
MOS: A Mathematical Optimization Service

James Hubert Merrick∗, Tomás Tinoco De Rubira†

October 11, 2022

Abstract

We introduce MOS, a software application designed to facilitate the deployment, integration,
management, and analysis of mathematical optimization models. MOS approaches mathemat-
ical optimization at a higher level of abstraction than existing optimization modeling systems,
enabling its use with all of them. The sole requirement to harness MOS is a simple annotation
of the code specifying the formulation of an optimization model. With this, the model becomes
accessible to humans through the automatic generation of a user interface, and to machines
through an associated API and client libraries. All this is achieved while avoiding the ad hoc
code typically required to obtain such features.

1 Introduction

Whilst known by different names in different settings, mathematical optimization influences billions
of dollars in the modern economy, impacting every industry. It consists of the maximization or
minimization of some objective function subject to constraints, and is a natural paradigm for
solving problems in many fields. In planning applications in operations research and management
science, optimization models act as a decision-support tool for a human decision-maker. In other,
more operational, settings, they enable decisions to be automated, with example problems including
pricing, scheduling, allocation of scarce resources, and routing. In the natural sciences, optimization
models capture the physical laws governing the behavior of natural systems. In machine learning,
they provide the tools for obtaining parameterized models that best fit a particular data set. Boyd
and Vandenberghe (2004) and Luenberger and Ye (2021) provide comprehensive introductions to
the theory and applications of mathematical optimization.

Key tools in mathematical optimization are algebraic modeling systems. Examples of these
are cvxpy (Diamond and Boyd, 2016), JuMP (Dunning et al., 2017), Pyomo (Hart et al., 2017),
optmod (Tinoco De Rubira, 2020) and GAMS (Bussieck and Meeraus, 2004). These tools greatly
facilitate the process of constructing and solving optimization models on computers. They allow
users to construct optimization problems by writing intuitive mathematical expressions, and can
utilize many numerical solvers without the need of custom code that expresses the problem in
solver-specific data structures and formats.

∗jmerrick@alumni.stanford.edu
†ttinoco@alumni.stanford.edu

1

ar
X

iv
:2

21
0.

03
81

3v
1 

 [
m

at
h.

O
C

] 
 7

 O
ct

 2
02

2



From the authors’ experience in developing optimization models to support and automate de-
cisions, once a model is formulated using one of the above modeling systems, there is often an
additional non-trivial programming exercise required to facilitate a human or application to in-
teract with the model. In the absence of this code, using the model requires familiarity with the
model’s internal and low-level details, which is seldom documented and user friendly, creating bar-
riers for human users and adding complexity to application pipelines. A custom solution, on the
other hand, typically requires time and resources, including dedicated software engineers.

By approaching the modeling problem at a higher level of abstraction than existing tools, and
by capturing and standardizing common model properties and structure, MOS provides essential
deployment, integration, management and analysis features automatically, removing the need for
custom solutions. The sole requirement is a simple annotation of the file containing the model
code. This allows a focus, at the development stage, on the core modeling task itself, and at the
production stage, on the model usage itself, reducing the barriers to obtaining value from a model.

Guericke and Cassioli (2019) propose a framework for deploying optimization models based
on microservice architectures, and highlight a gap between solution methods in literature and
solution methods in production environments. MOS also attempts to contribute to the closing of
this gap through a proposed concrete and universal model representation, a modular and flexible
architecture, and an open-source implementation.1

2 Model representation

Boyd and Vandenberghe (2004) introduce an optimization problem as being represented by the
following:

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m,

(1)

where x = (x1, . . . , xn) is the vector of variables to be optimized, f0 : Rn → R is the objective
function, and functions fi : Rn → R together with constants bi for i = 1, . . . ,m define the
constraints. MOS considers optimization models as objects that not only consist of optimization
problems having variables, functions, and constraints, as in (1), but also of inputs, outputs, and
intermediate objects. The intermediate or “helper objects” correspond to objects that are created
either in a pre-optimization phase, for facilitating the construction of problem variables, functions
and constraints, or in a post-optimization phase, for facilitating the construction of outputs. This
model representation is helpful for establishing a layer of abstraction that enables the definition
and implementation of tools for interacting with, and analyzing models. Figure 1 illustrates the
MOS optimization model representation.

3 Design

Figure 2 shows the architecture of MOS, which includes the following components:

• Backend: Manages model data and access, and provides a REST API for interacting with
models.

1MOS is available at https://github.com/Fuinn.

2

https://github.com/Fuinn


Figure 1: MOS model representation

• Frontend: Provides a graphical user interface for accessing, using, and analyzing models.

• Interface libraries: Allow users or other applications to interact with models using popular
programming languages and integrate them with application pipelines.

• Compute workers: Run models locally or distributed over the network using modeling-system-
specific computational kernels.

MOS accepts an optimization model file, in any of the supported programming languages and
modeling systems, with annotations that identify the components of the model, described in the
previous section. Appendix A shows an extract from an annotated model file, illustrating the
nature of the annotation, requiring labeling of different sections of the code with certain structural
keywords marking out common model features, preceded by a language-specific tag. The degree
of structure required by MOS in annotation is variable and optional, with more structure enabling
more features in the interface. Appendix B shows an example use of the Python interface library.
Appendix C shows screenshots of the MOS user interface.

4 Benefits

MOS enables an appropriately annotated optimization model to have the following features:

• Deployable: Readily deployable in the cloud or on an organization’s own servers.

3



Figure 2: Architecture of MOS

• API Access: Through automatic generation of an API through which an optimization model
may be called, MOS facilitates integration of mathematical optimization into an organization’s
data flows and software applications. For example, MOS may be used as a microservice by
enterprise applications to integrate optimization capabilities. This integrability also enables
a modular type of development, suitable for scaling as a an optimization model is updated,
without requiring a re-write of supporting custom infrastructure code.

• A browsable, graphical, intuitive, representation of a model, associated data, and results: The
model structure, documentation, input data, and model results, may be browsed through,
increasing model transparency and understanding. Model data and assumptions may also
be changed through the user interface, and the model solved by clicking a button instead of
doing so from the command line.

• Leverage of existing optimization technologies and investments: MOS works with a range of
domain-specific languages designed for optimization such as cvxpy, JuMP, and gams, not
tying an organization to one specific approach as needs evolve, and additionally leveraging
an organization’s previous investments in optimization model code development.

While a well designed custom interface may provide many of these features, and they are
commonly deployed by organizations, MOS provides these features automatically, while potentially
providing a platform for further benefits. MOS is readily extendible to incorporate logs of model
history, and automated analysis of model solutions.

5 Conclusion

Mathematical optimization is used across all industries, and the number of applications are growing
as more digital data is available and the cost of computing declines. MOS allows the avoidance of

4



expensive development costs associated with supporting custom infrastructure code around an opti-
mization model. It does this by approaching the modelling problem at a higher level of abstraction
than existing tools.

References

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press, Cam-
bridge.

Bussieck, M. R. and Meeraus, A. (2004). General Algebraic Modeling System (GAMS). In Modeling
Languages in Mathematical Optimization, pages 137–157. Springer.

Diamond, S. and Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex
optimization. The Journal of Machine Learning Research, 17(1):2909–2913.

Dunning, I., Huchette, J., and Lubin, M. (2017). JuMP: A modeling language for mathematical
optimization. SIAM Review, 59(2):295–320.

Guericke, S. and Cassioli, A. (2019). A Framework for Mathematical Optimization in Microservice
Architectures. Optimization Online.

Hart, W. E., Laird, C. D., Watson, J.-P., Woodruff, D. L., Hackebeil, G. A., Nicholson, B. L.,
Siirola, J. D., et al. (2017). Pyomo - Optimization Modeling in Python. Springer, 2nd edition.

Luenberger, D. G. and Ye, Y. (2021). Linear and Nonlinear Programming. Springer, New York,
5th edition.

Tinoco De Rubira, T. (2020). OPTMOD 0.0.1. https://github.com/ttinoco/OPTMOD.

5

https://github.com/ttinoco/OPTMOD


A Extract of annotated model file

#@ Constraint: P_limits

#@ Description: Generator active power limits

P_limits = []

for gen in network.generators:

P_limits.extend([P[gen.index] >= gen.P_min, P[gen.index] <= gen.P_max])

#@ Objective: gen_cost_obj

gen_cost_obj = optmod.minimize(gen_cost)

#@ Problem: problem

problem = optmod.Problem(gen_cost_obj,

constraints=power_balance+angle_ref+P_limits)

#@ Solver: solver

solver = optalg.opt_solver.OptSolverINLP()

solver.set_parameters(‘feastol’: feastol, ‘maxiter’: 100)

#@ Execution: info

info = problem.solve(solver)

#@ Output Object: output_obj

output_obj = list(info.values())

B Example use of MOS Python Interface

from mos.interface import Interface

interface = Interface(url, token)

model = interface.get_model_with_name(‘DCOPF Model’)

model.set_interface_object(‘feastol’, 1e-3)

model.set_interface_file(case, ‘ieee14.m’)

model.show_recipe()

model.show_components()

model.run()

model.get_status()

model.get_execution_log()

6



C MOS user interface screenshots

Figure 3: MOS user interface: list of models available

Figure 4: MOS user interface: browsing through model constraints

7


	1 Introduction
	2 Model representation
	3 Design
	4 Benefits
	5 Conclusion
	A Extract of annotated model file
	B Example use of MOS Python Interface
	C MOS user interface screenshots

