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A Concrete Example of Fractional Chern Insulator
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1

Abstract: We present a concrete example of fractional Chern insulator whose fermion
Hamiltonian consists of hopping and Coulomb repulsive interaction terms. Both of them
are of finite range on the square lattice. In a strong coupling limit for the interaction
Hamiltonian, we show that the Hall conductance is fractionally quantized to 1/2 in the
sense of the expectation value with respect to the four-fold degenerate ground state at the
filling 3/8. We also present a slightly different example in which there appears a long-range
order of charge density wave with the Chern number 1.
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1 Introduction

As is well known, the fractional quantum Hall effect occurs due to strong interactions
between electrons at a fractional filling of a Landau level in a strong magnetic field in
two dimensions. The strong interactions open a gap in the degenerate Landau level when
the filling factor is fractional [1], and the Hall conductance is quantized to the fractional
value [2].

This quantization is robust against generic perturbations, and can be explained from
the topological point of view [3, 4]. In this argument, the many-body ground state of
the Hamiltonian must have a non-trivial degeneracy for the fractional quantization of the
Hall conductance. In other words, a unique many-body ground state always shows an
integer-valued Hall conductance.

The fractional Chern insulators(FCI) as an interacting lattice fermion are an analogue
of the fractional quantum Hall system. Naively, there seems to be only the difference
between lattice and continuum fermions. However, there have been done many attempts
to realize a fractional Chern insulator as a lattice fermion system [5–10]. Of course, the
treatment of strongly interacting fermions is not so easy.

In the preset paper, we present a concrete example of the fractional Chern insulator
whose Hamiltonian consists of hopping and Coulomb repulsive interaction terms. Both of
them are of finite range on the square lattice. In a strong coupling limit for the Coulomb
repulsion, we show that the ground state is four-fold degenerate, and that the Hall con-
ductance is fractionally quantized to 1/2 in the sense of the expectation value in the sector
of the ground state at the filling 3/8. We also present a slightly different example in which
there appears a long-range order of charge density wave(CDW) with the Chern number
1. Therefore, the two FCI and CDW phases can be clearly distinguished by the Chern
numbers.

The present paper is organized as follows: In Sec. 2, as a preliminary step, we describe
models for fractional Chern insulators in a slightly generic setting. Our interaction Hamil-
tonian is given in Sec. 3. In Sec. 4, we present our hopping Hamiltonian, and show our
main results. In Sec. 5, we discuss the difference between the FCI and CDW phases. Ap-
pendix A is devoted to a short review of Hatsugai-Kohmoto model [11] whose Hamiltonian
is used as a hopping Hamiltonian in the present paper.

2 A generic setting

In order to clarify our aim of the present paper, we first consider a slightly generic setting
about a class of lattice models which are believed to describe fractional Chern insulators
[5–8].

Let Λ be a subset of the square lattice Z2, and write x = (x(1), x(2)) ∈ Z2 for the site
x in the lattice Λ. In general, the Hamiltonian on the lattice Λ is given by

H(Λ) =
∑

x,y∈Λ

tx,ya
†
xay +

∑

x,y∈Λ:x 6=y

Vx,ynxny, (2.1)

where a†x and ax are, respectively, the creation and annihilation fermion operators, which
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obey the anti-commutation relations,

{ax, a
†
y} = δx,y, and {ax, ay} = 0,

and nx := a†xax; the hopping amplitudes tx,y ∈ C satisfy the hermitian conditions ty,x =
(tx,y)

∗, and Vx,y ∈ R. We assume that the hopping and interaction Hamiltonians are of
finite range. Namely, we will not consider a mean-field type model.

In order to realize a fractional Chern insulator, we need to control suitably the model
parameters in the Hamiltonian of (2.1). Mimicking the structure of the Landau band in the
fractional quantum Hall system, the flat band structures [12] have been often used [5–7]
for the hopping Hamiltonian.

However, intuitively, a strong Coulomb repulsion can be expected to induce a different
configuration of the fermions from that for the band determined by the hopping Hamil-
tonian at a fractional filling. Therefore, it does not look like that a flat band structure is
crucial for the fractional Chern insulators. Rather, we should control the Coulomb repul-
sion to realize a fractional Chern insulator. This is our motivation in the present paper.
More precisely, in order to bring out the effect of the Coulomb interaction, we take the
strong coupling limit.

We should also remark that there are different recent approaches [9, 10] to FCI from
the above.

3 The present interaction Hamiltonian

In this section, we specify our interacting Hamiltonian, and discuss the structure of the
degenerate ground state of the interaction Hamiltonian with no hopping Hamiltonian.

For this purpose, we introduce three sets of vectors as follows:

U1 := {±e1,±e2}, U2 := {±e1 ± e2} and U3 := {±e1 ± 2e2,±e2 ± 2e1},

where ei ∈ Z2 is the unit vector whose the i-th component is 1 for i = 1, 2, i.e., e1 = (1, 0)
and e2 = (0, 1). We choose the interaction Hamiltonian as follows:

H
(Λ)
int := g1H

(Λ)
int,1 + g2H

(Λ)
int,2, (3.1)

where g1 > 0 and g2 > 0 are the coupling constants, and the two Coulomb interactions
are given by

H
(Λ)
int,1 :=

1

2

∑

x∈Λ

∑

δx∈U1

nxnx+δx +
1

2

∑

x∈Λ

∑

δx∈U3

nxnx+δx (3.2)

and

H
(Λ)
int,2 :=

1

2

∑

x∈Λ

∑

δx∈U2

nxnx+δx. (3.3)

The first sum in the right-hand side of (3.2) is the usual nearest-neighbor interactions.
The interactions given by the second sum in the right-hand side of (3.2) are depicted by

the red lines in Fig. 1. The interactions of H
(Λ)
int,2 of (3.3) are also depicted by the blue lines

in Fig. 1.
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Figure 1: The red lines indicate the interactions of the second sum in the right-hand side
of (3.2), and the blue lines indicate the interactions given by the Hamiltonian Hint,2 of
(3.3).

Let us consider the ground states of the interaction Hamiltonian H
(Λ)
int of (3.1) with no

hopping Hamiltonian. We choose Λ = [1, 4L]× [1, 4L] with a positive integer L with the
periodic boundary conditions, and consider the quarter filling. From the assumptions on
the interactions, It is easily shown that the ground-state space is four-fold degenerate, and
one of the ground-state configurations is depicted in Fig. 2.
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Figure 2: One of the ground-state configurations for the interaction Hamiltonian H
(Λ)
int at

the quarter filling. The sites of the solid circles are occupied by the fermions.

A reader might think that these ground states show a charge-density-wave long-range
order [8] because the translational invariance is spontaneously broken under the unit lattice
shift. However, in order to realize a fractional Chern insulator, we need a large structure
of a unit cell with a larger period for the translation. As we will see below, this structure
can be realized by a certain hopping Hamiltonian. The situation is very similar to those in
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the usual topological insulators. Therefore, the structure of the ground-state configuration
should be interpreted as a microscopic structure in the unit cell. In fact, the above ground
states do not break the translational invariance of the total Hamiltonian, which includes
the hopping Hamiltonian.

Further, by adding fermions, we want to realize the filling 1/4 + 1/8 = 3/8. For this
purpose, we assume g1 ≫ g2 > 0 for the two coupling constants of the interactions. From
these assumptions, the additional fermions must occupy the sites depicted by the green
solid circles in Fig. 3 to lower the energy.
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Figure 3: Additional fermions must occupy the sites depicted by the green solid circles to
lower the energy in the strong coupling limit g1 → ∞.

4 Hopping Hamiltonians

Now, let us take into account the hopping of the fermions. We consider the strong coupling
limit g1 → ∞ for the Hamiltonian H

(Λ)
int,1 of (3.2). In this limit, it is enough to consider the

hopping between the sites depicted by the green solid circles in Fig. 3. For example, the
strong nearest-neighbor Coulomb repulsion indeed forbids the nearest-neighbor hopping.
Clearly, these green sites form the square lattice for each classical ground state which is
depicted by the black solid circles.

For this square lattice, we consider the hopping model which was introduced by Hat-
sugai and Kohmoto [11]. See Appendix A for the details of the model. In the case of the
half-filled band, the model shows the Chern number ±1, depending on the model param-
eters. Therefore, for each of the four ground states of the interaction Hamiltonian H

(Λ)
int,1

of (3.2), there are two choices of the Chern numbers. We denote a set of the four Chern
numbers by (σ1, σ2, σ3, σ4) ∈ {+1,−1}4.

Consider first the case of (+1,+1,+1,−1) for the Chern numbers, i.e., the three are
equal to +1, and the rest is equal to −1. In this case, the Chern number of the total
system is given by

Chern number =
1

4
(1 + 1 + 1− 1) =

1

2
(4.1)
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in the sense of the expectation value about the four-degenerate ground state [3]. Thus,
the Hall conductance is quantized to the fractional value 1/2. For this choice of the set
of the four Chern numbers, the corresponding total hopping Hamiltonian is not invariant
under the unit lattice translation in both of the two spatial directions. Actually, the
model parameters for one of the four hopping Hamiltonians of Hatsugai and Kohmoto
must be chosen to be different from those for the remaining three hopping Hamiltonians
so that they realize (+1,+1,+1,−1) for the set of the four Chern numbers. Therefore,

all the four ground states of the interaction Hamiltonian H
(Λ)
int,1 of (3.2) do not break the

translational symmetry of the total Hamiltonian which consist of the interaction and the
hopping Hamiltonians. In this sense, one cannot interpret any of these four ground states
as a charge-density-wave(CDW) state. However, the four ground states of the interaction

Hamiltonian H
(Λ)
int,1 of (3.2) look like to exhibit a long-range order of charge density wave.

Since the strong coupling limit g1 → ∞ is very special, it may change due to the effect
of the asymmetry of the four two-site hopping Hamiltonians for a sufficiently large but
finite coupling constant g1 and sufficiently small but non-zero hopping amplitudes of a
nearest-neighbor hopping Hamiltonian.

5 CDW versus FCI

We can also choose the four Chern numbers to be all the same, e.g., (+1,+1,+1,+1),
so that the system is invariant under the unit lattice translation in one of the spatial
directions. In this case, the four ground states break the translational invariance of the
total Hamiltonian. Therefore, the long-range order of the charge density wave emerges.
On the other hand, the Chern number is given by the integer (1 + 1 + 1 + 1)/4 = 1.
Clearly, this phase can be distinguished from that in the preceding section by using the
Chern numbers. Thus, this phase can be characterized by the long-range order of the
charge-density wave with the Chern number +1.

A Hatsugai-Kohmoto hopping model

In this appendix, we present a short review about the tight-binding model by Hatsugai
and Kohmoto [11] on the square lattice.

Let us consider the 2L1 × L2 square lattice, where L1 and L2 are a positive integer.
We write ϕ(ℓ, n) for the single-particle wavefunction at the site (ℓ, n), ℓ = 1, 2, . . . , 2L1

and n = 1, 2, . . . , L2, with the periodic boundary conditions. The hopping amplitudes of
Hatsugai-Kohmoto model are depicted in Fig. 4.

The Schrödinger equation for the single-particle wavefunction is given by

t1[ϕ(2m− 2, n) + ϕ(2m,n)] + t2[ϕ(2m− 1, n− 1) + ϕ(2m− 1, n+ 1)]

+ itd[−ϕ(2m− 2, n− 1)− ϕ(2m,n+ 1) + ϕ(2m,n− 1) + ϕ(2m− 2, n+ 1)]

= Eϕ(2m− 1, n) (A.1)
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Figure 4: The hopping amplitudes of the tight-binding model on the square lattice [11].
The diagonal hopping amplitudes are pure imaginary, and hence they depend on the
direction of the hopping.

and

t1[ϕ(2m− 1, n) + ϕ(2m+ 1, n)]− t2[ϕ(2m,n+ 1) + ϕ(2m,n− 1)]

+ itd[ϕ(2m− 1, n− 1) + ϕ(2m+ 1, n+ 1)− ϕ(2m+ 1, n− 1)− ϕ(2m− 1, n+ 1)]

= Eϕ(2m,n) (A.2)

for m = 1, 2, . . . , L1, and n = 1, 2, . . . , L2. Here, E is the energy eigenvalue, t1, t2 ∈ R, and
we have chosen the same value td ∈ R for the two diagonal hopping amplitudes [11] for
simplicity. The model is invariant under the translation by two lattice units in the first
direction and by one lattice unit in the second direction.

Because of the translational invariance, we can take the wavefunction in the plane-wave
form,

ϕ(2m− 1, n) = αk exp[ik
(1)m+ ik(2)n] and ϕ(2m,n) = βk exp[ik

(1)m+ ik(2)n], (A.3)

with coefficients, αk and βk, and the wave vector k = (k(1), k(2)). Substituting these forms
of the wavefunction into the Schrödinger equation, one has

(

A(k) B(k)
B∗(k) −A(k)

)(

αk

βk

)

= E

(

αk

βk

)

, (A.4)

where
A(k) := 2t2 cos k

(2) (A.5)

and

B(k) := e−ik(1)/2

[

2t1 cos
k(1)

2
+ 4itd sin

k(1)

2
sin k(2)

]

. (A.6)

The two energy eigenvalues are given by

Ek := ±
√

[A(k)]2 + |B(k)|2. (A.7)

The eigenvector with the low energy eigenvalue is
(

αk

βk

)

=

(

B(k)

−A(k)−
√

[A(k)]2 + |B(k)|2

)

. (A.8)
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In order to calculate the Chern number for the low band, we first examine a zero point
of the norm Nk :=

√

|αk|2 + |βk|2 of the eigenvector. Clearly, one has

N2
k = |B(k)|2 +

{

A(k) +
√

[A(k)]2 + |B(k)|2
}2

. (A.9)

As is well known, a wavenumber k which yields the vanishing of the norm Nk leads to a
non-trivial contribution for the Chern number. The point is determined by

|B(k)| = 0 and A(k) + |A(k)| = 0. (A.10)

From this first equation and the expression (A.6) of B(k), the point must satisfy

k(1) = π and k(2) = 0 or π. (A.11)

Further, from the expression (A.5) of A(k) and these observations, the second component
k(2) of the point must satisfy

k(2) =

{

π for t2 > 0;

0 for t2 < 0.
(A.12)

In the following, we assume t2 > 0. Therefore, if Nk = 0, then k = (π, π).
Let us compute the Chern number which is given by

Chern number :=
1

2πi

∫ π

−π

dk(1)

∫ π

−π

dk(2) rot A(k), (A.13)

where the two-component vector A(k) is defined by

A(k) :=
1

Nk
(α∗

k, β
∗
k)∇k

1

Nk

(

αk

βk

)

. (A.14)

As is well known, the Chern number can be expressed as

Chern number = lim
εց0

1

2πi

∮

γε

dk · A(k), (A.15)

where γε is a small closed path which encircles the above point k = (π, π).
In order to calculate the above line integral, we set

(k(1), k(2)) = (π + p(1), π + p(2)) (A.16)

with small p(1), p(2). Substituting this into the expression of A(k), one has

A(k) ≈ i

(

−1/2
0

)

+
4itd
t1

1

(p(1))2 + (4td/t1)
2 (p(2))2

(

−p(2)

p(1)

)

, (A.17)

where we have assumed t1 6= 0. The first term in the right-hand side does not contribute
to the line integral. In order to compute the contribution by the second term in the line
integral, we choose

(p(1), p(2)) =

(

ε cos θ, ε

∣

∣

∣

∣

t1
4td

∣

∣

∣

∣

sin θ

)

, θ ∈ [0, 2π) (A.18)
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as the closed path γε with the small ε > 0. Here, we have assumed td 6= 0. In consequence,
one obtains

Chern number = sgn(td/t1), (A.19)

where sgn stands for the signature.
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