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GENERALIZED COUNTING PROCESS: ITS NON-HOMOGENEOUS

AND TIME-CHANGED VERSIONS

KULDEEP KUMAR KATARIA, MOSTAFIZAR KHANDAKAR, AND PALANIAPPAN VELLAISAMY

Abstract. We introduce a non-homogeneous version of the generalized counting pro-
cess (GCP), namely, the non-homogeneous generalized counting process (NGCP). We
time-change the NGCP by an independent inverse stable subordinator to obtain its frac-
tional version, and call it as the non-homogeneous generalized fractional counting process
(NGFCP). A generalization of the NGFCP is obtained by time-changing the NGCP with an
independent inverse subordinator. We derive the system of governing differential-integral
equations for the marginal distributions of the increments of NGCP, NGFCP and its gen-
eralization. Then, we consider the GCP time-changed by a multistable subordinator and
obtain its Lévy measure, associated Bernštein function and distribution of the first pas-
sage times. The GCP and its fractional version, that is, the generalized fractional counting
process when time-changed by a Lévy subordinator are known as the time-changed gener-
alized counting process-I (TCGCP-I) and the time-changed generalized fractional counting
process-I (TCGFCP-I), respectively. We obtain the distribution of first passage times and
related governing equations for the TCGCP-I. An application of the TCGCP-I to ruin
theory is discussed. We obtain the conditional distribution of the kth order statistic from
a sample whose size is modelled by a particular case of TCGFCP-I, namely, the time frac-
tional negative binomial process. Later, we consider a fractional version of the TCGCP-I
and obtain the system of differential equations that governs its state probabilities. Its
mean, variance, covariance, etc. are obtained and using which its long-range dependence
property is established. Some results for its two particular cases are obtained.

1. Introduction

Di Crescenzo et al. (2016) introduced and studied a Lévy process {M(t)}t≥0, namely,
the generalized counting process (GCP). Its transition probabilities are given by

Pr{M(t + h) = n|M(t) = m} =











1− Λh+ o(h), n = m,

λjh+ o(h), n = m+ j, j = 1, 2, . . . , k,

o(h), n > m+ k,

(1.1)

where λj’s are positive rates, Λ = λ1 + λ2 + · · · + λk and o(h) → 0 as h → 0. From
(1.1), it is evident that the GCP performs k kinds of jumps of amplitude 1, 2, . . . , k with
rates λ1, λ2, . . . , λk, respectively. Its fractional version, namely, the generalized fractional
counting process (GFCP) is obtained by time-changing the GCP by an independent inverse
stable subordinator {Yβ(t)}t≥0, 0 < β < 1, that is, {M (Yβ(t))}t≥0. We denote the GFCP
by {Mβ(t)}t≥0. Its state probabilities pβ(n, t) = Pr{Mβ(t) = n} satisfy the following
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system of fractional differential equations (see Di Crescenzo et al. (2016)):

dβ

dtβ
pβ(n, t) = −Λpβ(n, t) +

n∧k
∑

j=1

λjp
β(n− j, t), n ≥ 0, (1.2)

with the initial conditions

pβ(n, 0) =

{

1, n = 0,

0, n ≥ 1.

Here,
dβ

dtβ
is the Caputo fractional derivative defined in (2.11) and n ∧ k = min{n, k}.

For β = 1, the GFCP reduces to the GCP. For k = 1, the GFCP and the GCP reduces
to the time fractional Poisson process (TFPP) (see Mainardi et al. (2004), Beghin and
Orsingher (2009)) and the Poisson process, respectively. Recently, several authors intro-
duced and studied many counting processes such as the Poisson process of order k (PPoK)
(see Kostadinova and Minkova (2013)), Pólya-Aeppli process of order k (PAPoK) (see
Chukova and Minkova (2015)), Bell-Touchard process (see Freud and Rodriguez (2022)),
convoluted Poisson process (see Kataria and Khandakar (2021)), Poisson-logarthmic pro-
cess (see Sendova and Minkova (2018)), etc. These processes along with their fractional
variants are particular cases of the GFCP (see Kataria and Khandakar (2022b); Khandakar
and Kataria (2022)). So, the GFCP is a fractional generalization of the Poisson process. For
other fractional generalizations of the Poisson process such as the space fractional Poisson
process, space-time fractional Poisson process (STFPP), we refer the reader to Orsingher
and Polito (2012). The fractional versions of the Poisson process has applications in several
fields. For example, in the field of optics to describe the light propagation through non-
homogeneous media, in queueing theory (see Cahoy et al. (2015)), in finance, in modeling
the catastrophic events such as tsunami and earthquake, in fractional quantum mechanics
(see Laskin (2009)), etc.

Let
d
= denotes equality in distribution. Also, let {Xi}i≥1 be a sequence of independent and

identically distributed (iid) random varibles with the following probability mass function
(pmf):

Pr{X1 = j} = λj/Λ, j = 1, 2, . . . , k. (1.3)

Di Crescenzo et al. (2016) showed that the GCP is equal in distribution to the following
compound Poisson process:

M(t)
d
=

N(t)
∑

i=1

Xi, (1.4)

where the Poisson process {N(t)}t≥0 with intensity Λ is independent of {Xi}i≥1.
Leonenko et al. (2017), (2019) introduced and studied a non-homogeneous version of

the TFPP which is defined as a non-homogeneous Poisson process time-changed by an
independent inverse stable subordinator. Buchak and Sakhno (2019) obtained the governing
equations for marginal distributions of a non-homogeneous Poisson process time-changed
by inverse subordinator. Recently, Kadankova et al. (2021) studied a non-homogeneous
version of the PPoK and the PAPoK along with their fractional extensions.
A multistable subordinator {H(t)}t≥0 with time-dependent stability index β(t) ∈ (0, 1) is

an inhomogeneous subordinator. The Laplace transform of increments of an inhomogeneous
subordinator {R(t)}t≥0 is given by

E
(

e−u(R(t)−R(s))
)

= e−
∫ t

s
f(u,τ)dτ , 0 ≤ s ≤ t,
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which holds true under some suitable conditions (see Orsingher et al. (2016)). Here,
u→ f(u, t) is a Bernštein function for each t ≥ 0 such that

f(u, t) =

∫ ∞

0

(1− e−ux)νt(dx). (1.5)

A multistable subordinator is characterized by the following Lévy measure (see Beghin and
Ricciuti (2019)):

νt(dx) =
β(t)x−β(t)−1

Γ(1− β(t))
dx, x > 0, (1.6)

where t → β(t) is a regular function. Its associated Bernštein function is f(u, t) = uβ(t).
The multistable subordinators extend the stable subordinators by considering the time-
dependent stability index. These are proved to be useful in modeling phenomena in the
field of finance and natural sciences. For more details on multistable subordinator, we refer
the reader to Orsingher et al. (2016). Beghin and Ricciuti (2019) studied a time-changed
Poisson process where the multistable subordinator is used as a time-changed component.
Kataria and Khandakar (2022a) studied a time-changed version of the GFCP, namely,

the time-changed generalized fractional counting process-I (TCGFCP-I) {Mβ
f (t)}t≥0. It is

defined as follows :

Mβ
f (t) :=Mβ(Df(t)),

where the GFCP is independent of the Lévy subordinator {Df(t)}t≥0. For β = 1, it
reduces to the time-changed generalized counting process-I (TCGCP-I) {Mf(t)}t≥0 whose
distribution of jumps is given by

Pr{Mf(h) = n} =















1− hf(Λ) + o(h), n = 0,

−h
∑

Ω(k,n)

f (zk)(Λ)
k
∏

j=1

(−λj)xj

xj !
+ o(h), n ≥ 1,

(1.7)

where Ω(k, n) is given in (2.2) and zk = x1 + x2 + · · ·+ xk.
In Section 2, we give some preliminary results that will be used later. In Section 3, it is

shown that if one GCP event has occurred till time t ≥ 0, then the distribution of time of
first GCP event is uniform. An alternate representation of the one-dimensional distribution
of GFCP in terms of the derivatives of Mittag-Leffler function is obtained. We introduce a
non-homogeneous version of the GCP, namely, the non-homogeneous generalized counting
process (NGCP), and obtain its probability generating function (pgf) and the system of
differential equations that governs its state probabilities. We time-change the NGCP by an
independent inverse stable subordinator to obtain its fractional version, and call it as the
non-homogeneous generalized fractional counting process (NGFCP). The systems of gov-
erning differential-integral equations for the marginal distributions of increments of these
processes are derived. Also, we discuss the arrival times of NGFCP. A generalization of
the NGFCP is introduced by time-changing the NGCP with an independent inverse sub-
ordinator, for which we obtain the governing system of equations of marginal distributions
that involves convolution-type derivative introduced and studied by Kochubei (2011) and
Toaldo (2015).
In Section 4, we consider the GCP time-changed by an independent multistable subor-

dinator, that is, {M(H(t))}t≥0. It is observed that the process {M(H(t))}t≥0 is a non-
homogeneous subordinator. We obtain the Lévy measure, the Bernštein function and the

3



distribution of its first passage times. For a particular case of the process {M(H(t))}t≥0,
we obtain its one-dimensional distribution and pgf.
In Section 5, we obtain some additional results for the TCGCP-I. The system of dif-

ferential equations that governs its state probabilities, the distribution of its first passage
times and related governing equations are obtained. For a particular case of TCGCP-I,
we obtain the system of differential equations that governs its state probabilities. As an
application, we consider a risk process in which the TCGCP-I is used to model the num-
ber of claims received by an insurance company. Some results for the joint distribution
of the time to ruin and the deficit at the time of ruin are derived. We have shown that
the one-dimensional distributions of TCGFCP-I are not infinitely divisible. We discuss the
conditional distribution of the kth order statistic from a sample whose size is modelled by
a particular case of TCGFCP-I, namely, the time fractional negative binomial process (see
Vellaisamy and Maheshwari (2018b)).
In Section 6, we consider the following time-changed process:

Mα
f (t) :=Mf (Yα(t)) =M (Df (Yα(t))) , t ≥ 0,

where the Lévy subordinator {Df (t)}t≥0, the inverse stable subordinator {Yα(t)}t≥0, 0 <
α < 1 and the GCP {M(t)}t≥0 are independent of each other. We obtain its pgf, mean,
variance, covariance and the system of differential equations that governs its state probabil-
ities. Its long-range dependence (LRD) property is established. We proved some results for
two particular cases of this time-changed process. It is known that the process that exhibits
LRD property has applications in several areas such as finance, econometrics, hydrology,
internet data traffic modeling, etc.

2. Preliminaries

In this section, we collect some preliminary results for Mittag-Leffler function and some
known processes. These will be used later.

2.1. Mittag-Leffler function. The two-parameter Mittag-Leffler function is defined as
(see Kilbas et al. (2006), p. 42)

Eα,β(x) :=
∞
∑

j=0

xj

Γ(jα + β)
, x ∈ R,

where α > 0 and β > 0.
It reduces to Mittag-Leffler function for β = 1. The following identity holds (see Beghin

and Orsingher (2009), Eq. (5.1))

E−β,1−β(1/x) = −xEβ,1(x), 0 < β < 1, x 6= 0. (2.1)

2.2. Generalized counting process. The state probabilities p(n, t) = Pr{M(t) = n} of
GCP are given by (see Di Crescenzo et al. (2016))

p(n, t) =
∑

Ω(k,n)

k
∏

j=1

(λjt)
xj

xj !
e−Λt, n ≥ 0, (2.2)

where Ω(k, n) := {(x1, x2, . . . , xk) :
∑k

j=1 jxj = n, xj ∈ N0}, N0 is the set of non-negative
integers.
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Its pgf G(u, t) = E
(

uM(t)
)

is given by (see Kataria and Khandakar (2022b))

G(u, t) = exp
(

−
k

∑

j=1

λj(1− uj)t
)

, |u| ≤ 1. (2.3)

The following limiting result holds true for GCP (see Kataria and Khandakar (2022b), Eq.
(17)):

lim
t→∞

M(t)

t
=

k
∑

j=1

jλj, in probability. (2.4)

2.3. Subordinator and its inverse. Let

f(s) = c1 + c2s+

∫ ∞

0

(

1− e−sx
)

ν(dx), s > 0, c1 ≥ 0, c2 ≥ 0, (2.5)

be a Bernštein function and ν(·) be a non-negative Lévy measure on (0,∞) such that
∫ ∞

0

(x ∧ 1) ν(dx) < ∞. A subordinator {Df (t)}t≥0 is a one-dimensional Lévy process

which is characterized by the following Laplace transform (see Applebaum (2009), Section
1.3.2)):

E
(

e−sDf (t)
)

= e−tf(s).

Its first passage time is called the inverse subordinator. It is defined as

Yf(t) := inf{x ≥ 0 : Df(x) > t}, t ≥ 0. (2.6)

Let hf(t, x) be the density of {Yf(t)}t≥0. Its Laplace transform is given by (see Toaldo
(2015)):

h̃f(s, x) =

∫ ∞

0

e−sthf(t, x)dt =
f(s)

s
e−xf(s), (2.7)

provided that the following condition holds:

Condition I. ν(0,∞) = ∞ and the tail ν(x) = c1 + ν(x,∞) of the Lévy measure ν(·) is
absolutely continuous.
Kochubei (2011) and Toaldo (2015) discussed a new type of differential operator that

generalizes the Caputo fractional derivative and Riemann-Liouville fractional derivative.
Let u(·) be an absolutely continuous function. Its generalized Caputo derivative associated
with the Bernštein function f is defined as follows (see Toaldo (2015), Definition 2.4):

fDtu(t) := c2
d

dt
u(t) +

∫ t

0

∂

∂t
u(t− x)ν(x)dx. (2.8)

It is related to the generalized Riemann-Liouville derivative fDt as follows (see Toaldo
(2015), Proposition 2.7):

fDtu(t) =
f Dtu(t) + ν(t)u(0). (2.9)

If |u(t)| ≤ Ces0t where C and s0 are some constants, then the Laplace transform of
generalized Caputo derivative is given by (see Toaldo (2015), Lemma 2.5)

L
(

fDtu(t); s
)

= f(s)ũ(s)− f(s)

s
u(0), s > s0. (2.10)
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For f(s) = sβ, β ∈ (0, 1), the derivative (2.8) reduces to (see Toaldo (2015), Remark
2.6):

fDtu(t) =
dβ

dtβ
u(t),

where
dβ

dtβ
is the Caputo fractional derivative defined as (see Kilbas et al. (2006))

dβ

dtβ
u(t) :=















1

Γ(1− β)

∫ t

0

(t− s)−βu′(s) ds, 0 < β < 1,

u′(t), β = 1.

(2.11)

Its Laplace transform is given by (see Kilbas et al. (2006), Eq. (5.3.3))

L
( dβ

dtβ
u(t); s

)

= sβũ(s)− sβ−1u(0), s > 0. (2.12)

2.4. Gamma subordinator. The probability density function g(x, t) of a gamma subor-
dinator {Z(t)}t≥0 is given by

g(x, t) =
abt

Γ(bt)
xbt−1e−ax, x > 0,

where a > 0 and b > 0. Its associated Bernštein function is (see Applebaum (2009), p. 55)

f1(s) = b log(1 + s/a), s > 0. (2.13)

For x ≥ 0, t ≥ 0, the density function of gamma subordinator satisfies (see Beghin (2014),
Lemma 2.1)







∂
∂x
g(x, t) = −b(1− e−∂t/a)g(x, t)

g(x, 0) = δ(x)
lim|x|→+∞ g(x, t) = 0

, (2.14)

where δ(x) is the Dirac delta function and e−∂t/a is a shift operator. For any analytic
function f : R → R and c ∈ R, it is defined as follows:

ec∂tf(t) :=
∞
∑

n=0

(c∂t)
n

n!
f(t) = f(t+ c), (2.15)

where ∂t =
∂
∂t
.

2.5. Stable subordinator and its inverse. A stable subordinator {Dβ(t)}t≥0, 0 < β < 1

is a non-decreasing Lévy process whose Laplace transform is given by E(e−sDβ(t)) = e−tsβ ,
s > 0. Its associated Bernštein function is f2(s) = sβ . Its first passage time {Yβ(t)}t≥0

which is defined as Yβ(t) := inf{x ≥ 0 : Dβ(x) > t} is called the inverse stable subordinator.
Let hβ(t, x) be the density of {Yβ(t)}t≥0. Its Laplace transform is given by

h̃β(s, x) = sβ−1e−xsβ . (2.16)

The mean and variance of {Yβ(t)}t≥0 are given by (see Leonenko et al. (2014))

E (Yβ(t)) =
tβ

Γ(β + 1)
, (2.17)

Var (Yβ(t)) =
( 2

Γ(2β + 1)
− 1

Γ2(β + 1)

)

t2β . (2.18)
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For fixed s and large t, the following asymptotic result holds for its covariance:

Cov (Yβ(s), Yβ(t)) ∼
s2β

Γ(2β + 1)
. (2.19)

2.6. Fractional negative binomial processes. The space-time fractional negative bi-
nomial process is defined as (see Kataria and Khandakar (2022c))

N α
β (t) := Nα,β(Z(t)), t ≥ 0,

where the STFPP {Nα,β(t)}t≥0 is independent of gamma subordinator. For α = 1, it
reduces to the time fractional negative binomial process (see Vellaisamy and Maheshwari
(2018b)) and for β = 1, it reduces to the space fractional negative binomial process (see
Beghin and Vellaisamy (2018)). The pgf of time fractional negative binomial process is
given by (see Kataria and Khandakar (2022c))

E

(

uN
1
β
(t)
)

=

∞
∑

k=0

(−λ)k(1− u)k

Γ(kβ + 1)

Γ(bt + kβ)

akβΓ(bt)
, |u| ≤ 1. (2.20)

Its state probability is given by (see Vellaisamy and Maheshwari (2018b), Section 4.1)

Pr{N 1
β (t) = n} =

∞
∑

l=n

(−1)l+n

(

l

n

)

Γ(lβ + bt)

Γ(bt)Γ(βl + 1)

(

λ

aβ

)l

, n ≥ 0. (2.21)

2.7. LRD property. Let s > 0 be fixed. The process {X(t)}t≥0 is said to exhibit the LRD
property if its correlation function has the following asymptotic behaviour (see D’Ovidio
and Nane (2014), Maheshwari and Vellaisamy (2016)):

Corr(X(s), X(t)) ∼ c(s)t−θ, as t→ ∞,

for some c(s) > 0 and θ ∈ (0, 1). If θ ∈ (1, 2) then it is said to possesses the short-range
dependence property.

3. Non-homogeneous GCP and its fractional variants

In this section, we aim to introduce and study a non-homogeneous version of the GFCP,
namely, the non-homogeneous generalized fractional counting process. We start by giving
some additional results related to the GCP and its fractional variant, the GFCP.
Let Z1 denote the time of first occurrence of GCP event in [0, t]. Then,

Pr{Z1 ≤ x|M(t) = 1} =
Pr{exactly one occurrence in [0, x], no occurrence in (x, t]}

Pr{M(t) = 1}

=
Pr{M(x) = 1,M(t− x) = 0}

Pr{M(t) = 1}

=
λ1xe

−Λxe−Λ(t−x)

λ1te−Λt
, (using (2.2))

=
x

t
, 0 ≤ x ≤ t.

So, the distribution of Z1 given that exactly one GCP event has occoured in [0, t] is uniform
in [0, t].
Di Crescenzo et al. (2016) showed that

Mβ(t)
d
=M(T2β(t)), t > 0, (3.1)
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where the GCP is independent of the random process {T2β(t)}t>0 whose distribution is
given by the folded solution of the following Cauchy problem (see Orsingher and Beghin
(2004)):

d2β

dt2β
u(x, t) =

∂2

∂x2
u(x, t), t > 0, x ∈ R, (3.2)

with u(x, 0) = δ(x) for 0 < β ≤ 1 and ∂
∂t
u(x, 0) = 0 for 1/2 < β ≤ 1. The solution u2β(x, t)

of (3.2) is given by (see Beghin and Orsingher (2009)):

u2β(x, t) =
1

2tβ
W−β,1−β

(

−|x|
tβ

)

, t > 0, x ∈ R, (3.3)

where Wν,γ(·) is the Wright function defined as follows:

Wν,γ(x) =

∞
∑

k=0

xk

k!Γ(kν + γ)
, ν > −1, γ > 0, x ∈ R.

Let

ū2β(x, t) =

{

2u2β(x, t), x > 0,

0, x < 0,
(3.4)

be the folded solution to (3.2). The following result gives an alternate version of the pmf
of GFCP in terms of derivatives of Mittag-Leffler function.

Proposition 3.1. The pmf of GFCP is given by

pβ(n, t) =
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

1

Λzk

dzk

dszk

[

szk−1Eβ,1

(

−Λtβ

s

)]

s=1

,

where zk = x1 + x2 + · · ·+ xk.

Proof. From (3.1) and (3.4), we have

pβ(n, t) =

∫ ∞

0

p(n, x)ū2β(x, t)dx. (3.5)

On using (2.2) and (3.3) in (3.5), we get

pβ(n, t) =

∫ ∞

0

∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !
e−Λxxzkt−βW−β,1−β(−xt−β)dx

=

∫ ∞

0

∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !
e−Λxxzkt−β

∞
∑

m=0

(−xt−β)m

m!Γ(−βm+ 1− β)
dx

=
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

∞
∑

m=0

(−1)mt−β−βm

m!Γ(−βm+ 1− β)

∫ ∞

0

e−Λxxm+zkdx

=
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

∞
∑

m=0

(−1)mt−β−βm

m!Γ(−βm+ 1− β)

Γ(m+ zk + 1)

Λm+zk+1

=
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

t−β

Λzk+1

∞
∑

m=0

(−tβΛ)−m

Γ(−βm+ 1− β)
(m+ zk)(m+ zk − 1) · · · (m+ 1)
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=
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

t−β

Λzk+1

dzk

dszk

[ ∞
∑

m=0

sm+zk
(−tβΛ)−m

Γ(−βm+ 1− β)

]

s=1

=
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

dzk

dszk

[

szkE−β,1−β

(

− s

Λtβ

)]

s=1
.

Finally, the proof follows on using (2.1). �

Remark 3.1. On substituting k = 1 in Proposition 3.1, we get an equivalent expression
for the pmf of TFPP (see Beghin and Orsingher (2009), p. 1801). For λj = λ, 1 ≤ j ≤ k,
we get the following alternate version of the pmf of time fractional Poisson process of order
k:

pβ(n, t)
∣

∣

λj=λ
=

∑

Ω(k,n)

k
∏

j=1

(1/k)xj

xj !

dzk

dszk

[

szk−1Eβ,1

(

−kλt
β

s

)]

s=1

.

Similarly, we can obtain alternate expressions for the pmfs of other particular and limiting
cases of the GFCP, for example, the fractional Pólya-Aeppli process of order k, the fractional
Bell-Touchard process, the fractional Poisson-logarthmic process, the convoluted fractional
Poisson process, etc.

Remark 3.2. If X1, X2, . . . , Xn are iid random variables with distribution F (x) = Pr{X <
x}, then the following holds:

Pr
{

max
1≤j≤Mβ(t)

Xj < x
}

=
∞
∑

n=0

(Pr{X < x})nPr{Mβ(t) = n}

=

∫ ∞

0
G(F (x), s)Pr{T2β(t) ∈ ds}, (using (2.3) and (3.1))

=

∫ ∞

0
exp

(

− s

k
∑

j=1

λj(1− F j(x))

)

t−βW−β,1−β(−st−β)ds, (using (3.4))

= Eβ,1

(

−
k

∑

j=1

λj(1− F j(x))tβ
)

,

where in the last step we have used Eq. (2.13) of Beghin and Orsingher (2010). Similarly,
it can be shown that

Pr
{

min
1≤j≤Mβ(t)

Xj > x
}

= Eβ,1

(

−
k

∑

j=1

λj
(

1− (1− F (x))j
)

tβ
)

.

Next, we introduce a non-homogeneous version of the GCP. Let {M(t)}t≥0 be a counting
process with deterministic and time-dependent intensity functions λj(t) : [0,∞) → [0,∞),
1 ≤ j ≤ k such that M(0) = 0. We call it the non-homogeneous generalized counting
process (NGCP) if it has independent increments and its transition probabilities are given
by

Pr{M(t+ h) = n|M(t) = m} =











1−∑k
j=1 λj(t)h+ o(h), n = m,

λj(t)h+ o(h), n = m+ j, j = 1, 2, . . . , k,

o(h), n > m+ k,
9



where o(h) → 0 as h→ 0. Thus, the system of differential equations that governs its state
probabilities qn(t) = Pr{M(t) = n} are given by

d

dt
qn(t) = −

k
∑

j=1

λj(t)qn(t) +

n∧k
∑

j=1

λj(t)qn−j(t), n ≥ 0, (3.6)

with the initial conditions

qn(0) =

{

1, n = 0,

0, n ≥ 1.

For 0 ≤ s < t and j ∈ {1, 2, . . . , k}, let Λj(t) =
∫ t

0
λj(u)du < ∞ be the cumulative rate

function and Λj(s, t) =
∫ t

s
λj(u)du = Λj(t)− Λj(s). On using (3.6), the pgf of NGCP can

be obtained as

E
(

uM(t)
)

= exp

( k
∑

j=1

Λj(t)(u
j − 1)

)

.

Remark 3.3. The NGCP reduces to the GCP for constant rates, that is, λj(t) = λj ,
t ≥ 0, 1 ≤ j ≤ k. For k = 1, it reduces to the non-homogeneous Poisson process. For
λj(t) = λ(t) and λj(t) = (1 − ρ)ρj−1λ(t)/(1 − ρk), 1 ≤ j ≤ k it reduces to the non-
homogeneous Poisson process of order k and the non-homogeneous Pólya-Aeppli process
of order k, respectively (see Kadankova et al. (2021)). By letting k → ∞ in (3.6) and
taking λj(t) = λ(t)(1 − ρ)ρj−1, j ≥ 1 the system (3.6) reduces to the governing system of
differential equations for the state probabilities of non-homogeneous Pólya-Aeppli process
(see Chukova and Minkova (2019)). Chukova and Minkova (2019) showed an application
of non-homogeneous Pólya-Aeppli process in risk theory, along the similar lines it can be
shown that the NGCP has application in risk theory.

The increment process of NGCP for v ≥ 0 is defined as

I(t, v) := M (t+ v)−M(v), t ≥ 0.

Its marginal distribution qn(t, v) = Pr{I(t, v) = n} is given by

qn(t, v) =
∑

Ω(k,n)

k
∏

j=1

(Λj(v, t+ v))xj

xj !
e−

∑k
j=1 Λj(v,t+v), n ≥ 0

and its characteristic function is of the following form:

q̂ξ(t, v) = exp

( k
∑

j=1

Λj(v, t+ v)(eωξj − 1)

)

, ω =
√
−1, ξ ∈ R. (3.7)

3.1. NGCP time-changed by inverse stable subordinator. For 0 < β < 1, let
{Mβ(t)}t≥0 be a time-changed NGCP defined as follows:

Mβ(t) := M(Yβ(t)), t ≥ 0,

where {M(t)}t≥0 is independent of the inverse stable subordinator {Yβ(t)}t≥0. We call
it the non-homogeneous generalized fractional counting process (NGFCP). Its increment
process is defined as

Iβ(t, v) := M (Yβ(t) + v)−M(v), t ≥ 0,
10



whose marginal distributions, that is, qβn(t, v) = Pr{Iβ(t, v) = n}, n ≥ 0 are given by

qβn(t, v) =

∫ ∞

0

qn(u, v)hβ(t, u)du (3.8)

=

∫ ∞

0

∑

Ω(k,n)

k
∏

j=1

(Λj(v, u+ v))xj

xj !
e−

∑k
j=1 Λj(v,u+v)hβ(t, u)du.

Here, hβ(t, u) is the density of {Yβ(t)}t≥0. So, the marginal distributions of NGFCP are
given by

qβn(t) = qβn(t, 0) =

∫ ∞

0

qn(u, 0)hβ(t, u)du

=

∫ ∞

0

∑

Ω(k,n)

k
∏

j=1

(Λj(u))
xj

xj !
e−

∑k
j=1 Λj(u)hβ(t, u)du, (3.9)

where we have used Λj(0, u) = Λj(u).
Let δn,0 denote the Kronecker delta function.

Theorem 3.1. The pmf of increment process of NGFCP satisfies the following system of
fractional differential-integral equations:

dβ

dtβ
qβn(t, v) =

∫ ∞

0

(

−
k

∑

j=1

λj(u+ v)qn(u, v) +
n∧k
∑

j=1

λj(u+ v)qn−j(u, v)

)

hβ(t, u)du, n ≥ 0,

(3.10)
with the initial condition qβn(0, v) = δn,0.

Proof. The characteristic function of Iβ(t, v) can be written as

q̂βξ (t, v) =

∫ ∞

0

q̂ξ(u, v)hβ(t, u)du, (3.11)

where q̂ξ(u, v) is the characteristic function of I(t, v) given in (3.7). On taking the Laplace
transform in (3.11), we get

˜̂qβξ (s, v) =

∫ ∞

0

q̂ξ(u, v)h̃β(s, u)du

= sβ−1

∫ ∞

0

exp

( k
∑

j=1

Λj(v, u+ v)(eωξj − 1)

)

e−usβdu, (using (2.16) and (3.7))

= sβ−1

{[

− e−usβ

sβ
exp

( k
∑

j=1

Λj(v, u+ v)(eωξj − 1)

)]∞

0

+
1

sβ

∫ ∞

0

k
∑

j=1

λj(u+ v)(eωξj − 1) exp

( k
∑

j=1

Λj(v, u+ v)(eωξj − 1)

)

e−usβdu

}

.

Thus,

sβ ˜̂qβξ (s, v)−sβ−1 =

∫ ∞

0

k
∑

j=1

λj(u+v)(e
ωξj−1) exp

( k
∑

j=1

Λj(v, u+v)(e
ωξj−1)

)

sβ−1e−usβdu.

11



On taking the inverse Laplace transform, and using (2.12) and (2.16), we get

dβ

dtβ
q̂βξ (t, v) =

∫ ∞

0

k
∑

j=1

λj(u+ v)(eωξj − 1) exp

( k
∑

j=1

Λj(v, u+ v)(eωξj − 1)

)

hβ(t, u)du

=

∫ ∞

0

k
∑

j=1

λj(u+ v)(eωξj − 1)p̂ξ(u, v)hβ(t, u)du,

where we have used (3.7) in the last step. Finally, on using the inversion formula for the
characteristic function, we get the required result. �

On substituting v = 0 in Theorem 3.1, we get the system of differential equation that
governs the pmf of NGFCP.

Corollary 3.1. The pmf qβn(t) of NGFCP satisfies the following system of fractional
differential-integral equations:

dβ

dtβ
qβn(t) =

∫ ∞

0

(

−
k

∑

j=1

λj(u)qn(u) +
n∧k
∑

j=1

λj(u)qn−j(u)

)

hβ(t, u)du, n ≥ 0, (3.12)

with the initial condition qβn(0) = δn,0.

Remark 3.4. On choosing constant rates, that is, λj(t) = λj , for 1 ≤ j ≤ k in (3.12), we
get

dβ

dtβ
pβ(n, t) =

∫ ∞

0

(

−
k

∑

j=1

λjp(n, u) +

n∧k
∑

j=1

λjp(n− j, u)

)

hβ(t, u)du,

which reduces to (1.2). Similarly, by taking constant rates in (3.9), we get

pβ(n, t) =

∫ ∞

0

∑

Ω(k,n)

k
∏

j=1

(λju)
xj

xj !
e−Λuhβ(t, u)du,

which coincides with the pmf of GFCP.
On substituting λj(t) = λ(t) and λj(t) = (1 − ρ)ρj−1λ(t)/(1 − ρk), 1 ≤ j ≤ k in

Theorem 3.1, we get the system of differential-integral equations that governs the pmf
of corresponding increment process of the non-homogeneous fractional Poisson process of
order k and the non-homogeneous fractional Pólya-Aeppli process of order k, respectively
(see Kadankova et al. (2021), Theorem 3.3 and Theorem 4.4).

Remark 3.5. For β = 1, the Laplace transform of inverse stable subordinator reduces to
e−us whose inverse Laplace transform is δ(t− u), the Dirac’s delta distribution. Hence,

∫ ∞

0

qn(u, v)δ(t− u)du = qn(t, v).

From (3.8), it follows that q1n(t, v) = qn(t, v) and the system of differential-integral equations
in (3.10) reduces to

d

dt
qn(t, v) =

∫ ∞

0

(

−
k

∑

j=1

λj(u+ v)qn(u, v) +
n∧k
∑

j=1

λj(u+ v)qn−j(u, v)

)

δ(t− u)du

12



= −
k

∑

j=1

λj(t+ v)qn(t, v) +

n∧k
∑

j=1

λj(t + v)qn−j(t, v).

The mean, variance and covariance of NGCP are given by E(M(t)) =
∑k

j=1 jΛj(t),

Var (M(t)) =
∑k

j=1 j
2Λj(t) and Cov (M(s),M(t)) =

∑k
j=1 j

2Λj(s ∧ t), respectively.

Proposition 3.2. The process {M(t)−∑k
j=1 jΛj(t)}t≥0 is a martingale with respect to a

natural filtration Ft = σ (M(s), 0 < s ≤ t).

Proof. Let Q̄(t) = M(t) − ∑k
j=1 jΛj(t). As NGCP has independent increments, we have

the following for 0 < s ≤ t:

E
(

Q̄(t)− Q̄(s)|Fs

)

= E
(

M(t)−M(s)
∣

∣Fs

)

−
k

∑

j=1

j (Λj(t)− Λj(s)) = 0.

This completes the proof. �

Next, we discuss the arrival times of NGCP. Let Tn = min{t ≥ 0 : M(t) = n} be the
arrival time of nth NGCP event. Then,

FTn(t) = Pr{Tn ≤ t} = Pr{M(t) ≥ n} = 1−
n−1
∑

x=0

∑

Ω(k,x)

k
∏

j=1

(Λj(t))
xj

xj !
e−

∑k
j=1 Λj(t).

We note that FTn(t) gives a distribution function if and only if Λj(t)’s satisfy the conditions
given in Remark 5 of Leonenko et al. (2017).
Similarly, let Tβ

n = min{t ≥ 0 : Mβ(t) = n} be the arrival time of nth NGFCP event.
On using (3.9), its distribution can be written as

F
T
β
n
(t) =

∞
∑

x=n

∫ ∞

0

∑

Ω(k,x)

k
∏

j=1

(Λj(u))
xj

xj!
e−

∑k
j=1 Λj(u)hβ(t, u)du

=

∫ ∞

0

∞
∑

x=n

∑

Ω(k,x)

k
∏

j=1

(Λj(u))
xj

xj!
e−

∑k
j=1 Λj(u)hβ(t, u)du

=

∫ ∞

0

(

1−
n−1
∑

x=0

∑

Ω(k,x)

k
∏

j=1

(Λj(u))
xj

xj !
e−

∑k
j=1 Λj(u)

)

hβ(t, u)du

=

∫ ∞

0

FTn(u)hβ(t, u)du.

3.2. NGCP time-changed by inverse subordinator. Let {Yf(t)}t≥0 be the inverse
subordinator defined in (2.6) such that c1 = c2 = 0 in its associated Bernštein function
given in (2.5). We consider a time-changed process defined as follows:

Mf(t) := M(Yf(t)), t ≥ 0,

where the NGCP {M(t)}t≥0 is independent of {Yf(t)}t≥0.
For f(s) = sβ, 0 < β < 1 the process {Mf(t)}t≥0 reduces to the NGFCP. For k = 1,

it reduces to the non-homogeneous Poisson process time-changed by inverse subordinator
that was introduced and studied by Buchak and Sakhno (2019).

13



Let v ≥ 0. The increment process of {Mf(t)}t≥0 is defined as

If (t, v) = I(Yf(t), v) = M (Yf(t) + v)−M(v), t ≥ 0.

Its marginal distribution qfn(t, v) = Pr {If(t, v) = n}, n ≥ 0 is given by

qfn(t, v) =

∫ ∞

0

qn(u, v)hf(t, u)du

=

∫ ∞

0

∑

Ω(k,n)

k
∏

j=1

(Λj(v, u+ v))xj

xj !
e−

∑k
j=1 Λj(v,u+v)hf(t, u)du,

where hf(t, u) is the density of {Yf(t)}t≥0, which exists under Condition I. So, the marginal
distribution of {Mf(t)}t≥0, that is, q

f
n(t) = qfn(t, 0) = Pr{Mf(t) = n} is given by

qfn(t) =

∫ ∞

0

qn(u)hf(t, u)du

=

∫ ∞

0

∑

Ω(k,n)

k
∏

j=1

(Λj(u))
xj

xj !
e−

∑k
j=1 Λj(u)hf (t, u)du.

Theorem 3.2. Let fDt be the generalized Caputo derivative with respect to the Bernštein
function f defined in (2.8), and let Condition I hold. Then, the pmf of {If (t, v)}t≥0 satisfies
the following system of differential-integral equations:

fDtq
f
n(t, v) =

∫ ∞

0

(

−
k

∑

j=1

λj(u+ v)qn(u, v) +
n∧k
∑

j=1

λj(u+ v)qn−j(u, v)

)

hf (t, u)du,

with initial condition qfn(0, v) = δn,0.

Proof. The proof follows similar lines to that of Theorem 3.1. We present it here for the
sake of completeness.
The characteristic function of If (t, v) can be written as

q̂fξ (t, v) =

∫ ∞

0

q̂ξ(u, v)hf(t, u)du. (3.13)

On taking the Laplace transform in (3.13), we get

˜̂qfξ (s, v) =

∫ ∞

0

q̂ξ(u, v)h̃f(s, u)du

=
f(s)

s

∫ ∞

0

exp

( k
∑

j=1

Λj(v, u+ v)(eωξj − 1)

)

e−uf(s)du, (using (2.7) and (3.7))

=
f(s)

s

{[

−e
−uf(s)

f(s)
exp

( k
∑

j=1

Λj(v, u+ v)(eωξj − 1)

)

]∞

0

+
1

f(s)

∫ ∞

0

k
∑

j=1

λj(u+ v)(eωξj − 1) exp

( k
∑

j=1

Λj(v, u+ v)(eωξj − 1)

)

e−uf(s)du

}

.

Thus,

f(s)˜̂qfξ (s, v)−
f(s)

s
=

∫ ∞

0

k
∑

j=1

λj(u+ v)(eωξj − 1) exp

( k
∑

j=1

Λj(v, u+ v)(eωξj − 1)

)

f(s)

s
e−uf(s)du.
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On taking the inverse Laplace transform, and using (2.7) and (2.10), we get

fDtq̂
f
ξ (t, v) =

∫ ∞

0

k
∑

j=1

λj(u+ v)(eωξj − 1) exp

( k
∑

j=1

Λj(v, u+ v)(eωξj − 1)

)

hf (t, u)du

=

∫ ∞

0

k
∑

j=1

λj(u+ v)(eωξj − 1)q̂ξ(u, v)hf(t, u)du,

where we have used (3.7) in the last step. Now, the desired result follows on using the
inversion formula for the characteristic function. �

On substituting v = 0 in Theorem 3.2, we get the system of differential-integral equations
that governs the pmf of {Mf(t)}t≥0.

Corollary 3.2. Let Condition I hold. Then, the pmf of {Mf(t)}t≥0 satisfy the following
system of differential-integral equations:

fDtq
f
n(t) =

∫ ∞

0

(

−
k

∑

j=1

λj(u)qn(u) +

n∧k
∑

j=1

λj(u)qn−j(u)

)

hf (t, u)du, n ≥ 0, (3.14)

with initial condition qfn(0) = δn,0.

On choosing constant rates, that is, λj(t) = λj for 1 ≤ j ≤ k in (3.14), we get

fDtp
f
n(t) = −Λpfn(t) +

n∧k
∑

j=1

λjp
f
n(t), (3.15)

where pfn(t) = Pr {M (Yf(t)) = n} are the state probabilities of {M (Yf(t))}t≥0, a process
studied in Kataria and Khandakar (2022a).
Alternatively, the system of differential equations (3.15) can be obtained as follows:
Note that

pfn(t) =

∫ ∞

0

p(n, u)hf(t, u)du, n ≥ 0. (3.16)

On taking the generalized Riemann-Liouville derivative fDt and using the following results
(see Toaldo (2015), Theorem 4.1):

f
Dthf (t, u) = − ∂

∂u
hf (t, u), hf (t, 0) = ν(t), hf(0, u) = δ(u)

in (3.16), we get

f
Dtp

f
n(t) = −

∫ ∞

0

p(n, u)
∂

∂u
hf(t, u)du

= − [p(n, u)hf(t, u)]
∞
u=0 +

∫ ∞

0

hf(t, u)
d

du
p(n, u)du

= p(n, 0)hf(t, 0) +

∫ ∞

0

hf (t, u)
(

− Λp(n, u) +

n∧k
∑

j=1

λjp(n− j, u)
)

du

= p(n, 0)ν(t)− Λpfn(t) +

n∧k
∑

j=1

λjp
f
n−j(t), (3.17)
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where in the penultimate step we have used (1.2) with β = 1. Also,

pfn(0) =

∫ ∞

0

p(n, u)hf(0, u)du =

∫ ∞

0

p(n, u)δ(u)du = p(n, 0).

From (2.9), we get
fDtp

f
n(t) =

f Dtp
f
n(t)− ν(t)pfn(0),

which on using in (3.17) gives the required result.

4. GCP time-changed by multistable subordinator

Let {H(t)}t≥0 be a multistable subordinator with stability index β(t) ∈ (0, 1). Here, we
consider the following time-changed process:

X(t) :=M(H(t)), t ≥ 0, (4.1)

where the GCP {M(t)}t≥0 is independent of {H(t)}t≥0. We call it the generalized space-
multifractional counting process (GSMCP).
For k = 1, the GCP reduces to the Poisson process. So, the GSMCP reduces to a

special process introduced and studied by Beghin and Riccuti (2019), namely, the space-
multifractional Poisson process. Using Proposition 2.1 of Beghin and Riccuti (2019), it
follows that the GSMCP is a non-homogeneous subordinator.
Next, we obtain the Lévy measure of GSMCP. Let νt(·) and ν∗t (·) denote the Lévy measure

of {H(t)}t≥0 and {X(t)}t≥0, respectively. Again, it follows from Eq. (2.1) of Beghin and
Riccuti (2019) that

ν∗t (dx) =

∫ ∞

0

Pr{M(s) ∈ dx}νt(ds)

=

∞
∑

n=1

∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !
δn(dx)

β(t)

Γ(1 − β(t))

∫ ∞

0

e−Λsszk−β(t)−1ds, (using (1.6) and (2.2))

=

∞
∑

n=1

∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

β(t)

Γ(1− β(t))

Γ(zk − β(t))

Λzk−β(t)
δn(dx)

=
∞
∑

n=1

∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

zk!(−1)zk+1

Λzk−β(t)

(

β(t)

zk

)

δn(dx), (4.2)

where δn(·) is the Dirac delta centered at n.

Remark 4.1. For k = 1 and Λ = λ1 = λ (say), the Lévy measure (4.2) reduces to

ν∗t (dx)
∣

∣

k=1
= λβ(t)

∞
∑

n=1

(−1)n+1

(

β(t)

n

)

δn(dx),

which agrees with the Lévy measure of space-multifractional Poisson process (see Beghin
and Riccuti (2019), Eq. (3.1)).

On using (1.5) and (4.2), the Bernštein function f ∗(u, t) of GSMCP can be obtained as
follows:

f ∗(u, t) =

∫ ∞

0

(1− e−ux)ν∗t (dx)
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=

∞
∑

n=1

∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

zk!(−1)zk+1

Λzk−β(t)

(

β(t)

zk

)
∫ ∞

0

(1− e−ux)δn(dx)

=
∞
∑

n=1

∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

zk!(−1)zk+1

Λzk−β(t)

(

β(t)

zk

)

(1− e−un).

The next result gives the distribution of first passage times of GSMCP.

Proposition 4.1. Let Tm be the time of the first upcrossing of the level m, i.e.,

Tm = inf{s ≥ 0 : X(s) ≥ m}.
Then,

Pr{Tm > t} =

m−1
∑

n=0

∑

Ω(k,n)

k
∏

j=1

(−λj)xj

xj !

dzk

dΛzk
e−

∫ t

0 Λα(τ)dτ . (4.3)

Proof. On using Pr{Tm > t} = Pr{X(t) < m}, we get

Pr{Tm > t} =
m−1
∑

n=0

Pr{X(t) = n}

=

m−1
∑

n=0

∫ ∞

0

Pr{M(s) = n}Pr{H(t) ∈ ds}, (using (4.1))

=
m−1
∑

n=0

∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

∫ ∞

0

e−ΛsszkPr{H(t) ∈ ds}, (using (2.2))

=

m−1
∑

n=0

∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !
(−1)zk

dzk

dΛzk

∫ ∞

0

e−ΛsPr{H(t) ∈ ds}

=

m−1
∑

n=0

∑

Ω(k,n)

k
∏

j=1

(−λj)xj

xj !

dzk

dΛzk
e−

∫ t

0 Λβ(τ)dτ .

This completes the proof. �

Remark 4.2. On substituting k = 1 in (4.3), we get the corresponding result for space-
multifractional Poisson process (see Beghin and Riccuti (2019), Section 3.3).

4.1. Generalized space fractional counting process. The multistable subordinator
{H(t)}t≥0 reduces to the stable subordinator {Dβ(t)}t≥0 when the stability index is a
constant, that is, β(t) = β ∈ (0, 1) for all t ≥ 0. In this case, the GSMCP reduces to the
following time-changed process:

Y (t) =M(Dβ(t)), t ≥ 0, (4.4)

where the GCP is independent of the stable subordinator. We call the process {Y (t)}t≥0

as the generalized space fractional counting process (GSFCP).
When k = 1, the GSFCP reduces to the space fractional Poisson process (see Orsingher

and Polito (2012)). For λj = λ, j = 1, 2, . . . , k it reduces to the space fractional Poisson
process of order k (see Gupta and Kumar (2021)). For 0 ≤ ρ < 1 and λj = λ(1−ρ)ρj−1/(1−
ρk), j = 1, 2, . . . , k it reduces to the space fractional version of the PAPoK.
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Let lβ(t, ·) be the density of stable subordinator and G(u, t) be the pgf of GCP given in
(2.3). From (4.4), the pgf of GSFCP can be obtained as

Gβ(u, t) =

∫ ∞

0

G(u, x)lβ(t, x)dx

=

∫ ∞

0

exp
(

−
k

∑

j=1

λj(1− uj)x
)

lβ(t, x)dx

= exp

(

− t
(

k
∑

j=1

λj(1− uj)
)β

)

. (4.5)

Remark 4.3. Alternatively, the pgf (4.5) can be obtained by choosing the Bernštein fun-
stion f(s) = f2(s) = sβ in Proposition 6 of Kataria and Khandakar (2022a).
On substituting λj = λ for all j = 1, 2, . . . , k in (4.5), we get the pgf of space fractional

Poisson process of order k (see Gupta and Kumar (2021), Eq. (34)).

The pgf of GSFCP satisfies the following differential equation:

∂

∂t
Gβ(u, t) = −

( k
∑

j=1

λj(1− uj)

)β

Gβ(u, t), Gβ(u, 0) = 1.

Proposition 4.2. Let Xi, i ≥ 1 be iid uniform random variables in [0, 1]. Then,

Gβ(u, t) = Pr

{

min
0≤i≤N(t)

X
1/β
i ≥ 1− 1

Λ

k
∑

j=1

λju
j

}

, 0 < u < 1,

where {N(t)}t≥0 is a homogeneous Poisson process with rate Λβ such that min0≤i≤N(t)X
1/β
i =

1 when N(t) = 0.

Proof. Observe that

Pr

{

min
0≤i≤N(t)

X
1/β
i ≥ 1− 1

Λ

k
∑

j=1

λju
j

}

=
∞
∑

n=0

Pr

{

min
0≤i≤n

X
1/β
i ≥ 1− 1

Λ

k
∑

j=1

λju
j

}

(Λβt)n

n!
e−tΛβ

= e−tΛβ

∞
∑

n=0

(

Pr
{

X
1/β
1 ≥ 1− 1

Λ

k
∑

j=1

λju
j
}

)n
(Λβt)n

n!

= e−tΛβ

∞
∑

n=0

(

1−
(

1− 1

Λ

k
∑

j=1

λju
j
)β

)n
(Λβt)n

n!

= exp

(

− t
(

k
∑

j=1

λj(1− uj)
)β

)

.

This completes the proof. �

From (1.7) and Remark 4.3, its jump’s distribution is given by

Pr{Y (h) = n} =















1− hΛβ + o(h), n = 0,

−h
∑

Ω(k,n)

(β)zkΛ
β−zk

k
∏

j=1

(−λj)xj

xj !
+ o(h), n ≥ 1,
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where (β)zk = β(β − 1) · · · (β − zk + 1).
The Lévy measure and the distribution of first passage times of GSFCP follows from

(4.2) and (4.3), respectively.

Remark 4.4. In view of (1.4), it can be observed that the GSFCP is equal in distribution
to a space fractional compound Poisson process, that is,

Y (t)
d
=

N(Dβ(t))
∑

j=1

Xj

where {N(Dβ(t))}t≥0 is the space fractional Poisson process with intensity Λ, and it is
independent of the sequence of iid random variables {Xj}j≥1 with distribution (1.3).

The state probabilities of GSFCP can be obtained by putting f(s) = sβ in Remark 9 of
Kataria and Khandakar (2022a) as follows:

Pr{Y (t) = n} =
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

(−1)zk

Λzk

dzk

dvzk
e−tΛβvβ

∣

∣

∣

v=1

=
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

(−1)zk

Λzk

∞
∑

r=0

(−Λβt)r

r!
βr(βr− 1) · · · (βr − zk + 1)

=
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

(−1)zk

Λzk

∞
∑

r=0

(−Λβt)r

r!

Γ(βr + 1)

Γ(βr + 1− zk)

=
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

(−1)zk

Λzk
1ψ1

[

(1, β)
(1− zk, β)

∣

∣

∣

∣

− Λβt

]

, n ≥ 0, (4.6)

where 1ψ1(·) is the generalized Wright function (see Kilbas et al. (2006), Eq. (1.11.14)).
Further, for k = 1 and Λ = λ in (4.6), we get the pmf of space fractional Poisson process

(see Orsingher and Polito (2012), Eq. (2.15)).

5. GCP time-changed by Lévy subordinator

In this section, we obtain some additional results for a time-changed version of the GCP,
namely, the time-changed generalized counting process-I (TCGCP-I) {Mf(t)}t≥0. It is
defined as follows (see Kataria and Khandakar (2022a)):

Mf (t) :=M(Df (t)), t ≥ 0,

where the GCP {M(t)}t≥0 is independent of the Lévy subordinator {Df(t)}t≥0. Here, the
condition that the Lévy subordinator has finite moments is not essential.
The next result follows from (1.7).

Proposition 5.1. The state probabilities pf(n, t) = Pr{Mf (t) = n}, n ≥ 0 of TCGCP-I
solve the following system of differential equations:

d

dt
pf (n, t) = −f(Λ)pf(n, t)−

n
∑

m=1

∑

Ω(k,m)

f (zk)(Λ)

k
∏

j=1

(−λj)xj

xj !
pf(n−m, t), (5.1)

with initial conditions

pf (n, 0) =

{

1, n = 0,

0, n ≥ 1.
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Remark 5.1. On substituting k = 1 in (5.1), we get the system of differential equations
that governs the state probabilities of a time-changed Poisson process (see Orsingher and
Toaldo (2015), Eq. (2.1)).

The system of differential equations given in (5.1) can equivalently written as follows:

d

dt
pf(n, t) = −f

(

Λ
(

I − 1

Λ

n∧k
∑

j=1

λjB
j
)

)

pf (n, t), (5.2)

where B is backward shift operator such that Bpf (n, t) = pf(n− 1, t). This can be shown
as follows:

−f

(

Λ
(

I −
1

Λ

n∧k
∑

j=1

λjB
j
)

)

pf (n, t)

= −

∫

∞

0

(

I − e
−Λs(I− 1

Λ

∑n∧k
j=1

λjB
j)
)

ν(ds)pf(n, t)

= −

∫

∞

0

(

pf (n, t)− e
−Λs

∞
∑

r=0

sr

r!

(

n∧k
∑

j=1

λjB
j
)r

pf (n, t)

)

ν(ds)

= −

∫

∞

0

(

pf (n, t)− e
−Λs

∞
∑

r=0

s
r

∑

x1+x2+···+xn∧k=r

n∧k
∏

j=1

λ
xj

j

xj !
B

jxjpf (n, t)

)

ν(ds)

= −

∫

∞

0

(

pf (n, t)− e
−Λs

∞
∑

r=0

s
r

∑

x1+x2+···+xk=r

k
∏

j=1

λ
xj

j

xj !
B

jxjpf (n, t)

)

ν(ds), (as pf (−j, t) = 0, j ≥ 1)

= −

∫

∞

0

(

pf (n, t)− e
−Λs

∞
∑

r=0

s
r

∞
∑

m=r

∑

x1+x2+···+xk=r

x1+2x2+···+kxk=m

k
∏

j=1

λ
xj

j

xj !
B

jxjpf (n, t)

)

ν(ds)

= −

∫

∞

0

(

pf (n, t)− e
−Λs

∞
∑

m=0

m
∑

r=0

s
r

∑

x1+x2+···+xk=r

x1+2x2+···+kxk=m

k
∏

j=1

λ
xj

j

xj !
B

jxjpf (n, t)

)

ν(ds)

= −

∫

∞

0

(

pf (n, t)− e
−Λs

∞
∑

m=0

∑

Ω(k,m)

s
zk

k
∏

j=1

λ
xj

j

xj !
B

m
pf (n, t)

)

ν(ds)

= −

∫

∞

0

(

pf (n, t)−

∞
∑

m=0

∑

Ω(k,m)

k
∏

j=1

λ
xj

j

xj !
pf (n−m, t)szke−Λs

)

ν(ds)

= −

∫

∞

0

(

1− e
−Λs

)

pf (n, t)ν(ds) +
n
∑

m=1

∑

Ω(k,m)

k
∏

j=1

λ
xj

j

xj !
pf (n−m, t)

∫

∞

0

s
zke

−Λs
ν(ds)

= −f(Λ)pf (n, t)−
n
∑

m=1

∑

Ω(k,m)

f
(zk)(Λ)

k
∏

j=1

(−λj)
xj

xj !
pf (n−m, t). (5.3)

Remark 5.2. If we choose f(s) = f2(s) = sβ in (5.2), we get the system of differential
equations that governs the state probabilities of GSFCP in the following form:

d

dt
pf2(n, t) = −Λβ

(

I − 1

Λ

n∧k
∑

j=1

λjB
j

)β

pf2(n, t), (5.4)

with pf2(n, 0) = δn,0. Also, on substituting λj = λ for all 1 ≤ j ≤ k in (5.4), we get the
system of differential equations that governs the state probabilities of the space fractional
Poisson process of order k.
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For the Bernštein function f1 given in (2.13), the TCGCP-1 reduces to the GCP time-
changed by an independent gamma subordinator, that is,

Mf1(t) :=M(Z(t)), t ≥ 0. (5.5)

Proposition 5.2. Let e−∂t/a be the shift operator defined in (2.15). Then, the pmf
pf1(n, t) = Pr{Mf1(t) = n}, n ≥ 0 of {Mf1(t)}t≥0 satisfies the following system:

e−∂t/apf1(n, t) = (1 + Λ/b)pf1(n, t)−
1

b

n∧k
∑

j=1

λjpf1(n− j, t),

with initial conditions

pf1(n, 0) =

{

1, n = 0,

0, n > 1.

Proof. From (5.5), we can write

pf1(n, t) =

∫ ∞

0

p(n, x)g(x, t)dz, (5.6)

where p(n, x) is the pmf of GCP and g(x, t) is the density function of gamma subordinator.
By applying the shift operator e−∂t/a on both sides of (5.6) and using (2.14), we get

e−∂t/apf1(n, t) =

∫ ∞

0

p(n, x)

(

g(x, t) +
1

b

∂

∂x
g(x, t)

)

dx

= pf1(n, t) +
1

b
[p(n, x)g(x, t)]∞x=0 −

1

b

∫ ∞

0

g(x, t)
d

dx
p(n, x)dx

= pf1(n, t)−
1

b

∫ ∞

0

g(x, t)

(

− Λp(n, x) +
n∧k
∑

j=1

λjp(n− j, x)

)

dx,

where in the last step we have used (1.2) with β = 1. The proof concludes in view of
(5.6). �

5.1. First passage times of TCGCP-I. Here, we study the first passage times of
TCGCP-I. It is defined as

T n
f := inf{s ≥ 0 :Mf (s) ≥ n}.

The distribution of T n
f can be written as

Pr{T n
f < s} = Pr{Mf (s) ≥ n} =

∞
∑

m=n

∫ ∞

0

∑

Ω(k,m)

k
∏

j=1

(λjx)
xj

xj!
e−ΛxPr{Df(s) ∈ dx}.

So, its density function Pf(n, s) = Pr{T n
f ∈ ds}/ds can be obtained as

Pf(n, s) =
d

ds

∞
∑

m=n

∫ ∞

0

∑

Ω(k,m)

k
∏

j=1

(λjx)
xj

xj !
e−ΛxPr{Df(s) ∈ dx} (5.7)

=
d

ds

∫ ∞

0

(1− Pr{M(x) ≤ n− 1}) Pr{Df(s) ∈ dx}

=
d

ds

∫ ∞

0

(

1−
n−1
∑

l=0

∑

Ω(k,l)

k
∏

j=1

(λjx)
xj

xj!
e−Λx

)

Pr{Df(s) ∈ dx}
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= − d

ds

n−1
∑

l=0

∑

Ω(k,l)

k
∏

j=1

(−λj)xj

xj !

∫ ∞

0

dzk

dΛzk
e−ΛxPr{Df(s) ∈ dx}

= − d

ds

n−1
∑

l=0

∑

Ω(k,l)

k
∏

j=1

(−λj)xj

xj !

dzk

dΛzk
e−sf(Λ). (5.8)

Equivalently,

Pr{T n
f ∈ ds} = Pr{T n−1

f ∈ ds} −
∑

Ω(k,n−1)

k
∏

j=1

(−λj)xj

xj !

d

ds

dzk

dΛzk
e−sf(Λ)ds,

which gives a recursive relation between the distributions of T n
f .

Remark 5.3. From (5.8), we have

Pr{T 1
f ∈ ds} = f(Λ)e−sf(Λ)ds,

that is, the waiting time of the first event for TCGCP-I is exponential.

Next, we derive the system of differential equations that governs the distribution of T n
f .

The following result will be used:

Proposition 5.3. Let Of(u, t) =
∑∞

n=1 u
nPf (n, t), |u| < 1. Then,

d

dt
Of (u, t) = −f

(

k
∑

j=1

(1− uj)λj

)

Of (u, t).

Proof. On using (5.7), we get

Of (u, t) =
d

dt

∞
∑

m=1

m
∑

n=1

un
∫ ∞

0

∑

Ω(k,m)

k
∏

j=1

(λjx)
xj

xj !
e−ΛxPr{Df (t) ∈ dx}

=
d

dt

u

u− 1

∞
∑

m=1

(um − 1)

∫ ∞

0

∑

Ω(k,m)

k
∏

j=1

(λjx)
xj

xj !
e−ΛxPr{Df (t) ∈ dx}

=
d

dt

u

u− 1

∫ ∞

0

(

e
∑k

j=1(u
j−1)λjx − 1

)

Pr{Df(t) ∈ dx}

=
d

dt

u

u− 1
e−tf

(∑k
j=1(1−uj)λj

)

=
u

1− u
f
(

k
∑

j=1

(1− uj)λj

)

e−tf
(∑k

j=1(1−uj)λj

)

.

The result follows on taking the derivative with respect to t. �

Theorem 5.1. The density function of the first passage times of TCGCP-I solves the
following system of differential equations:

d

dt
Pf(n, t) = −f

(

Λ
(

I − 1

Λ

n∧k
∑

j=1

λjB
j
)

)

Pf (n, t), n ≥ 1.
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Proof. On using (5.3) for Pf(n, t), we get

∞
∑

n=1

unf

(

Λ
(

I − 1

Λ

n∧k
∑

j=1

λjB
j
)

)

Pf (n, t)

= f(Λ)Of(u, t)−
∞
∑

n=1

un
n

∑

m=1

∑

Ω(k,m)

k
∏

j=1

λ
xj

j

xj !
Pf(n−m, t)

∫ ∞

0

szke−Λsν(ds)

= f(Λ)Of(u, t)−
∞
∑

m=1

∞
∑

n=m

un
∑

Ω(k,m)

k
∏

j=1

λ
xj

j

xj !
Pf(n−m, t)

∫ ∞

0

szke−Λsν(ds)

= f(Λ)Of(u, t)−Of (u, t)

∞
∑

m=1

um
∑

Ω(k,m)

k
∏

j=1

λ
xj

j

xj !

∫ ∞

0

szke−Λsν(ds)

= f(Λ)Of(u, t)−Of (u, t)

∫ ∞

0

e−Λs
(

e
∑k

j=1 u
jλjs − 1

)

ν(ds)

= f
(

k
∑

j=1

(1− uj)λj

)

Of (u, t).

The result follows on using Proposition 5.3. �

Let T n
f be the first-hitting times of TCGCP-I, that is,

T n
f := inf {s ≥ 0 :Mf(s) = n} , n ≥ 1.

As the TCGCP-I is a Lévy process, it has independent increments. So, the hitting time
distribution for state n of TCGCP-I has the following form:

Pr
{

T n
f ∈ ds

}

= Pr

{ n−1
⋃

l=0

{Mf (s) = l,Mf [s, s+ ds) = n− l)}
}

=
n−1
∑

l=0

∑

Ω(k,l)

k
∏

j=1

λ
xj

j

xj !

(−1)zk

Λzk

dzk

dvzk
e−sf(Λv)

∣

∣

∣

v=1
· (−ds)

∑

Ω(k,n−l)

f (zk)(Λ)
k
∏

j=1

(−λj)xj

xj!
,

where we have used Remark 9 of Kataria and Khandakar (2022a) and (1.7) in the last step.
Therefore,

Pr
{

T n
f <∞

}

=

n−1
∑

l=0

∑

Ω(k,l)

k
∏

j=1

λ
xj

j

xj !

(−1)zk+1

Λzk

dzk

dvzk
1

f(Λv)

∣

∣

∣

∣

v=1

∑

Ω(k,n−l)

f (zk)(Λ)

k
∏

j=1

(−λj)xj

xj !
.

(5.9)
On taking k = 1 and Λ = λ in (5.9), we get

Pr
{

T n
f <∞

}
∣

∣

k=1
=

n−1
∑

l=0

(−1)n+1

l!(n− l)!

dl

dvl
1

f(λv)

∣

∣

∣

v=1
λn−lf (n−l)(λ),

which agrees with Eq. (2.7) of Garra et al. (2017).
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5.2. An application to risk theory. Consider the following risk model with TCGCP-I
as the counting process:

X(t) = ct−
Mf (t)
∑

j=1

Zj, t ≥ 0, (5.10)

where c > 0 denotes the constant premium rate and {Zj}j≥1 is a sequence of positive
iid random variables with distribution F . Here, Zj ’s represent the claim sizes which are
independent of {Mf (t)}t≥0. The expected value of {X(t)}t≥0 is given by

E(X(t)) = ct− µE(Mf (t)),

where µ = E(Zj). The relative safety loading factor ρ for (5.10) is given by

ρ =
E(X(t))

E
(
∑Mf (t)

j=1 Zj

)

=
ct

µE(Mf (t))
− 1.

Let U(t) = u + X(t), t ≥ 0 be the surplus process where u ≥ 0 is the initial capital,
τ be the time to ruin of an insurance company, that is, τ = inf{t > 0 : U(t) < 0} with
inf φ = ∞ and ψ(u) = Pr{τ <∞} be the ruin probability. Let

K(u, y) = Pr{τ <∞, D ≤ y}, y ≥ 0, (5.11)

be the joint probability that the ruin occurs in finite time and the deficit, that is, D = |U(τ)|
at the time of ruin is not more than y. Also, let u′ = u+ ch and F ∗j be the distribution of
Z1 + Z2 + · · ·+ Zj for all j ≥ 1. Now, using (1.7) and (5.11), we get

K(u, y) =(1− hf(Λ))K(u′, y) + o(h)− h

∞
∑

n=1

∑

Ω(k,n)

f (zk)(Λ)

k
∏

j=1

(−λj)xj

xj!

×
(
∫ u′

0

K(u′ − x, y)dF ∗n(x) + F ∗n(u′ + y)− F ∗n(u′)

)

.

After rearranging the terms, we have that

K(u′, y)−K(u, y)

ch
=
f(Λ)

c
K(u′, y) +

o(h)

h
− 1

c

∞
∑

n=1

∑

Ω(k,n)

f (zk)(Λ)
k
∏

j=1

(−λj)xj

xj !

×
(
∫ u′

0

K(u′ − x, y)dF ∗n(x) + F ∗n(u′ + y)− F ∗n(u′)

)

.

On taking h→ 0, we get

∂K(u, y)

∂u
=
f(Λ)

c
K(u, y)− 1

c

∞
∑

n=1

∑

Ω(k,n)

f (zk)(Λ)
k
∏

j=1

(−λj)xj

xj !

×
(
∫ u

0

K(u− x, y)dF ∗n(x) + F ∗n(u+ y)− F ∗n(u)

)

. (5.12)

Note that

∞
∑

n=1

∑

Ω(k,n)

f (zk)(Λ)

k
∏

j=1

(−λj)xj

xj !
=

∞
∑

r=0

(−Λ)r

r!
f (r)(Λ)− f(Λ) = f(0)− f(Λ) = −f(Λ),
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as f(0) = 0. Now, let

W (x) = − 1

f(Λ)

∞
∑

n=1

∑

Ω(k,n)

f (zk)(Λ)
k
∏

j=1

(−λj)xj

xj!
F ∗n(x)

be the mixer distribution of the aggregated claims. Thus, (5.12) reduces to

∂K(u, y)

∂u
=
f(Λ)

c

(

K(u, y) +W (u)−W (u+ y)−
∫ u

0

K(u− x, y)dW (x)

)

. (5.13)

As limy→∞K(u, y) = ψ(u), so by letting y → ∞ in (5.13), we get the following governing
equation of the ruin probability:

d

du
ψ(u) =

f(Λ)

c

(

ψ(u) +W (u)− 1−
∫ u

0

ψ(u− x)dW (x)

)

.

Theorem 5.2. The joint probability of ruin time and deficit at the time of ruin with zero
initial capital is given by

K(0, y) =
f(Λ)

c

∫ y

0

(1−W (u)) du. (5.14)

Proof. On integrating (5.13) with respect to u on (0,∞), we get

K(∞, y)−K(0, y) =
f(Λ)

c

(
∫ ∞

0

K(u, y)du+

∫ ∞

0

(W (u)−W (u+ y)) du

)

− f(Λ)

c

∫ ∞

0

∫ u

0

K(u− x, y)dW (x)du.

Thus, using K(∞, y) = 0 and the change of variable yields the following

K(0, y) =
f(Λ)

c

∫ ∞

0

(W (u+ y)−W (u)) du =
f(Λ)

c

∫ y

0

(1−W (u)) du.

This completes the proof. �

Remark 5.4. On taking y → ∞ in (5.14), we get ψ(0) = f(Λ)
c

∫∞

0
(1−W (u))du.

5.3. GFCP time-changed by Lévy subordinator. Kataria and Khandakar (2022a)
introduced the following time-changed process, namely, the TCGFCP-I:

Mβ
f (t) :=Mβ(Df(t)), t ≥ 0, (5.15)

where the GFCP {Mβ(t)}t≥0 is independent of the Lévy subordinator {Df(t)}t≥0 whose
moments are finite.
First, we give an additional result for {Mβ

f (t)}t≥0.

Proposition 5.4. The one-dimensional distributions of TCGFCP-I are not infinitely di-
visible.

Proof. Using the self-similarity property of inverse stable subordinator, we get

Mβ
f (t) =M(Yβ(Df(t)))

d
=M

(

(Df(t))
βYβ(1)

)

.

As Df(t) → ∞ as t→ ∞, almost surely, we have

lim
t→∞

Mβ
f (t)

tβ
d
= lim

t→∞

M
(

(Df(t))
βYβ(1)

)

tβ
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= Yβ(1) lim
t→∞

M
(

(Df(t))
βYβ(1)

)

(Df(t))βYβ(1)

(Df(t)

t

)β

d
=

k
∑

j=1

jλjYβ(1) lim
t→∞

(Df(t)

t

)β

, (using (2.4))

d
=

k
∑

j=1

jλjYβ(1) (E (Df (1)))
β ,

where in the last step we have used the strong law of large numbers for a Lévy subordinator
(see Bertoin (1996), p. 92). Thus, the result follows as Yβ(1) is not infinitely divisible (see
Vellaisamy and Kumar (2018a)). �

In (5.15), we take the Bernštein function f1 to obtain the GFCP time-changed by an
independent gamma subordinator, that is,

Mβ
f1
(t) :=Mβ(Z(t)), t ≥ 0.

The mean, variance, covariance and LRD property of {Mβ
f1
(t)}t≥0 follows from Section

4.1 of Kataria and Khandakar (2022a). It can be shown that the increment process {Mβ
f1
(t+

h) −Mβ
f1
(t)}t≥0, h > 0 is fixed, exhibits the short-range dependence property. The proof

follows similar lines to that of Theorem 4 of Maheshwari and Vellaisamy (2016).

For k = 1, the process {Mβ
f1
(t)}t≥0 reduces to the time fractional negative binomial pro-

cess {N 1
β (t)}t≥0 with intensity λ (see Vellaisamy and Maheshwari (2018b)). For notational

convenience, we denote Qβ(t, λ) = N 1
β (t), t ≥ 0. Using (2.20), its mth factorial moment is

given by

E
(

Qβ(t, λ)(Qβ(t, λ)− 1) · · · (Qβ(t, λ)−m+ 1)
)

=
λmm!Γ(bt +mβ)

Γ(mβ + 1)amβΓ(bt)
, m ≥ 1. (5.16)

On putting β = 1 in (5.16), we get the mth factorial moment of negative binomial process
(see Orsingher and Toaldo (2015), Remark 4.7).

Next result gives the conditional distribution of X
Qβ(t,λ)
(k) , a kth order statistic from the

sample of size Qβ(t, λ) where k ∈ {1, 2, . . . , Qβ(t, λ)}.
Theorem 5.3. Let {Xi}i≥1 be a sequence of iid random variables with distribution function
F . Then,

Pr{XQβ(t,λ)
(k) < z

∣

∣Qβ(t, λ) ≥ k} =
Pr{Qβ(t, λF (z)) ≥ k}

Pr{Qβ(t, λ) ≥ k} .

Proof. For 1 ≤ k ≤ n, we will use the following standard result for the distribution of kth
order statistics:

Pr{Xn
(k) < z} =

n
∑

j=k

(

n

j

)

F j(z) (1− F (z))n−j . (5.17)

Now,

Pr{XQβ(t,λ)
(k) < z

∣

∣Qβ(t, λ) ≥ k} =

∑∞
n=k Pr{X

Qβ(t,λ)
(k) < z,Qβ(t, λ) = n}

Pr{Qβ(t, λ) ≥ k}
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=

∑∞
n=k Pr{X

Qβ(t,λ)
(k) < z

∣

∣Qβ(t, λ) = n}Pr{Qβ(t, λ) = n}
Pr{Qβ(t, λ) ≥ k} .

(5.18)

Using (2.21) and (5.17), the quantity in the numerator of the right hand side of (5.18) can
be evaluated as follows:

∞
∑

n=k

Pr{XQβ(t,λ)
(k) < z

∣

∣Qβ(t, λ) = n}Pr{Qβ(t, λ) = n}

=

∞
∑

n=k

( n
∑

j=k

(

n

j

)

F j(z) (1− F (z))n−j

) ∞
∑

l=n

(−1)l+n

(

l

n

)

Γ(lβ + bt)

Γ(bt)Γ(βl + 1)

(

λ

aβ

)l

=
∞
∑

l=k

(−1)lΓ(lβ + bt)

Γ(bt)Γ(βl + 1)

(

λ

aβ

)l l
∑

n=k

(

l

n

)

(−1)n
n

∑

j=k

(

n

j

)

F j(z) (1− F (z))n−j

=

∞
∑

l=k

(−1)lΓ(lβ + bt)

Γ(bt)Γ(βl + 1)

(

λ

aβ

)l l
∑

j=k

F j(z)

l
∑

n=j

(

l

n

)(

n

j

)

(−1)n (1− F (z))n−j

=
∞
∑

l=k

(−1)lΓ(lβ + bt)

Γ(bt)Γ(βl + 1)

(

λ

aβ

)l l
∑

j=k

(

l

j

)

F j(z)
l

∑

n=j

(

l − j

n− j

)

(−1)n (1− F (z))n−j

=

∞
∑

l=k

(−1)lΓ(lβ + bt)

Γ(bt)Γ(βl + 1)

(

λ

aβ

)l l
∑

j=k

(

l

j

)

F j(z)

l−j
∑

n=0

(

l − j

n

)

(−1)n+j (1− F (z))n

=

∞
∑

l=k

(−1)lΓ(lβ + bt)

Γ(bt)Γ(βl + 1)

(

λ

aβ

)l

F l(z)

l
∑

j=k

(

l

j

)

(−1)j

=

∞
∑

j=k

∞
∑

l=j

(

l

j

)

(−1)l+j

(

F (z)λ

aβ

)l
Γ(lβ + bt)

Γ(bt)Γ(βl + 1)

=

∞
∑

j=k

Pr{Qβ(t, λF (z)) = j} = Pr{Qβ(t, λF (z)) ≥ k}.

The proof follows on inserting the above expression in (5.18). �

Similarly, it can be shown that the space and the space-time fractional negative binomial
process exhibit the kth order statistic property as in Theorem 5.3. Also, this result holds
true for a more general process, namely, the time-changed fractional Poisson process studied
by Kataria and Khandakar (2022c).

6. A time-changed version of Mf (t)

In this section, we consider the following time-changed process:

Mα
f (t) :=Mf (Yα(t)) =M (Df (Yα(t))) , t ≥ 0, (6.1)

where the Lévy subordinator {Df (t)}t≥0, the inverse stable subordinator {Yα(t)}t≥0, 0 <
α < 1 and the GCP {M(t)}t≥0 are independent of each other.
For k = 1, the process {Mα

f (t)}t≥0 reduces to a time-changed Poisson process, that is,
{N (Df (Yα(t)))}t≥0 (see Beghin and D’Ovidio (2014), Section 3; Orsingher and Toaldo
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(2015), Remark 2.3). Recently, Beghin and Macci (2016) studied a multivariate version of
{N (Df (Yα(t)))}t≥0.
Let hα(t, x) be the density of {Yα(t)}t≥0 and pαf (n, t) = Pr{Mα

f (t) = n}, n ≥ 0, be the
state probabilities of {Mα

f (t)}t≥0. From (6.1), we have

pαf (n, t) =

∫ ∞

0

pf (n, x)hα(t, x)dx. (6.2)

On taking Caputo fractional derivative in (6.2) and using (5.1), it can be shown that the
state probabilities pαf (n, t) solve the following system of fractional differential equations:

dα

dtα
pαf (n, t) = −f(Λ)pαf (n, t)−

n
∑

m=1

∑

Ω(k,m)

f (zk)(Λ)
k
∏

j=1

(−λj)xj

xj !
pαf (n−m, t),

with initial conditions

pαf (n, 0) =

{

1, n = 0,

0, n ≥ 1.

In view of (5.2), the above system of differential equation can be written as

dα

dtα
pαf (n, t) = −f

(

Λ
(

I − 1

Λ

n∧k
∑

j=1

λjB
j
)

)

pαf (n, t).

On using Proposition 6 of Kataria and Khandakar (2022a), the pgf of {Mα
f (t)}t≥0 is given

by

Gα
f (u, t) =

∫ ∞

0

Gf(u, x)hα(t, x)dx

=

∫ ∞

0

exp

(

− xf
(

k
∑

j=1

λj(1− uj)
)

)

hα(t, x)dx

= Eα,1

(

− f
(

k
∑

j=1

λj(1− uj)
)

tα
)

. (6.3)

It is known that the Mittag-Leffler function is an eigenfunction of the Caputo fractional
derivative. So, it follows that

dα

dtα
Gα
f (u, t) = −f

( k
∑

j=1

λj(1− uj)

)

Gα
f (u, t), G

α
f (u, 0) = 1.

Remark 6.1. On taking k = 1 and λ1 = λ, the pgf (6.3) reduces to Gα
f (u, t)

∣

∣

k=1
=

Eα,1

(

−f
(

λ(1−u)
)

tα
)

which agrees with the pgf of {N (Df(Yα(t)))}t≥0 (see Orsingher and
Toaldo (2015), Eq. (2.9)).

Now, we give the mean, variance and covariance function of {Mα
f (t)}t≥0. We assume that

the second order moments of {Df(t)}t≥0 are finite. The mean and variance of TCGCP-I

are given by E (Mf (t)) =
∑k

j=1 jλjE(Df(t)) and Var(Mf (t)) =
(
∑k

j=1 jλj
)2

Var(Df(t)) +
∑k

j=1 j
2λjE(Df (t)) (see Kataria and Khandakar (2022a), Section 4.1).

Let q1 = E (Mf (1)) and q2 = Var(Mf (1)). Then, by using Theorem 2.1 of Leonenko et

al. (2014), we get

E
(

Mα
f (t)

)

= q1E(Yα(t)),
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Var
(

Mα
f (t)

)

= q2E(Yα(t)) + q21 Var(Yα(t)), (6.4)

Cov
(

Mα
f (s),M

α
f (t)

)

= q2E(Yα(s)) + q21 Cov(Yα(s), Yα(t)), 0 < s ≤ t. (6.5)

As Var
(

Mα
f (t)

)

−E
(

Mα
f (t)

)

> 0, t > 0, the process {Mα
f (t)}t≥0 exhibits the overdispersion

property.

Theorem 6.1. The process {Mα
f (t)}t≥0 has the LRD property.

Proof. From (6.4) and (6.5), we get

Corr
(

Mα
f (s),M

α
f (t)

)

=
q2E(Yα(s)) + q21 Cov(Yα(s), Yα(t))

√

Var
(

Mα
f (s)

)
√

q2E(Yα(t)) + q21 Var(Yα(t))
.

On using (2.17)-(2.19) for fixed s and large t, we get

Corr
(

Mα
f (s),M

α
f (t)

)

∼
q2E(Yα(s)) +

q21s
2α

Γ(2α+1)
√

Var
(

Mα
f (s)

)

√

q2tα

Γ(α+1)
+

2q21t
2α

Γ(2α+1)
− q21t

2α

Γ2(α+1)

∼ c(s)t−α,

where

c(s) =
q2E(Yα(s)) +

q21s
2α

Γ(2α+1)
√

Var
(

Mα
f (s)

)

√

2q21
Γ(2α+1)

− q21
Γ2(α+1)

.

This proves the result. �

6.1. GCP time-changed by fractional gamma process. Beghin (2015) introduced a
fractional gamma process {Zα(t)}t≥0 by time-changing the gamma subordinator {Z(t)}t≥0

with an independent inverse stable subordinator, that is,

Zα(t) := Z(Yα(t)).

For x ≥ 0, t ≥ 0, the following holds for its density function gα(x, t):






∂
∂x
gα(x, t) = −b(1 − Oα

−1,t)gα(x, t),
gα(x, 0) = 0,
limx→+∞ gα(x, t) = 0,

(6.6)

where Oα
−1,t is the fractional shift operator (see Beghin (2015), Theorem 5 and Eq. (10)).

For the Bernštein function f1 given in (2.13), the process {Mα
f (t)}t≥0 reduces to the

following:

Mα
f1(t) :=M(Z(Yα(t))) =M(Zα(t)), t ≥ 0. (6.7)

Proposition 6.1. The pmf pαf1(n, t) = Pr{Mα
f1
(t) = n}, n ≥ 0 of {Mα

f1
(t)}t≥0 satisfies the

following fractional differential equations:

Oα
−1,tp

α
f1(n, t) = (1 + Λ/b)pαf1(n, t)−

1

b

n∧k
∑

j=1

λjp
α
f1(n− j, t), (6.8)

with initial conditions

pαf1(n, 0) =

{

1, n = 0,

0, n ≥ 1.
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Proof. From (6.7), we can write

pαf1(n, t) =

∫ ∞

0

p(n, x)gα(x, t)dx. (6.9)

On both sides of (6.9), we apply the fractional shift operator Oα
−1,t and use (6.6) to obtain

Oα
−1,tp

α
f1
(n, t) =

∫ ∞

0

p(n, x)
(

gα(x, t) +
1

b

∂

∂x
gα(x, t)

)

dx

= pαf1(n, t) +
1

b
[p(n, x)gα(x, t)]

∞
x=0 −

1

b

∫ ∞

0

gα(x, t)
d

dx
p(n, x)dx

= pαf1(n, t)−
1

b

∫ ∞

0

gα(x, t)
(

− Λp(n, x) +
n∧k
∑

j=1

λjp(n− j, x)
)

dx,

where in the last step we have used (1.2) with β = 1. This coincides with the desired result
by considering (6.9). �

6.2. Space-time fractional version of the GCP. We take the Bernštein function f2
in (6.1) to obtain the space-time fractional version of the GCP, namely, the generalized
space-time fractional counting process (GSTFCP) {Mα

f2
(t)}t≥0, that is,

Mα
f2
(t) :=M(Dβ(Yα(t))), t ≥ 0.

For 1 ≤ j ≤ k, if λj = λ and λj = λ(1 − ρ)ρj−1/(1 − ρk), 0 ≤ ρ < 1, then the GSTFCP
reduces to the space-time fractional version of PPoK and PAPoK, repectively.
From (6.3), the pgf of GSTFCP is given by

Gα
f2
(u, t) = Eα,1

(

−
(

k
∑

j=1

(1− uj)λj

)β

tα
)

. (6.10)

For k = 1, it reduces to the pgf of STFPP (see Orsingher and Polito (2012), Eq. (2.28)).
It solves the following differential equations:

dα

dtα
G
α
f2(u, t) = −

( k
∑

j=1

(1− uj)λj

)β

G
α
f2(u, t), G

α
f2(u, 0) = 1.

LetXi, i ≥ 1 be iid uniform random variables in [0, 1] and {Nα(t,Λ
β)}t≥0 be the TFPP with

intensity Λβ such that min0≤i≤Nα(t,Λβ)X
1/β
i = 1 when Nα(t,Λ

β) = 0. Then, for 0 < u < 1,
the pgf of GSTFCP can be written as

G
α
f2(u, t) =

∞
∑

m=0

(−tαΛβ)m

Γ(mα + 1)

(

1− 1

Λ

k
∑

j=1

λju
j
)βm

=

∞
∑

m=0

(−tαΛβ)m

Γ(mα + 1)

m
∑

r=0

(−1)r
(

m

r

)(

1−
(

1− 1

Λ

k
∑

j=1

λju
j
)β

)r

=

∞
∑

r=0

(

1−
(

1− 1

Λ

k
∑

j=1

λju
j
)β

)r ∞
∑

m=r

(−1)m−r

(

m

r

)

(tαΛβ)m

Γ(mα + 1)

=
∞
∑

r=0

(

Pr
{

X1/β
r ≥ 1− 1

Λ

k
∑

j=1

λju
j
}

)r

Pr{Nα(t,Λ
β) = r}
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= Pr

{

min
0≤r≤Nα(t,Λβ)

X1/β
r ≥ 1− 1

Λ

k
∑

j=1

λju
j

}

. (6.11)

The result obtained in (6.11) is of particular interest as it connects the GSTFCP with
TFPP via uniform random variables. On using the generalized binomial theorem to expand
the right hand side of (6.10), we obtain the pmf of GSTFCP in the following form:

Pr{Mα
f2
(t) = n} =

∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !

(−1)zk

Λzk

∞
∑

m=0

(−Λβtα)m

Γ(αm+ 1)

Γ(βm+ 1)

Γ(βm+ 1− zk)
, n ≥ 0. (6.12)

The steps involved to obtain (6.12) are similar to the one involved in the proof of (5.2).
Next, we obtain an alternate form of the pmf of GSTFCP. The pmf (2.2) of GCP can

be re-written as follows:

p(n, t) =
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !
(−∂Λ)zke−Λt, n ≥ 0.

Then, from (6.1), we have

Pr{Mα
f2(t) = n} =

∫ ∞

0

p(n, s)Pr{Dβ(Yα(t)) ∈ ds}

=

∫ ∞

0

∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !
(−∂Λ)zke−ΛsPr{Dβ(Yα(t)) ∈ ds}

=
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !
(−∂Λ)zkE

(

e−ΛDβ(Yα(t))
)

(6.13)

=
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !
(−∂Λ)zkEα,1

(

−Λβtα
)

, (6.14)

where in the last step we have used Lemma 3.1 of Beghin and D’Ovidio (2014). Thus, the
pgf of GSTFCP can alternatively be obtained as follows:

Gα
f2(u, t) =

∞
∑

n=0

unPr{Mα
f2(t) = n}

=
∞
∑

n=0

un
∑

Ω(k,n)

k
∏

j=1

λ
xj

j

xj !
(−∂Λ)zkE

(

e−ΛDβ(Yα(t))
)

, (using (6.13))

=
∞
∑

r=0

(

k
∑

j=1

λju
j
)r (−∂Λ)r

r!
E
(

e−ΛDβ(Yα(t))
)

= E
(

e−
∑k

j=1(1−uj)λjDβ(Yα(t))
)

,

which reduces to (6.10) on using Lemma 3.1 of Beghin and D’Ovidio (2014).
Let {Nα,β(t)}t≥0 denotes the STFPP with intensity λ. For notational convenience, let

Nα,β(t, λ) = Nα,β(t). On taking k = 1 and Λ = λ1 = λ (say) in (6.12), we get

Pr{Nα,β(t, λ) = n} =
(−1)n

n!

∞
∑

m=0

(−λβtα)mΓ(βm+ 1)

Γ(βm+ 1− n)Γ(αm+ 1)
, (6.15)
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which agrees with the pmf of STFPP (see Orsingher and Polito (2012), Eq. (2.29)). Again
taking k = 1 and Λ = λ in (6.14), we get an alternate version of the pmf of STFPP (see
Beghin and D’Ovidio (2014), Eq. (3.19)).

Theorem 6.2. Let X
Nα,β(t,λ)
(k) be a kth order statistic from the sample of size Nα,β(t, λ), k ∈

{1, 2, . . . , Nα,β(t, λ)} and {Xi}i≥1 be a sequence of iid random variables with distribution
function F . Then,

Pr{XNα,β(t,λ)
(k) < z

∣

∣Nα,β(t, λ) ≥ k} =
Pr{Nα,β(t, λF (z)) ≥ k}

Pr{Nα,β(t, λ) ≥ k} .

Proof. On using the conditional probability law, we get

Pr{XNα,β(t,λ)
(k) < z

∣

∣Nα,β(t, λ) ≥ k} =

∑∞
n=k Pr{X

Nα,β(t,λ)
(k) < z

∣

∣Nα,β(t, λ) = n}Pr{Nα,β(t, λ) = n}
Pr{Nα,β(t, λ) ≥ k} .

(6.16)

Using (5.17) and (6.15), the quantity in the numerator of the right hand side of (6.16) can
be evaluated as follows:

∞
∑

n=k

Pr{XNα,β(t,λ)
(k) < z

∣

∣Nα,β(t, λ) = n}Pr{Nα,β(t, λ) = n}

=

∞
∑

n=k

n
∑

j=k

(

n

j

)

F j(z) (1− F (z))n−j (−1)n

n!

∞
∑

m=0

(−λβtα)mΓ(βm+ 1)

Γ(βm+ 1− n)Γ(αm+ 1)

=

∞
∑

j=k

∞
∑

m=0

∞
∑

n=j

F j(z)

(n− j)!j!
(1− F (z))n−j (−1)n(−λβtα)mΓ(βm+ 1)

Γ(βm+ 1− n)Γ(αm+ 1)

=
∞
∑

j=k

(−1)jF j(z)

j!

∞
∑

m=0

(−λβtα)mΓ(βm+ 1)

Γ(αm+ 1)

∞
∑

n=0

(−1)n (1− F (z))n

n!Γ(βm+ 1− n− j)

=
∞
∑

j=k

(−1)j

j!

∞
∑

m=0

(−λβtα)mΓ(βm+ 1)

Γ(αm+ 1)

(F (z))βm

Γ(βm+ 1− j)

=
∞
∑

j=k

(−1)j

j!

∞
∑

m=0

(−λβF β(z)tα)mΓ(βm+ 1)

Γ(αm+ 1)Γ(βm+ 1− j)

=

∞
∑

j=k

Pr{Nα,β(t, λF (z)) = j} = Pr{Nα,β(t, λF (z)) ≥ k}.

The proof follows on inserting the above expression in (6.16). �

Remark 6.2. Polito and Scalas (2016) studied a time-changed Poisson process that gener-
alizes the STFPP. Its state probabilities (see Polito and Scalas (2016), Eq. (3.19)) satisfy
a system of differential equations that involves Prabhakar derivative. It can be shown that
this process also has the kth order statistic property, as discussed in Theorem 6.2.
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