg

)(
F (X

0
) − F ∗

)
,

where ∆2 = 18
(
L2
l δ

′ + σ2 + δ2
)

and step-size γ = 1
Lg

. Then Algorithm 2 requires

N =
⌈
Lg

µ log
(
f(x0)−f∗

ε

)⌉
gradient computation at each node, T = τ

⌈
1
2λ log D

δ′

⌉
com-

munication steps in each iteration and Ntot = N ·T communication steps to yield XN

such that

Ef(xN ) − f∗ ≤ ε +
∆2

2µn
, and E

∥∥∥XN −X
N
∥∥∥2 ≤ δ′. (20)

Remark 1. By using the step-size γ < 1
Lg

small enough, we can improve the accuracy

level on function in (20). According to Lemma 3.3, for step-size γ, Algorithm 2 can
converge with the rate as in the inequality (20), where

∆2 = 2δ2 + L2
l δ

′ + Lgγ
(
16L2

l δ
′ + 18σ2 + 16δ2

)
.

But in this case the number of required iterations N increases in Lg

γ times. Note, that
parameter D does not change.

Remark 2. Note, that the convergence rate is almost optimal for functions with
PL-condition (see [43]).

4. Algorithm for distributed saddle point problems: PL–PL case

In this section, we will consider a generalization of Algorithm 2 (see Algorithm 3) for
the saddle-point problem (4) (or its equivalent (6)).

Additionally, we will research the influence of the inexact access to the oracle (espe-
cially using the inexact information of the gradient) on the convergence of the proposed
Algorithm 3. We suppose, that the inexactness in the gradient can be separated into
deterministic noise with the bounded norm and zero-mean noise with the finite second
moment. Note, that the influence of such inexactness for Gradient Descent Ascent is
well researched both in convex-concave and in non-convex-non-concave saddle point
problems under various assumptions (see e.g. [41], [5]). Also, the results of [25] can be
generalized for stochastic oracle (see Remark 3.8 in [25]).
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At each iteration, the proposed method optimizes by an inner variable Y for the
fixed outer variable X by Algorithm 2. After that, it makes one step of Algorithm 3
by outer variable. So, we obtain the well-known Multi-step Gradient Descent Ascent
method with a consensus subroutine after each gradient method step.

Algorithm 3 Multi-step Gradient Descent Ascent with consensus (MGDA).

Require: Number of the outer and inner steps Nx, Ny, starting point (X0,Y0), step

sizes γx and γy, the sequences of steps {T k
x }k and {T k,j

y }k,j in consensus.
1: for k = 0, . . . , Nx − 1 do
2: Ŷ0 := Yk.
3: for j = 0, . . . , Ny − 1 do

4: Zj+1
y := Ŷj + γy∇̃YΦ(Xk, Ŷj).

5: Ŷj+1 := Consensus(Zj+1
y , T k,j

y ).
6: end for
7: Yk+1 := ŶNy .
8: Zk+1

x := Xk − γx∇̃XΦ(Xk,Yk+1).
9: Xk+1 := Consensus(Zk+1

x , T k
x ).

10: end for
11: return XNx ,YNx .

We suppose that functions ϕ(·, y) and −ϕ(x, ·) satisfy the PL-condition (Assumption
2.2). So, for each x and y the following inequalities hold

ϕ(x, y) − min
x∈Rdx

ϕ(x, y) ≤ 2

µx
∥∇xϕ(x, y)∥2, (21)

max
y∈Rdy

ϕ(x, y) − ϕ(x, y) ≤ 2

µy
∥∇yϕ(x, y)∥2. (22)

Now, let us introduce functions in Y for fixed variable X: gx(y) = ϕ(x, y) and
GX(Y) = Φ(X,Y). For the maximization of gx(y) we define g∗x := maxy∈Rdy gx(y).

Additionally, we assume that there are points for functions F and GX in consensus
subspace minimizing this functions in the full space. In other words, the following
conditions hold:

∀X ∃Y ∗ ∈ Cy : max
Y ∈Rn×dy

GX(Y ) = GX(Y
∗
), (23)

and

∃X∗ ∈ Cx : min
X∈Rn×dx

F (X) = F (X
∗
). (24)

This conditions allows to obtain that Assumption 2.2 holds for full space for any
subproblem.

Note, in the inner iterations we have gradient process with respect to Y. Uniting
this assumption and results of the previous part we obtain the following result.

Lemma 4.1. Let us define ∆2
y = δ + Lyy,l

√
δ′y + Lyx,l

√
δ′x and Dy by the following

12



way

√
DX,Y = γy

∥∥∥∇Gx(Y
∗
)
∥∥∥+

√
δ′y +

(
γy +

1

µy

)
∆y

+ γyLyy,g

√
2n

µy

(
1 − µy

Lyy,g

)(
Gx(Y) −G∗

x

)
.

(25)

Besides let us method makes at least Ny =
⌈
Lyy,g

µ log gx(y0)−g∗
x

ε

⌉
iterations of inner loop

for Ty = τ
⌈

1
2λ log

(
Dy,x

δ′y

)⌉
communication steps. If Assumption 2.2 and statement

(23) hold, the method obtains a point Yk for any outer iteration k such that

max
y∈Rdy

ϕ(xk, yk) − ϕ(xk, yk) ≤ εy +
∆2

y

2µyn
= ε̂y, and

∥∥∥Yk −Y
N
∥∥∥ ≤

√
δ′y,

Proof. Note, that in the inner iterations, we have the gradient process in the form

Ŷj ≈ Ŷ
j

= Ŷ
k−1

+ γy∇̃YΦ(Xk, Ŷj).

Let ∇̃YΦ(X,Y) be a (δy, 0)-biased gradient oracle for any fixed X. So, we can decom-

pose the bias component in ∇̃YΦ(Xk, Ŷj) in the following way∥∥∥∥∇̃YΦ(Xk, Ŷj) −∇yΦ(X
k
, Ŷ

j
)

∥∥∥∥ ≤
∥∥∥∇̃YΦ(Xk, Ŷj) −∇yΦ(Xk, Ŷj)

∥∥∥
+

∥∥∥∥∇yΦ(Xk, Ŷj) −∇yΦ(Xk, Ŷ
j
)

∥∥∥∥
+

∥∥∥∥∇yΦ(Xk, Ŷ
j
) −∇yΦ(X

k
, Ŷ

j
)

∥∥∥∥ .
(26)

The first term on the right-hand side of inequality (26) is not more than δ. Assuming

that
∥∥∥Ŷj − Ŷj

∥∥∥2 ≤ δ′y and
∥∥∥Xk −Xk

∥∥∥2 ≤ δ′x for any k, j, we can estimate the last

two terms in (26) as Lyy
√

δ′y +Lyx

√
δ′x. So, we have the following estimate for bias in

the inexact gradient ∇̃Yϕ(Xk, Ŷj) = 1
n

n∑
i=1

ϕ(xk,i, ŷ
j
i ):

∥∥∥∇̃Yϕ(Xk, Ŷj) −∇yϕ(xk, ŷ
j
)
∥∥∥ ≤ 1

n

∥∥∥∥∇̃Y Φ(Xk, Ŷj) −∇yΦ(X
k
, Ŷ

j
)

∥∥∥∥
≤

(δ + Lyy,l

√
δ′y + Lyx,l

√
δ′x)2

n
.

Finally, note, that gx is Lyy,g smooth function. So, the convergence by Y is described
by Theorem 3.4. So, we have the result of this lemma.

Note, in not decentralized case we have that the inexact gradient is close enough to

exact one: ∇XΦ(X
k
,Yk) ≈ ∇XF (X

k
) = ∇XΦ(X

k
,Y

∗
) (see Lemma A.6 from [25]).
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This case corresponds to every full-connected graph. Let us generalize this result for
the decentralized problem statement.

Theorem 4.2. Let functions ϕ(·, y) and −ϕ(x, ·) meet Assumption 2.2 with constants
µx > 0 and µy > 0, and functions ϕi meet the Assumption 2.3. Besides statements

(23) and (24) hold. The gradient oracle (∇̃XΦ(X,Y), ∇̃YΦ(X,Y)) be (δ, 0)-biased
gradient oracle. Also, Assumption 2.5 holds. Let us introduce inexactness values ∆y :=

δ+Lyy,l

√
δ′y +Lyx,l

√
δ′x and ∆x = δ+Lxx,l

√
δ′x +Lxy,l

(√
εy
2µy

+ ∆y

2µy

√
n

+
√

δ′y

)
. Also

define values DX according to (29) and DY = maxk DXk,Y, where DXk,Y defined in
(25).

Let Algorithm 3 makes Tx = τ
⌈

1
2λ log

(
DX

δ′x

)⌉
communication steps in each outer

iteration and Ty = τ
⌈

1
2λ log

(
DY

δ′y

)⌉
communication steps at each inner iteration, with

step-sizes γx = 1
Lx

and γy = 1
Lyy,g

. Then Algorithm 3 requires

Nx =

⌈
Lx

µx
log

(
F (X

0
) − F ∗

εx

)⌉

outer iterations, where Lx = Lxx,g + Lxy,g

µy
, and

Ny =

⌈
Lyy,g

µy
log

(
G∗

x −Gx(X
0
)

εy

)⌉

inner iterations for each outer iteration to yield the pair
(
XNx ,YNy

)
, such that

f(xNx) − f∗ ≤ εx +
∆2

x

2µxn
,
∥∥∥XNx −X

Nx

∥∥∥ ≤
√

δ′x, (27)

and

max
y∈Rdy

ϕ(xNx , y) − ϕ(xNx , yNy) ≤ εy +
∆2

y

2µyn
,
∥∥∥YNy −Y

Ny

∥∥∥ ≤
√

δ′y. (28)

Proof. We proved, that after Ny iterations of inner loop, we have such point Y = ŶNy

that g∗x−gx(y) ≤ εy and
∥∥Y −Y

∥∥ ≤√δ′y. Using QG-condition for the function gx, we

can estimate the distance from obtained point to the optimal one as
∥∥∥Y −Y

∗
(X)

∥∥∥ ≤√
ε̂y
2µy

+
√

δ′y, where y∗(x) = arg maxy∈Rdy gx. So, we can estimate the inexactness of

the gradient with respect to X at the point Y = ŶNy according to the Assumption
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2.3 in the following way∥∥∥∇̃XΦ(X,Y) −∇F (X)
∥∥∥ ≤ δ + Lxx,l

∥∥X−X
∥∥+ Lxy,l

∥∥∥Y −Y
∗
(X)

∥∥∥
≤ δ + Lxx,l

√
δ′x + Lxy,l

(√
ε̂y

2µy
+
√

δ′y

)

≤ δ + Lxx,l

√
δ′x + Lxy,l

(√
εy

2µy
+

∆y

2µy
√
n

+
√

δ′y

)
.

So, through the inner iterations, we obtain an inexact gradient with respect to x

such that
∥∥∥∇̃f(x) −∇f(x)

∥∥∥ ≤ ∆x√
n

, where

∆x = δ + Lxx,l

√
δ′x + Lxy,l

(√
εy

2µy
+

∆y

2µy
√
n

+
√

δ′y

)
.

At the same time, the function maxy∈Rdy ϕ(x, y) meets PL-condition. Moreover, as
known (see Lemma A.3 in [41]), when the objective function ϕ meets Assumptions 2.3
and condition (21), the function maxy∈Rdy ϕ(x, y) meets PL-condition with constant
µx until if minx maxy∈Rdy ϕ(x, y) = minX F (X).. Also note, that under Assumptions
2.3 and PL-condition (22) for inner variable, the function F (X) = Φ(X,Y∗(X)) is an

Lx-Lipschitz continuous function with Lx = Lxx,g + Lxy,g

µy
(see Lemma A.2 in [41]). So,

from Theorem 3.1, we obtain that Algorithm 3 requires Nx =
⌈
Lx

µx
log
(
F (X

0
)−F ∗

εx

)⌉
outer iterations and Tx = τ

⌈
1
2λ log

(
DX

δ′x

)⌉
where

√
DX = γx

∥∥∥∇F (X
∗
)
∥∥∥+
√

δ′x+

(
γx +

1

µx

)
∆x+γxLx

√
2

µx

(
1 − µx

Lx

)(
F (X

0
) − F ∗

)
.

(29)
Uniting obtained above results for convergences by X and Y, we obtain the result

of the theorem.

Remark 3. In general, Algorithm 3 requires

Nx ·Ny = O

((
Lxx,gLyy,g

µyµx
+

Lxy,gLyy,g

µ2
yµx

)
log2

1

ε

)
,

gradient computations with respect to Y and

Nx = O

((
Lxx,g

µx
+

Lxy,g

µyµx

)
log

1

ε

)
,

gradient computations with respect to X at each node.

Remark 4. Algorithm 3 requires Ttot = NxTx + NyNxTy communication steps to
achieve the required quality. Note, that the communication steps in inner iterations
and outer iterations can have different computational costs. Namely, the dimensions
dx for X and dy for Y can significantly differ.
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Remark 5. The main restriction in the obtained result is conditions 23 and 24 and
PL-condition. Nevertheless, note that such situation is typical for overparametrized
problems that includes many problems from modern deep learning (see [4], [15]).

Remark 6. The particular case of functions with PL-condition is strong convexity.
In such case, the result can be significantly accelerated (see e.g. [33]).

Now, we consider the case, when ∇̃XΦ(X,Y) and ∇̃YΦ(X,Y) be (δ, σ2)-biased
gradient oracle. Let parameters numbers of communication steps Tx and Ty such that

E∥Xj −Y
j∥2 ≤ δ′x and E∥Yj −Y

j∥2 ≤ δ′y in all iterations. So, we can estimate noise
and bias for the gradient with respect to Y for each inner loop. The proof of the
following lemma is presented in Appendix D.

Lemma 4.3. Let us assume that functions ϕ meet Assumption 2.3 and for all j ≤ k we

have E
∥∥∥Xj −X

j
∥∥∥2 ≤ δ′x, E

∥∥∥∥Ŷj − Ŷ
j
∥∥∥∥2 ≤ δ′y, where {Xj}j≤k and {Ŷj}j≤k. Then for

the bias and noise in the inexact gradient gk,j = ∇̃Y ϕ(Xk,Yk) = 1
n

m∑
i=1

∇̃yϕi(xk,i, yk,i)

we the following estimations:

E
∥∥∥EX,Y,ξgk,j −∇Y ϕ(xk, ŷ

j
)
∥∥∥2 ≤ 3δ2 + 3L2

yyδ
′
y + 3L2

yxδ
′
x

n
,

and

E ∥EX,Y,ξgk,j − gk,j∥2 ≤ 16

(
L2
yy,lδ

′
y + L2

yx,lδ
′
x + δ2

n

)
+

18σ2

n
.

It allows us to use the results of Theorem 3.4. Let parameters Ny and Ty be de-
fined according to this theorem for the current value of outer variable Xk and chosen
accuracies εy and δ′y. Then after Ny inner iterations we obtain such point Y = ŶNy ,
s.t.

max
y∈Rdy

ϕ(xk, y) − Eϕ(xk, ŷ
Ny

) ≤ εy +
∆2

y

2µyn
, and E

∥∥∥∥ŶNy − Ŷ
Ny

∥∥∥∥2 ≤ δ′y,

where ∆2
y = 19

(
L2
yy,lδ

′
y + L2

yx,lδ
′
x + σ2 + δ2

)
.

This allows us to estimate inaccuracies in the inexact gradient with respect to X on
outer iterations. Note, that it contains new inexactness because of the inexact solution
of the inner problem on each iteration. The following lemma contains results about
the gradient bias and noise (see the proof in Appendix E).

Lemma 4.4. Let us assume that the function ϕ meets Assumption 2.3 and for all

j ≤ k we have E
∥∥∥Xj −X

j
∥∥∥2 ≤ δ′x, E

∥∥∥Yj −Y
j
∥∥∥2 ≤ δ′y, where {Xj}j and {Yj}j are

the sequence generated by Algorithm 3. Also, Yk be a point such that gx(y) − g∗x ≤
εy +

∆2
y

2µyn
. Then for the bias and noise in the inexact gradient hk = ∇̃Yϕ(Xk,Yk) =

1
n

n∑
i=1

∇̃yϕi(xk,i, yk,i), we the following estimations
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E
∥∥EX,Y,ξhk −∇F (Y)

∥∥2 ≤ 3δ2 + 3L2
xxδ

′
x + 6L2

xy

(
2εy
µy

+
∆2

y

µ2
yn

+ δ′y

)
n

,

and

E ∥EX,Y,ξhk − hk∥2 ≤ 16
L2
xy,lδ

′
y + L2

xx,lδ
′
x + δ2

n
+

18σ2

n
.

Uniting the results of Lemmas 4.3, 4.4 and Theorem 3.4, we obtain the following
result for the convergence of Algorithm 3.

Theorem 4.5. Let the functions ϕ(·, y) and −ϕ(x, ·) meet Assumption 2.2 with con-
stants µx > 0 and µy > 0 and the functions ϕi meet the Assumption 2.3. Besides

statements (23) and (24) hold. The gradient oracle
(
∇̃XΦ(X,Y), ∇̃YΦ(X,Y)

)
be a

(δ, σ2)-biased gradient oracle. Also, Assumption 2.5 holds. Let us introduce the follow-
ing inexactness values

∆2
y := 19

(
L2
yy,lδ

′
y + L2

yx,lδ
′
x + σ2 + δ2

)
,

∆2
x := 22L2

xy,lδ
′
y + 19L2

xx,lδ
′
x + 19δ2 + 18σ2 + 6L2

xy

(
2εy
µy

+
∆2

y

µ2
yn

)
.

and define the values DX and DY, such that

DX = 6γ2x

∥∥∥∇F (X
∗
)
∥∥∥2 + 2δ′x + 6

(
γ2x +

1

µ2
x

)
∆2 +

12γ2xL
2
x

µx

(
1 − µx

Lx

)(
F (X

0
) − F ∗

)
,

and DY = maxk DXk,Y, where

DXk,Y = 6γ2E
∥∥∥∇GXk(Y

∗
)
∥∥∥2 + 2δ′y + 6

(
γ2y +

1

µ2
y

)
∆2

y

+
12γ2L2

yy,g

µy

(
1 − µy

Lyy,g

)
E
[
GXk(Y

0
) −G∗

X

]
,

Let Algorithm 3, with step-sizes γx = 1
Lx

, γy = 1
Lyy,g

, makes Tx = τ
⌈

1
2λ log

(
DX

δ′x

)⌉
communication steps in each outer iteration and Ty = τ

⌈
1
2λ log

(
DY

δ′y

)⌉
communication

steps in each inner iteration. Then Algorithm 3 requires

Nx =

⌈
Lx

µx
log

(
F (X

0
) − F ∗

εx

)⌉

outer iterations, where Lx = Lxx,g + Lxy,g

µy
, and

Ny =

⌈
Lyy,g

µy
log

(
G∗

x −Gx(X
0
)

εy

)⌉
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inner iterations for each outer iteration to yield the pair (XNx ,YNy) such that

E
[
f
(
xNx

)
− f∗] ≤ εx +

∆2
x

2µxn
, E

∥∥∥XNx −X
Nx

∥∥∥ ≤
√

δ′x, (30)

and

E
[

max
y∈Rdy

ϕ
(
xNx , y

)
− ϕ

(
xNx , yNy

)]
≤ εy +

∆2
y

2µyn
, E

∥∥∥YNy −Y
Ny

∥∥∥ ≤
√

δ′y. (31)

Remark 7. Note, that the total number of gradient computations and communication
steps to approach the qualities (30) and (31) can be considered comparable with (27)
and (28).

Remark 8. In the case, when σ = 0 (i.e., the noise is almost everywhere is zero),
Theorem 4.5 gets results worse than Theorem 4.2. It is related to different rounding
and inexact estimations in the proof of Theorem 4.5.

5. Numerical experiments

To show the practical performance of the proposed Algorithms 2 and 3, we performed a
series of numerical experiments for the Robust Least Squares problem. All experiments
were made using Python 3.4, on a computer with Intel(R) Core(TM) i7-8550U CPU
@ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical Processor(s), and 8 GB RAM.

Let us consider the following least squares minimization problem

min
x∈Rdx

1

n

n∑
i=1

1

2
∥Aix− yi,0∥2 , (32)

for given matrices Ai ∈ Rdi×dx and vectors yi,0 ∈ Rdi , when Ai, yi,0 are placed in n
different nodes. In [8], it was proposed a robust version of this problem in the following
form

min
x∈Rdx

max
y∈Rdy :∥Biy∥≤δ

1

n

n∑
i=1

1

2
∥Aix− yi,0 −Biy∥2 ,

where Bi ∈ Rdi×dy , for some δ > 0. The Robust Least Squares problem with soft
constraint has the following form

min
x∈Rdx

max
y∈Rdy

{
ϕ(x, y) =

1

n

n∑
i=1

ϕi(x, y)

}
, (33)

where

ϕi(x, y) =
1

2
∥Aix− yi,0 −Biy∥2 −

α

2
∥Biy∥2, (34)

for some α > 1. Note, that the matrices Ai, Bi and the vectors yi,0 for each i ∈
{1, . . . , n}, are located in different nodes. So, in the distributed statement, we can not
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solve this problem explicitly. At the same time, the global solution has a compact
form.

Note that the conditions of Theorem 4.5 are fulfilled for the considered saddle point
problem (33) with (34). The function ϕ(·, y), for each y ∈ Rdy , satisfies PL-condition
with constant µx, and −ϕ(x, ·), for each x ∈ Rdx , satisfies PL-condition with constant

µy, where µx and µy are the smallest non-zero eigenvalues of the matrices A =
n∑

i=1
A⊤

i Ai

and B = (λ − 1)
n∑

i=1
B⊤

i Bi, respectively. Note, that problem (33) is a convex-concave

problem but not strongly-convex-strongly-concave until A and B are not full-rank
matrices.

Firstly, for the least squares minimization problem (32), we compare the perfor-
mance of the proposed Algorithm 2 to the recently proposed algorithm DAccGD [33].
In [33], for the least squares problem, it was compared the performance of DAccGD to
EXTRA [36], DIGing [26], Mudag [42], and APM-C [20], as a result of the comparison,
DAccGD outperformed all the mentioned algorithms.

We run Algorithm 2 and DAccGD, for problem (32), with dx = 1000 and n = 20.
The matrices Ai and vectors yi,0, for each i ∈ {1, . . . , n}, are randomly generated from
the standard normal distribution. The graphs Ek, ∀k ≥ 0 are randomly generated, and
the corresponding mixing matrices Wk are specified according to (10), with Metropolis
weights. We take the zero matrices for the initialization. We also choose the fixed step
sizes γx = 10−3, Nx = 2 × 104, Ny = 100 and 10 steps in the consensus at each
iteration. For the considered problem (32), with the previously mentioned parameters
and settings, is ill-conditioned since we have L ≈ 4 × 106 and µ ≈ 10−9, thus the
conditions number κ = L/µ ≈ 4 × 1015.

The results of the conducted experiments are represented in Figure 1. These results
demonstrate the value of the objective function and the norm of its gradient at each
generated point xk by algorithms as a function of iteration k. From Fig. 1, we can
see how the proposed Algorithm 2 outperformed DAccGD, and for a not sufficiently
big number of iterations (namely 2000) we can achieve a solution to the problem with
high accuracy.

0 2500 5000 7500 10000 12500 15000 17500 20000
k

10−23

10−19

10−15

10−11

10−7

10−3

101

105

f
(x

k
) Algorithm 2

DAccGD

0 2500 5000 7500 10000 12500 15000 17500 20000
k

10−9

10−7

10−5

10−3

10−1

101

103

‖f
′ (
x
k
)‖

2

Algorithm 2

DAccGD

Figure 1.: Results of Algorithms 2 and DAccGD [33], for problem (32).

Also, for problem (33) with (34), we run Algorithm 3 with dx = 1000, dy = 100 and
different values of n (the number of components in (33), which indicates the number of
nodes in the graph). We take the zero matrices for the initialization of the algorithm.
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The matrices Ai, Bi and vectors yi,0, for each i ∈ {1, . . . , n} in (34) are randomly
generated from the standard normal distribution. We also choose the fixed step sizes
γx = γy = 10−3, Nx = 104, Ny = 10 (experimentally we see more than 10 iterations,
but there is not a remarkable difference) and 10 steps in the consensus at each iteration
of Algorithm 3. The results of the conducted experiments, for problem (33) with (34),
are represented in Figures 2, 3. These results demonstrate the value of the objective
function ϕ and the norm of its gradient with respect to both variables at each point
(xk, yk) generated by the algorithm as a function of iteration k, and the running time
of the algorithm in seconds as a function of the number of nodes n.

From Fig. 2 and Fig. 3, we can see the efficiency of the proposed Algorithm 3,
which provides a remarkable quality solution with respect to the value of the objective
function and the norm of its gradient at each generated point each iteration. Also, we
can see the effect of the number of nodes n, in the work of the algorithm, where the
quality of a solution decreases when we increase (not strongly) the number of nodes.
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Figure 2.: Results of Algorithm 3 for problem (33) with (34), α = 2, and different
values of n.
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6. Conclusion

In this paper, we studied the decentralized minimization problem with objective func-
tions that satisfy Polyak- Lojasiewicz condition (PL-condition), and the decentralized
saddle-point problem with a structure of the sum, with objectives satisfying the two-
sided PL-condition. For solving the minimization problem under consideration, we
proposed a gradient descent type method with a consensus projection procedure and
the inexact gradient of the objective function. To solve the considered saddle point
problem, we proposed a generalization of the Multi-step Gradient Descent Ascent
method with a consensus procedure, and inexact gradients of the objective function
concerning both variables. For the studied classes of the problems, we estimated the
sufficient communication steps and iterations number to approach the required qual-
ity concerning the function and the distance between the agent’s vectors and their
average some results of the conducted numerical experiments are presented, which
demonstrate the effectiveness of the proposed algorithm for the least squares and ro-
bust least squares problems.
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Appendix A. Proof of Lemma 3.2.

Proof. Note, for the bias in ∇̃f(X
k
) we proved in the main part the following esti-

mation

E
∥∥∥EXk,ξ∇̃f(Xk) −∇f(xk)

∥∥∥2 ≤ 2δ2 + L2
l δ

′

n
. (A1)

Also, we assume that the condition EXj

∥∥∥Xj −X
j
∥∥∥2 ≤ δ′ holds for all j ≤ k.

Let us estimate noise in ∇̃f(X
k
). For this, we estimate the second moment of the

random component in ∇̃F (Xk) for given X
k
. It is given by the expression

EXk,ξ

∥∥∥EXk,ξ∇̃F (Xk) − ∇̃F (Xk)
∥∥∥ .
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Let us estimate the inner part in the following way:∥∥∥EXk,ξ∇̃F (Xk) − ∇̃F (Xk)
∥∥∥ ≤

∥∥∥EXk,ξ∇̃F (Xk) − EXk∇̃F (Xk)
∥∥∥

+
∥∥∥EXk∇̃F (Xk) − ∇̃F (Xk)

∥∥∥
≤ EXk

∥∥∥Eξ∇̃F (Xk) − ∇̃F (Xk)
∥∥∥

+
∥∥∥EXk∇̃F (Xk) − ∇̃F (Xk)

∥∥∥ ,
where we used triangle inequality and Jensen’s inequality.

Using these statements again, the second term in the sum above can be represented
in the following way:∥∥∥EXk∇̃F (Xk) − ∇̃F (Xk)

∥∥∥ ≤EXk

∥∥∥∇̃F (Xk) −∇F (Xk)
∥∥∥

+
∥∥∥EXk∇F (Xk) −∇F (Xk)

∥∥∥+
∥∥∥∇̃F (Xk) −∇F (Xk)

∥∥∥ .
From this, we have the following estimation for its square expectation:

E
∥∥∥EXk∇̃F (Xk) − ∇̃F (Xk)

∥∥∥2 ≤2E
∥∥∥EXk∇F (Xk) −∇F (Xk)

∥∥∥2
+ 8E

∥∥∥∇̃F (Xk) −∇F (Xk)
∥∥∥2 .

The term
∥∥EXk∇F (Xk) −∇F (Xk)

∥∥ can be estimated above by the following sum

EXk

∥∥∥∇F (Xk) −∇F (X
k
)
∥∥∥+

∥∥∥∇F (X
k
) −∇F (Xk)

∥∥∥ .
From this we can estimate the full mathematical expectation as

E
∥∥EXk∇F (Xk) −∇F (Xk)

∥∥2 ≤ 4L2
l δ

′ until E
∥∥∥Xk −X

k
∥∥∥2 ≤ δ′. Let us

introduce the noise value n(Xk) = ∇̃F (Xk) − Eξ∇̃F (Xk) and the bias

b(Xk) = Eξ∇̃F (Xk) − ∇F (Xk). Note, that E∥n(Xk)∥2 ≤ σ2 and E
∥∥b(Xk)

∥∥2 ≤ δ2.
So, the expectation of another term can be estimated in the following form:

E
∥∥∥∇̃F (Xk) −∇F (Xk)

∥∥∥2 = E
∥∥∥b(Xk)

∥∥∥2 + E
∥∥∥n(Xk)

∥∥∥2 ≤ σ2 + δ2.

Finally, we have that

E
∥∥∥EXk∇̃F (Xk) − ∇̃F (Xk)

∥∥∥2 ≤ 8Ll

√
δ′ + 8σ + 8δ.

Uniting the inequalities above, we have the following estimation:

E
∥∥∥EXk,ξ∇̃F (Xk) − ∇̃F (Xk)

∥∥∥2 ≤2EXk,ξ

(
EXk

∥∥∥Eξ∇̃F (Xk) − ∇̃F (Xk)
∥∥∥)2

+ 16L2
l δ

′ + 16σ2 + 16δ2

≤16L2
l δ

′ + 18σ2 + 16δ2.
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Finally, for the noise component in ∇̃f(X
k
), we have the following estimation:

E
∥∥∥EX,ξ∇̃f(Xk) − ∇̃f(Xk)

∥∥∥2 =
1

n
E
∥∥∥EXk,ξ∇̃F (Xk) − ∇̃F (Xk)

∥∥∥2
≤ 1

n
E
∥∥∥EXk,ξ∇̃F (Xk) − ∇̃F (Xk)

∥∥∥2
≤16L2

l δ
′ + 18σ2 + 16δ2

n
.

So, we obtained the estimation for the noise component in ∇̃f(Xk).

Appendix B. Proof of Lemma 3.3.

Proof. According to proof of Lemma 2 from [1] we can prove the following inequality:

E
[
f(xt+1)

∣∣∣xt] ≤ f(xt) − γ

2

∥∥∇f(xt)
∥∥2 +

γ

2

∥∥∥b(xk)
∥∥∥2 +

γ2L

2
Eξ

∥∥∥n(xk)
∥∥∥2 .

Using PL-condition for the function f and taking full mathematical expectation, we
have the following inequality

E
[
f(xt+1) − f∗] ≤ (1 − γµ)E

[
f(xt) − f∗]+

γ

2
E
∥∥∥b(xk)

∥∥∥2 +
γ2L

2
E∥n(xk)∥2.

Using lemma’s conditions we obtain the following inequality:

E
[
f(xt+1) − f∗] ≤ (1 − γµ)E

[
f(xt) − f∗]+

γδ2

2
+

γ2Lσ2

2
,

or

E
[
f(xk) − f∗

]
≤ (1 − γµ)k

(
f(x0) − f∗)+

δ2 + γLσ2

2µ
.

Appendix C. Proof of Theorem 3.4.

Proof. Using Assumptions 2.2, Lemma 3.3, taking step size γ = 1
Lg

, we can estimate

convergence for function f :

E
[
f(xk) − f∗

]
≤
(

1 − µ

Lg

)k

(f(x0) − f∗) +
∆2

2µn
, (C1)

until E
∥∥∥Xj −X

j
∥∥∥ ≤ δ′ for j < k where ∆2 = 18

(
L2
l δ

′ + σ2 + δ2
)
.
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But really on iterations of Algorithm 2 we have access only to Xk. Let us find the
sufficient communication step such that the following expression is true:

E
∥∥∥Xk −X

k
∥∥∥2 ≤ δ′ =⇒ E

∥∥∥Xk+1 −X
k+1
∥∥∥2 ≤ δ′. (C2)

By contraction property, we have∥∥∥Xk+1 −X
k+1
∥∥∥ ≤ (1 − λ)⌊

Tk
τ ⌋
∥∥∥Zk+1 −X

k+1
∥∥∥ . (C3)

Here we used, that Z
k+1

= X
k+1

. Let us estimate the right part of (C3).

E
∥∥∥Xk+1 − Zk+1

∥∥∥2 ≤ 2E
∥∥∥Xk −Xk

∥∥∥2 + 2γ2E
∥∥∥∇̃F (Xk)

∥∥∥2
≤ 2δ′ + 6γ2E

∥∥∥∇̃F (Xk) −∇F (X
k
)
∥∥∥2

+ 6γ2E
∥∥∥∇F (X

k
) −∇F (X

∗
)
∥∥∥2 + 6γ2

∥∥∥∇F (X
∗
)
∥∥∥2

≤ 2δ′ + 6γ2∆2 + 6γ2L2
gE
∥∥∥Xk −X

∗
∥∥∥2 + 6γ2

∥∥∥∇F (X
∗
)
∥∥∥2 .

From quadratic growth condition (9) we have

E
∥∥∥Xk −X

∗
∥∥∥2 = nE

∥∥∥xk − x∗
∥∥∥2 ≤ 2n

µ
E
[
f(xk) − f∗

]
.

Further, using the convergence rate (19) we can estimate the third value in the sum
above:

E
∥∥∥Xk −X

∗
∥∥∥2 ≤ 2n

µ

(
1 − µ

Lg

)k+1 (
F (X

0
) − F ∗

)
+

∆2

µ2
.

Note, that Eξ ≤
√

Eξ2 for any random value ξ. Finally, we have that:

E
∥∥∥Xk+1 − Zk+1

∥∥∥2 ≤ D,

for D such that:

D = 6γ2∥∇F (X
∗
)∥2 + 2δ′ + 6

(
γ2 +

1

µ2

)
∆2 +

12γ2L2
g

µ

(
1 − µ

Lg

)(
F (X

0
) − F ∗

)
.

So, for Tk = τ
⌈

1
2λ log

(
D
δ′

)⌉
the condition (C2) is met.

Appendix D. Proof of Lemma 4.3.

Proof For the given X and Y, we can estimate the bias in inexact gradient with respect
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to Y in the following form:

E
∥∥∥EXk,Y,ξ∇̃YΦ(X,Y) −∇Y Φ(X,Y)

∥∥∥2 ≤3E
∥∥∥EXk,Y,ξ∇̃YΦ(X,Y) − EXk,Y∇YΦ(X,Y)

∥∥∥2
+ 3E

∥∥EXk,Y∇Y Φ(X,Y) − EXk∇YΦ(X,Y)
∥∥2

+ 3E
∥∥EXk∇YΦ(X,Y) −∇YΦ(X,Y)

∥∥2
≤3E

∥∥∥Eξ∇̃Y Φ(X,Y) −∇Y Φ(X,Y)
∥∥∥2

+ 3E∥∇YΦ(X,Y) −∇Y Φ(X,Y)∥2

+ 3E
∥∥∇Y Φ(Y,Y) −∇YΦ(X,Y)

∥∥2
≤3δ2 + 3L2

yyδ
′
y + 3L2

yxδ
′
x.

In the inequality above we used fact that ∥a + b + c∥2 ≤ 3∥a∥2 + 3∥b∥2 + 3∥c∥2 for

each vectors a, b and c. Note, for the bias in ∇̃f(X
k
) we proved in the main part the

following estimation

E
∥∥∥EX,ξ∇̃f(Xk) −∇f(xk)

∥∥∥2 ≤ 2δ2 + L2
l δ

′

n
. (D1)

Also, we assume that the condition EXk

∥∥∥Xj −X
j
∥∥∥2 ≤ δ′ holds for all j ≤ k.

Let us estimate noise in ∇̃f(X
k
). For this, we estimate the second moment of

the random component in ∇̃F (Xk) for given X
k
. It is given by the expression

EXk,ξ∥EXk,ξ∇̃F (Xk)−∇̃F (Xk)∥. Let us estimate the inner part in the following way:∥∥∥EX,Y,ξ∇̃YΦ(X,Y) − ∇̃Y Φ(X,Y)
∥∥∥ ≤

∥∥∥EX,Y,ξ∇̃YΦ(X,Y) − EX,Y∇̃YΦ(X,Y)
∥∥∥

+
∥∥∥EX,Y∇̃Y Φ(X,Y) − ∇̃Y Φ(X,Y)

∥∥∥
≤EX,Y

∥∥∥Eξ∇̃Y Φ(X,Y ) − ∇̃YΦ(X,Y)
∥∥∥

+
∥∥∥EX,Y∇̃YΦ(X,Y) − ∇̃YΦ(X,Y)

∥∥∥ .
The last term can be estimated in a similar way as in Appendix A:

E
∥∥∥EX,Y∇̃YΦ(X,Y) − ∇̃YΦ(X,Y)

∥∥∥2 ≤2E ∥EX,Y∇YΦ(X,Y) −∇YΦ(X,Y)∥2

+ 8σ2 + 8δ2

≤8L2
yy,lδ

′
y + 8L2

yx,lδ
′
x + 8σ2 + 8δ2,

Finally, we can estimate required the second moment of noise component:

E
∥∥∥EX,Y,ξ∇̃YΦ(X,Y) − ∇̃YΦ(X,Y)

∥∥∥2 ≤2E
∥∥∥Eξ∇̃Y Φ(X,Y) − ∇̃YΦ(X,Y)

∥∥∥2
+ 16L2

yy,lδ
′
y + 16L2

yx,lδ
′
x + 16σ2 + 16δ2

≤16L2
yy,lδ

′
y + 16L2

yx,lδ
′
x + 18σ2 + 16δ2.
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Thus we can conclude, that

E
∥∥∥E∇̃Yϕ(X,Y) − ∇̃Yϕ(X,Y)

∥∥∥ ≤
16L2

yy,lδ
′
y + 16L2

yx,lδ
′
x + 18σ2 + 16δ2

n
. (D2)

Appendix E. Proof of Lemma 4.4

Proof. In a similar way, like for the gradient with respect to the inner variable Y, we
can estimate the mathematical expectation of bias with respect to the outer variable
X:

E
∥∥∥EX,Y,ξ∇̃XΦ(X,Y) −∇F

(
X
)∥∥∥2 ≤ 3E

∥∥∥EX,Y,ξ∇̃XΦ(X,Y) − EX,Y∇XΦ(X,Y)
∥∥∥2

+ 3E
∥∥∥EX,Y ∇XΦ(X,Y) − EX∇XΦ(X,Y

∗
(X))

∥∥∥2
+ 3E

∥∥∥EX∇XΦ(X,Y
∗
(X)) −∇XΦ(X,Y

∗
(X))

∥∥∥2
≤ 3E

∥∥∥Eξ∇̃XΦ(X,Y) −∇XΦ(X,Y)
∥∥∥2

+ 3E
∥∥∥∇XΦ(X,Y) −∇XΦ(X,Y

∗
(X))

∥∥∥2
+ 3E

∥∥∥∇XΦ(X,Y
∗
(X) −∇XΦ(X,Y

∗
(X))

∥∥∥2
≤ 3δ2 + 3L2

xxδ
′
x + 6L2

xy

(
2εy
µy

+
∆2

y

µ2
yn

+ δ′y

)
.

Note, that the noise component in the inexact gradient ∇̃Xϕ(X,Y) does not depend
on inexactness on a solution by the inner problem. So, repeating the steps above for
inexact gradient with respect to the variable X, we can obtain the following estimation

E
∥∥∥E∇̃Xϕ(X,Y) − ∇̃Xϕ(X,Y)

∥∥∥ ≤
16L2

xy,lδ
′
y + 16L2

xx,lδ
′
x + 18σ2 + 16δ2

n
. (E1)

Note, that the variable Y in (E1) is a result of the inner loop in Algorithm 3. The
estimations (D2) and (E1) give the bounds on the second norm of noise.
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