
ar
X

iv
:2

21
0.

04
01

6v
1 

 [
m

at
h.

G
T

] 
 8

 O
ct

 2
02

2

A TRIPLE-POINT WHITNEY TRICK

SERGEY A. MELIKHOV

Abstract. We use a triple-point version of the Whitney trick to show that ornaments

of three orientable (2k− 1)-manifolds in R
3k−1, k > 2, are classified by the µ-invariant.

A very similar (but not identical) construction was found independently by I. Ma-

billard and U. Wagner, who also made it work in a much more general situation and

obtained impressive applications. The present note is, by contrast, focused on a mini-

mal working case of the construction.

1. Introduction

An ornament is a continuous map f =
⊔n

i=1 fi from X =
⊔n

i=1Xi to Y that has no

i = j = k points, i.e. f(Xi) ∩ f(Xj) ∩ f(Xk) = ∅, whenever i, j and k are pairwise

distinct. Note that f is allowed to have triple points f(x) = f(y) = f(z), where x, y, z

belong one or two of the Xi’s. We are interested in ornaments up to ornament homotopy,

i.e. homotopy through ornaments.

Ornaments of circles in the plane were introduced by Vassiliev [14] as a generalization

of doodles, previously studied by Fenn and Taylor [2]. Fenn and Taylor additionally

required each circle to be embedded; however, Khovanov [4] redefined doodles as triple

point free maps of circles in the plane, and Merkov proved that doodles in Khovanov’s

sense are classified by their finite-type invariants [12]. Further references and examples

can be found in [11], which is a more thorough companion paper to this brief note.

The problem of classification of ornaments of spheres in R
m is motivated, in particular,

by geometric and algebraic constructions that go from link maps and their “quadratic”

invariants to ornaments and their “linear” invariants; and conversely [11]. Link maps are,

in turn, related to links by the Jin suspension and its variations, which likewise reduce

some “quadratic” invariants of links to “linear” invariants of link maps [9], [13; §3].

2. µ-invariant

We will consider only ornaments of the form X1 ⊔X2 ⊔X3 → R
m. If f = f1 ⊔ f2 ⊔ f3

is such an ornament, let F be the composition

X1 ×X2 ×X3
f1×f2×f3−−−−−→ R

m × R
m × R

m \∆Rm

≃−→ S2m−1,

where ∆Rm = {(x, x, x) | x ∈ R
m} and the homotopy equivalence is given, for instance,

by (x, y, z) 7→ (2x−y−z, 2y−x−z)
||(2x−y−z, 2y−x−z)|| . Let µ(f) ∈ H2m−1(X1 ×X2 ×X3) be the image under

F ∗ of a fixed generator ξ ∈ H2m−1(S2m−1); to be precise, let us choose ξ to correspond

to the orientation of S2m−1 given by its inwards co-orientation in the standardly oriented

R
2m. Clearly, µ(f) is invariant under ornament homotopy.
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Let us now assume that each Xi is a connected closed oriented (2k− 1)-manifold and

m = 3k−1. Then F is a map between connected closed oriented (6k−3)-manifolds, and

so µ(f) is an integer. In this simplest case, assuming additionally that each manifold Xi

is either PL or smooth, one can compute µ(f) as follows.

First let us note that since each Xi is compact, for each ornament f : X → R
m

there exists an ε > 0 such that every map f ′ : X → R
m, ε-close to f (in the sup-

metric), is also an ornament, and moreover the rectilinear homotopy between f and f ′

is an ornament homotopy. Thus we are free to replace ornaments by their generic (PL

or smooth) approximations. Similarly, ornament homotopies can be replaced by their

generic approximations.

Now let us consider a homotopy between f and the trivial ornament, which sends X1,

X2 andX3 to three distinct fixed points in R
m. Its generic (PL or smooth) approximation

ht, if viewed as a map X × I → R
m × I, (x, t) 7→

(

ht(x), t
)

, has only finitely many

transverse 1 = 2 = 3 points, which are naturally endowed with signs.1 (See [1; II.4]

concerning PL transversality.) The algebraic number of these 1 = 2 = 3 points is easily

seen to equal µ(f).2

Example 1. The inclusions of the unit disks in the coordinate 2k-planes Rk × R
k × 0,

R
k × 0× R

k and 0 × R
k × R

k in R
3k yield a smooth map B2k ⊔ B2k ⊔ B2k → B3k with

one transverse 1 = 2 = 3 point. Restricting to the boundaries, we get the Borromean

ornament b : S2k−1 ⊔ S2k−1 ⊔ S2k−1 → S3k−1. By stereographically projecting S3k−1 e.g.

from z = 1√
3k
(1, . . . , 1) we also get an ornament bz : S

2k−1 ⊔ S2k−1 ⊔ S2k−1 → R
3k−1.

On the other hand, the sphere of radius ε
√
k centered at (ε, . . . , ε) for a sufficiently

small ε > 0 is tangent to each of the three unit 2k-disks. By appropriately identifying

the exterior of this sphere in the unit 3k-disk B3k with S3k−1 × I, we get a smooth

homotopy of b, and hence also of bz, to the trivial ornament. It has one transverse

1 = 2 = 3 point, which can be seen to be positive, and it follows that µ(bz) = 1.

In the case of doodles, the µ-invariant was introduced in [2]. See [11] concerning

relations between the µ-invariant of ornaments and the triple µ-invariant of link maps.

3. Classification

Theorem 1. Let m = 3k−1, k > 2 and let X1, X2, X3 be connected closed oriented PL

(2k − 1)-manifolds. Then µ is a complete invariant of ornaments X1 ⊔X2 ⊔X3 → R
m.

The proof is in the PL category. If the Xi are smooth manifolds, the same construction

with minimal (straightforward) amendments can be carried out in the smooth category.

1Every triple point of a generic map F : N → M from a 2k-manifold to a 3k-manifold corresponds
to a transversal intersection point between the 3k-manifold ∆M and the map F 3 : N3 → M3 from a
6k-manifold to a 9k-manifold.
2Each 1 = 2 = 3 point of ht corresponds to a transversal intersection point between ∆Rm × I and the
map X1 ×X2 ×X3 × I → R

m × R
m × R

m × I, (x, y, z, t) 7→
(

ht(x, t), ht(y, t), ht(z, t), t
)

. It is easily
seen to be of the same sign.
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Proof. Let f and g be generic PL ornaments of X := X1 ⊔X2 ⊔X3 in R
m with µ(f) =

µ(g). Let h : X × I → R
m × I be a generic PL homotopy between them. Since µ(f) =

µ(g), the 1 = 2 = 3 points of h can be paired up with opposite signs. Every such pair

(p+, p−) will now be canceled by a triple-point Whitney trick.

Let p±i be the preimage of p± in Mi := Xi × I. We first arrange that (p+1 , p
+
2 ) and

(p−1 , p
−
2 ) be in the same component of the double point set ∆12 := {(x, y) ∈ M1 ×M2 |

h(x) = h(y)} (in case that initially they are not). To this end we pick points (q±1 , q
±
2 ) in

the same components of ∆12 with (p±1 , p
±
2 ) and such that the double points f(q+1 ) = f(q+2 )

and f(q−1 ) = f(q−2 ) are not triple points.

Let us connect q+1 and q−1 by an arc J1 inM1, disjoint from the preimages of any double

points (using that k > 1). Now we attach a thin 1-handle to h(M2) along the image of J1.

That is, we modify h(M2) into h′(M ′
2), where M ′

2 is obtained from M2 by removing an

oriented copy of B2k×∂I and pasting in ∂B2k×I. The embedded 1-handle h′(∂B2k×I)

is constructed in a straightforward way. Namely, since h is generic, ∆12 is an oriented

k-manifold, immersed into the 2k-manifold M1 by the projection π : M1 × M2 → M1.

Let us take an oriented connected sum of its components along a ribbon r(Dk × I) in

M1 (going near J1).
3 Then hr(Dk × I) is naturally thickened to a solid rod R(B2k × I)

in R
m × I whose lateral surface R(∂B2k × I) is the desired embedded 1-handle.4

To restore the topology of M2, we cancel the 1-handle geometrically by attaching a

2-handle along an embedded 2-disk D, which is disjoint from h(M1 ⊔ M3) and meets

h′(M ′
2) only in ∂D (such a disk exists since k > 2). That is, we modify h′(M ′

2) into

h′′(M ′′
2 ), where M ′′

2 is obtained from M ′
2 by removing an appropriately embedded copy

of B2k−1 × ∂D2 and pasting in ∂B2k−1 ×D2. As is well-known, this can be done so that

M ′′
2 is homeomorphic to M2.

5 Since we do not care about self-intersections of individual

components, we may define h′′ on ∂B2k−1 × D2 to be an arbitrary generic map into a

small neighborhood of D ∪ h′(B2k−1 × ∂D2).

Thus we may assume that (p+1 , p
+
2 ) and (p−1 , p

−
2 ) are in the same component of ∆12.

To cancel the original 1 = 2 = 3 points p+ and p−, let us connect (p+1 , p
+
2 ) and (p−1 , p

−
2 )

by an arc J12 in ∆12 and attach a thin 1-handle to h(M3) along the image of J12. (This

1-handle is the spherical block normal bundle of h(M1)∩h(M2) over the image of J12. It

3Namely, q±1 has a regular neighborhood N± in M1 that is homeomorphic to [−1, 1]2k by an orientation
preserving homeomorphism ϕ± such that ϕ−1

± (π(∆12)) = [−1, 1]k×{0}k and ϕ−1
± (J1) = {0}2k−1× [0, 1].

Let Q = [−1, 1]k×{0}k−1 and letN be a regular neighborhood of J1 \ (N+ ∪N−)∪ϕ+(Q×1)∪ϕ−(Q×1)

in M1 \ (N+ ∪N−). Since a k-ball unknots in the interior of a (2k− 1)-ball, there is a homeomorphism
ψ : [−2, 2]2k → N such that ψ−1(∂N±) = [−2, 2]2k−1 × {±2} and ψ(x,±2) = ϕ±(x, 1) for all x ∈ Q.
Then ϕ+(Q × I) ∪ ϕ−(Q× I) ∪ ψ(Q× [−2, 2]) is the desired ribbon r(Dk × I).
4If N1 is a disk neighborhood of J1 that is embedded by h, we may assume that h(M2) is transverse to a
normal block bundle ν to h(N1), that is, h(M2) meets the total space E(ν) in E(ν|h(N1)∩h(M2)). Since ν

is trivial, there is a homeomorphism R : B2k×I → E(ν|hr(Dk×I)) sending B
2k×∂I onto E(ν|hr(Dk×∂I)).

5In more detail, let us connect q+2 and q−2 by an arc J2 in M2, disjoint from the preimages of any double
points. Let H1 be a small regular neighborhood of J ′

1 := J2 × 1 ∪ ∂J2 × [0, 1] in M2 × [0, 2]. Let H2 be

a small regular neighborhood of D′ := J2 × [0, 1] \H1 in M2 × [0, 2] \H1. Then M ′
2 can be identified

with the frontier of M2 × [−1, 0]∪H1 in M2 × [−1, 2] so that h′(∂D′) gets identified with ∂D; and M ′′
2

with the frontier of M2 × [−1, 0] ∪H1 ∪H2 in M2 × [−1, 2], which is homeomorphic to M2.
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is attached orientably since the two 1 = 2 = 3 points have opposite signs.) The topology

of M3 can be restored using another 2-disk like before. In particular, this 2-disk is

disjoint from h(M1 ⊔M2), so no new 1 = 2 = 3 points arise.

Finally, we need to apply the “ornament concordance implies ornament homotopy in

codimension three” theorem [7], [8]. (Alternatively, it should be possible to rework the

above construction so as to keep the levels preserved at every step — but it would be a

rather laborious exercise; compare [9; proofs of Lemmas 5.1, 5.4, 5.5].) �

4. Discussion

Theorem 1 and its proof (in slightly less detailed form) were originally contained in

the preprint [10], which I presented at conferences and seminars in 2006–07 and privately

circulated at that time and in later years. For instance, the referee of the present paper

(whose identity I know from his idiosyncratic remarks) does not deny that he received

my preprint containing the proof of Theorem 1, exactly as it appears in [10], by email

on May 23, 2006 and then again on July 7, 2006. I hesitated to publish [10] at that time

as I hoped to get more progress on the conjectures stated in the introduction there; but

other projects are still distracting me from this task.

In the meantime I. Mabillard and U. Wagner independently found and vastly gen-

eralized a version of the triple-point Whitney trick and also obtained nice applications

leading to a disproof of the Topological Tverberg Conjecture [6]. (My only step in that

direction was a feeble attempt to advertise the possibility of disproving the Topological

Tverberg Conjecture by generalizing the construction of the present note — addressed,

for instance, to P. Blagojević at the 2009 Oberwolfach Workshop on Topological Com-

binatorics.) Mabillard and Wagner call their construction the “triple Whitney trick”,

but I prefer to reserve this title for a certain other device, extending Koschorke’s ver-

sion of the Whitney–Haefliger construction [5; Proof of Theorem 1.15] and involving

the triple-point Whitney trick as only one of several steps. It can be used to obtain a

geometric proof of the Habegger–Kaiser classification of link maps in the 3/4 range [3],

which will hopefully appear elsewhere (a sketch of this proof was presented in my talk

at the Postnikov Memorial Conference in Bȩdlewo, 2007).
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