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EMBEDDABILITY OF JOINS AND PRODUCTS OF POLYHEDRA

SERGEY A. MELIKHOV

Abstract. We present a short proof of S. Parsa’s theorem that there exists a compact

n-polyhedron P , n ≥ 2, non-embeddable in R2n, such that P ∗ P embeds in R4n+2.

This proof can serve as a showcase for the use of geometric cohomology.

We also show that a compact n-polyhedron X embeds in Rm, m ≥ 3(n+1)
2 , if either

• X ∗K embeds in Rm+2k, where K is the (k − 1)-skeleton of the 2k-simplex; or

• X ∗ L embeds in Rm+2k, where L is the join of k copies of the 3-point set; or

• X is acyclic and X × (triod)
k
embeds in Rm+2k.

1. Introduction

It was shown by Flores, van Kampen and Grünbaum [9] that every n-dimensional join

of ki-skeleta of (2ki + 2)-simplexes does not embed in R2n (see also [11; Examples 3.3,

3.5], [12], [20]). Some other ki-polyhedra with this property are constructed in [12].

As noted by S. Parsa [15], it is implicit in a paper by Bestvina, Kapovich and Kleiner

[5] that if compact polyhedra P n and Qm both have non-zero mod 2 van Kampen

obstruction, then P ∗Q does not embed in R2(n+m+1). An n-dimensional polyhedron, non-

embeddable in R2n but with vanishing mod 2 van Kampen obstruction was constructed

by the author for each n ≥ 2 [11], settling a 1991 question by K. Sarkaria. Using this

example, Parsa proved the following, relying on extensive algebraic computations.

Theorem A (Parsa [15]). For each n ≥ 2 there exists a compact n-polyhedron P such

that P does not embed in R2n but P ∗ P embeds in R4n+2.

In the present note we present a simple geometric proof of Parsa’s theorem.

Remark 1.1. Parsa shows more generally that if compact polyhedra P n and Qm both

have zero mod 2 van Kampen obstruction, then P ∗Q embeds in R2(n+m+1) [15]. In fact,

the proof of this more general assertion is implicit in our proof of Theorem A.

When precisely one of the mod 2 van Kampen obstructions of P and Q is nonzero,

our method can be used to check that P ∗Q is non-embeddable in R2(n+m+1) at least in

some cases (for instance, when P = K and Q = L in the notation of §4 below). Parsa

has a more precise result in this direction [15].

By considering the cone Q over the polyhedron P in Theorem A we at once1 obtain

Corollary B. For each n ≥ 3 there exists a compact contractible n-polyhedron Q such

that Q does not embed in R2n−1 but Q×Q embeds in R4n−1.

2020 Mathematics Subject Classification. Primary: 57Q35, secondary: 57N35.
1See Corollary 2.2 below and [19; Lemma 2.19 and Exercise 2.24(3)].
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Theorem A and Corollary B provide a background for the following positive results.

Theorem C. Let X be a compact n-polyhedron and let m ≥ 3(n+1)
2

. The following are

equivalent for each k > 0:

(i) X embeds in Rm;

(ii) the k-fold suspension ΣkX embeds in Rm+k;

(iii) the k-fold cone CkX embeds in Rm+k;

(iv) X ∗ Tk embeds in Rm+2k, where Tk is the join of k copies of the 3-point set;

(v) X ∗ Zk embeds in Rm+2k, where Zk is the (k − 1)-skeleton of the 2k-simplex.

Theorem D. Let X be an acyclic compact n-polyhedron and let m ≥ 3(n+1)
2

. The

following are equivalent for each k > 0:

(i) X embeds in Rm;

(ii) X × Ik embeds in Rm+k;

(iii) X × (triod)k embeds in Rm+2k.

In Theorem C, (ii)⇒(iii) is obvious and (iii)⇒(i) is immediate2. See also Theorem 2.4

below for a simple algebraic proof of (ii)⇒(i).

In Theorem D, (ii)⇒(i) is easy (see Theorem 2.5 below) and was first proved in [17].

The real content of Theorems C and D are the remaining assertions. Their proofs

originally appeared in the 2006 preprint [13].3 The implication (iv)⇒(i) in Theorem

C was recently rediscovered by S. Parsa [14] (see also [16]). Parsa pointed out to the

author that the proofs of Theorems C and D in [13] are not easy to read as they omit

many details. The present note contains a more detailed exposition of these proofs (at

least 4 pages instead of 1 page), with a few minor errors corrected.

Remark 1.2. Let us note that the dimensional restrictions in Theorem D, (ii)⇒(i)

cannot be dropped. Indeed, if X is a non-simply-connected homology n-ball (i.e. a

homology sphere minus an open ball), then X does not embed in Rn (by Seifert–van

Kampen), but X×I embeds in Rn+1 since every homology sphere bounds a contractible

topological manifold (by Kervaire and Freedman; see [4; Theorem 0]), whose double has

to be the sphere by Seifert–van Kampen and by the generalized Poincaré conjecture.

2. Background and two easy theorems

The following notation will be used throughout the paper. Given a space X , we write

X̃ = X × X \ ∆X , where ∆X = {(x, x) | x ∈ X}. We also write X̄ = X̃/t, where t is

the factor-exchanging involution, t(x, y) = (y, x). The m-sphere Sm will be understood

to be endowed with the antipodal involution. For a Z/2-space X we denote by ΣkX its

unreduced k-fold suspension Sk−1 ∗X with the diagonal action of Z/2.
2See Corollary 2.2 below and [19; Lemma 2.19].
3To be precise, [13; Corollaries 4.4 and 4.7] are the same as Theorems C and D except that they allow
X to be an n-dimensional compactum (rather than a polyhedron) at the cost of imposing a slightly

stronger restriction m >
3(n+1)

2 . But their proofs also yield Theorems C and D if one applies the
classical Haefliger–Weber embeddability criterion for polyhedra (see Theorem 2.1 below) instead of the
embeddability criterion for compacta obtained in [13].
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If X embeds in Rm, then there exists an equivariant map X̃ → Sm−1. Namely, if

g : X → Rm is an embedding, then g̃ : X̃ → Sm−1 is defined by g̃(x, y) = g(x)−g(y)
||g(x)−g(y)||

.

Theorem 2.1. (Haefliger–Weber [21]; see also [1], [11; 3.1]) If X is a compact n-

polyhedron such that there exists an equivariant map X̃ → Sm−1 and m ≥ 3(n+1)
2

, then

X piecewise linearly embeds in Rm.

Corollary 2.2. If X is a compact n-polyhedron and m ≥ 3(n+1)
2

, then X embeds in Rm

if and only if it PL embeds in Rm.

Lemma 2.3. (Conner–Floyd [7]; see also [3; 2.7(a)]) If K is a k-polyhedron with a free

involution, the suspension map [K,Sm−1]Z/2 → [ΣK,Sm]Z/2 is surjective for k ≤ 2m− 3

and injective for k ≤ 2m− 4.

Theorem 2.4. Let X be a compact n-polyhedron, Y be a compact polyhedron such that

there exists an equivariant map Sk−1 → Ỹ , and assume that m ≥ 3(n+1)
2

. If X ∗Y admits

a level-preserving (i.e. commuting with the projections X ∗ Y
p
−→ I and Rm+k × I → I)

embedding in Rm+k × I, then X embeds in Rm.

To prove (ii)⇒(i) in Theorem C (in the case k = 1, which implies the general case) we

apply the case Y = S0, k = 1 of Theorem 2.4 to the embedding e×p : X∗S0 → Rm+1×I,

where e : X ∗ S0 = ΣX → Rm+1 is the given embedding.

Proof. The subset Z of X̃ ∗ Y consisting of all pairs (a, b) such that p(a) = p(b), contains

a copy of X̃ ∗ Ỹ . So the given embedding yields an equivariant map ΣkX̃ → X̃ ∗ Ỹ ⊂

Z → Sm+k−1. Since 2n ≤ 2m − 3, by Lemma 2.3 it desuspends to an equivariant map

X̃ → Sm−1. Hence by Theorem 2.1 X embeds in Rm. �

Theorem 2.5. Let X be an acyclic compact n-polyhedron, m ≥ 3(n+1)
2

. If X “can be

instantaneously taken off itself in Rm+1”, that is, the mapping cylinder of the projection

X ⊔X
π
−→ X admits a level-preserving (i.e. commuting with the projections MC(π)

p
−→ I

and Rm+1 × I → I) embedding in Rm+1 × I, then X embeds in Rm.

To prove (ii)⇒(i) in Theorem D (in the case k = 1, which implies the general case)

we apply Theorem 2.5 to the embedding e×p : MC(π)→ Rm+1×I, where e : MC(π) ∼=
X × I → Rm+1 is the given embedding.

The idea of the following proof comes from [17].

Proof. Let g : X →֒ Rm+1 be the given embedding that can be instantaneously taken off

itself. Then g̃ : X̃ → Sm is homotopic to a map ϕ that extends to X × X . Since X is

acyclic, ϕ is null-homotopic. Combining the null-homotopy with its reverse, we get an

equivariant map ΣX̃ → Sm. Since 2n ≤ 2m − 3, by Lemma 2.3 it desuspends to an

equivariant map X̃ → Sm−1. Hence by Theorem 2.1 X embeds in Rm. �

3. Geometric cohomology

To prove Theorem A we will use the geometric description of cohomology as developed

by Buoncristiano, Rourke and Sanderson [6] (see also [18], [8; Chapter 1]). A quick
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introduction is in [11; §2], and we will follow it for terminology. Here we only hint at

the definitions, and then discuss two examples which will be relevant to the proof of

Theorem A.

Let us first recall that ordinary homology Hn(P ) of the polyhedron P with integer

coefficients is isomorphic to the bordism group of singular oriented n-pseudomanifolds

in P , that is, of maps of the form f : M → P , where M is a (possibly empty) closed

oriented n-dimensional pseudomanifold (see [11; §2] for a more detailed statement and

[8; Theorem 1.3.7] for the proof). What we need is the dual description of cohomology.

Let K be a simplicial complex. An n-comanifold in K (called “n-mock bundle” in [6])

is a PL map of the form f : X → |K|, where X is a polyhedron (possibly empty), such

that for each i-simplex σ of K, f−1(σ) is a compact PL (i−n)-manifold with boundary,

and moreover its boundary coincides with f−1(∂σ). (If k < 0, then all k-manifolds are

empty.) Thus n is the codimension of the comanifold, and we do not care about its

dimension. Let us note that by definition f is transverse to the triangulation K (see

[6] concerning PL transversality). For instance, if T is the triod {0} ∗ {1, 2, 3}, then

every embedded 1-comanifold G in the three-page book T × R is a graph with vertices

of degrees 1 and 3, where the degree 3 vertices coincide with the intersection points of G

with the binding {0}×R, and the degree 1 vertices coincide with the intersection points

of G with the page edges {1, 2, 3} × R.
A cobordism between two n-comanifolds f0 : X0 → |K| and f1 : X1 → |K| is an n-

comanifold Φ: W → |K| × I such that Φ−1(|K| × {j}) = Xj and Φ|Xj
= fj for j = 0, 1.

It is straightforward to define co-oriented n-copseudomanifolds and their cobordisms.

The cobordism group of co-oriented n-copseudomanifolds is isomorphic to the ordinary

cohomology Hn(|K|) with integer coefficients (see [11; §2] for a more detailed statement

and [6] for the proof). It should also be noted that if L is a subdivision of K, then every

n-comanifold in L is an n-comanifold in K, and every n-comanifold in K is cobordant

to an n-comanifold in L; the same can be said of co-oriented n-copseudomanifolds [6].

Remark 3.1. (a) When n = 1, the geometric description of H1(|K|) is closely related

to the Pontryagin construction for maps |K| → S1 and their homotopies.

(b) When |K| is an oriented PLm-manifold, co-oriented n-copseudomanifolds inK are

the same objects as singular oriented (m−n)-pseudomanifolds in |K| that are transverse

to the triangulation K [6], and thus the geometric description of Hn(|K|) coincides

with the geometric description of the Poincaré dual group Hm−n(|K|) modulo the PL

transversality theorem of [6].

(c) If c is a simplicial n-cocycle inK, the corresponding co-oriented n-copseudomanifold

f : X → |K| can be constructed as follows. If σ is an oriented n-simplex of K, let

Xσ be the disjoint union of |c(σ)| copies |σ∗|1, . . . , |σ
∗||c(σ)| of the dual cone4 |σ∗|, co-

oriented in |K| according to the orientation of σ and the sign of c(σ). If τ is an oriented

4σ∗ is the subcomplex of the barycentric subdivisionK ′ consisting of all simplexes of the form τ̂1∗· · ·∗τ̂n,
where σ ⊂ τ1 $ · · · $ τn are simplexes of K and τ̂ denotes the barycenter of τ . If K is a combinatorial
n-manifold and σ is a k-simplex, then |σ∗| is an (n− k)-cell intersecting σ at σ̂.



EMBEDDABILITY OF JOINS AND PRODUCTS OF POLYHEDRA 5

(n + 1)-simplex of K, the condition δc(τ) = 0 implies that if ∂τ = σ1 + · · · + σk, then

|c(σ1)|+ · · ·+ |c(σk)| is even, and moreover the co-oriented dual cones in Xσ1 ⊔ · · ·⊔Xσk

can be matched in pairs, so that each |σ∗
i |i′ is matched with some |σ∗

j |j′, where j 6= i,

respecting their co-orientations. Let X be the quotient of
⊔
σXσ, where σ runs over all

n-simplexes of K, each with some fixed orientation, by gluing for each oriented (n+ 1)-

simplex τ of K each matched pair |σ∗
i |i′, |σ

∗
j |j′ along the dual cone |τ ∗|. Let f : X → |K|

be the obvious projection, sending the image of each |σ∗|i onto σ
∗.

Example 3.2. Let M be a non-orientable connected closed PL n-manifold. Let us fix a

triangulation ofM and an orientation of each n-simplex of the triangulation. Then a co-

oriented n-copseudomanifold inM is a finite linear combination5 of co-oriented points in

the interiors of n-simplexes ofM , where the co-orientations of points are induced by the

orientations of the n-simplexes. If p is such a co-oriented point inM , and ϕ : I →M is a

PL path from p to itself that is orientation-reversing (in the sense of local orientation of

M) and transverse to the triangulation of M , then Φ: I →M × I, Φ(t) =
(
ϕ(t), t

)
, is a

cobordism from p to −p. If q is another such co-oriented point inM , then by connecting

q by a path to p we similarly obtain a cobordism from q to either p or −p. And in

fact every connected cobordism between nonempty n-copseudomanifolds is of this form

(since M is compact). Thus we have computed geometrically that Hn(M) ≃ Z/2.

Example 3.3. Let M be an oriented connected closed PL n-manifold. Let N be the

polyhedron obtained from M by first removing the interior D̊ of a closed PL n-ball D

and then gluing D back in along some PL map f : Sn−1 → Sn−1 of degree 2 which is

a ramified covering (for instance, the (n − 2)-fold suspension over the double covering

S1 → S1). Let C and C̊ denote the images of D and D̊ in N and let N0 = N \ C̊.

Let us note that both C̊ and N0 inherit their orientations from that of M ; moreover, at

each regular value of the ramified covering f , each of the two sheets of C̊ is attached

to N0 respecting the orientations (since deg f > 0). Let us fix some triangulation of N .

Then a co-oriented n-copseudomanifold in N is a finite linear combination of co-oriented

points in the interiors of simplexes of N , where the co-orientations of points are induced

by the orientations of C̊ and N0. If p is such a co-oriented point in the interior of N0,

and r is such a co-oriented point in C̊, let us show that p is cobodrant to 2r. Indeed,

let T be the triod and let π : T → I be the map sending the cone apex to 1
2
, one leaf to

0 and the other two leaves to 1, and linear on the three edges. Let ϕ : T → N be a PL

map sending the cone apex to a point in ∂N0, one leg of the triod, namely, π−1([0, 1
2
]),

entirely into N0, so that it ends at p, and the other two legs entirely into C, so that

they both end at r. If ϕ is transverse to the triangulation of N , then Φ: T → N × I,

Φ(t) =
(
ϕ(t), π(t)

)
, is easily seen to be a cobordism between p and 2r. Using this, by

arguing as in Example 3.2 we will compute geometrically that Hn(N) ≃ Z.

5If p is a co-oriented point in M , then 3p stands for the similarly co-oriented map of the 3-point set
into M , sending all 3 points onto p, and −p stands for p with the opposite co-orientation.
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4. Proof of Parsa’s theorem

Let K be an n-dimensional join of the ki-skeleta of (2ki+2)-simplexes. (For instance,

the n-skeleton of the (2n+ 2)-simplex or the join of n+ 1 copies of the 3-point set.)

Remark 4.1. To motivate what follows let us recall that K is the simplest example

of a polyhedron with non-zero van Kampen obstruction (see [11; Examples 3.3, 3.5]).

Moreover, by removing the interior of an n-disk D lying in the interior of some n-simplex

of K and then gluing D back in along some PL map Sn−1 → Sn−1 of degree 2 we obtain

a polyhedron which also has non-zero van Kampen obstruction, but zero mod 2 van

Kampen obstruction [11; Example 3.6].

Let us fix two disjoint n-simplexes A and B in the natural triangulation of K. Let

p be a point in the interior of A and q be a point in the interior of B. Let π : K̃ → K̄

be the quotient map (see notation in §2). Let us fix some triangulation of K̄ (it has

to be infinite since K̄ is non-compact). The unordered pair {p, q} may be identified

with a point of K̄. We may assume that it lies in the interior of some 2n-simplex of

K̄. It is not hard to construct an explicit generic PL map f : K → R2n with double

point f(p) = f(q) and no other double points (see [11; Example 3.5]). Therefore the van

Kampen obstruction θ(K) ∈ H2n(K̄) (see [11; §3, subsection “Geometric definition of

θ(X)”]) is represented by the point {p, q} with some co-orientation (which is regarded

as a co-oriented 2n-copseudomanifold in K̄).

Let us fix this co-orientation of {p, q}. Let us also fix some co-orientations of p

and q so that {p, q} = π(p, q) as co-oriented points, where the co-orientation of (p, q)

is understood to be induced by those of p and q, and the co-orientation of π(p, q) is

understood to be induced by that of (p, q) via the double covering π. Since θ(K) is

the image of the generator of H2n(RP∞) ≃ Z/2 under the homomorphism induced by

the map K̄ → RP∞ classifying the double cover K̃ → K̄ (see [11; §3, subsection “Van

Kampen obstruction”]), we have θ(K) = −θ(K). Hence there exists a cobordism W0

in K̄ between {p, q} and −{p, q}. It lifts to a cobordism W in K̃ between (p, q) and

−t(p, q), using that π
(
t(p, q)

)
= π(p, q) = {p, q} as co-oriented points. (Here the co-

orientation of t(p, q) is understood to be induced from the co-orientation of (p, q) via the

homemorphism t and has a priori no relation with the co-orientation of (q, p), which is

induced directly from the co-orientations of p and q. In fact, it is not hard to see that

t(p, q) = (−1)n(q, p) as co-oriented points, but we do not need this.)6

Let us pick a point x in the interior of A such that {x} ×K × I is disjoint from the

image of W . Then x lies in a closed n-ball D contained in the interior of A such that

D ×K × I is still disjoint from the image of W . In particular, we have p ∈ A \D. Let

L be obtained from K by first removing the interior D̊ of D and then gluing D back in

along some PL map f : Sn−1 → Sn−1 of degree 2 which is a ramified covering. (Thus f

must be the 2-fold covering when n = 2.) Let C and C̊ be the images of D and D̊ in L

6One of the referees prefers an alternative explanation. According to him/her, the oriented point of K̄
that was denoted {p, q} is “in reality” {(p, q), (−1)n(q, p)}. Then −{p, q} = {−(p, q), (−1)n+1(q, p)},
and the cobordism W matches the orientation of (p, q) with that of (−1)n+1(q, p) = −t(p, q).
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(thus C ∼= RP 2 when n = 2), and let A′ ⊂ L be the effect of the modification on A ⊂ K.

Then there still exists the cobordism W in L̃ between (p, q) and −t(p, q), and by the

following lemma θ(L) ∈ H2n(L̄) is still represented by the co-oriented point {p, q} of L̄.

Lemma 4.2. The homeomorphism h : C \ C̊ → ∂D = ∂D× pt extends to an embedding

C → D × In.

Proof. Let us extend h to a generic PL map f : C → D × In. Then f has only isolated

double points in C̊. Let f(x) = f(y) be one. Let us connect x and y by an arc J in

C̊, disjoint from the preimages of the other double points (using that n > 1). If n > 2,

then f(J) bounds a 2-disk ∆ in D × In which meets f(C) only in ∂∆. Then a small

regular neighborhood R of ∆ (which is a 2n-ball) meets f(C) in the image of a small

regular neighborhood N of J (which is an n-ball). Now f embeds ∂N in ∂R, and we

redefine f |N : N → R to be the conical extension of that embedding. By repeating the

same construction for each double point of f we obtain the desired embedding for n > 2.

When n = 2, we obtain it by using that RP 2 embeds in R4 and S1 unknots in R4. �

Let r be a point in C̊. Similarly to Example 3.3 there exists a cobordism V0 in A′

between p and 2r, for an appropriate co-orientation of r. Since A′×B is a neighborhood

of V0 × {q} in L̃, V := V0 × {q} is a cobordism in L̃ between (p, q) and 2(r, q).

Now let us consider the co-oriented point
(
(p, q), (p, q)

)
in L̃× L̃. Since is L̃×A′×B

is a neighborhood of V ×{(p, q)} in L̃× L̃, V ×{(p, q)} is a cobordism in L̃× L̃ between(
(p, q), (p, q)

)
and 2

(
(r, q), (p, q)

)
. In a similar way we obtain the following sequence of

cobordisms in L̃× L̃:

(
(r, q), (p, q)

) {(r,q)}×W
======⇒ −

(
(r, q), t(p, q)

) {(r,q)}×tV
======⇒ −2

(
(r, q), t(r, q)

) V×{t(r,q)}
⇐====== −

(
(p, q), t(r, q)

)

W×{t(r,q)}
=======⇒

(
t(p, q), t(r, q)

) tV×{t(r,q)}
=======⇒ 2

(
t(r, q), t(r, q)

) {t(r,q)}×tV
⇐=======

(
t(r, q), t(p, q)

)
.

Since L̃× L̃ can be identified via
(
(a, b), (c, d)

)
7→

(
(a, c), (b, d)

)
with an open subset of

L̃× L, all these cobordisms also take place in L̃× L with an appropriate triangulation.

From the usual inclusion L × L ⊂ L ∗ L we have L̃× L ⊂ L̃ ∗ L. Let us fix some

co-orientation of L̃× L in L̃ ∗ L and also a triangulation of L̃ ∗ L such that L̃× L is

transversal to it. Then every co-oriented point
(
(a, b), (c, d)

)
in L̃ × L̃ ⊂ L̃× L which

lies in the interior of a (4n + 2)-simplex of L̃ ∗ L becomes co-oriented in L̃ ∗ L, and

the factor exchanging involution T of L̃ ∗ L acts on such points by T
(
(a, b), (c, d)

)
=

−
(
t(a, b), t(c, d)

)
. Consequently we have the following cobordisms in L̃ ∗ L:

(
(p, q), (p, q)

)
=⇒ 2

(
(r, q), (p, q)

)
and

(
(r, q), (p, q)

)
=⇒ −T

(
(r, q), (p, q)

)
.

Using the double cover L̃ ∗ L → L ∗ L to induce co-orientations on points of L ∗ L, we

get the following cobordisms in L ∗ L:
[
(p, q), (p, q)

]
=⇒ 2

[
(r, q), (p, q)

]
and

[
(r, q), (p, q)

]
=⇒ −

[
(r, q), (p, q)

]
,
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where
[
(a, b), (c, d)

]
=

{
(a, c), (b, d)

}
∈ L ∗ L. Thus the cobordism class of

[
(p, q), (p, q)

]

is trivial. But by Proposition 4.3 θ(L∗L) ∈ H4n+2(L ∗ L) is represented by±
[
(p, q), (p, q)

]
.

Thus θ(L ∗ L) = 0. Hence by the Shapiro–Wu theorem (see [11; Theorem 3.2]) L ∗ L

embeds in R4n+2.

Proposition 4.3. Let f : Pm → R2m and g : Qn → R2n be generic PL maps of compact

polyhedra, and let ∆f = {(x, y) ∈ P̃ | f(x) = f(y)}. For any two equivariant maps

ϕ : ∆f → S0 and ψ : ∆g → S0 there exists a generic PL map h : P ∗Q→ R2(m+n+1) such

that ∆h is the subset of ∆f×∆g consisting of all
(
(a, b), (c, d)

)
such that ϕ(a, b) = ψ(c, d).

Here ∆f ×∆g is regarded as a subset of P 2 ×Q2 ⊂ P 2 ∗Q2 ⊂ (P ∗Q)2.

Proof. By identifying R2m and R2n with a pair of skew affine subspaces in R2m+2n+1, say

R2m×{0}×{1} and {0}×R2n×{−1}, we get the map f ∗g : P ∗Q→ R2m+2n+1. Clearly,

∆f∗g = ∆f ∗∆g ∪ (∆f ∗∆Q \∆Q)∪ (∆P ∗∆g \∆P ) as subsets of P
2 ∗Q2 ⊂ (P ∗Q)2. On

the other hand, let ϕ̄ : P → R and ψ̄ : Q→ R be some PL extensions of the compositions

π1(∆f)
(π1|∆f

)−1

−−−−−−→ ∆f
ϕ
−→ S0 and π2(∆g)

(π2|∆g )
−1

−−−−−−→ ∆g
ψ
−→ S0, where S0 = {−1, 1} and

πi : P × P → P and πi : Q × Q → Q denote the projections onto the ith factor. Let

Ξ: P ∗ Q → R be the sum of the compositions Φ: P ∗ Q
ϕ̄∗const
−−−−→ R ∗ {r} χ

−→ R and

Ψ: P ∗Q
const ∗ψ̄
−−−−→ {r}∗R χ

−→ R, where χ
(
tx+(1−t)r

)
= tx. That is, Ξ(x) = Φ(x)+Ψ(x).

Finally, let h be the joint map (f ∗g)×Ξ: P ∗Q→ R2m+2n+1×R. Thus ∆h = ∆f∗g∩∆Ξ.

Each x ∈ ∆f ∗ ∆Q \ ∆Q is of the form x = t(a, b) + (1 − t)(c, c) for some (a, b) ∈

∆f , c ∈ Q and t > 0. We may also write x = (y, z), where y = ta + (1 − t)c and

z = tb + (1 − t)c. We have Φ(y) = tϕ̄(a) = tϕ
(
(π1|∆f

)−1(a)
)
= tϕ(a, b) and similarly

Φ(z) = tϕ(b, a). Since ϕ is equivariant and t > 0, we have Φ(y) 6= Φ(z). On the other

hand, Ψ(y) = Ψ(z) = (1− t)ψ̄(c). Hence Ξ(y) 6= Ξ(z). Thus x /∈ ∆Ξ. Similarly, no point

of ∆P ∗∆g \∆P lies in ∆Ξ.

Each x ∈ ∆f ∗ ∆g is of the form x = t(a, b) + (1 − t)(c, d) for some (a, b) ∈ ∆f

and (c, d) ∈ ∆g. We may also write x = (y, z), where y = ta + (1 − t)c and z =

tb + (1 − t)d. We have Φ(y) = tϕ̄(a) = tϕ(a, b) and similarly Φ(z) = tϕ(b, a). Likewise

Ψ(y) = (1 − t)ψ(d, c) and Ψ(z) = (1 − t)ψ(c, d). Since ϕ and ψ are equivariant, we

have Φ(y) − Φ(z) = 2tϕ(a, b) and Ψ(y) − Ψ(z) = 2(1 − t)ψ(d, c) = −2(1 − t)ψ(c, d).

Hence Ξ(y)− Ξ(z) = 2tϕ(a, b) − 2(1 − t)ψ(c, d). Thus x ∈ ∆Ξ if and only if t = 1
2
and

ϕ(a, b) = ψ(c, d). Moreover, it is clear that every such double point is transverse. �

5. Extraordinary van Kampen obstruction

We will give two slightly different proofs of Theorems C and D. The first approach

does not use the definitions of the present section, and the second approach has some

other advantages.7

7In particular, the proof of Proposition 6.3(a) based on the extraordinary van Kampen obstruction is
considerably simpler than its alternative proof which does not use it. Also, this alternative proof would
not easily generalize to the case of compacta.
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For a space Q let Q+ denote the pointed space Q ⊔ pt with basepoint at pt. If Q is

a free Z/2-space, for instance, Q = K̃ for some polyhedron K, then Q+ is a pointed

Z/2-space.
If G is a finite group and V is a finite-dimensional RG-module, let SV denote the

one-point compactification of the Euclidean space V with the obvious action of G. Let

mT denote the sum of m copies of the nontrivial one-dimensional real representation T

of Z/2. Thus SmT is the m-sphere with the action of Z/2 fixing the basepoint at infinity

and restricting to the sign action x 7→ −x on Rm.

Let P be a pointed polyhedron with an action of G that fixes the basepoint ∗, and

let us assume that P is G-homotopy equivalent to a compact polyhedron. Then the

equivariant stable cohomotopy group

ωV−W
G (P ) := [SW+V∞ ∧ P, SV+V∞ ]∗G

is well-defined, where V∞ denotes a sufficiently large (with respect to the partial ordering

with respect to inclusion) finite-dimensional RG-submodule of the countable direct sum

RG ⊕ RG ⊕ . . . (see [10], [2]). Let us note that the stabilization map [K̃+, S
mT ]∗Z/2 →

ωmTZ/2(K̃+) is bijective for m ≥ dimK + 1 (Bredon–Hauschild; see [10; IX.I.4], [2; 3.3]).

The following extraordinary van Kampen obstruction

Θm(K̃) ∈ ωmTZ/2(K̃+)

to embeddability of a compact polyhedron K in Rm was introduced in [11; §6] (where

it is denoted Θm(K)). Let Q be a polyhedron with a free action of Z/2 such that Q

is equivariantly homotopy equivalent to a compact polyhedron. Let f : Q → S∞ be

an arbitrary equivariant map (with respect to the antipodal involution on S∞), and let

α ∈ [Q+, S
mT ]∗Z/2 be the class of the composition

Q
f
−→ S∞ → S∞/Sm−1 ∼= S∞

+ ∧ S
mT → SmT .

Then Θm(Q) ∈ ωmTZ/2(Q+) is defined to be the image of α under the stabilization map.

If K is a compact polyhedron that embeds in Rm, then any embedding g : K → Rm

yields an equivariant map f : K̃
g̃
−→ Sm−1 ⊂ S∞, and hence Θm(K̃) = 0.

6. Proofs of stability results

Let X and Y be compacta. Given a y ∈ Y and an s ∈ I = [0, 1], let [y, s] denote

the image of (y, s) in CY = Y × I
/
Y × {0}. Given additionally an x ∈ X , let [x, y, s]

denote the image of (x, y, s) in X ∗ Y = X × Y × I
/
π, where π : X × Y × ∂I → X ⊔ Y

projects X×Y ×{0} onto the first factor and X×Y ×{1} onto the second factor. Thus

[x, y, 0] is independent of y, and [x, y, 1] is independent of x.

Let Y q be the subset of C̃Y consisting of all pairs
(
[y, s], [y′, s′]

)
such that either s = 1

or s′ = 1, and if s < 1 or s′ < 1, then y 6= y′. It is easy to see that Y q is equivariantly

homeomorphic to the double mapping cylinder of the projections Y
p1
←− Ỹ

p2
−→ Y .

Lemma 6.1. C̃Y is equivariantly homotopy equivalent to Y q.
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Proof. First we observe that C̃Y equivariantly deformation retracts onto its intersection

Z with Y × CY ∪ CY × Y . Indeed, Z consists of all pairs
(
[y, s], [y′, s′]

)
such that

either s = 1 or s′ = 1, and if s = s′ = 1, then y 6= y′. A homotopy rt : C̃Y → C̃Y is

given by rt
(
[y, s], [y′, s′]

)
=

(
[y, (1− t)s+ tmin( s

s′
, 1)], [y′, (1− t)s′ + tmin( s

′

s
, 1)]

)
. Here

min(σ
0
, 1) is understood to be 1 if σ > 0 and we never have s = s′ = 0. The homotopy is

well-defined since (1− t)σ+ tmin( σ
σ′
, 1) = 0 if σ = 0 and σ′ > 0. It is easy to check that

rt
(
[y, s], [y′, s′]

)
∈ C̃Y for each t ∈ I.8 It follows that rt is an equivariant deformation

retraction of C̃Y onto Z.

Finally, Z is equivariantly homotopy equivalent to Y q. Indeed, let ht : Z → Z be given

by ht
(
[y, s], [y′, s′]

)
=

(
[y, td(s)+(1− t)s], [y′, td(s′)+(1− t)s′]

)
, where d(σ) = ⌊σ⌋ (that

is, 1 if σ = 1 and 0 if σ < 1) if y = y′ and d(σ) = 1 − min
{

1−σ
min{d(y,y′), 1}

, 1
}
if y 6= y′.

Clearly ht is continuous and equivariant, h1(Z) ⊂ Y q and ht(Y
q) ⊂ Y q for all t ∈ I.

Then idZ is homotopic the composition Z
h1−→ Y q ⊂ Z to via ht, and idY q is homotopic

to the composition Y q ⊂ Z
h1−→ Y q via ht|Y q . �

Proposition 6.2. Let X be a compact n-polyhedron and Y be a compact polyhedron of

dimension ≤ m−n+k−3
2

such that there exists an equivariant map Sk−1 → C̃Y .

(a) If n ≤ m − 2 and there exists an equivariant map X̃ ∗ Y → Sm+k−1, then there

exists an equivariant map X̃ → Sm−1.

(b) If Θm+k(X̃ ∗ Y ) = 0, then Θm(X̃) = 0.

Part (a) follows from (b) and [11; Lemma 6.4]. We also include an alternative proof

of (a) which does not use the extraordinary van Kampen obstruction.

Proof. The beginning of the proof is common for (a) and (b). By Lemma 6.1 C̃Y is

equivariantly homotopy equivalent to Y q, so the hypothesis yields an equivariant map

Sk−1 → Y q. Thus we obtain an equivariant map ϕ : ΣkX̃ → Y q ∗ X̃ .

Let Z be the subset of X̃ ∗ Y that is the image of X̃× Ỹ × I2 under the quotient map

X2 × Y 2 × I2 → (X ∗ Y )2; in other words, Z consists of all pairs
(
[x, y, s], [x′, y′, s′]

)

satisfying the following two conditions:

(1) either x 6= x′ or max(s, s′) = 1; and

(2) either y 6= y′ or min(s, s′) = 0.

Let us define an equivariant map f : Z → X̃ ∗ Y q by the formula

f
(
[x, y, s], [x′, y′, s′]

)
=

[
(x, x′),

(
[y,min( s

s′
, 1)], [y′,min( s

′

s
, 1)]

)
, max(s, s′)

]
.

Here min(σ
0
, 1) is understood to be 1 if σ > 0 and is undefined when σ = 0. Let us check

that f is well-defined. Firstly, if 0
0
occurs in the right hand side, then s = 0 and s′ = 0,

so max(s, s′) = 0 and therefore the term involving 0
0
need not be defined. Secondly, if

x is undefined in the left hand side, then s = 1, so max(s, s′) = 1 and therefore x need

not be defined in the right hand side. Similarly for x′. Finally, if y is undefined in the

8Indeed, if y = y′, then s 6= s′. Let us show that (1−t)s+tmin( s
s′
, 1) 6= (1−t)s′+tmin( s

′

s
, 1). If σ > σ′,

then (1− t)(σ−σ′)+ tσ−σ′

σ
= (σ−σ′)

(
1+ t( 1

σ
− 1)

)
> 0 and consequently (1− t)σ+ t > (1− t)σ′ + tσ

′

σ
.
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left hand side, then s = 0 and we consider two cases. If s′ = 0, then max(s, s′) = 0 and

hence y need not be defined in the right hand side. If s′ > 0, then min( s
s′
, 1) = 0 and

hence again y need not be defined in the right hand side. Similarly for y′. It is easy to

see that f is continuous and equivariant.

The restrictions of f corresponding to various values of s and s′ are as follows:

s = s′ = 0 a homeomorphism between two copies of X̃

min(s, s′) = 0, max(s, s′) ∈ (0, 1) a homeomorphism between two copies of X̃ × Y

s, s′ ∈ (0, 1) a homeomorphism between two copies of X̃ × Ỹ

min(s, s′) = 0, max(s, s′) = 1 a copy of the projection X × Y → Y

min(s, s′) ∈ (0, 1), max(s, s′) = 1 a copy of the projection X × Ỹ → Ỹ

s = s′ = 1 a homeomorphism between two copies of Ỹ .

Thus f is surjective, and its restriction f |... : Z \ f
−1(Y q) → X̃ ∗ Y q \ Y q, which corre-

sponds to the case max(s, s′) < 1 (i.e. the first three cases of the previous list), is a home-

omorphism. Consequently, if g denotes the restriction f |... : f
−1(Y q) → Y q of f , which

corresponds to the case max(s, s′) = 1 (i.e. the last three cases of the previous list), then

the mapping cylinder MC(f) collapses onto Z ∪MC(g).9 Since dimY q ≤ m−n+k−2

and dimX = n, we have dimMC(g) ≤ m+ k − 1.

Proof of (b). We have ωVZ/2
(
MC(f), Z

)
≃ ωVZ/2

(
MC(g) ∪ Z, Z

)
= 0 if dimV ≥

m+k. Hence the restriction map ω̃
(m+k)T
Z/2

(
MC(f)+

)
→ ω̃

(m+k)T
Z/2 (Z+) is an isomorphism.

Therefore so is f ∗ : ω̃
(m+k)T
Z/2 (X̃ ∗ Y q

+) → ω̃
(m+k)T
Z/2 (Z+). Since Θm+k(X̃ ∗ Y ) = 0 and

Z ⊂ X̃ ∗ Y , we have Θm+k(Z) = 0. Since f ∗ is injective, we get that Θm+k(X̃ ∗Y q) = 0.

The existence of the equivariant map ϕ : ΣkX̃ → Y q∗X̃ now yields that Θm+k(ΣkX̃) = 0.

Hence Θm(X̃) = 0.

Proof of (a). Since dimMC(g) ≤ m + k − 1, the given equivariant map X̃ ∗ Y →

Sm+k−1 restricted to Z extends to an equivariant map Z ∪MC(g) → Sm+k−1. Since

MC(f) equivariantly deformation retracts onto Z ∪MC(g), we get an equivariant map

ψ : MC(f) → Sm+k−1. Then we get the following composition of equivariant maps:

ΣkX̃
ϕ
−→ Y q ∗ X̃ ⊂ MC(f)

ψ
−→ Sm+k−1. Since 2n ≤ 2m− 3, by Lemma 2.3 it desuspends

to an equivariant map X̃ → Sm−1. �

Proof of Theorem C. The implications (ii)⇒(i) and (iii)⇒(i) follow from Theorem 2.1

by a repeated application of Proposition 6.2(a). The implications (iv)⇒(i) and (v)⇒(i)

follow from Proposition 6.2(a) and Theorem 2.1 since C̃Tk and C̃Zk contain S2k−1 by

the Flores construction (see [12]). �

By similar arguments, to prove Theorem D it suffices to prove part (a) of the following

Proposition 6.3. Let X be an acyclic compact n-polyhedron and let Y be a compact

polyhedron such that there exists an equivariant map Sk−1 → C̃Y .

9In fact, f−1(Y q) is equivariantly homeomorphic to X×Y q
/
p, where p : X× Ỹ → Ỹ is the projection,

and g is a copy of the map X × Y q
/
p→ Y q determined by the projection X × Y q → Y q.
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(a) If n ≤ m− 2 and there exists an equivariant map X̃ × CY → Sm+k−1, then there

exists an equivariant map X̃ → Sm−1.

(b) If Θm+k(X̃ × CY ) = 0, then Θm(X̃) = 0.

Part (a) follows from (b) and [11; Lemma 6.4]. We also include an alternative proof

of (a) which does not use the extraordinary van Kampen obstruction.

Proof. The beginning of the proof is common for (a) and (b) and is largely similar to

that of Proposition 6.2. By Lemma 6.1 C̃Y is equivariantly homotopy equivalent to Y q,

so the hypothesis yields an equivariant map Sk−1 → Y q. Thus we obtain an equivariant

map ϕ : ΣkX̃ → Y q ∗ X̃ .

Let Z be the subset of X̃ × CY that is the image of X̃ × Ỹ × I × I ∪X ×X × Ỹ ×

(I×{1}∪{1}× I) under the quotient map X2×Y 2× I2 → (X×CY )2; in other words,

Z consists of all pairs
(
(x, [y, s]), (x′, [y′, s′])

)
satisfying the following two conditions:

(1) either x 6= x′ or max(s, s′) = 1; and

(2) either y 6= y′ or min(s, s′) = 0.

Let us define an equivariant map f : Z → X̃ ∗ Y q by

f
(
(x, [y, s]), (x′, [y′, s′])

)
=

[
(x, x′),

(
[y,min( s

s′
, 1)], [y′,min( s

′

s
, 1)]

)
, max(s, s′)

]
.

Here min(σ
0
, 1) is understood to be 1 if σ > 0 and is undefined when σ = 0. Let us check

that f is well-defined. Firstly, if 0
0
occurs in the right hand side, then s = 0 and s′ = 0,

so max(s, s′) = 0 and therefore the term involving 0
0
need not be defined. Finally, if y

is undefined in the left hand side, then s = 0 and we consider two cases. If s′ = 0, then

max(s, s′) = 0 and hence y need not be defined in the right hand side. If s′ > 0, then

min( s
s′
, 1) = 0 and hence again y need not be defined in the right hand side. Similarly

for y′. It is easy to see that f is continuous and equivariant.

The restrictions of f corresponding to various values of s and s′ are as follows:

s = s′ = 0 a homeomorphism between two copies of X̃

min(s, s′) = 0, max(s, s′) ∈ (0, 1) a homeomorphism between two copies of X̃ × Y

s, s′ ∈ (0, 1) a homeomorphism between two copies of X̃ × Ỹ

min(s, s′) = 0, max(s, s′) = 1 a copy of the projection X2 × Y → Y

s, s′ ∈ (0, 1], max(s, s′) = 1 a copy of the projection X2 × Ỹ → Ỹ .

Thus f is surjective, and its restriction f |... : Z \ f
−1(Y q) → X̃ ∗ Y q \ Y q, which

corresponds to the case max(s, s′) < 1 (i.e. the first three cases of the previous list), is

a homeomorphism. Consequently, if g denotes the restriction f |... : f
−1(Y q)→ Y q of f ,

which corresponds to the case max(s, s′) = 1 (i.e. the last two cases of the previous list),

then the mapping cylinder MC(f) equivariantly deformation retracts onto Z ∪MC(g).

In fact, f−1(Y q) is equivariantly homeomorphic to X2 × Y q and g is a copy of the

projection p : X2 × Y q → Y q. Since X is acyclic, so is X2.

Proof of (b). ωVZ/2
(
MC(f), Z

)
≃ ωVZ/2

(
MC(g) ∪ Z, Z

)
≃ ωVZ/2

(
MC(g), f−1(Y q)

)
≃

ωVZ/2
(
CX2 × Y q, X2 × Y q

)
for any V . By map excision the latter group is isomorphic
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to ωVZ/2
(
({a, b} ∗ X2) × Y q, {a} × Y q

)
, where Z/2 acts trivially on {a, b}. Since X2 is

acyclic, {a, b} ∗ X2 is contractible, and hence ({a, b} ∗ X2) × Y q deformation retracts

onto {a} × Y q. Thus we get that ωVZ/2
(
MC(f), Z

)
= 0. The remainder of the proof is

entirely similar to that of Proposition 6.2(b).

Proof of (a). Since X2 is acyclic, p : X2×Y q → Y q induces isomorphisms on ordinary

homology groups by the Vietoris–Begle theorem. So does Σ2p : Σ2(X2 × Y q) → Σ2Y q.

Since Σ2(X2 × Y q) and Σ2Y q are simply-connected, by the Hurewicz theorem Σ2p in-

duces isomorphisms on homotopy groups. Since Σ2p is equivariant, it descends to a

map q : A → B, where A = Σ2(X2 × Y q)/t and B = Σ2Y q/t. Clearly q also in-

duces isomorphisms on homotopy groups, and hence by Whitehead’s theorem it is

a homotopy equivalence. Then the inclusion j : A → MC(q) is also a homotopy

equivalence. Since j is a cofibration, MC(q) deformation retracts onto A.10 There-

fore MC(Σ2p) equivariantly deformation retracts onto Σ2(X2 × Y q). Hence MC(Σ2g)

equivariantly deformation retracts onto Σ2f−1(Y q). Then MC(Σ2g) ∪ Σ2Z equivari-

antly deformation retracts onto Σ2Z. On the other hand, the equivariant deforma-

tion retraction of MC(f) onto MC(g) ∪ Z yields an equivariant deformation retrac-

tion of MC(Σ2f) onto MC(Σ2g) ∪ Σ2Z. Thus MC(Σ2f) equivariantly deformation

retracts onto Σ2Z. Consequently Σ2f : Σ2Z → Σ2(X̃ ∗ Y q) is an equivariant homotopy

equivalence. If ψ is its equivariant homotopy inverse, we obtain an equivariant map

Σk+2X̃
Σ2ϕ
−−→ Σ2(Y q ∗ X̃)

ψ
−→ Σ2Z

χ
−→ Sm+k+1, where χ is the restriction of the given equi-

variant map X̃ × CY → Sm+k−1. Since 2 dimX ≤ 2m− 3, by Lemma 2.3 it desuspends

to an equivariant map X̃ → Sm−1. �
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