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Finite-Time Convergent Algorithms for Time-Varying
Distributed Optimization

Xinli Shi, Guanghui Wen, and Xinghuo Yu

Abstract—This paper focuses on finite-time (FT) convergent
distributed algorithms for solving time-varying (TV) distributed
optimization (TVDO). The objective is to minimize the sum of
local TV cost functions subject to the possible TV constraints
by the coordination of multiple agents in finite time. Specifically,
two classes of TVDO are investigated included unconstrained
distributed consensus optimization and distributed optimal resource
allocation problems (DORAP) with both TV cost functions and
coupled equation constraints. For the previous one, based on
non-smooth analysis, a continuous-time distributed discontinuous
dynamics with FT convergence is proposed based on an extended
zero-gradient-sum method with a local auxiliary subsystem. Then,
an FT convergent distributed dynamics is further obtained for TV-
DORAP by dual transformation. Particularly, the inversion of the
cost functions’ Hessians is not required in the dual variables’ dy-
namics, while another local optimization needs to be solved to obtain
the primal variable at each time instant. Finally, two numerical
examples are conducted to verify the proposed algorithms.

Index Terms—Finite-time convergence, time-varying distributed
optimization, resource allocation, discontinuous dynamics.

I. INTRODUCTION

Recently, time-varying distributed optimization (TVDO) has
received increasing attention as it is more practical than time-
invariant distributed optimization (TIDO) in a dynamic environ-
ment where the objective function or constraints can change
over the time. TVDO has found applications in many areas,
such as power system, machine learning and robotics, see [8]
and references therein. In TVDO, the optimal solution can be
TV and hence the traditional algorithms designed for TIDO
to approach a static optimizer can not be applied directly. To
solve TVDO, many discrete-time algorithms (DTAs) have been
provided for solving TVDO [2]–[6]. For example, prediction-
correction methods are used in [3], [4] for solving TVDO with
sample period, and the tracking error bound is related to the size
of sample period. More DTAs can be found in the survey [7] and
literature therein. However, in general, it is difficult for CTAs to
track the TV optimal trajectory asymptotically due to the sample
period, step size or errors in the local optimization.

To track the optimal solution trajectory with vanishing errors,
several continuous-time algorithms (CTAs) have been proposed
for solving TV (distributed) optimization [8]–[12]. Compared
with DTAs, typical CTAs can achieve fast convergence per-
formance, such as finite-time (FT) convergence to the optima,
and further inspire the discrete-time counterpart design. Besides,
CTAs are also preferred for optimizing the swarm tracking be-
havior of a multi-robotic system with physical dynamics [8] [9].
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Moreover, CTAs can track the TV optimal solution with vanish-
ing errors. Since CTAs exhibit such good tracking performance
for TV problems, we design a CTA, with the hope that even when
discretized it will show improved performance. Thus, in this
work, we mainly focus on CTAs for solving TVDO, including
TV distributed consensus optimization (TVDCO) and optimal
resource allocation problems (TV-DORAP). For TVDCO, in [9],
both single- and double-integrator dynamics are investigated for
distributed consensus optimization with TV cost functions, which
can achieve asymptotic convergence to the optimal trajectory
under some strict assumptions such as identical Hessians. Fur-
thermore, TVDCO is considered for a class of nonlinear multi-
agent system in [10]. In [11], an edge-based distributed protocol
is provided for solving TVDCO subject to identical Hessians. In
[12], gradient-based searching methods are used to track the TV
solution of TVDCO with quadratic objective functions.

Different from the distributed consensus optimization aiming
to achieve multi-agent consensus on the optimal solution, in
DORAP with coupled constraints, the optimal resource alloca-
tion of agents can be heterogeneous but should satisfy the total
demand while minimizing the sum of local cost functions. For
time-invariant DORAP, extensive CTAs have been proposed to
approach the static optimal solution with agents’ coordination
[13], [14]. As variations always exist in the generations of
renewable resources and the noncontrollable load demand in a
dynamic power system [8], TV cost functions and constraints
are more practical in the real-time DORAP. In [15], a robust
distributed algorithm is designed for economic dispatch and
then the TV loads are discussed, under which the power mis-
match is only shown to be ultimately bounded. In [16], the
prediction–correction method combined with the discontinuous
consensus protocol is used for DORAP with TV quadratic cost
functions of identical Hessians, and then distributed average
tracking (DAT) estimator-based methods are used to deal with
the case with nonidentical constant Hessians. Moreover, Wang
et al. provide two dynamics for handling DORAP with quadratic
cost functions subject to identical and nonidentical Hessians in
[17] and [18], respectively, as well as TV resources.

Although some CTAs have been proposed for solving TVDO
including TVDCO and DORAP, there exist several issues re-
quired to be further addressed. One is that most CTAs can only
achieve an asymptotic convergence to the optimal trajectory,
which means that tracking errors tend to zero as the time goes
to infinity. The second is that almost all the CTAs with simple
structures require that the Hessians of all local cost functions
are identical, and for DORAP, the cost functions are of the
quadratic form, which limit the applications of the existing
methods. To deal with nonidentical Hessians, a non-smooth
estimator based on DAT methods can be introduced to track
the global information, but it suffers from high gains and more
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computation/communication costs. To tackle these two issues,
the task of this note is to design FT convergent CTAs for
solving TVDO without identical Hessians. That is to say, the
provided dynamics will track the optimal trajectory in finite time
without mismatch errors. In literature, the existing distributed
FT algorithms are designed for time-invariant unconstrained
optimization [20]. For example, an FT convergent algorithm is
proposed in [20] based on the continuous-time zero-gradient-
sum (ZGS) method [21], where the initial states should be
the minimizers of the local cost functions. Recently, an FT
convergent primal-dual method has been proposed in [22] and
further applied to constrained distributed optimization including
DORAP. In [23], a DAT estimator for tracking global information
is used to design FT dynamics for TVDO with TV cost functions.

As pointed out in [8], the best algorithm for the invariant
case may be the worst one in the dynamic case. Similarly, the
existing FT CTAs designed for TIDO might not be applied to
TVDO directly, and there are few results on the FT convergent
algorithms with simple structures for TVDO. In this note, we
will provide two FT distributed algorithms for solving TVDO
such as TVDCO and DORAP, respectively. The contributions
are listed as follows.

1) For a class of TVDCO with strongly convex and smooth
cost functions, a discontinuous distributed dynamics with
FT convergence is proposed, based on an extended ZGS
approach. Specifically, the introduced auxiliary dynamics
can drive all the local states to an invariant set in finite
time, on which the sum of local gradients is zero. After
that, TVDCO will be solved once the multi-agent system
reaches consensus in finite time by using non-smooth
consensus protocol. Different from existing ZGS method
based algorithms (e.g., [20], [21]) for TIDO, the agents’
initial states are not required to minimize the local func-
tions (see [20], [21]). Moreover, compared with exiting
methods [9]–[11], [23], the provided algorithm has a
simpler structure without estimating the global information
and can be used for TVDO with nonidentical Hessians.
However, similar to [9]–[11], [23], the inversion of Hessian
is required in the proposed method.

2) An FT convergent distributed dynamics is further obtained
for DORAP with TV cost functions and coupled con-
straints by dual transformation. Compared with existing
works [16]–[18], the cost functions can be of non-quadratic
form with nonidentical Hessians. Moreover, the inversion
of the cost functions’ Hessians is not required in the dual
variables’ dynamics. However, another local optimization
needs to be solved to obtain the primal variable at each
time instant.

3) In the proposed CTAs, only binary information is required
and the neighboring agents only need to know whether
their relative position is positive or negative, which benefits
the online implementation in a coarse sensing scenario
[24]–[26]. Despite such a coarse information, the FT con-
vergence to the exact TV optimal trajectory is guaranteed.

The rest of this paper is organized as follows. Section II intro-
duces some preliminary notations and concepts. In Section III,
the problem statements and main methodologies are provided.
Finally, two numerical examples on TVDCO and TV DORAP
are presented in Section IV to verify the proposed algorithms.
Conclusions are drawn in Section V.

II. PRELIMINARIES

A. Notation and Network Representation

Rn
+ denotes the set of n-dimensional vectors with non-

negative entries and In ∈ Rn×n is an identity matrix. Let
⟨n⟩ = {1, 2, · · · , n}. For x = [x1, . . . , xn]

T ∈ Rn, we write
the p-norm of x as ∥x∥p = (

∑n
i=1 |xi|p)

1
p and sgnα(x) =

[sign(x1)|x1|α, ..., sign(xn)|xn|α]T for α ∈ R+. By default,
we denote ∥x∥ as the Euclidean norm of x. For the matrix
M ∈ Rn×n, N (M) denotes the null space of M and ΠN (M)(x)
denotes the projection of x onto N (M). When M is positive
semidefinite, λ2(M) denotes its smallest positive eigenvalue.

A continuously differentiable function f(x) : Rn → R is
called µ-strongly convex if for any x, y ∈ Rn, f(y) − f(x) −
∇f(x)T (y − x) ≥ µ

2 ∥y − x∥2. Moreover, f is said to be θ-
smooth if for any x, y ∈ Rn, ∥∇f(y) − ∇f(y)∥ ≤ θ∥y − x∥.
For a convex function f(x) : Rn → R, its Legendre–Fenchel
conjugate f∗ is defined by

f∗(y) = sup
x∈Rn

{⟨y, x⟩ − f(x)}, ∀y ∈ Rn. (1)

The following result can be found in [27, Proposition 12.60].
Lemma 1: For a proper, lower semicontinuous and convex

function f(x) : Rn → R ∪ {±∞}, f∗ is 1
σ -strongly convex iff

f is differentiable and σ-smooth.
A weighted undirected graph is represented by G(V, E , A),

where V = ⟨N⟩ and E ⊆ V × V denote the node set and edge
set, respectively, and the matrix A = [aij ]N×N is the weighted
adjacency matrix with aij > 0 iff (j, i) ∈ E and aii = 0,∀i ∈
⟨N⟩. Let Ni denote the set of neighbors of agent i.

B. Finite-Time Stability

Consider the following differential autonomous system

ẋ(t) = f(x(t)), x(t0) = x0, (2)

with x ∈ Rn. When the right-hand side function f : Rn → Rn

is discontinuous at some points, its Filippov solution will be
investigated, which is an absolutely continuous map x : I → Rn

defined on an interval I ⊂ R satisfying the differential inclusion:

ẋ(t) ∈ F [f ](x(t)) (3)

with F [f ](·) being the Filippov set-vauled map [28]. As known,
the Filippov solution to (2) always exists if f is measurable and
locally essentially bounded. The set-valued Lie derivative of a
locally Lipschitz continuous map V : Rn → R associated with
F [f ] at x is defined as

L̃F [f ]V (x) ≜ {a ∈ R|∃ζ ∈ F [f ](x) ⇒ ζT ν = a,∀ν ∈ ∂V (x)},

in which ∂V (x) represents the generalized gradient of V [28].
The FT/FxT stability of the system (2) is given in Definition

1. Lemma 2 is helpful for the non-smooth analysis when dealing
with Filippov solutions to (2).

Definition 1: The system (2) is FT stable at the origin if it
is Lyapunov stable and there exists a finite settling time T (x0)
such that

lim
t→T (x0)

x(t;x0) = 0 and x(t) = 0,∀t ≥ T (x0)

for any solution x(t;x0) starting from x0 ∈ X0. When X0 = Rn,
the system (2) is called globally FT stable.



MANUSCRIPT FOR REVIEW 3

Lemma 2: [28] Suppose that V : Rn → R is locally Lipschitz
continuous and regular, and x(t) : I ⊂ R → Rn is a Filippov
solution satisfying (3). Then, V (x(t)) is absolutely continuous
with

V̇ (x(t))
a.e.
∈ L̃F [f ]V (x(t)), t ∈ I. (4)

III. PROBLEM STATEMENT AND METHODOLOGY

In this section, we first provide a unified framework for
designing FT convergent algorithms to solve TV centralized
optimization. Then, based on an extended ZGS method, two FT
convergent distributed algorithms will be designed for TVDCO
and DORAP over a networked system, respectively. Meanwhile,
the comparisons with existing works are discussed in remarks.

A. FT Convergent TV Optimization

First, we focus on the following TV convex optimization

min
x∈Rn

f0(x, t), (5)

where the objective function f0 : Rn × R → R is convex and
further satisfies Assumption 1.

Assumption 1: The function f0(x, t) is twice continuously
differentiable with invertible Hessian H0(x, t) and there exists a
continuous trajectory x∗(t) that solves (5).

Then, we aim to provide a continuous-time dynamics ẋ =
u(x, t) such that x(t) tracks x∗(t) in FT T < +∞, i.e.,

lim
t→T

∥x(t)− x∗(t)∥ = 0. (6)

Then, to achieve (6), the proposed dynamics is designed as ẋ = −H−1
0 (x, t)(φ(z) +

∂∇f(x, t)

∂t
), (7a)

ż = −φ(z), (7b)

with z(0) = ∇f0(x(0), 0), where the function φ(z) is chosen
such that the origin is FT/FxT stable for the subsystem (7b).
Several typical functions can be chosen, e.g.,

φ(z) = a · z/∥z∥pr + b · z∥z∥q−1
r or a · sgn1−p(z) + b · sgnq(z)

with p ∈ (0, 1], r ≥ 1, q > 1, for which the FT/FxT stability of
(7b) can be shown with the Lyapunov function V (z) = 1

2z
T z

based on [30, Lemma 1]. Note that the subsystem (7b) is only
related to z(t) and thus it can be freely designed with prescribed
performance. In this work, we consider a class of FT stable
subsystem (7b). Then, we have the following result.

Theorem 1: Suppose that Assumption 1 holds and (7b) is FT
stable at origin with settling time Tmax. Then, with (7), x(t) will
track x∗(t) in the same FT Tmax.

Proof. See Appendix A. 2

Remark 1: In fact, from the proof of Theorem 1, (7) is
equivalent to the following dynamics

ẋ = −H−1
0 (x, t)(φ(∇f(x, t)) +

∂∇f(x, t)

∂t
). (8)

The introduced variable z(t) is used to estimate ∇f(x, t) when
the initialization coincides. The auxiliary system (7b) will be
helpful for designing FT distributed algorithms to solve TVDO
in the next part.

B. FT Algorithm for Solving TVDCO

Consider an interactive network G(V, E , A) consisting of N
agents, each of which is equipped with a local TV cost function.
Then, the multi-agent system aims to solve the following TVDO
by coordinating with neighbors.

min
x∈Rn

N∑
i=1

fi(x, t), (9)

where fi : Rn × R+ → R is the local TV cost function
only known by the agent i. Moreover, fi is supposed to satisfy
Assumptions 2 and 3, where ∇fi(x, t) is the gradient of fi
w.r.t. x. Under Assumption 2, it can be deduced that there
exists a unique continuous trajectory x∗(t) that solves TVDO
(9). Besides, Assumption 3 covers a group of functions such as
fi(x, t) = f0

i (x) + g(t)x when ġ(t) is globally bounded. For
example, in smart grid, fi(x, t) can be the cost of a generator
with x and −g(t) representing the generation power and the TV
electricity price, respectively. The objective of this work is to
design a distributed CTA with only local information that tracks
x∗(t) in finite time.

Assumption 2: For each local cost function fi, i ∈ ⟨N⟩, fi
is twice continuously differentiable w.r.t. x, θi-strongly convex
and θ̄i-smooth for some positive scalars θi, θ̄i, i.e., θiIn ≤
Hi(x, t) ≤ θ̄iIn, where Hi(x, t) is the Hessian matrix of fi.

Assumption 3: For each i ∈ ⟨N⟩, ∂∇fi(x,t)
∂t is measurable w.r.t

t and bounded by ∥∂∇fi(x,t)
∂t ∥ ≤ κ for some κ > 0.

Assumption 4: The interactive graph G is undirected and
connected.

Let xi be the local copy of the system decision x at agent
i. Then, under Assumption 4, (9) can be reformulated into the
following equivalent distributed optimization over the network
G(V, E).

min
xi∈Rn

N∑
i=1

fi(xi, t), s.t. xi = xj ,∀(i, j) ∈ E . (10)

Then, the purpose of this subsection is to design distributed
dynamics which guarantees that there exists a finite time T < ∞
such that

lim
t→T

∥xi(t)− x∗(t)∥ = 0,∀i ∈ ⟨N⟩. (11)

In order to track the global solution x∗(t) in finite time, we
propose the following distributed discontinuous dynamics as an
extension of (7) ẋi = −H−1

i (xi, t)(φi(zi) +
∂∇fi(xi, t)

∂t
+ αϕi(xi, xNi)), (12a)

żi = −φi(zi), i ∈ ⟨N⟩ (12b)

with zi(0) = ∇fi(xi(0), 0), where ϕi(xi, xNi
) =∑N

j=1 aijsgn(xi − xj) with xNi
≜ [xj ]j∈Ni

. Note that
under Assumptions 2, 3 and 5, the right-hand side of (12) is
bounded over the time and thus its Filippov solution always
exists. We call (12) an extended ZGS method as the initial state
xi(0) is not required to be the local minimizer of local cost
function to be distinct from [21]. However, with the introduced
auxiliary subsystem (12b), the local states xi(t) will be driven
to an invariant set where the sum of local TV gradients is zero.
Particularly, when the solution to (12b) can be explicitly given
as zi(t) = Φi(t, z0), φi(zi) in (12a) can be simply replaced by
φi(Φi(t, z0)) and then (12b) can be removed.
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Remark 2: For (12), it might be restrictive that each agent
knows the closed form of ∂∇fi(xi, t)/∂t. However, in some
applications, the local time-varying cost function is available
for each agent, such as a motion control with an optimization
objective, or in smart grid where smart devices should coordinate
with each other to maximize the overall utility function with a
TV electricity price whose rate is known beforehand [9]. The
term ∂∇fi(xi, t)/∂t here is used for prediction to enhance the
exact convergence to x∗(t), which has been used in [4], [9], [10],
[16], [18]. As pointed in [8], without the predictor, a tracking
error exists, possibly depending on the variation of the gradient
with the time and the control gain. Besides, the discontinuous
term ϕi is used for achieving consensus among agents as well
as constraining ∂∇fi(xi, t)/∂t. Sometimes, the noise in the
channels can affect the performance of the algorithms [24], [25].
For ϕi, as only the binary information that represents whether
the neighboring agents’ relative position is positive or negative
is used, the presence of small noise in a coarse sensing channel
may not affect the performance of algorithms when sign(xi−xj)
(i.e., {±1, 0}) remains the same. Detailed properties of the binary
protocols can be found in [26].

Assumption 5: The subsystem (12b) is FT stable at the origin,
∀i ∈ ⟨N⟩.

In the next, we will show that
∑N

i=1 zi(t) as an estimation of∑N
i=1 ∇fi(xi, t) will converge to zero in finite time and then all

xi(t) will reach consensus on x∗(t) in finite time due to ϕi in
(12a).

Given a weighted adjacency matrix A = [aij ]N×N of the
undirected graph G(V, E) with m = |E|, we define a weighted
incidence matrix B0 = [bik]N×m: bik = −bjk = aij if i < j for
any edge ek = {i, j} ∈ E . Let x = [xi]i∈⟨N⟩, δ = [δij ](i,j)∈E ,
z = [zi]i∈⟨N⟩, B = B0 ⊗ In, f(x, t) =

∑N
i=1 fi(xi, t), H =

blkdiag(H1(xi, t), · · · , HN (xN , t)) and φ(z) = [φi(zi)]i∈⟨N⟩.
Then, (12) can be rewritten in a compact form: ẋ = −H−1(x, t)(φ(z) +

∂∇f(x, t)

∂t
+ αBsgn(BTx)), (13a)

ż = −φ(z), (13b)

with z(0) = ∇f(x(0), 0) = [∇fi(xi(0), 0)]i∈⟨N⟩. Then, based
on the non-smooth analysis, the FT convergence of (13) is
established in the following result.

Theorem 2: Let Assumptions 2-5 hold, θ = mini∈⟨N⟩{θi}
and θ̄ = maxi∈⟨N⟩{θ̄i}. Under the distributed protocol (12) with

α > κ
√

Nθ̄
θλ2(BTB)

, zi(t) will converge to 0 in finite time and
then xi(t) will track the optimal trajectory x∗(t) to TVDO (10)
in finite time.

Proof. See Appendix B. 2

Actually, by the Eq. (26), the strong convexity assumption and
Assumption 3 can be further relaxed as Assumption 6, which is
more general than [9, Ass. 3.8], [10, Ass. 4], [11, Ass. 2] and
[4]. It can be easily verified that when fi is strongly convex and
∥∂∇fi(x, t)/∂t∥ is bounded, Assumption 6 holds directly. With
the alternative Assumption 6, we have the following result.

Assumption 6: For any i, j ∈ ⟨N⟩, there exists ϖ > 0 such
that ∥H−1

i (xi, t)
∂∇fi(xi,t)

∂t −H−1
j (xj , t)

∂∇fj(xj ,t)
∂t ∥1 ≤ ϖ.

Proposition 1: Let Assumptions 4-6 hold. Suppose that
fi(xi, t) has invertible Hessian and is θi-smooth. Let θ̄ =
maxi∈⟨N⟩{θ̄i} and ā = max(i,j)∈E{aij}. Under the distributed
protocol (12) with α > mϖāθ̄

λ2(BTB)
, zi(t) will converge to 0 in

finite time and then xi(t) will track the optimal trajectory x∗(t)
to TVDO (10) in finite time.

Proof. See Appendix C. 2

Remark 3: In [4], a dual prediction–correction DTA is de-
veloped for solving equation constrained TV optimization and
then its distributed implementation is given by using constraint
matrix (i.e., the incidence/Laplacian matrix) to ensure the local
consensus. In [9], an asymptotically convergent CTAs is provided
for solving (10) subject to TV cost functions with identical
Hessians, based on an FT DAT dynamics to track the global
information. The work [9] first makes all the states achieve
consensus in finite time and then the TV optimization is solved
by a centralized Newton–Raphson (NR) dynamics, i.e., ẋ =
−(∇2f(x))−1∇f(x), which we call “consensus+central NR”
dynamics. Differently, non-identical Hessians are allowable in
the proposed ZGS-based algorithm (12) and the state consensus
term is inside the local NR dynamics, which we call “consensus
within local NR” dynamics. The advantage of the ZGS-based
algorithm lies in that the TVDCO is solved once the consensus
of local states is reached as the ZGS manifold M0 is invariant.
By the convergence analysis, one can only obtain an upper
bound of the finite settling time applicable for all considered
TVDCO in worst case as most results for FT algorithms do.
For specific problems, such as DAT system, the derived control
gain condition in Theorem 2 is less conservative than that (i.e.,
α > κ

√
2N/λ2(BTB)) obtained in [16, Lemma 1], for which

θ̄ = θ = 1. To improve the convergence rate, one can design
the auxiliary system (12b) to achieve the expected finite settling
time when the local states reach the M0, and then enlarge
the control gain α to further reduce the finite consensus time.
However, large gain might result in high chattering magnitude
with discretization.

Remark 4: Assumption 3 used in Theorem 2 is more general
than existing works [9]–[11], and holds for an important class
of functions such as fi(xi, t) = (aixi + bi(t))

2/2, where ai
is heterogeneous among agents and only the boundedness of
∥ḃi(t)∥ is required, e.g, bi(t) = t and sin(t). However, in [9], for
the distributed method with neighbors’ position, with identical
Hessians, i.e., ai = aj , the boundedness of ∥bi(t) − bj(t)∥,
∥ḃi(t) − ḃj(t)∥ and ∥b̈i(t) − b̈j(t)∥ is required to satisfy [9,
Assumption 3.8]. Similarly, identical Hessians are used in [10],
[11]. For DAT-based method provided in [9], to deal with non-
identical Hessians, the boundedness of ∥d∇fi(xi,t)

dt ∥, ∥dHi(xi,t)
dt ∥

and ∥d(∂fi(xi,t)/∂t)
dt ∥ is required and known for the FT con-

vergence of the DAT estimators. In fact, these items not only
depend on ḃi(t) and b̈i(t), but also rely on the evolution of local
states xi, and thus are difficult to estimate. For a general class of
quadratic cost functions, e.g., fi(xi, t) =

1
2x

T
i Hi(t)xi+bTi (t)xi,

as ∇fi(xi, t) = Hi(t)xi + bi(t) also depends on the value
of xi, the value κ in Assumption 3 is not easy to be known
generally. However, if xi(t) is known to be upper bounded,
with the boundedness of ∥Ḣi(t)∥ and ḋi(t), Assumption 3 holds
directly.

C. FT Algorithm for Solving TV-DORAP

In this subsection, the TV-DORAP will be studied over a
multi-agent system, where each agent is associated with a TV
local cost function. All the involved agents will coordinate with
each other to minimized the whole cost function subject to a
coupled equation constraint. The DORAP can be formulated as
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follows:

min

N∑
i=1

fi(xi, t) s.t.
N∑
i=1

xi = d(t), (14)

where xi ∈ Rn is the local state of agent i, d(t) ∈ Rn is the
TV total resource that will be allocated among all agents, and
fi : Rn ×R+ → R is the TV local cost function of agent i. We
further suppose that d(t) =

∑N
i=1 di(t), where di(t) ∈ Rn can

be accessed only by the ith agent. Note that (14) is different from
(10) where all the local states are required to achieve consensus
on the optimal solution.

For the TV-DORAP (14), by introducing the Lagrangian mul-
tiplier associated with the equality constraint, the TV Lagrangian
function can be written as

L(x, λ, t) =
N∑
i=1

fi(xi, t) + λ

N∑
i=1

(di(t)− xi), (15)

where x = [xi]i∈⟨N⟩ ∈ RNn. Then, by [29, Sec. 5], one can
derive the Lagrangian dual function g(λ, t)

g(λ, t) = inf
x

L(x, λ, t) =
N∑
i=1

(λdi(t)− f∗
i (λ, t)) =

N∑
i=1

gi(λ, t),

where gi(λ, t) = λdi(t) − f∗
i (λ, t) can be regarded as

the local distributed dual function. Under Lemma 1 and
Assumption 2, it can be concluded that gi is 1

θ̄i
-strongly

concave and 1
θi

-smooth. Moreover, as ∇f∗
i is an inverse

map of ∇fi and ∇2fi(xi(λ), t) is positive definite, it holds
that ∇2f∗

i (λ, t) = (∇2f(xi(λ, t), t))
−1, where xi(λ, t) =

arg supxi
(λxi−fi(xi, t)). Besides, ∇gi(λ, t) = di(t)−xi(λ, t).

Then, the dual problem of (14) is given by

max
λ∈Rn

N∑
i=1

gi(λ, t), (16)

which can be transferred to the TVDCO (10) as

min
λ∈Rn

N∑
i=1

−gi(λi, t), s.t. λi = λj ,∀(i, j) ∈ E (17)

with λ = [λi]i∈⟨N⟩ ∈ RNn. Then, the distributed algorithm (12)
can be used to solve (17) as follows.

λ̇i = −Hi(xi, t)(φi(zi)−
∂∇gi(λi, t)

∂t
+ αϕi(λi, λNi)), (18a)

żi = −φi(zi), (18b)
xi(λi, t) = arg sup

xi∈Rn
(λixi − fi(xi, t)), ∀i ∈ ⟨N⟩ (18c)

with zi(0) = −∇gi(λi(0), 0) = xi(λi, 0) − di(0) and
∂∇gi(λi,t)

∂t = ḋi(t) − ∂xi(λi,t)
∂t . Take fi(xi, t) = 1

2aix
2
i +

bi(t)xi + ci(t) as an example with xi ∈ R. One can derive that
xi(λi, t) =

λi−bi(t)
ai

and ∂∇gi(λi,t)
∂t = ḋi(t)+

ḃi(t)
ai

. To ensure the
boundedness of ∂∇gi(λi,t)

∂t , Assumption 7 is imposed on di(t).
Then, one can show the boundedness on ∂∇gi(λi,t)

∂t in Lemma 3
under Assumptions 2, 3 and 7.

Assumption 7: There exists δ > 0 such that ∥ḋi(t)∥ ≤ δ, ∀i ∈
⟨N⟩.

Lemma 3: Let Assumptions 2, 3 and 7 hold. It satisfies that

∥∂∇gi(λi, t)

∂t
∥ ≤ κ

θi
+ δ, ∀i ∈ ⟨N⟩. (19)

Proof. See Appendix D. 2

By applying Theorem 2 and Lemma 3, one can derive the
following corollary.

Corollary 1: Suppose that Assumptions 2-7 hold. Let θ =
mini∈⟨N⟩{θi} and θ̄ = maxi∈⟨N⟩{θ̄i}. Consider the distributed

protocol (18) with α > (κθ + δ)
√

Nθ̄
θλ2(BTB)

, zi(t) will converge
to 0 in finite (resp. fixed) time and then xi(t) will track the
optimal trajectory x∗

i (t) to the TV DORAP (14) in finite time.
Remark 5: In [16] and [17], several asymptotically convergent

algorithms are provided for solving DORAP with TV quadratic
cost functions. Moreover, TV demand di(t) is considered in [18],
where both ∥di(t)∥∞ and ∥ḋi(t)∥∞ are required to be bounded.
In [16] and [18], an estimator based on DAT method is first
provided for tracking the global information in finite time, and
then a distributed CTA is designed to track the TV optimal
solution asymptotically. Differently, the proposed algorithm (18)
in this note has a simple form and can track the optimal trajectory
in finite time. Moreover, compared with existing works [16]–
[18], the cost functions can be of non-quadratic form with non-
identical Hessians and the inverses of Hessian of fi is not
required in (18) from a dual perspective, which extends the
existing results. However, another local optimization needs to
be solved to obtain the primal variable at each time instant.

IV. NUMERICAL EXAMPLES

In this section, two case studies will be conducted to demon-
strate the effectiveness of the proposed algorithms (12) and (18),
respectively. We consider a multi-agent system consisting of
N = 12 agents over the communication network G(⟨N⟩, E) as
shown in Fig. 1, for which the edge weights are all ones. Then,
one can calculate that λ2(B

TB) = 1.239 with B being the
incidence matrix of G. All the experiments are conducted using
Matlab R2021b on a 2.9 GHz Intel Core i7.

For the first case study, we consider the following TV binary
logistic regression model with l2-regularization:

min
x

f(x) =

N∑
i=1

(log(1 + exp(−liy
T
i (t)x)) +

βi

2
∥x∥22), (20)

where li ∈ {−1, 1}, yi(t) ∈ R2 and βi is the regularization
parameter, an integer randomly chosen in [1 8]. In the sim-
ulation, the TV sample data yi(t) = (1 + sin(wt))yi(0) with
w = π/10 and yi(0) chosen randomly in [0 1]2. The proposed
“consensus within local NR” dynamics (12) with α = 4 and
φ(zi) = 10sgn0.5(zi) is compared with the “consensus+central
NR” dynamics [9, Alg. (9)] and “prediction–correction” algo-
rithm [4] with Laplacian constraint matrix. The performance
of three algorithms is testified online in a real scenario. The
former two CTAs are implemented by Euler discretization with
step h = 0.4 ms as the computation/communication of each
update consumes less than 0.4 ms. The “prediction–correction”
algorithm is executed with P = 3 prediction steps and C =
3 correction steps, for which the sampling period is set as
h = 0.03 s considering the computation/communication time
for 3 prediction and correction operations using the fmincon
function in MATLAB. Note that two rounds of communication
are required for each prediction/correction operation. The pri-
mal states xi(0), i ∈ V are randomly chosen in [0 1]2. Let
Ex(t) = log10(

1
N

∑N
i=1 ∥xi(t) − x∗(t)∥) denote the tracking

error between real-time states and the TV optimal solution x∗(t).
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Fig. 1: The network with 12 agents.
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Fig. 2: Case 1: Values of Ex(t).
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Fig. 3: Case 1: Ex(t) with noise.
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Fig. 4: Case 2: Values of Ex(t).

The simulation results are shown in Fig. 2. It can be seen that
the proposed algorithm converges to a small neighborhood of
x∗(t) in finite time less than 1s and then stay therein, which is
faster and more robust than the other two algorithms. However,
the final chattering exists due to the discontinuous controller and
Euler discretizaion. For comparison, the states generated by [9,
Alg. (9)] asymptotically converge to a larger neighborhood of
x∗(t) compared with (12) partially due to the fact that the local
Hessians are not identical [9]. For the “prediction–correction”
algorithm, the local solutions also fluctuate around x∗(t) possibly
due to the sample period and the TV optimal solution. To testify
the effects of noisy and inexact information on the performance
of algorithms, the Gaussian noise ϵ ∼ N (0, 10−4) is added to
each link and ∂∇fi(xi, t)/∂t. The simulation results shown in
Fig. 3 indicate that the accuracy of all algorithms is reduced
because of the noise. However, due to the binary protocol,
the convergence behavior of the former two algorithms is less
affected than that of the last one.

For the second case study, the DORAP (14) is considered. For
comparison, as the existing algorithms mostly consider DORAP
with quadratic cost functions, here the cost functions fi are given
by fi(xi, t) = 0.5(2 + 0.1i)x2

i + sin(0.1it)xi + sin(0.6it). The
local TV demand is set as di(t) = i+ sin(t+ iπ/N),∀i ∈ ⟨N⟩.
The proposed “consensus within local NR” dynamics (18) with
α = 5 and φ(zi) = 10sgn0.5(zi) is compared with [18, Alg. (6)]
(with all gains equal to 3), named by “DAT+output tracking”
method as two DAT dynamics are firstly performed to track
the global information and then an output tracking dynamics
is given for ensuring the KKT condition. The algorithms are
implemented by Euler discretization with step h = 0.2 ms by
considering the computation/communication time in each update.
Let Ex(t) = log10(

1
N

∑N
i=1 ∥xi(t)− x∗

i (t)∥) where x∗
i (t) is the

optimal TV solution. The simulation results shown in Fig. 4
indicate that the states driven by the proposed algorithm converge
to a small neighborhood of x∗(t) in finite time less than 1s,
with a higher accuracy than [18, Alg. (6)]. Significantly, in this
case (only quadratic functions are considered in [18]), both the
computation/communication and storage cost of the proposed
algorithm at each instant are less than those of [18, Alg. (6)]
as more auxiliary variables are used and communicated in [18,
Alg. (7)].

V. CONCLUSION

In this paper, both TV centralized and distributed optimization
have been investigated. For TV centralized optimization, a uni-
fied approach is given for designing FT convergent algorithms.
Then, a distributed discontinuous dynamics with FT conver-
gence is proposed for solving TVDCO based on an extended

ZGS method with the local auxiliary dynamics. Furthermore,
the proposed distributed dynamics is used for solving TV-
DORAP with additional TV coupled equation constraints by dual
transformation. Significantly, the cost functions can be of non-
quadratic form with non-identical Hessians and the inversion
of the cost functions’ Hessians is not required in the dual
variables’ dynamics. However, another local optimization needs
to be solved to obtain the primal variable at each time instant.
Further work will focus on TVDO with general TV constraints
over switching networks, as well as the convergence analysis on
the discretized version of the proposed algorithm.

APPENDIX

A. Proof of Theorem 1

Considering the dynamics (7), one can derive that

d∇f(x, t)/dt = H0(x, t)ẋ+ ∂∇f(x, t)/∂t = −φ(z) = ż.
(21)

Since z(0) = ∇f(x(0), 0), z(t) and ∇f(x, t) coincide, i.e.,
z(t) ≡ ∇f(x, t),∀t ≥ 0. As (7b) is FT stable at origin with
settling time Tmax, it indicates that ∇f(x(t), t) will converge to
zero in finite time Tmax, i.e., (6) holds with T = Tmax.

B. Proof of Theorem 2

By Assumption 5, there exists a finite time T1 such that z(t) =
0,∀t ≥ T1. Based on (12), it can be derived that

d

dt

N∑
i=1

∇fi(xi, t) =

N∑
i=1

(Hi(xi, t)ẋi +
∂∇fi(xi, t)

∂t
)

= −
N∑
i=1

φi(zi) =

N∑
i=1

ż.

Since
∑N

i=1 zi(0) =
∑N

i=1 ∇fi(xi(0), 0), then it holds that

N∑
i=1

zi(t) =

N∑
i=1

∇fi(xi(t), t), ∀t ≥ 0. (22)

From the previous analysis, z(t) = 0 for any t ≥ T1, which
indicates that x(t) ∈ M0 ≜ {x(t) :

∑N
i=1 ∇fi(xi(t), t) = 0}.

Then, to show that xi(t) tracks x∗(t) in finite time, it is sufficient
to prove that all the local states xi achieve consensus in finite
time. By (13b), for t ≥ T1, one can restrain that φ(z) = 0 since
z = 0. Then, (13a) reduces to

ẋ = −H−1(x, t)(
∂∇f(x, t)

∂t
+ αBsgn(BTx)).
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Denote x̂ = BTx, g(t) = ∂∇f(x,t)
∂t and H(t) = H(x, t). It

holds that
˙̂x = −BTH−1(t)(g(t) + αBsgn(x̂)). (23)

Denote the right-hand side of (23) as Xr. By the sum rule, we
have

F [Xr](x, t) ⊆ −BTH−1(t)(F [g](t) + αBF [sgn](x̂)). (24)

Consider the Lyapunov function V2(t) = ∥x̂∥1. By Lemma 2,
it holds that V̇2

a.e.
∈ L̃F [Xr]V2, i.e., there exist γ ∈ F [g](t) and

ζ ∈ F [sgn](x̂) such that

V̇1
a.e.
= −νTBTH−1(t)(γ + αBζ2), ∀ν ∈ ∂∥x̂∥1. (25)

Note that ∂∥x̂∥1 = F [sgn](x̂(t)). Then, by choosing ν = ζ, it
gives

V̇1
a.e.
= −ζTBTH−1(t)(γ + αBζ)
a.e.
= −ζTBTH−1(t)γ − αζTBTH−1(t)Bζ (26)

≤ −(α− ε

2
)ζTBTH−1(t)Bζ +

1

2ε
γTH−1(t)γ

≤ −(α− ε

2
)ζTBTH−1(t)Bζ +

Nκ2

2εθ
,

where the first inequality is obtained by applying aT b ≤
1
2 (εa

Ta + 1
ε b

T b) with a = −H− 1
2 (t)Bζ and b = H− 1

2 (t)g(t),
and the second inequality is due to Assumptions 2 and 3 by
setting θ = mini∈⟨N⟩{θi}. Denote M(t) = BTH−1(t)B. It
holds that

ζTM(t)ζ ≥ λ2(H
−1(t))ζTBTBζ ≥ 1

θ̄
ζTBTBζ (27)

with θ̄ = maxi∈⟨N⟩{θ̄i}. As BTB is positive semidefinite, then
it holds that

ζTBTBζ ≥ λ2(B
TB)∥ζ −ΠN (B)(ζ)∥2 (28)

since N (BTB) = N (B). Let η = ΠN (B)(ζ). As x̂ = BTx,
then x̂T η = 0. Due to ζ = sign(x̂), when x̂ ̸= 0, there exists
at least one entry k such that ζk = sign(x̂k) ̸= 0 and ζk ̸=
sign(ηk), which implies that ∥ζ − η∥ ≥ ∥ζk − ηk∥ ≥ 1 and thus
ζTBTBζ ≥ λ2(B

TB). Then, we have

V̇1 ≤ −(α− ε

2
)
1

θ̄
λ2(B

TB) +
Nκ2

2εθ
≜ −ϱ,

for which the right side is minimized at ε∗ = κ
√

N
θθ̄λ2(BTB)

.

By choosing α > κ
√

Nθ̄
θλ2(BTB)

, one gets ϱ > 0 and V̇1 ≤ −ϱ,
implying that V1(t) will converge to zero in finite time T2. In
other words, all the local states xi reach consensus in T2. As
x(t) ∈ M0 for t ≥ T1, one can conclude that xi(t) = x∗(t) for
any t ≥ T2.

C. Proof of Proposition 1
Following the proof of Theorem 2 and denoting ā =

max(i,j)∈E{aij}, Eq. (26) can be further relaxed as

V̇1 = −ζTBTH−1(t)γ − αζTBTH−1(t)Bζ

≤ −αζTBTH−1(t)Bζ +mϖā

≤ −α

θ̄
λ2(B

TB) +mϖā.

By choosing α > mϖāθ̄
λ2(BTB)

, the conclusion can be shown similar
to the proof of Theorem (2).

D. Proof of Lemma 3

By the definition of xi(λi, t) in (18c), it holds that λi −
∇fi(xi(λi, t), t) = 0, from which it can be derived that

Hi(xi, t)
∂xi(λi, t)

∂t
+

∂∇fi(xi, t)

∂t
= 0. (29)

Then, we have ∂xi(λi,t)
∂t = −H−1

i (xi, t)
∂∇fi(xi,t)

∂t and hence by
applying Assumptions 2, 3 and 7, for any i ∈ ⟨N⟩, it holds that

∥∂∇gi(λi, t)

∂t
∥ = ∥∂xi(λi, t)

∂t
− ḋi(t)∥

≤ ∥H−1
i (xi, t)

∂∇fi(xi, t)

∂t
∥+ ∥ḋi(t)∥ ≤ κ

θi
+ δ.
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