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Abstract

We define the notions of a compact perception pair, compactification
of a perception pair, and compactification of a space of group equivari-
ant non-expansive operators. We prove that every perception pair with
totally bounded space of measurements, which is also rich enough to
endow the common domain with a metric structure, can be isometrically
embedded in a compact perception pair. Likewise, we prove that if the
images of group equivariant non-expansive operators in a given space
form a cover for their common codomain, then the space of such operators
can be isometrically embedded in a compact space of group equivari-
ant non-expansive operators, such that the new reference perception
pairs are compactifications of the original ones having totally bounded
data sets. Meanwhile, we state some compatibility conditions for these
embeddings and show that they too are satisfied by our constructions.
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1 Introduction

The importance of equivariance in machine learning is widely recognized. The
use of equivariant operators allows one to incorporate domain knowledge into
the learning process and introduce symmetries in data space, thereby paving
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2 Compactification of Perception Pairs and Spaces of GENEOs

the way not only to speeding up machine learning and reducing large dimen-
sionality of data but also to the introduction of new abstract representations
[12, 13, 17, 28, 29].

From the epistemological perspective, equivariant operators can be inter-
preted as observers that transform data into (usually simpler and more
interpretable) data. In our mathematical framework, we are interested in data
observers that are represented by functional operators transforming data in
a regular and stable way, while respecting the compatibility with the action
of an underlying group G of transformations, which describes the equivalence
between data [14, 23]. The essence of group equivariant operators lies in their
commutativity with respect to the action of G, and one of the most important
regularity, viz. non-expansivity, enables one to avoid instability and divergent
behavior.

Our research focuses on the study of topological properties of these group

equivariant non-expansive operators (GENEOs, for short). Such operators can
be seen as components of a new kind of neural networks as well as selected
observers whose expertise is leveraged to improve data analysis. The use of
GENEOs opens new possibilities in applications. For example, a shallow and
interpretable neural network based on GENEOs, viz. GENEOnet, has been
recently proposed for the efficient detection of protein pockets that can host
ligands [16].

In some sense, GENEOs constitute a bridge between geometric deep learn-
ing [30, 31] and topological data analysis. They make available a mathematical
model for the concepts of agent and observer, seen from a geometrical perspec-
tive. Moreover, they present interesting links with persistent homology and
allow one to get lower bounds for the natural pseudo-distance associated with
the action of a group of homeomorphisms [14]. Furthermore, the concept of
GENEO is useful in the architectural analysis of neural networks. Therefore,
it is natural to study the metric and topological properties of the spaces of
GENEOs. This study, coupled with our compactification results, could prove
useful for the research in artificial intelligence.

Formally speaking, GENEOs are maps between so-called perception pairs

(Φ, G), where Φ is a set of bounded real-valued maps defined on a non-empty
set X and G is a group of Φ-preserving bijections of X . The space Φ represents
the signals or measurements that the observer can interpret, while G is the
equivariance group associated with the action of the observer. The space Φ is
naturally endowed with a metric structure and endows X and G with suitable
pseudo-metrics or metrics. This reflects the epistemological assumption that
any information (and hence any quantitative structure) follows from physical
measurements. It is interesting to observe that some of the pseudo-metric
and topological properties of Φ are propagated to X and G, but not all. For
example, if Φ is totally bounded, then so areX and G [27, Theorem 1, Theorem
4], while there are simple examples of perception pairs with compact Φ but
incomplete X and G [14].
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Compactness results provide us with fundamental guarantees in machine
learning. It is known that the space of all group equivariant non-expansive
operators associated with a given group homomorphism is compact whenever
the spaces of signals are compact [14, Theorem 7]. In some sense, this result
states that if the spaces of data are compact, then the space of observers is
compact too, provided that suitable topologies are used. This ensures that, for
any specified tolerance, there is always a finite set of GENEOs in the space
that can approximate the behavior of each GENEO within any acceptable
proximity.

Therefore, it is natural to seek embeddings of important mathematical
structures into compact ones. This process is called compactification in general
topology. Formally, a compact Hausdorff space K is a compactification of a
given space A if it contains a dense subspaceD homeomorphic to A. In the case
of metric spaces, we require the underlying homeomorphism e : A → D ⊆ K

to be an isometry.
In view of the widely recognized importance of compactifications, we seek

conditions under which a given space F ⊆ Fall
T of GENEOs (F, T ) : (Φ, G) →

(Ψ, H), and the respective perception pairs (Φ, G), dom(Φ) = X and (Ψ, H),
dom(Ψ) = Y , can be embedded isometrically into compact ones, where Fall

T

denotes the topological space of all GENEOs between the perception pairs
(Φ, G), (Ψ, H), with respect to the homomorphism T : G→ H . In this article,
we ascertain which spaces of GENEOs allow us to construct the surround-
ing compact spaces of GENEOs isometrically containing the original ones. We
prove that, in many practical applications, every perception pair and an impor-
tant class of spaces of GENEOs can be viewed as parts of compact perception
pairs and compact spaces of GENEOs.

We will be assuming that our data sets Φ and Ψ are totally bounded and
are rich enough to endow X and Y , and therefore G and H respectively,
with a metric structure. Moreover, we will also assume that the collection
{F (Φ) | F ∈ F ⊆ Fall

T } covers the data set Ψ.
Our approach, in brief, is as follows. The total boundedness of Φ ensures

that X is totally bounded (Theorem 3), and therefore, its metric completion
X̂ is compact. We extend the functions ϕ ∈ Φ to functions ϕ̂ : X̂ → R on the
metric completion X̂ (Subsection 4.1), and use the isometries g ∈ G to define
the isometries ĝ : X̂ → X̂ (Subsubsection 4.2.1). The set Φ̂, being isometric
to the totally bounded space Φ is likewise totally bounded (Corollary 15),
while the set Ĝ of all ĝ may or may not be compact despite Φ being totally

bounded [14]. We, therefore, consider their closures Φ̂ and Ĝ in the complete
space C(X̂,R) and the compact space Iso(X̂) of isometries of X̂ respectively,

and, constructing successively the perception pairs (Φ̂, Ĝ), (Φ̂, Ĝ), and (Φ̂, Ĝ),
we obtain the compatible embedding of the original perception pair (Φ, G)

into the compact perception pair (Φ̂, Ĝ) (Subsubsection 4.2.2). If F is a space
of GENEOs (F, T ) : (Φ, G) → (Ψ, H), then these perception pairs allow us to

define two suitable spaces F1 ⊆ Fall,1

T̂
and F2 ⊆ Fall,2

T̂
of GENEOs (F̂ , T̂ ) :
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(Φ̂, Ĝ) → (Ψ̂, Ĥ) and (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ) respectively (Subsubsection
4.3.1 and Section 4.4). Under the covering assumption stated above, we can

define a suitable space F3 ⊆ Fall

T̂
of GENEOs (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ), while

the closure of F3 = {F̂ : Φ̂ → Ψ̂ | F ∈ F} in the compact space Fall

T̂
serves as

the requisite compactification of the space F ⊆ Fall
T (Section 4.4).

While the literature concerning equivariant neural networks is already
extensive, the topological research about them is still quite limited. Until now,
most of the attention has been devoted to what is called topological machine

learning; i.e., the joint use of topology-based methods and machine learning
algorithms [6], in general terms. In this field, some research focuses on the
study of so-called intrinsic topological features, which concerns the employment
of topological features to analyze or influence the machine learning model. In
particular, some regularisation techniques have been considered, such as topo-
logical autoencoders [5, 7] (based on the idea of building networks that can
simplify the data without changing their topology) or methods to simplify the
topological complexity of the decision boundary [8]. More fundamental princi-
ples of regularisation using topological features have been investigated in [9].
The inclusion of topological features of graph neighborhoods into a standard
graph neural network (GNN) has been proposed in [10], and the employment
of GNNs to learn suitable filtrations have been examined in [4]. Furthermore,
topological techniques have also been used for model analysis in machine learn-
ing. For example, topological analysis has been applied to evaluate generative
adversarial networks (GANs) by the concept of Geometry Score [3], while
neural persistence has been introduced as a complexity measure summarizing
topological features that arise when filtrations of the neural network graphs
are calculated [2]. The topological analysis of the decision boundary of a given
classifier has been considered in [1], and the topological information encoded in
the weights of convolutional neural networks (CNNs) has been studied in [11].

However, we stress that the development of the theory of GENEOs dif-
fers greatly from these lines of research, which are not focused on equivariance
concerning arbitrary transformation groups and do not study the topology of
suitable operator spaces, but most of them consider the properties of single
techniques and applications. In other words, the approach we are interested in
is devoted to studying the topological properties of a space of equivariant oper-
ators as a whole. In this mathematical setting, the compactification problem
can arise and admit resolution.

This paper is structured as follows. In Section 2, we introduce basic
concepts and give formal definitions. Section 3 is devoted to summarizing
important results on topological groups and GENEOs that will be used in our
constructions. Our compactification results are proved in Section 4. A brief
discussion and an appendix containing some supplementary material conclude
the paper.
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2 The Mathematical Setting

Let X be a non-empty set and consider the normed vector space (RXb , ‖ · ‖∞),
where

RXb = {ϕ : X → R | ϕ is bounded},

and ‖ · ‖∞ denotes the usual uniform norm. Any metric subspace (Φ, DΦ) of
RXb , where

DΦ(ϕ1, ϕ2) := ‖ϕ1 − ϕ2‖∞ = sup
x∈X

|ϕ1(x) − ϕ2(x)| , for every ϕ1, ϕ2 ∈ Φ

endows X with the topology induced by the extended pseudo-metric

DX(x1, x2) := sup
ϕ∈Φ

|ϕ(x1)− ϕ(x2)| .

The space X is interpreted as the space where one makes measurements, and
the elements ϕ of Φ are called admissible measurements or signals. The func-
tion spaces Φ are sometimes called data sets. Moreover, we set dom(Φ) :=
X .

In our model, self-maps of the space X have an important role to play.

Definition 1 A map g : X → X is said to be a Φ−operation if the composite
function ϕg is an element of Φ for every ϕ ∈ Φ. A bijective Φ−operation is called an
invertible Φ−operation if g−1 is also a Φ−operation.

The set of all invertible Φ−operations is denoted by AutΦ(X); i.e.,

AutΦ(X) := {g : X → X | g is a bijection, and ϕg, ϕg−1 ∈ Φ, for all ϕ ∈ Φ},

and forms a group under the function composition. It acts on the space Φ
through the right action

ρ : Φ×AutΦ(X) → Φ, (ϕ, g) 7→ ϕg.

We say that a bijection f : X → X is an isometry of X if DX(f(x), f(y)) =
DX(x, y), for every x, y ∈ X , and denote the set of all isometries of X by
Iso(X).

Let C(X,X) ⊇ Iso(X) denote the set of all continuous functions f : X →
X . The following pseudo-metric will be used frequently in the sequel.

d∞(f, g) := sup
x∈X

DX(f(x), g(x)), for every f, g ∈ C(X,X).

If Φ is rich enough to endow X with a metric structure, instead of a pseudo-
metric one, then d∞ is an extended metric, and is called the metric of uniform

convergence on C(X,X).
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Definition 2 If G is a subgroup of AutΦ(X), then (Φ, G) is called a perception pair.

Definition 3 We say that a perception pair (Φ, G) with dom(Φ) = X is compact if
Φ, G, and X are all compact.

The data set Φ endows AutΦ(X) with a pseudo-metric structure where the
(extended) pseudo-distance DAut is given by

DAut(f, g) := sup
ϕ∈Φ

DΦ(ϕf, ϕg), for every f, g ∈ AutΦ(X).

Conversely, each group G ⊆ AutΦ(X) induces on the space Φ a pseudo-
metric dG : Φ× Φ → R:

dG(ϕ1, ϕ2) := inf
g∈G

DΦ(ϕ1, ϕ2g), for every ϕ1, ϕ2 ∈ Φ.

We call dG the natural pseudo-distance associated with the group G. This
pseudo-metric represents the ground truth in our model and allows us to com-
pare functions in the sense that it vanishes for the pairs of functions that are
equivalent with respect to the action of the group G representing the data
similarities useful for the observer [19–21].

It is known that each invertible Φ−operation is an isometry with respect
to DX ; that is, AutΦ(X) ⊆ Iso(X) [14, Proposition 2]. But d∞ does not endow
the space (AutΦ(X), DAut) with any additional pseudo-metric structure:

DAut(f, g) := sup
ϕ∈Φ

DΦ(ϕf, ϕg)

= sup
ϕ∈Φ

sup
x∈X

|ϕf(x)− ϕg(x)|

= sup
x∈X

DX(f(x), g(x))

=: d∞(f, g),

for all f, g ∈ AutΦ(X). So, d∞ coincides with the pseudo-distance DAut on
AutΦ(X); that is

d∞|AutΦ(X) = DAut.

In general, DAut is an extended pseudo-metric. But when (X,DX) is a
metric space, then so is (G,DAut): If g, h ∈ G are distinct functions, then there
is an x0 ∈ X such that g(x0) 6= h(x0). Since DX is a metric,

0 < DX(g(x0), h(x0)) ≤ sup
x∈X

DX(g(x), h(x)) = d∞(g, h) = DAut(g, h),

whence DAut is a metric as well.
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Definition 4 Let (Φ, G) and (Ψ,H) be perception pairs with dom(Φ) = X and
dom(Ψ) = Y , and T : G → H be a group homomorphism. A map F : Φ → Ψ is said
to be a group equivariant non-expansive operator (GENEO) with respect to T if

F (ϕ ◦ g) = F (ϕ) ◦ T (g), for every ϕ ∈ Φ, g ∈ G,

and
‖F (ϕ1)− F (ϕ2)‖∞ ≤ ‖ϕ1 − ϕ2‖∞, for every ϕ1, ϕ2 ∈ Φ.

A map F : Φ → Ψ satisfying the first condition is called T−equivariant or a
group equivariant operator (GEO), and it is called non-expansive if it satisfies
the second condition. For the sake of conciseness, we often write a GENEO as
(F, T ) : (Φ, G) → (Ψ, H).

The set Fall
T of all GENEOs (F, T ) : (Φ, G) → (Ψ, H) corresponding to a

group homomorphism T : G→ H is a metric space with the distance function
given by

DGENEO(F1, F2) = sup
ϕ∈Φ

DΨ(F1(ϕ), F2(ϕ)), for every F1, F2 ∈ Fall
T .

The natural pseudo-distance allows us to define another pseudo-metric on
this space:

DGENEO,H(F1, F2) := sup
ϕ∈Φ

dH(F1(ϕ), F2(ϕ)), for every F1, F2 ∈ Fall
T .

The spaces F ⊆ Fall
T of GENEOs prove instrumental in comparing data.

For example, one can consider the following pseudo-metric:

DF ,Φ(ϕ1, ϕ2) := sup
F∈F

DΨ(F (ϕ1), F (ϕ2)), for every ϕ1, ϕ2 ∈ Φ.

Conti et al. (2022) [18] give examples demonstrating how the use of
GENEOs increases our ability to distinguish between data.

Our objective is to obtain isometric embeddings of perception pairs and of
the spaces of GENEOs into compact ones while retaining the metric properties
of the original spaces. The reader is referred to [14, 27] for further details about
the concepts we have so far introduced in this section.

We will assume in Section 4 that the data set Φ is rich enough to endow the
common domain X with a metric structure. The first step towards construct-
ing our compactifications, under this assumption, is to consider the metric
completion of X . It is well known that every metric space (M,DM ) admits a
unique metric completion (M̂, D̂

M̂
) up to homeomorphisms. We can assume

that the completion M̂ contains M ; i.e., we have the inclusion

j :M → M̂,
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and the metric D̂
M̂

is given by

D̂
M̂
(x̂, ŷ) = lim

n→∞
DM (xn, yn),

where x̂, ŷ ∈ M̂ , and (xn)n∈N, (yn)n∈N are arbitrary sequences inM converging
to x̂ and ŷ respectively.

3 Basic results on topological groups and group
equivariant non-expansive operators

We recall the following results from [14, 26, 27] which will be used frequently
in the sequel. The proofs of the results that appear only in [27] will be given
in Section A for the sake of completeness.

Proposition 1 [27, Proposition 1.2.10] Each function ϕ ∈ Φ is non-expansive, and
hence uniformly continuous with respect to DX .

Therefore, the topology τDX
induced by DX is finer than the initial topol-

ogy τin on X , which is the coarsest topology on X with respect to which all
the signals ϕ ∈ Φ are continuous.

Theorem 2 [14, Supplementary Methods: Theorem 2.1] If Φ is totally bounded, then
τDX

coincides with τin.

Theorem 3 [27, Theorem 1] If Φ is totally bounded, then so is (X,DX ).

Proposition 4 [14, Proposition 2] AutΦ(X) ⊆ Iso(X).

That is, each g ∈ G ⊆ AutΦ(X) is an isometry of X .
Recall that a subgroup of a topological group is topological, and

Proposition 5 [26] If A is a subgroup of a topological group G, then clG(A) is also
a subgroup, and hence a topological subgroup of G.

This proposition will be used in conjunction with

Theorem 6 [14, Supplementary Methods: Theorem 2.7] AutΦ(X) is a topological
group and the action ρ : Φ×AutΦ(X) → Φ is continuous.

Theorem 7 [27, Theorem 4] If Φ is totally bounded, then so is (G,DAut).
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Proposition 8 [27, Proposition 1.2.20] If (X,DX) is a compact metric space, then
(Iso(X), d∞) is also compact.

Theorem 9 [27, Theorem 5] If Φ ⊆ RXb and (X,DX) are both compact metric
spaces, then AutΦ(X) is closed in Iso(X), and hence compact.

Theorem 10 [14, Theorem 7] The space (Fall
T , DGENEO) of GENEOs (F, T ) :

(Φ, G) → (Ψ,H) is compact whenever the spaces Φ and Ψ are compact.

4 Our compactification results

Let (Φ, G), dom(Φ) = X and (Ψ, H), dom(Ψ) = Y be perception pairs and
F ⊆ Fall

T , where Fall
T denotes, as usual, the space of all GENEOs (F, T ) :

(Φ, G) → (Ψ, H) with respect to a fixed homomorphism T : G→ H .
In this section we will be assuming that

i) Φ and Ψ are totally bounded, and are rich enough to endow each of X and
Y with metric structures;
ii) the collection of sets {F (Φ) | F ∈ F} covers Ψ.

We know that even if Φ and Ψ are compact, let alone being totally bounded,
X,G, Y , and H need not be compact [14], though Fall

T is indeed compact in
that case. Moreover, an arbitrary subspace F of Fall

T need not necessarily be
compact either. Since compactness is an important property, as it provides
us with essential guarantees in machine learning context, it is natural to pre-
fer compact spaces in practical applications. We therefore ask: If compactness
of X,G, Y , and H is not guaranteed even by the compactness of data sets
Φ and Ψ, let alone their total boundedness, can we at least prove that these
spaces can be isometrically and densely embedded in compact ones while the
corresponding sought after compact spaces preserve the former mutual rela-
tions between the original spaces? That is, can we find compactifications of
perception pairs? Furthermore, can we find compactifications of the spaces of
GENEOs? These notions need being made precise, which we do in the sequel,
and prove that our assumptions are sufficient to grant the answer to this
question in the affirmative.

Somewhat formally, given the perception pairs (Φ, G), dom(Φ) = X and
(Ψ, H), dom(Ψ) = Y and a space F ⊆ Fall

T of GENEOs (F, T ) : (Φ, G) →
(Ψ, H) with respect to a fixed homomorphism T : G→ H , we assume that the
data sets Φ and Ψ are totally bounded and rich enough to endow X and Y

with metric structures, and the collection {F (Φ) | F ∈ F} covers the space Ψ.
Under these assumptions, we find perception pairs (Φ∗, G∗), dom(Φ∗) = X∗

and (Ψ∗, H∗), dom(Ψ∗) = Y ∗, a space F∗ ⊆ Fall
T∗ of GENEOs (F ∗, T ∗) :

(Φ∗, G∗) → (Ψ∗, H∗) with respect to a fixed homomorphism T ∗ : G∗ → H∗,
and isometric embeddings j1 : X → X∗, j2 : Y → Y ∗, i1 : Φ → Φ∗, i2 :
Ψ → Ψ∗, k1 : G → G∗, k2 : H → H∗, and f : F → F∗. We require that
the spaces Φ∗, G∗, X∗,Ψ∗, H∗, Y ∗ and F∗ are all compact, and the following
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commutativity conditions are satisfied: i1(ϕ) ◦ j1 = ϕ for every ϕ ∈ Φ, i2(ψ) ◦
j2 = ψ for every ψ ∈ Ψ; k1(g) ◦ j1 = j1 ◦ g for every g ∈ G, k2(h) ◦ j2 = j2 ◦ h
for every h ∈ H ; i2 ◦ F = f(F ) ◦ i1 for every F ∈ F ; and k2 ◦ T = T ∗ ◦ k1.

These compatibility conditions formalize the requirement that the spaces
Φ, G,X,Ψ, H, Y and F do not lose any of their metric or topological properties
while being viewed as subspaces of Φ∗, G∗, X∗,Ψ∗, H∗, Y ∗ and F∗ respectively.
In this case, we say that (Φ∗, G∗), dom(Φ∗) = X∗ is a compactification of
the perception pair (Φ, G), dom(Φ) = X , and F∗ is a compactification of
the space F of GENEOs. We will give formal definitions in the forthcoming
subsections. Our assumptions here are mild; in many practical applications,
they are already satisfied.

Precisely, the intermediary results and constructions in Subsections 4.1
and 4.2 are aimed at proving that every perception pair (Φ, G), dom(Φ) =
X , with totally bounded Φ endowing X with a metric structure, admits a
compactification (Φ∗, G∗), dom(Φ∗) = X∗. Similarly, the Subsections 4.3 and
4.4 are devoted to proving that every space F ⊆ Fall

T of GENEOs (F, T ) :
(Φ, G) → (Ψ, H) with dom(Φ) = X and dom(Ψ) = Y such that the collection
{F (Φ) | F ∈ F} covers Ψ admits a compactification F∗, provided the data
sets Φ and Ψ are totally bounded and endow X and Y with metric structures.
Again, this proof will require several auxiliary constructions and corresponding
results.

In order to set the stage for the requisite compactification of the perception
pair (Φ, G), dom(Φ) = X , we consider the unique metric completion X̂ of X ,
and assume that X ⊆ X̂. Since X is totally bounded by Theorem 3, X̂ is
totally bounded by virtue of the isometric embedding j : X → X̂, and hence
compact. This serves as the sought after X∗ in our construction. Then we use
the measurements ϕ ∈ Φ and isometries g ∈ G to define the measurements ϕ̂ :
Φ → R on the compact space X̂ and its corresponding isometries ĝ : X̂ → X̂.

4.1 The Extension of Signals

It can easily be proved that

Proposition 11 Let (M,dM ) be a metric space, and S a subset of M . Then every
non-expansive map f : S → R admits a unique non-expansive extension f̄ : S → R.

Since each ϕ ∈ Φ is non-expansive by Proposition 1, we have

Corollary 12 Each signal ϕ ∈ Φ can be uniquely extended to a non-expansive signal
ϕ̂ : X̂ → R, where X̂ is the completion of X = dom(Φ), by setting

ϕ̂(x̂) = lim
n→∞

ϕ(xn),

for any arbitrary sequence (xn)n∈N in X that converges to x̂ ∈ X̂.
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Let us put
Φ̂ := {ϕ̂ : X̂ → R | ϕ ∈ Φ}.

Since the extensions ϕ̂ : X̂ → R of signals ϕ ∈ Φ are unique, we get a one-
to-one correspondence i : Φ → Φ̂ between signals in Φ and signals in Φ̂ given
by

ϕ 7→ ϕ̂.

The notations RX̂b , Iso(X̂), d̂∞ and AutΦ̂(X̂) are self-explanatory. Clearly,

Φ̂ ⊆ RX̂b .

The set Φ̂ of extended signals induces the pseudo-metric D
X̂

on the

completion X̂ given by

D
X̂
(x, y) := sup

ϕ∈Φ̂

|ϕ(x)− ϕ(y)| , x, y ∈ X̂.

At this point, the completion X̂ appears to be equipped with the previously
defined metric D̂

X̂
associated with the completion, and the pseudo-metric

D
X̂
. It is worth investigating their relationship. We will prove later in this

subsection that these seemingly distinct functions are in fact numerically equal
on X̂, thereby establishing in addition that D

X̂
is in fact a metric.

Before proceeding, we record another general proposition, omitting the easy
proof, which will be used frequently in the paper:

Proposition 13 Let K be a compact topological space and A be dense in K. If f is
a continuous real-valued function on K, then

sup f(K) = sup f(A).

We are ready now to prove the following theorem:

Theorem 14 The correspondence i : Φ → Φ̂ is an isometry.

Proof The map i is surjective by construction; it will suffice to prove that it preserves
distances, i.e.,

‖i(ϕ1)− i(ϕ2)‖∞ = ‖ϕ1 − ϕ2‖∞,

for any ϕ1, ϕ2 ∈ Φ. Since X is dense in the compact topological space X̂ , and
i(ϕ) = ϕ̂ is an extension of ϕ ∈ Φ, by Proposition 13 we have

‖i(ϕ1)− i(ϕ2)‖∞ := sup
x∈X̂

|ϕ̂1(x)− ϕ̂2(x)|

= sup
x∈X

|ϕ̂1(x)− ϕ̂2(x)|

= sup
x∈X

|ϕ1(x)− ϕ2(x)|

=: ‖ϕ1 − ϕ2‖∞,

for any ϕ1, ϕ2 ∈ Φ. Therefore, i is an isometry. �
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Corollary 15 The space Φ̂ of extended signals is totally bounded.

Remark 1 Let us consider the isometry i : Φ → Φ̂ and the inclusion j : X →֒ X̂ . Since
ϕ̂ extends ϕ, the following natural commutativity condition holds for each ϕ ∈ Φ:

i(ϕ) ◦ j = ϕ.

The total boundedness of Φ̂ allows us to prove the following crucial
statement.

Proposition 16 On X̂, D
X̂

= D̂
X̂
.

Proof Since Φ̂ is totally bounded, D
X̂

induces on X̂ the initial topology with respect

to Φ̂ by Theorem 2. Moreover, by Corollary 12 the functions in Φ̂ are continuous
with respect to D̂

X̂
as well. Hence, the topology induced by D̂

X̂
is finer than the

topology induced by D
X̂
. This directly implies that D

X̂
is a continuous function

with respect to D̂
X̂
. Then, we have

D̂
X̂
(x̂, ŷ) := lim

n→∞
DX (xn, yn) = lim

n→∞
D
X̂
(xn, yn) = D

X̂
(x̂, ŷ)

where x̂, ŷ ∈ X̂, and (xn)n∈N, (yn)n∈N are sequences in X converging to x̂ and ŷ

respectively, with reference to the topology induced by D̂
X̂
. �

So, D
X̂

is a metric. As pointed out in Section 2, this directly implies that

the pseudo-metric D̂Aut induced by Φ̂ on AutΦ̂(X̂) is also a metric.

4.2 The Isometries of the Completions

We now turn to the construction of an auxiliary topological group Ĝ ⊆

AutΦ̂(X̂), isometric to the given group G ⊆ AutΦ(X), whose closure G∗ = Ĝ

in the compact space Iso(X̂), finally, serves our purposes.

4.2.1 The Induced Bijections

Each g ∈ G ⊆ AutΦ(X) ⊆ Iso(X) induces a self-map ĝ : X̂ → X̂ on the metric
completion X̂ by the following association:

ĝ(x̂) := lim
n→∞

g(xn),

where (xn)n∈N is a sequence in X converging to x̂ ∈ X̂. The sequence
(g(xn))n∈N is a Cauchy sequence since g is an isometry by Proposition 4. Also,
if (yn)n∈N is another sequence in X converging to x̂, then as g is an isometry,
we have

0 = lim
n→∞

DX(xn, yn) = lim
n→∞

DX(g(xn), g(yn)),
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whence
g(yn) → lim

n→∞
g(xn)

as well. So, the function x̂ 7→ limn→∞ g(xn) is well defined.
Moreover, note that ĝ|X = g.

Proposition 17 The map ĝ : X̂ → X̂ is bijective for every g ∈ G, and ĝ−1 = ĝ−1.

Proof Let x̂1, x̂2 ∈ X̂ with x̂1 6= x̂2, and (x1,n)n∈N and (x2,n)n∈N be sequences in
X converging respectively to x̂1 and x̂2. As g is an isometry,

0 6= D̂
X̂
(x̂1, x̂2) := lim

n→∞
DX(x1,n, x2,n)

= lim
n→∞

DX(g(x1,n), g(x2,n))

=: D̂
X̂
(ĝ(x̂1), ĝ(x̂2)),

whence ĝ(x̂1) 6= ĝ(x̂2) and ĝ is injective.
As for surjectivity, let g ∈ G. If ŷ ∈ X̂ , then there is a sequence (yn)n∈N in X such

that yn → ŷ in X̂ . As g−1 exists, we can put xn := g−1(yn), for each n ∈ N. Since g−1

is an isometry and (yn)n∈N is a Cauchy sequence, (xn)n∈N too is a Cauchy sequence;
so it converges to some x̂ ∈ X̂. Of course, ĝ(x̂) := limn→∞ g(xn) = limn→∞ yn = ŷ,
and hence ĝ is surjective.

Also, the equality ĝ(x̂) = ŷ just proved can be rewritten as

ĝ
−1(ŷ) = x̂.

But at the same time, as g−1 ∈ G, by definition we have

ĝ−1(ŷ) = ĝ−1( lim
n→∞

yn) = lim
n→∞

g
−1(yn) = lim

n→∞
xn = x̂.

By the arbitrariness of ŷ ∈ X̂, we get

ĝ
−1 = ĝ−1.

�

The following important property will be used frequently in the sequel.

Proposition 18 For each ϕ ∈ Φ and each g ∈ G,

ϕ̂ĝ = ϕ̂g.

Proof As g ∈ AutΦ(X), ϕg ∈ Φ. So, if x̂ ∈ X̂ and (xn)n∈N is a sequence in X

converging to x̂, we compute:

ϕ̂ĝ(x̂) = ϕ̂(ĝ(x̂))

= ϕ̂( lim
n→∞

g(xn))

= lim
n→∞

ϕ(g(xn))

= lim
n→∞

ϕg(xn)
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= ϕ̂g( lim
n→∞

xn)

= ϕ̂g(x̂).

By the arbitrariness of x̂, we have the proposed equality. �

Corollary 19 For each g ∈ G, ĝ ∈ Aut
Φ̂
(X̂) ⊆ Iso(X̂).

Proof Let ϕ̂ ∈ Φ̂. As g ∈ G ⊆ AutΦ(X), ϕg ∈ Φ; so, ϕ̂ĝ = ϕ̂g ∈ Φ̂ by Proposition

18; whence ĝ is a Φ̂−operation. Since ĝ−1 = ĝ−1 (Proposition 17), by applying
Proposition 18 again to g−1 ∈ G, we infer that ĝ−1 is a Φ̂−operation too; whence
ĝ ∈ Aut

Φ̂
(X̂).

The inclusion Aut
Φ̂
(X̂) ⊆ Iso(X̂) is stated in Proposition 4. �

Proposition 20 For each g, h ∈ G,

ĝĥ = ĝh.

Proof Let x̂ ∈ X̂, and (xn)n∈N be a sequence in X converging to x̂ in X̂. Then, by
recalling the definitions of ĥ and ĝ, we have

ĝĥ(x̂) = ĝ(ĥ(x̂))

= ĝ( lim
n→∞

h(xn))

= lim
n→∞

g(h(xn))

= lim
n→∞

gh(xn)

= ĝh(x̂),

whence by the arbitrariness of x̂, the proposition is proved. �

Let us put
Ĝ := {ĝ : X̂ → X̂ | g ∈ G}

.

Remark 2 Clearly, îdX = id
X̂

∈ Ĝ.

Corollary 21 The set Ĝ is a subgroup of Aut
Φ̂
(X̂).

Proof It will suffice to show that Ĝ is closed under composition and computation of
the inverse. The first property follows from Proposition 20, since if ĝ, ĥ ∈ Ĝ, then
ĝĥ = ĝh ∈ Ĝ. The second property follows from Proposition 17, since if ĝ ∈ Ĝ, then

ĝ−1 = ĝ−1 ∈ Ĝ. �
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Remark 3 Corollary 21 implicitly states that (Φ̂, Ĝ) is a perception pair.

Note that AutΦ̂(X̂), and therefore Ĝ ⊆ AutΦ̂(X̂), are pseudo-metric spaces

with the pseudo-metric D̂Aut : AutΦ̂(X̂)×AutΦ̂(X̂) → R given by

D̂Aut(ĝ, ĥ) := sup
ϕ̂∈Φ̂

DΦ̂(ϕ̂ĝ, ϕ̂ĥ), for every ĝ, ĥ ∈ AutΦ̂(X̂).

Moreover,

D̂Aut(ĝ, ĥ) := sup
ϕ̂∈Φ̂

DΦ̂(ϕ̂ĝ, ϕ̂ĥ)

= sup
ϕ̂∈Φ̂

sup
x̂∈X̂

∣

∣

∣
ϕ̂(ĝ(x̂))− ϕ̂(ĥ(x̂))

∣

∣

∣

= sup
x̂∈X̂

sup
ϕ̂∈Φ̂

∣

∣

∣
ϕ̂(ĝ(x̂))− ϕ̂(ĥ(x̂))

∣

∣

∣

= sup
x̂∈X̂

D
X̂
(ĝ(x̂), ĥ(x̂)).

Therefore, if ĝ, ĥ ∈ AutΦ̂(X̂) and D̂Aut(ĝ, ĥ) = 0, then D
X̂
(ĝ(x̂), ĥ(x̂)) = 0

for every x̂ ∈ X̂. Since Φ̂ endows X̂ with the metric structure induced by the
coinciding metrics D

X̂
and D̂

X̂
(Proposition 16), ĝ(x̂) = ĥ(x̂) for every x̂ ∈ X̂,

and hence ĝ = ĥ. It follows that Ĝ, and therefore Ĝ ⊆ AutΦ̂(X̂), are metric
spaces.

Proposition 22 The correspondence k : G → Ĝ given by k(g) := ĝ is an isometry.

Proof The map k is injective: If g, h ∈ G differ at some x ∈ X, ĝ(x) 6= ĥ(x) as well,
and k(g) = ĝ 6= ĥ = k(h). Also, the definition of Ĝ immediately implies that k is
surjective.

We show that k preserves distances. By Corollary 19, the real-valued function
f : X̂ → R defined by setting

f(x̂) := D
X̂
(ĝ(x̂), ĥ(x̂)), for every x̂ ∈ X̂,

is continuous for every ĝ and ĥ in Ĝ, since each isometry is by definition a continuous
map.

Let ĝ, ĥ ∈ Ĝ; then by Propositions 13, we have

D̂Aut(ĝ, ĥ) = sup
x̂∈X̂

D
X̂
(ĝ(x̂), ĥ(x̂))

= sup
x∈X

D
X̂
(ĝ(x), ĥ(x))

= sup
x∈X

DX(g(x), h(x))

=: DAut(g, h),

as required. �
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Corollary 23 If G is complete, then Ĝ is compact.

Proof Recall that the space Φ of admissible signals was assumed to be totally
bounded; whence by Theorem 7,G is totally bounded, and being complete by hypoth-
esis, it is compact. As k : G → Ĝ is an isometry, Ĝ is compact as well. �

Remark 4 The assumption here that G is complete cannot be removed. It is easy
to give an example of a perception pair (Φ, G) where Φ is compact but G is not
complete [14]. For example, if Φ is the compact space of all 1-Lipschitz functions from
X = S1 = {(x, y) ∈ R2 : x2 + y2 = 1} to [0, 1], and G is the group of all rotations
ρ2πq of X of 2πq radians with q a rational number, then the topological group G is

not complete. Moreover, in this case X̂ = X, and the topological group Ĝ = G is
not compact either.

It is easy to see that the embeddings j : X → X̂ and k : G→ Ĝ satisfy the
following natural commutativity condition.

Proposition 24 For each g ∈ G,

k(g) ◦ j = j ◦ g.

That is, for each g ∈ G and each x ∈ X,

ĝ(x) = ĝ(x).

Remark 5 We observe that ĝ is the only map in Aut
Φ̂
(X̂) with ĝ|X = g. It is indeed

easy to show that for any g ∈ Aut
Φ̂
(X̂) such that g|X = g, the equality g(x̂) = ĝ(x̂)

holds for every x̂ ∈ X̂.

Before proceeding, we stress that while X̂, by definition, is a complete
topological space, the topological spaces Φ̂ and Ĝ, in general, are not complete.

4.2.2 The Embedding of Perception Pairs

We are now ready to show that every perception pair (Φ, G), dom(Φ) = X can
be embedded in a compact perception pair (Φ∗, G∗), dom(Φ∗) = X∗, provided
that the space Φ of signals is totally bounded and (X,DX) is a metric space.

We have so far obtained only an isometric image Ĝ of G. The group G

is chosen arbitrarily; so G and Ĝ may or may not be closed in AutΦ(X) and
̂AutΦ(X) respectively. Similarly, the space Φ̂, being isometric to Φ, need not

necessarily be compact. However, the space C(X̂,R) is complete; so, Φ̂, the
closure of Φ̂ in C(X̂,R), being closed, is complete as well. Also, Φ̂, being
isometric to the totally bounded space Φ (Theorem 14), is totally bounded,
and so is its closure. Consequently,
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Proposition 25 The metric space Φ̂ ⊆ RX̂b is compact.

The data set Φ̂ endows X̂ with a pseudo-metric structure where the pseudo-
distance is given by

D
X̂
(x̂1, x̂2) := sup

ϕ∈Φ̂

|ϕ(x̂1)− ϕ(x̂2)| , for every x̂1, x̂2 ∈ X̂.

Proposition 26 On X̂, D
X̂

= D
X̂
; so D

X̂
is a metric.

Proof Let x̂1, x̂2 ∈ X̂. By applying Proposition 13 to the continuous function f(ϕ) :=
|ϕ(x̂1)− ϕ(x̂2)|, we get:

D
X̂
(x̂1, x̂2) := sup

ϕ∈Φ̂

|ϕ(x̂1)− ϕ(x̂2)|

= sup
ϕ̂∈Φ̂

|ϕ̂(x̂1)− ϕ̂(x̂2)|

=: D
X̂
(x̂1, x̂2).

As x̂1, x̂2 ∈ X̂ are arbitrary, we have the proposed equality. �

In view of Proposition 26, the symbol Iso(X̂) can be used without any
ambiguity about the underlying metric.

By Theorem 6, the set Aut
Φ̂
(X̂) ⊆ Iso(X̂) of all invertible Φ̂-operations is a

topological group with respect to the topology induced by the pseudo-distance

D̂Aut : AutΦ̂(X̂)×Aut
Φ̂
(X̂) → R:

D̂Aut(g, h) := sup
ϕ∈Φ̂

D
Φ̂
(ϕ ◦ g, ϕ ◦ h), for every g, h ∈ Aut

Φ̂
(X̂).

If g, h ∈ Aut
Φ̂
(X̂), then

D̂Aut(g, h) = sup
ϕ∈Φ̂

D
Φ̂
(ϕ ◦ g, ϕ ◦ h)

= sup
ϕ∈Φ̂

sup
x̂∈X̂

∣

∣ϕ(g(x̂))− ϕ(h(x̂))
∣

∣

= sup
x̂∈X̂

D
X̂
(g(x̂), h(x̂))

= sup
x̂∈X̂

D
X̂
(g(x̂), h(x̂)).
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Therefore, if D̂Aut(g, h) = 0, then D
X̂
(g(x̂), h(x̂)) = 0 for every x̂ ∈ X̂.

Since D
X̂

is a metric, g(x̂) = h(x̂) for every x̂ ∈ X̂, whence g = h. So,

(Aut
Φ̂
(X̂), D̂Aut) is a metric space.

Proposition 27 Every ǧ ∈ Aut
Φ̂
(X̂) is a Φ̂−operation.

Proof Let ϕ ∈ Φ̂ and ǧ ∈ Aut
Φ̂
(X̂). We show that ϕǧ ∈ Φ̂.

There is a sequence (ϕ̂n)n∈N in Φ̂ such that ϕ̂n → ϕ. As ǧ is a bijection of X̂ by
Proposition 4, we have

‖ϕ̂nǧ − ϕǧ‖∞ = ‖ϕ̂n − ϕ‖∞;

whence ϕ̂nǧ → ϕǧ in the space C(X̂,R). As ǧ is a Φ̂−operation, (ϕ̂nǧ)n∈N is a

sequence in the space Φ̂ ⊆ C(X̂,R). Consequently, ϕǧ ∈ Φ̂. �

Corollary 28 Ĝ ⊆ Aut
Φ̂
(X̂) ⊆ Aut

Φ̂
(X̂).

Proof The first inclusion is given by Corollary 21. As for the second, let ǧ ∈ Aut
Φ̂
(X̂).

By Proposition 27, ǧ is a Φ̂−operation. As Aut
Φ̂
(X̂) is a group, ǧ−1 ∈ Aut

Φ̂
(X̂),

and again by Proposition 27, is a Φ̂−operation. Consequently, ǧ ∈ Aut
Φ̂
(X̂), and by

the arbitrariness of ǧ, we have the second inclusion. �

Remark 6 Corollary 28 implicitly states that (Φ̂, Ĝ) is a perception pair.

Let Ĝ and AutΦ̂(X̂) respectively denote the closures of Ĝ and AutΦ̂(X̂)

in the space Iso(X̂) of all isometries of (X̂,D
X̂
). Recall that the topology

on Iso(X̂) is given by the restriction to Iso(X̂) of the metric d̂∞ defined

on C(X̂, X̂) by setting d̂∞(f, g) := supx̂∈X̂ DX̂
(f(x̂), g(x̂)), for every f, g ∈

C(X̂, X̂). Note also that the isometries of X̂ with respect to the metric D
X̂

coincide with those induced by the metric D
X̂

(Proposition 26).

Corollary 29 Ĝ ⊆ Aut
Φ̂
(X̂) ⊆ Aut

Φ̂
(X̂) ⊆ Iso(X̂).

Proof The last inclusion is given by Proposition 4. As we have seen at the beginning of

Section 4, X̂ is compact, and Φ̂ is compact by Proposition 25. It follows from Theorem
9 that Aut

Φ̂
(X̂) is a closed subspace of Iso(X̂). Since Ĝ ⊆ Aut

Φ̂
(X̂) ⊆ Aut

Φ̂
(X̂)

(Corollary 28), we have the first two inclusions.
�
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Remark 7 Corollary 29 directly implies that the closure of Ĝ in Aut
Φ̂
(X̂) coincides

with Ĝ, i.e., with the closure of Ĝ in the space Iso(X̂). Similarly the closure of

Aut
Φ̂
(X̂) in Aut

Φ̂
(X̂) coincides with Aut

Φ̂
(X̂).

Incidentally, Proposition 8 and Corollary 29 also give that the spaces Ĝ

and AutΦ̂(X̂) are compact.

Proposition 30 The groups Ĝ and Ĝ are both topological subgroups of the compact
group Aut

Φ̂
(X̂).

Proof By Corollary 29, we have Ĝ ⊆ Ĝ ⊆ Aut
Φ̂
(X̂). By Theorem 6, Aut

Φ̂
(X̂) is a

topological group. So, Ĝ and Ĝ, being subgroups of a topological group are likewise
topological. The compactness of Aut

Φ̂
(X̂) is given by Theorem 9. �

We can now state

Theorem 31 Given any perception pair (Φ, G), dom(Φ) = X with totally bounded

Φ endowing X with a metric structure, the perception pair (Φ̂, Ĝ), dom(Φ̂) = X̂ is
compact.

Proof Propositions 25 and 30 together give the assertion. �

Definition 5 We say that the perception pair (Φ, G) with dom(Φ) = X is isomet-
rically embedded into the perception pair (Φ∗, G∗) with dom(Φ∗) = X∗ if there are
isometric embeddings j∗ : X → X∗, i∗ : Φ → Φ∗, and k∗ : G → G∗ such that the
images j∗(X), i∗(Φ), and k∗(G) are all dense in X∗, Φ∗, and G∗ respectively, and
the following commutativity conditions are satisfied: i∗(ϕ) ◦ j∗ = ϕ for every ϕ ∈ Φ
and k∗(g) ◦ j∗ = j∗ ◦ g for every g ∈ G. If (Φ∗, G∗) is compact, it is said to be a
compactification of (Φ, G).

With this definition at our disposal, we summarize

Theorem 32 Every perception pair (Φ, G), dom(Φ) = X, with totally bounded Φ
endowing X with a metric structure, admits a compactification (Φ∗, G∗), dom(Φ∗) =
X∗.

Proof Put Φ∗ := Φ̂ and G∗ := Ĝ in Theorem 31. �
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4.3 GENEOs and Completions

Our next goal is to construct compactifications of the spaces F ⊆ Fall
T

of GENEOs (F, T ) : (Φ, G) → (Ψ, H) with the property that the images
F (Φ), F ∈ F form a cover for the data set Ψ, while maintaining the assump-
tions that Φ and Ψ are totally bounded and endow X and Y with metric
structures. We have shown, under these assumptions, that the perception
pairs (Φ, G), dom(Φ) = X and (Ψ, H), dom(Ψ) = Y can be embedded nicely
into the perception pairs (Φ̂, Ĝ), dom(Φ̂) = X̂ and (Ψ̂, Ĥ), dom(Ψ̂) = Ŷ ,
respectively, through the compatible isometries (j1, j2) : (X,Y ) → (X̂, Ŷ ),
(i1, i2) : (Φ,Ψ) → (Φ̂, Ψ̂), and (k1, k2) : (G,H) → (Ĝ, Ĥ), and are now in a
position to use the GENEOs (F, T ) : (Φ, G) → (Ψ, H) to define new GENEOs
(F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ). Our construction will be further extended to the

GENEOs (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ) and (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ) later.

4.3.1 The Induced GENEOs

Let (F, T ) : (Φ, G) → (Ψ, H) be a GENEO in F ⊆ Fall
T . We put

F̂ (ϕ̂) := F̂ (ϕ),

and
T̂ (ĝ) := T̂ (g),

where ϕ ∈ Φ, g ∈ G, and F ∈ F ⊆ Fall
T .

The maps F̂ : Φ̂ → Ψ̂ and T̂ : Ĝ → Ĥ are clearly well defined, since the
maps i1 : Φ → Φ̂ (taking ϕ to ϕ̂) and k1 : G→ Ĝ (taking g to ĝ) are injective.
Moreover,

Remark 8 The map F̂ is injective if and only if F ∈ F is an injection. As i2 : Ψ → Ψ̂
is injective, we have

F̂ (ϕ̂1) = F̂ (ϕ̂2) ⇐⇒
def

F̂ (ϕ1) = F̂ (ϕ2) ⇐⇒ F (ϕ1) = F (ϕ2),

for every ϕ1, ϕ2 ∈ Φ. The injectivity of i1 : Φ → Φ̂, together with these equivalences,
gives the assertion.

Recalling Propositions 18 and 20, we prove

Proposition 33 The map F̂ : Φ̂ → Ψ̂ is a GENEO with respect to T̂ : Ĝ→ Ĥ.

Proof It is easy to see that T̂ : Ĝ → Ĥ is a group homomorphism: If a, b ∈ G, then

T̂ (âb̂) = T̂ (âb)

= T̂ (ab)
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= ̂T (a)T (b)

= T̂ (a)T̂ (b)

= T̂ (â)T̂ (b̂).

Similarly, if ϕ ∈ Φ, g ∈ G, and F ∈ F , we have:

F̂ (ϕ̂ĝ) = F̂ (ϕ̂g)

= F̂ (ϕg)

= ̂F (ϕ)T (g)

= F̂ (ϕ)T̂ (g)

= F̂ (ϕ̂)T̂ (ĝ).

So, F̂ is T̂−equivariant.
Now, let ϕ1, ϕ2 ∈ Φ. As i1 : Φ → Φ̂ and i2 : Ψ → Ψ̂ are isometries (Theorem 14)

and F : Φ → Ψ is non-expansive,

D
Ψ̂
(F̂ (ϕ̂1), F̂ (ϕ̂2)) = D

Ψ̂
(F̂ (ϕ1), F̂ (ϕ2))

= DΨ(F (ϕ1), F (ϕ2))

≤ DΦ(ϕ1, ϕ2)

= D
Φ̂
(ϕ̂1, ϕ̂2)

whence F̂ is non-expansive.
�

Let us put
F1 := {F̂ : Φ̂ → Ψ̂ | F ∈ F},

and define a map f1 : F → F1 by setting

f1(F ) := F̂ .

The set Fall,1

T̂
⊇ F1 of all GENEOs from (Φ̂, Ĝ) to (Ψ̂, Ĥ) with respect to

the homomorphism T̂ : Ĝ → Ĥ is a metric space with the distance function
D1

GENEO given by

D1
GENEO(F

′, F ′′) := sup
ϕ̂∈Φ̂

DΨ̂(F
′(ϕ̂), F ′′(ϕ̂)), for every F ′, F ′′ ∈ Fall,1

T̂
.

Proposition 34 The correspondence f1 : F → F1 is an isometry with respect to the
distances DGENEO and D1

GENEO.

Proof The map f1 is surjective by construction. Let F1, F2 ∈ F be distinct GENEOs;
i.e., there is a ϕ ∈ Φ such that F1(ϕ) 6= F2(ϕ). As i2 : Ψ → Ψ̂ is injective, F̂1(ϕ̂) :=

F̂1(ϕ) 6= F̂2(ϕ) =: F̂2(ϕ̂), whence f1(F1) := F̂1 6= F̂2 =: f1(F2), and f1 : F → F1 is
injective.
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We now show that f1 preserves distances. If F1, F2 ∈ F , by applying Proposition
13 to the real-valued continuous function f(ϕ̂) := D

Ψ̂
(F̂1(ϕ̂), F̂2(ϕ̂)), we get

D
1
GENEO(F̂1, F̂2) := sup

ϕ̂∈Φ̂

D
Ψ̂
(F̂1(ϕ̂), F̂2(ϕ̂))

= sup
ϕ∈Φ

D
Ψ̂
(F̂1(ϕ̂), F̂2(ϕ̂))

= sup
ϕ∈Φ

D
Ψ̂
(F̂1(ϕ), F̂2(ϕ))

= sup
ϕ∈Φ

DΨ(F1(ϕ), F2(ϕ))

=: DGENEO(F1, F2),

as i2 : Ψ → Ψ̂ is an isometry by Theorem 14. So, the bijection f1 is an isometry.
�

From the definitions of F̂ and T̂ , it is already clear that the following
natural commutativity conditions are trivially satisfied:

Proposition 35 For each F ∈ F,

i2 ◦ F = f1(F ) ◦ i1, (i.e., F̂ (ϕ) = F̂ (ϕ̂) for every ϕ ∈ Φ)

and
k2 ◦ T = T̂ ◦ k1 (i.e., T̂ (g) = T̂ (ĝ) for every g ∈ G).

4.4 Compactification of the Spaces of GENEOs

We can now extend our construction from (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ) to (F̂ , T̂ ) :

(Φ̂, Ĝ) → (Ψ̂, Ĥ) and (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ) successively, while maintaining
the assumptions of Section 4.3. First, we show that F̂ : Φ̂ → Ψ̂ induces a non-

expansive T̂ -equivariant map F̂ : Φ̂ → Ψ̂; then we will use the assumption that
the family of sets {F (Φ) | F ∈ F} covers Ψ to define a group homomorphism

T̂ : Ĝ→ Ĥ with respect to which F̂ remains equivariant.

Let us define a map F̂ : Φ̂ → Ψ̂ as follows. Let ϕ ∈ Φ̂; then there is a
sequence (ϕ̂n)n∈N in Φ̂ such that ϕ̂n → ϕ with respect to the uniform norm.

As F̂ is non-expansive, (F̂ (ϕ̂n))n∈N is a Cauchy sequence in Ψ̂ ⊆ Ψ̂; so it

converges to some ψ in the complete space Ψ̂. Let us put

F̂ (ϕ) := ψ.

That is,

F̂ ( lim
n→∞

ϕ̂n) := lim
n→∞

F̂ (ϕ̂n).

Note that since F̂ is non-expansive, the map F̂ does not depend on the
sequence (ϕ̂n)n∈N converging to ϕ, and is therefore well defined. Moreover,

F̂ |Φ̂ = F̂ .
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Proposition 36 The map F̂ : Φ̂ → Ψ̂ is a GENEO with respect to T̂ : Ĝ→ Ĥ.

Proof Let ϕ1, ϕ2 ∈ Φ̂; then there are sequences (ϕ̂1,n)n∈N and (ϕ̂2,n)n∈N in Φ̂ such

that ϕ̂1,n → ϕ1 and ϕ̂2,n → ϕ2. Recalling that F̂ is non-expansive, we compute:
∥∥∥F̂ (ϕ1)− F̂ (ϕ2)

∥∥∥
∞

=
∥∥∥ lim
n→∞

F̂ (ϕ̂1,n)− lim
n→∞

F̂ (ϕ̂2,n)
∥∥∥
∞

= lim
n→∞

∥∥∥F̂ (ϕ̂1,n)− F̂ (ϕ̂2,n)
∥∥∥
∞

≤ lim
n→∞

∥∥ϕ̂1,n − ϕ̂2,n

∥∥
∞

=
∥∥∥ lim
n→∞

ϕ̂1,n − lim
n→∞

ϕ̂2,n

∥∥∥
∞

= ‖ϕ1 − ϕ2‖∞;

so, F̂ is non-expansive.

Let ϕ ∈ Φ̂ and ĝ ∈ Ĝ. Then there is a sequence (ϕ̂n)n∈N in Φ̂ such that ϕ̂n → ϕ

with respect to the uniform norm; consequently, ϕ̂nĝ → ϕĝ. As F̂ is T̂−equivariant

(Proposition 33) and the action of Ĥ on Ψ̂ is continuous (Theorem 6), we have

F̂ (ϕ ◦ ĝ) = F̂ ( lim
n→∞

ϕ̂n ◦ ĝ)

= lim
n→∞

F̂ (ϕ̂n ◦ ĝ)

= lim
n→∞

(F̂ (ϕ̂n) ◦ T̂ (ĝ))

= ( lim
n→∞

F̂ (ϕ̂n)) ◦ T̂ (ĝ)

= F̂ (ϕ) ◦ T̂ (ĝ),

whence F̂ is T̂−equivariant and the proposition is proved. �

Let us put

F2 :=
{

F̂ : Φ̂ → Ψ̂ | F ∈ F
}

,

and define a map f2 : F1 → F2 by setting

f2(F̂ ) := F̂ .

The set Fall,2

T̂
⊇ F2 of all GENEOs from (Φ̂, Ĝ) to (Ψ̂, Ĥ) with respect to

the homomorphism T̂ : Ĝ → Ĥ is a metric space with the distance function
D2

GENEO given by

D2
GENEO (F ′, F ′′) := sup

ϕ∈Φ̂

D
Ψ̂
(F ′(ϕ), F ′′(ϕ)) , for every F ′, F ′′ ∈ Fall,2

T̂
.

Proposition 37 The correspondence f2 : F1 → F2 is an isometry with respect to
the distances D1

GENEO and D2
GENEO.
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Proof The map f2 : F1 → F2 is surjective by construction. Also, if F̂1, F̂2 ∈ F1

are distinct, i.e., there is a ϕ̂ ∈ Φ̂ with F̂1(ϕ̂) 6= F̂2(ϕ̂), then f2(F̂1)(ϕ̂) = F̂ 1(ϕ̂) 6=

F̂ 2(ϕ̂) = f2(F̂2)(ϕ̂) since we respectively have F̂ 1|Φ̂ = F̂1 and F̂ 2|Φ̂ = F̂2; whence

f2(F̂1)(ϕ̂) 6= f2(F̂2)(ϕ̂) and f2 is injective as well.

If F̂ 1, F̂ 2 ∈ F2 ⊆ Fall,2

T̂
, by applying Proposition 13 to the real-valued continuous

function f(ϕ) := D
Ψ̂

(
F̂ 1 (ϕ) , F̂ 2 (ϕ)

)
, we get

D
2
GENEO

(
F̂ 1, F̂ 2

)
:= sup

ϕ∈Φ̂

D
Ψ̂

(
F̂ 1 (ϕ) , F̂ 2 (ϕ)

)

= sup
ϕ̂∈Φ̂

D
Ψ̂

(
F̂ 1 (ϕ̂) , F̂ 2 (ϕ̂)

)

= sup
ϕ̂∈Φ̂

D
Ψ̂

(
F̂1 (ϕ̂) , F̂2 (ϕ̂)

)

=: D1
GENEO

(
F̂1, F̂2

)
.

as D
Ψ̂

and D
Ψ̂

both are restrictions of the distance induced by the uniform norm on

RYb to Ψ̂ and Ψ̂ respectively. So, the bijection f2 is an isometry. �

As F̂ |Φ̂ = F̂ for each F ∈ F , by Proposition 35 we have

Proposition 38 For each F ∈ F,

i2 ◦ F = (f2 ◦ f1(F )) ◦ i1.

That is, for every ϕ ∈ Φ,

F̂ (ϕ) = F̂ (ϕ̂).

Let us now utilize the assumption that {F (Φ) | F ∈ F} covers Ψ to define

a homomorphism T̂ : Ĝ→ Ĥ . First we need

Definition 6 We say that a space F ⊆ Fall
T of GENEOs (F, T ) : (Φ, G) → (Ψ,H)

is collectionwise surjective if for each ψ ∈ Ψ, there exist an Fψ ∈ F and a ϕψ ∈ Φ
such that Fψ(ϕψ) = ψ; that is,

⋃
F∈F F (Φ) = Ψ.

The key property of collectionwise surjective spaces of GENEOs is given in

Theorem 39 If the space F ⊆ Fall
T of GENEOs (F, T ) : (Φ, G) → (Ψ,H) is

collectionwise surjective, then the homomorphism T is non-expansive.

Proof Let a, b ∈ G; then as F is collectionwise surjective and each F ∈ F is a
GENEO, we have

DAut(T (a), T (b)) := sup
ψ∈Ψ

DΨ(ψT (a), ψT (b))
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= sup
ψ∈Ψ

DΨ(Fψ(ϕψ)T (a), Fψ(ϕψ)T (b))

= sup
ψ∈Ψ

DΨ(Fψ(ϕψa), Fψ(ϕψb))

≤ sup
ψ∈Ψ

DΦ(ϕψa, ϕψb)

≤ sup
ϕ∈Φ

DΦ(ϕa, ϕb)

= DAut(a, b).

�

For the rest of this section, the spaces F ⊆ Fall
T will be assumed to be

collectionwise surjective. Clearly, F1 := {F̂ : Φ̂ → Ψ̂ | F ∈ F} is collectionwise

surjective whenever F is so, since F̂ψ(ϕ̂ψ) = F̂ψ(ϕψ) = ψ̂ for every ψ ∈ Ψ.
Theorem 39 implies

Corollary 40 The homomorphism T̂ : Ĝ→ Ĥ is non-expansive.

Corollary 40 allows us to define a map T̂ : Ĝ → Ĥ unambiguously: Let

g ∈ Ĝ and (ĝn)n∈N be a sequence in Ĝ that converges to g in Ĝ. As T̂ is non-

expansive and Ĥ is a complete metric space, the sequence (T̂ (ĝn))n∈N in Ĥ

converges to a unique element h ∈ Ĥ. We put

T̂ (g) := h.

That is,

T̂
(

lim
n→∞

ĝn

)

:= lim
n→∞

T̂ (ĝn).

Note that T̂ |
Ĝ
= T̂ . So, the commutativity condition k2 ◦ T = T̂ ◦ k1 (i.e.,

T̂ (g) = T̂ (ĝ) for every g ∈ G) in Proposition 35 can be rephrased as

Proposition 41 k2 ◦ T = T̂ ◦ k1 (i.e., T̂ (g) = T̂ (ĝ) for every g ∈ G).

We observe that the map T̂ : Ĝ→ Ĥ preserves the group structure:

Theorem 42 The function T̂ : Ĝ→ Ĥ is a group homomorphism.

Proof Let a, b ∈ Ĝ, and (ân)n∈N, (b̂n)n∈N be sequences in Ĝ converging respectively

to a, b in Ĝ. Recalling the continuity of the composition of functions on Aut
Φ̂
(X̂)
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and Aut
Ψ̂
(Ŷ ) (Theorem 6) and the definition of T̂ , we compute

T̂
(
ab
)
= T̂

(
lim
n→∞

ân lim
n→∞

b̂n

)

= T̂
(

lim
n→∞

ânb̂n

)

= lim
n→∞

T̂ (ânb̂n)

= lim
n→∞

T̂ (ân)T̂ (b̂n)

= lim
n→∞

T̂ (ân) lim
n→∞

T̂ (b̂n)

= T̂
(

lim
n→∞

ân

)
T̂
(

lim
n→∞

b̂n

)

= T̂ (a)T̂ (b).

Therefore, T̂ is a group homomorphism. �

The next claim allows us to pass from T̂−equivariance to T̂−equivariance.

Theorem 43 Every GENEO F̂ ∈ F2 ⊆ Fall,2

T̂
is T̂−equivariant as well. Hence(

F̂ , T̂
)
:
(
Φ̂, Ĝ

)
→

(
Ψ̂, Ĥ

)
is a GENEO for each F ∈ F.

Proof Let ϕ ∈ Φ̂, g ∈ Ĝ, and (ĝn)n∈N be a sequence in Ĝ converging to g. Recalling

the fact that F̂ is a GENEO for T̂ (and in particular a non-expansive, and hence
continuous, map) by Proposition 36, the continuity of the actions of Aut

Φ̂
(X̂) and

Aut
Ψ̂
(Ŷ ) respectively on Φ̂ and Ψ̂ (Theorem 6), and the definition of T̂ , we compute

F̂ (ϕ̄ḡ) = F̂
(
ϕ lim
n→∞

ĝn

)

= F̂
(

lim
n→∞

ϕĝn

)

= lim
n→∞

F̂ (ϕĝn)

= lim
n→∞

F̂ (ϕ)T̂ (ĝn)

= F̂ (ϕ) lim
n→∞

T̂ (ĝn)

= F̂ (ϕ)T̂
(

lim
n→∞

ĝn

)

= F̂ (ϕ)T̂ (g).

�

Because of Theorems 42 and 43, we can now consider F2 as a set of

GENEOs from
(

Φ̂, Ĝ
)

to
(

Ψ̂, Ĥ
)

with respect to T̂ , and denote this set by

F3 to make clear that we are taking the homomorphism T̂ instead of T̂ .
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The set Fall

T̂
⊇ F3 of all GENEOs from (Φ̂, Ĝ) to (Ψ̂, Ĥ) with respect to T̂

is a metric space with the distance function D3
GENEO given by

D3
GENEO(F

′, F ′′) := sup
ϕ∈Φ̂

D
Ψ̂
(F ′(ϕ), F ′′(ϕ)), F ′, F ′′ ∈ Fall

T̂
.

Moreover, since the data sets Φ̂ and Ψ̂ are compact, the space (Fall

T̂
, D3

GENEO)

is compact as well [14, Theorem 7]. Consequently,

Proposition 44 The closure cl(F3) of F3 ⊆ Fall

T̂
in the compact space Fall

T̂
is

compact.

As the definitions of D2
GENEO and D3

GENEO do not depend on the reference

homomorphisms T̂ and T̂ respectively, we observe that the identity from F2

to F3 is an isometry.
Propositions 34 and 37 together give

Proposition 45 The correspondence f : F → F3 given by

f := f2 ◦ f1

is an isometry.

Therefore, we can rephrase Proposition 38 as

Proposition 46 For each F ∈ F,

i2 ◦ F = f(F ) ◦ i1 (i.e., F̂ (ϕ) = F̂ (ϕ̂) for every ϕ ∈ Φ).

We can now state the main result in this paper by introducing the following
definition:

Definition 7 A compact space F∗ ⊆ Fall
T∗ of GENEOs (F ∗, T ∗) : (Φ∗, G∗) →

(Ψ∗,H∗) with dom(Φ∗) = X∗ and dom(Ψ∗) = Y ∗ is said to be a compactification
of a space F ⊆ Fall

T of GENEOs (F, T ) : (Φ, G) → (Ψ,H) with dom(Φ) = X and
dom(Ψ) = Y , if the perception pairs (Φ∗, G∗) and (Φ∗, G∗) are compactifications of
(Φ, G) and (Ψ,H) respectively, and there is an isometric embedding f of F in F∗

as a dense subspace, such that the following commutativity conditions are satisfied:
i2 ◦ F = f(F ) ◦ i1, for each F ∈ F , and k2 ◦ T = T ∗ ◦ k1.

Theorem 47 Every collectionwise surjective space F ⊆ Fall
T of GENEOs (F, T ) :

(Φ, G) → (Ψ,H) with dom(Φ) = X and dom(Ψ) = Y admits a compactification F∗,
provided the data sets Φ and Ψ are totally bounded and endow X and Y with metric
structures.
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Proof It follows from Theorem 32 and Propositions 41, 44, 45, and 46, by setting

F ∗ := F̂ , T ∗ := T̂ , and F∗ := cl(F3) ⊆ Fall

T̂
. �

5 Discussion

In this paper, we have shown that when the spaces of measurements are totally
bounded and large enough to ensure that any two points can be distinguished
by our measurements, we can always assume that we are considering compact
perception pairs and compact spaces of GENEOs, provided that the set of
our operators is collectionwise surjective. This result makes available a sound
basis for further research concerning spaces of GENEOs, and paves the way
for possible applications of the theory.

Of course, the computation costs might be higher while working with com-
pactifications, but that should not be considered to be a drawback. In fact, in
practical applications, one does not necessarily need to work with compacti-
fications in an explicitly concrete manner. The mere recognition that certain
spaces of GENEOs can be nicely embedded in compact ones is all that one
needs most of the time.

Our research has raised several questions as well. For example, it is not
clear whether the assumption of collectionwise surjectivity could be removed or
made milder. Furthermore, we could wonder if our approach could be extended
to the case whenX and Y are endowed with a pseudo-metric instead of a metric
structure, thereby extending the range of applicability of our constructions.
We are planning to follow these lines of research in the near future.
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Appendix A Supplementary Proofs

For the sake of completeness, we recall here the proofs of some results reported
in Section 3 that have been given only in [27].

Proof of Proposition 1 Let ϕ ∈ Φ and x1, x2 ∈ X. Then

|ϕ(x1)− ϕ(x2)| ≤ sup
ϕ′∈Φ

|ϕ′(x1)− ϕ
′(x2)| = DX (x1, x2).

So ϕ : X → R is non-expansive. �

Proof of Theorem 3 It suffices to show that every sequence (xi)i∈N in X admits a
Cauchy subsequence [24]. Let us consider an arbitrary sequence (xi)i∈N in X and
an arbitrarily small ε > 0. Since Φ is totally bounded, we can find a finite subset
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Φε = {ϕ1, . . . , ϕn} such that Φ =
⋃n
i=1BΦ(ϕi, ε), where BΦ(ϕ, ε) = {ϕ′ ∈ Φ :

DΦ(ϕ
′, ϕ) < ε}. In particular, we can say that for any ϕ ∈ Φ there exists ϕk̄ ∈ Φε

such that ‖ϕ − ϕk̄‖∞ < ε. Now, we consider the real sequence (ϕ1(xi))i∈N that
is bounded because all the functions in Φ are bounded. From Bolzano-Weierstrass
Theorem it follows that we can extract a convergent subsequence (ϕ1(xih))h∈N.
Then we consider the sequence (ϕ2(xih))h∈N. Since ϕ2 is bounded, we can extract
a convergent subsequence (ϕ2(xiht

))t∈N. We can repeat the same argument for any
ϕk ∈ Φε. Thus, we obtain a subsequence (xpj )j∈N of (xi)i∈N, such that (ϕk(xpj ))j∈N

is a real convergent sequence for any k ∈ {1, . . . , n}, and hence a Cauchy sequence
in R. Moreover, since Φε is a finite set, there exists an index ̄ such that for any
k ∈ {1, . . . , n} we have that

|ϕk(xpr )− ϕk(xps)| < ε, for all r, s ≥ ̄.

We observe that ̄ does not depend on k, but only on ε and Φε.
In order to prove that (xpj )j∈N is a Cauchy sequence in X, we observe that for

any r, s ∈ N and any ϕ ∈ Φ, by choosing a k such that ‖ϕ− ϕk‖∞ < ε we have:

|ϕ(xpr )− ϕ(xps)| = |ϕ(xpr )− ϕk(xpr ) + ϕk(xpr )− ϕk(xps) + ϕk(xps)− ϕ(xps)|

≤ |ϕ(xpr )− ϕk(xpr )|+ |ϕk(xpr )− ϕk(xps)|+ |ϕk(xps)− ϕ(xps)|

≤ ‖ϕ− ϕk‖∞ + |ϕk(xpr )− ϕk(xps)|+ ‖ϕk − ϕ‖∞.

It follows that |ϕ(xpr )− ϕ(xps)| < 3ε for every ϕ ∈ Φ and every r, s ≥ ̄. Thus,
supϕ∈Φ |ϕ(xpr )− ϕ(xps)| = DX (xpr , xps) ≤ 3ε. Hence, the subsequence (xpj )j∈N is
a Cauchy sequence in X, and the theorem is proved. �

Proof of Theorem 7 Let (gi)i∈N be a sequence in G and take a real number ε > 0.
Given that Φ is totally bounded, we can find a finite subset Φε = {ϕ1, . . . , ϕn} such
that for every ϕ ∈ Φ there exists ϕh ∈ Φε for which DΦ(ϕh, ϕ) < ε.

Let us consider the sequence (ϕ1gi)i∈N in Φ. Since Φ is totally bounded, we
can extract a Cauchy subsequence (ϕ1gih)h∈N [24]. Then we consider the sequence
(ϕ2gih)h∈N. Again, we can extract a Cauchy subsequence (ϕ2giht

)t∈N. We can repeat
the same argument for any ϕk ∈ Φε. Thus, we are able to extract a subsequence
(gij )j∈N of (gi)i∈N such that (ϕkgij )j∈N is a Cauchy sequence for any k ∈ {1, . . . , n}.
For the finiteness of set Φε, we can find an index ̄ such that for any k ∈ {1, . . . , n}

DΦ(ϕkgir , ϕkgis) < ε, for every s, r ≥ ̄.

In order to prove that (gij )j∈N is a Cauchy sequence, we observe that for any
ϕ ∈ Φ, any ϕk ∈ Φε, and any r, s ∈ N we have

DΦ(ϕgir , ϕgis) ≤ DΦ(ϕgir , ϕkgir ) +DΦ(ϕkgir , ϕkgis) +DΦ(ϕkgis , ϕgis )

= DΦ(ϕ,ϕk) +DΦ(ϕkgir , ϕkgis) +DΦ(ϕk, ϕ).

We observe that ̄ does not depend on ϕ, but only on ε and Φε. By choosing a
ϕk ∈ Φε such that DΦ(ϕk, ϕ) < ε, we get DΦ(ϕgir , ϕgis) < 3ε for every ϕ ∈ Φ and
every r, s ≥ ̄. Thus, DAut(gir , gis) ≤ 3ε. Hence, the sequence (gij )j∈N is a Cauchy
sequence. Therefore, G is totally bounded. �

Proof of Proposition 8 Let C(X,X) denote the metric space of all continuous self-
maps of X with respect to the metric d∞ given by

d∞(f, g) := sup
x∈X

DX (f(x), g(x)) , for every f, g ∈ C(X,X).
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It suffices to show that Iso(X) is closed in C(X,X), as it is relatively compact by
Arzelà-Ascoli theorem [25]. Let (fi)i∈N be a sequence in Iso(X) that converges to
some f ∈ C(X,X); we show that f ∈ Iso(X). Note that f(x) = limi→∞ fi(x) with
respect to DX , for each x ∈ X; indeed,

0 ≤ lim
i→∞

DX (f(x), fi(x)) ≤ lim
i→∞

d∞(f, fi) = 0.

So,

DX(f(x), f(y)) = DX( lim
i→∞

fi(x), lim
i→∞

fi(y))

= lim
i→∞

DX (fi(x), fi(y))

= lim
i→∞

DX (x, y)

= DX(x, y),

whence f preserves DX .
It immediately follows that f is injective. As for surjectivity, let x0 be an

arbitrary point of X; we show that x0 ∈ f(X). Consider the sequence (xn)n∈N

defined by setting xn+1 := f(xn). Since X is compact, (xn)n∈N admits a converg-
ing subsequence (xni)i∈N. Let ε > 0 be an arbitrary real number. Then there is
an n0 ∈ N such that DX(xni , xnj ) < ε for every i, j ≥ n0. If nj ≥ ni, then
DX (xni , xnj ) = DX (x0, xnj−ni), as f preserves DX . Hence, DX(x0, f(X)) :=
infx∈f(X)DX(x0, x) ≤ DX(x0, xnj−ni) = DX(xni , xnj ) < ε. From the arbitrariness
of ε, it follows that DX(x0, f(X)) = 0. As f preserves DX , it is continuous, and
f(X) then is compact. In particular, f(X) is closed, and hence x0 ∈ f(X). �

Proof of Theorem 9 For the sake of conciseness, we will rephrase the proof given
in [27]. Consider the collection H of all non-empty compact subsets of the space
NE(X,R) of all real-valued non-expansive functions on (X,DX), endowed with the
distance induced by the uniform norm. Of course, by Proposition 1, NE(X,R) ⊇ Φ.
We know that (H, dH) is a metric space, where dH is the usual Hausdorff distance
[22]. If g ∈ Iso(X), then the map Rg : Φ → RXb that takes ϕ to ϕg is continuous (it
indeed preserves the max-morm distance), and hence Φg := {ϕg, ϕ ∈ Φ} ∈ H.

We now observe that if g, h ∈ Iso(X), then

dH(Φg,Φh) := max

{
sup
ϕ∈Φg

inf
ψ∈Φh

‖ϕ− ψ‖∞, sup
ψ∈Φh

inf
ϕ∈Φg

‖ϕ− ψ‖∞

}

= max

{
sup
ϕ∈Φ

inf
ψ∈Φ

‖ϕg − ψh‖∞, sup
ψ∈Φ

inf
ϕ∈Φ

‖ϕg − ψh‖∞

}

≤ max

{
sup
ϕ∈Φ

‖ϕg − ϕh‖∞, sup
ψ∈Φ

‖ψg − ψh‖∞

}

= sup
ϕ∈Φ

‖ϕg − ϕh‖∞

= sup
ϕ∈Φ

sup
x∈X

|ϕg(x)− ϕh(x)|

= sup
x∈X

sup
ϕ∈Φ

|ϕg(x)− ϕh(x)|

= sup
x∈X

DX (g(x), h(x))
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= d∞(g, h).

Therefore, the map χ : Iso(X) → H that takes g to Φg is non-expansive and hence
continuous. Since AutΦ(X) = χ−1(Φ), such a group is the preimage of a closed set
under a continuous function. It follows that it is closed in Iso(X), and hence compact.

�
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