Weak amenability of weighted measure algebras and their second duals

M. J. Mehdipour and A. Rejali*

Abstract. In this paper, we study the weak amenability of weighted measure algebras and prove that $M(G, \omega)$ is weakly amenable if and only if G is discrete and every bounded quasi-additive function is inner. We also study the weak amenability of $L^1(G, \omega)^{**}$ and $M(G, \omega)^{**}$ and show that the weak amenability of theses Banach algebras are equivalent to finiteness of G. This gives an answer to the question concerning weak amenability of $L^1(G, \omega)^{**}$ and $M(G, \omega)^{**}$.

1 Introduction

Let G be a locally compact group with an identity element e. Let us recall that a continuous function $\omega: G \to [1, \infty)$ is called a *weight function* if for every $x, y \in G$

$$\omega(xy) \le \omega(x) \ \omega(y)$$
 and $\omega(e) = 1$.

Let $C_0(G, 1/\omega)$ be the space of all functions f on G such that $f/\omega \in C_0(G)$, the space of all bounded continuous functions on G that vanish at infinity. Let also $M(G, \omega)$ be the Banach space of all complex regular Borel measures μ on G for which $\omega \mu \in M(G)$, the measure algebra of G. It is well-known that $M(G, \omega)$ is the dual space of $C_0(G, 1/\omega)$ [4, 21, 26], see [22, 24] for study of weighted semigroup measure algebras; see also [13, 14, 17]. Note that $M(G, \omega)$ is a Banach algebra with the norm $\|\mu\|_{\omega} := \|\omega\mu\|$ and the convolution product "*" defined by

$$\mu * \nu(f) = \int_G \int_G f(xy) \, d\mu(x) d\nu(y) \qquad (\mu, \nu \in M(G, \omega), f \in C_0(G, 1/\omega))$$

Let $L^1(G, \omega)$ be the Banach space of all Borel measurable functions f on G such that $\omega f \in L^1(G)$, the group algebra of G. Then $L^1(G, \omega)$ with the convolution product "*" and the norm $||f||_{1,\omega} = ||\omega f||_1$ is a Banach algebras.

^{*}Corresponding author

⁰2020 Mathematics Subject Classification: 43A10, 43A20, 47B47, 47B48.

Keywords: Locally compact group, Weak amenability, Weighted measure algebras, Second dual of group algebras.

A Borel measurable function p from $G \times G$ into \mathbb{C} is called *quasi-additive* if for almost every where $x, y, z \in G$

$$p(xy, z) = p(x, yz) + p(y, zx).$$

If there exists $h \in L^{\infty}(G, 1/\omega)$ such that

$$p(x,y) = h(xy) - h(yx)$$

for almost every where $x, y \in G$, then p is called *inner*. Let $D(G, \omega)$ be the set of all quasi-additive functions p on G such that

$$\sup_{x,y\in G}\frac{|p(x,y)|}{\omega^{\otimes}(x,y)} < \infty.$$

We denote by $I(G, \omega)$ the set of inner quasi-additive functions. For $\mu \in M(G, \omega)$, let $L^{\infty}(|\mu|, \omega)$ be the Banach space of all ω -bounded Borel measurable functions p on G such that $\|p\|_{\omega,\mu} = \|p/\omega\|_{\mu} < \infty$. An element

$$P = (p_{\mu})_{\mu} \in \Pi\{L^{\infty}(|\mu|, \omega) : \mu \in M(G, \omega)\}$$

is called a ω -generlized function on G if

$$\sup\{\|p_{\mu}\|_{\omega,\mu}: \mu \in M(G,\omega)\} < \infty$$

and for every $\mu, \nu \in M(G, \omega)$ with $|\mu| \ll |\nu|$ we have $p_{\mu} = p_{\nu}, |\mu| - a.e.$. The space of all ω -generized function on G is denoted by $GL(G, 1/\omega)$. It is well-known from [25] that $GL(G, 1/\omega)$ is the dual of $M(G, \omega)$ for the pairing

$$\langle (p_{\mu})_{\mu}, \nu \rangle = \int_{G} p_{\nu} \, d\nu$$

A function $F = (F_{\mu \otimes \nu})_{\mu,\nu \in M(G,\omega)} \in GL(G \times G, \omega^{\otimes})$ is called a *generalized quasi-additive* function if

$$F_{(\mu*\nu)\otimes\eta}(xy,z) = F_{\mu\otimes(\nu*\eta)}(x,yz) + F_{\nu\otimes(\eta*\mu)}(y,zx)$$

for all $\mu, \nu, \eta \in M(G, \omega)$ and $x, y, z \in G$. The set of all generalized quasi-additive functions is denoted by $GD(G, \omega)$. If there exists $p = (p_{\mu}) \in GL(G, 1/\omega)$ such that for every $\mu, \nu \in M(G, \omega)$ and for almost every where $x, y \in G$

$$F_{\mu\otimes\nu}(x,y) = p_{\mu*\nu}(xy) - p_{\nu*\mu}(yx),$$

then F is said to be a generalized inner quasi-additive function. The set of all generalized inner quasi-additive functions is denoted by $GI(G, \omega)$. Let A be a Banach algebra and $D: A \to A^*$ be a bounded linear operator. Then D is called *cyclic* if $\langle D(a), a \rangle = 0$ for all $a \in A$. Let us recall that a bounded linear operator $D: A \to A^*$ is called a *derivation* if

$$D(ab) = D(a) \cdot b + a \cdot D(b)$$

for all $a, b \in A$. The space of all bounded continuous derivations from A into A^* is denoted by $\mathcal{Z}(\mathcal{A}, \mathcal{A}^*)$. If every element of $\mathcal{Z}(\mathcal{A}, \mathcal{A}^*)$ is cyclic, then A is called *cyclically weakly amenable*, however, A is called *weakly amenable* if every derivation $D \in \mathcal{Z}(\mathcal{A}, \mathcal{A}^*)$ is inner; that is, there exists $z \in A^*$ such that for every $a \in A$

$$D(a) = \operatorname{ad}_z(a) := z \cdot a - a \cdot z.$$

The weak amenability of group algebras have been study by several authors. For example, Brown and Moran [2] studied the weak amenability of measure algebra of locally compact Abelian groups and showed that if zero is the only continuous point derivation of M(G), then G is discrete. Note that if G is discrete, then M(G) is weakly amenable, because in this case $M(G) = \ell^1(G)$ is always weakly amenable [8]. One can prove that if d is a non-zero continuous point derivation of M(G) at

$$\varphi \in \Delta(M(G)) \cup \{0\},\$$

then the map $\mu \mapsto d(\mu)\varphi$ is a continuous non-inner derivation from M(G) into $M(G)^*$. In other words, M(G) is not weakly amenable. These facts give rise to the conjecture that for a locally compact group G, the Banach algebra M(G) is weakly amenable if and only if G is discrete; or equivalently, zero is the only continuous point derivation of M(G) at a character. Dales, Ghahramani and Helemskii [3] proved this conjecture. Some authors investigated the weak amenability of the second dual of Banach algebras. For instance, Ghahramani, Loy and Willis [7] proved that if G is a locally compact Abelian group and $L^1(G)^{**}$ is weakly amenable, then G is discrete. Forrest [6] investigated the weak amenability of the dual of a topological introverted subspace X of VN(G). Under certain conditions, he showed that if $A(G)^{**}$ is weakly amenable, then every Abelian subgroup of G is finite. As a consequence of this result, he improved the result of Ghahramani, Loy and Willis. In fact, for a locally compact Abelian group G, he proved that weak amenability of $L^1(G)^{**}$ is equivalent to the finiteness of G. Lau and Loy [9] considered a left introverted subspace of $L^{\infty}(G)$ containing AP(G), say X, and studied weak amenability of X^* . One can obtain the result of weak amenability of $L^1(G)^{**}$ from Lau-Loy's theorem. Finally, Dales, Lau and Strauss [5] proved that $L^{1}(G)^{**}$ is weakly amenable if and only if there is no non-zero continuous point derivation of $L^1(G)^{**}$ at the discrete augmentation character; or equivalently, G is finite.

This paper is organized as follow. In Section 2 we study the weak amenability of $M(G, \omega)$ and show that $M(G, \omega)$ is weakly amenable if and only if G is discrete and every bounded quasi-additive function is inner. We also prove that cyclic weak amenability and point amenability of $M(G, \omega)$ are equivalent to weak amenability of it. Section 3 is devoted to studies of the weak amenability of second dual of $L^1(G, \omega)$ and $M(G, \omega)$. We proved that $L^1(G, \omega)^{**}$ is weakly amenable if and only if $M(G, \omega)^{**}$ is weakly amenable; or equivalently, G is finite. We verify that cyclic weak amenability and point amenability of $L^1(G, \omega)^{**}$ and $M(G, \omega)^{**}$ are equivalent to finiteness of G.

2 Weighted measure algebras

Let ω_i be a weight function on locally compact group G_i for i = 1, 2. Define the weight function $\omega_1 \otimes \omega_2$ on $G_1 \times G_2$ by

$$\omega_1 \otimes \omega_2(x_1, x_2) = \omega_1(x_1)\omega_2(x_2)$$

for all $x_1 \in G_1$ and $x_2 \in G_2$. In the case where, $G_1 = G_2 = G$ and $\omega_1 = \omega_2 = \omega$, we set $\omega^{\otimes} = \omega_1 \otimes \omega_2$. The following result is needed to prove our results.

Proposition 2.1 Let ω_i be a weight function on locally compact group G_i for i = 1, 2. Then

$$M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2) = M(G_1 \times G_2, \omega_1 \otimes \omega_2).$$

Proof. Let $\eta_i \in M(G_i, \omega_i)$, for i = 1, 2. Then for every $f \in C_0(G_1 \times G_2)$, we have

$$\langle \eta_1 \otimes \eta_2, f \rangle = \int_{G_1} \int_{G_2} f(x, y) \ d\eta_1(x) d\eta_2(y).$$

It is easy to prove that

$$\eta_1 \otimes \eta_2 \in C_0(G_1 \times G_2, 1/\omega_1 \otimes \omega_2)^* = M(G_1 \times G_2, \omega_1 \otimes \omega_2).$$

Conversely, let $\eta \in M(G_1 \times G_2, \omega_1 \otimes \omega_2)$. In view of Theorem Lusin's theorem, there exists sequences (f_n) and (g_n) in the unit ball $C_c(G_1, 1/\omega_1)$ and $C_c(G_2, 1/\omega_2)$ with compact support, respectively, such that for almost every where $x \in G_1$ and $y \in G_2$

$$f_n(x) \to 1$$
 and $g_n(y) \to 1$

as $n \to \infty$. We define the functionals η_1 and η_2 by

$$\eta_1(f) = \lim_n \eta(f \otimes g_n) \quad \text{and} \quad \eta_2(g) = \lim_n \eta(f_n \otimes g)$$

for all $f \in C_0(G_1, 1/\omega_1)$ and $g \in C_0(G_2, 1/\omega_2)$. Then $\eta_1 \in M(G_1, \omega_1), \eta_2 \in M(G, \omega_2)$. In fact,

$$|\eta_1(f)| \le \|\eta\| \|f\|_{\infty,1/\omega}$$
 and $|\eta_2(g)| \le \|\eta\| \|g\|_{\infty,1/\omega}$

On the other hand,

$$\eta_1 \otimes \eta_2(f \otimes g) = \lim_n \eta(f \otimes g_n) \eta(f_n \otimes g)$$
$$= \lim_n \int_{G_1 \times G_2} f(x) f_n(x) g(y) g_n(y) \, d\eta(x, y)$$

Since η is bounded, it follows from Lebesgue dominated convergence theorem that $||f_n \otimes g_n||_{\infty,1/\omega} \leq 1$ and $1 \in L^1(\eta)$. Furthermore, $f_n \otimes g_n(x,y) \to 1$ for every $x \in G_1, y \in G_2$. For every $f \in C_0(G_1, 1/\omega_1)$ and $g \in C_0(G_2, 1/\omega_2)$

$$\eta_1 \otimes \eta_2(f \otimes g) = \int_{G_1 \times G_2} f \otimes g(x, y) \, d\eta(x, y) = \eta(f \otimes g).$$

It follows that for every $h \in C_0(G_1, 1/\omega_1) \otimes C_0(G_2, 1/\omega_2)$

$$\eta_1 \otimes \eta_2(h) = \eta(h)$$

and so for every $h \in C_0(G_1 \times G_2, 1/\omega_1 \otimes \omega_2)$

$$\eta_1 \otimes \eta_2(h) = \eta(h)$$

Therefore, $\eta_1 \otimes \eta_2 = \eta$.

For every $f \in L^1(G, \omega)$, we define the seminorm $T_f : M(G, \omega) \to [0, \infty)$ by

$$T_f(\mu) = \|f * \mu\|_{1,\omega} + \|\mu * f\|_{1,\omega}.$$

The locally convex topology defined by the family of seminorms $(T_f)_{f \in L^1(G,\omega)}$ is called the *strict topology* on $M(G, \omega)$ with respect to $L^1(G, \omega)$ (or briefly strict topology).

Proposition 2.2 Let G be a locally compact group and ω be a weight function on G. If $p \in D(G, \omega)$, then there exists a unique bounded derivation $D \in \mathcal{Z}(M(G, \omega), M(G, \omega)^*)$ such that $p(x, y) = \langle D(\delta_x), \delta_y \rangle$ for all $x, y \in G$, where δ is the Diract measure at \cdot .

Proof. Let $p \in D(G, \omega)$. Then $\Gamma(D_1) = p$ for some $D_1 \in \mathcal{Z}(L^1(G, \omega), L^{\infty}(G, 1/\omega))$. By Proposition 2.1.6 [23], there exists $D_2 \in \mathcal{Z}(M(G, \omega), L^{\infty}(G, 1/\omega))$ such that D_2 is strict-weak^{*} continuous and $D_2|_{L^1(G,\omega)} = D_1$. Hence for every $f \in L^1(G, \omega)$,

$$\begin{aligned} \langle D_2(\delta_x), f \rangle &= \lim \langle D_1(e_\alpha * \delta_x), f \rangle \\ &= \lim \int_G \int_G p(x, y) (e_\alpha * \delta_x)(z) f(z) \, dz dy \\ &= \int_G \int_G p(x, y) e_\alpha(z x^{-1}) f(y) \, dz dy. \end{aligned}$$

On the other hand, there exists a linear functional $T_1: L^1(G \times G, \omega^{\otimes}) \to \mathbb{C}$ such that

$$\langle T_1, f \otimes g \rangle = \langle D_1(f), g \rangle$$

for all $f,g \in L^1(G,\omega)$. Since $L^1(G \times G, \omega^{\otimes})$ is a closed ideal in $M(G \times G, \omega^{\otimes})$, it follows that T_1 has a strict continuous extension, say $T_2 : M(G,\omega) \otimes M(G,\omega) \to \mathbb{C}$. Define $D: M(G,\omega) \to M(G,\omega)^*$ by

$$\langle D(\mu),
u
angle = \langle T_2, \mu \otimes
u
angle$$

for all $\mu, \nu \in M(G, \omega)$. If (e_{α}) is a bounded approximate identity of $L^{1}(G, \omega)$, then for every $x \in G$, $e_{\alpha} * \delta_{x} \to \delta_{x}$ in the strict topology. So

$$T_2(e_\alpha * \delta_x \otimes e_\alpha * \delta_y) \to T_2(\delta_x \otimes \delta_y).$$

Therefore,

as claimed.

In the following, let $\mathcal{I}_{nn}(M(G,\omega), M(G,\omega)^*)$ be the set of all inner derivations from $M(G,\omega)$ into $M(G,\omega)^*$, and let $\mathcal{B}(M(G,\omega), M(G,\omega)^*)$ be the space of bounded linear operators from $M(G,\omega)$ into $M(G,\omega)^*$. Define the isometric isomorphism Γ from Banach space $\mathcal{B}(M(G,\omega), M(G,\omega)^*)$ onto $(M(G,\omega)\hat{\otimes}M(G,\omega))^*$ by

$$\langle \Gamma(T), \mu \otimes \nu \rangle = \langle T(\mu), \nu \rangle$$

 $M(G,\omega) \otimes M(G,\omega)$ is the projective tensor product of $M(G,\omega)$; see Proposition 13 VI in [1].

Proposition 2.3 Let G be a locally compact group and ω be a weight function on G. Then the following statements hold.

(i) The function $\Gamma : \mathcal{Z}(M(G,\omega), M(G,\omega)^*) \to GD(G,\omega)$ is an isometric isomorphism. Furthermore, $\Gamma(\mathcal{I}_{nn}(M(G,\omega), M(G,\omega)^*)) = GI(G,\omega)$.

(ii) If $D \in \mathcal{Z}(M(G,\omega), M(G,\omega)^*)$, then for every $\mu \in M(G,\omega)$ there exists $F = (F_{\mu \otimes \nu})_{\nu} \in GD(G,\omega)$ such that $D(\mu) = (p_{\mu,\nu})_{\nu}$ and $p_{\mu,\nu}(y) = \int_G F_{\mu \otimes \nu}(x,y) d\mu(x)$ for almost every where $y \in G$.

Proof. Let $D \in \mathcal{Z}(M(G,\omega), M(G,\omega)^*)$. Then $D \in \mathcal{B}(M(G,\omega), M(G,\omega)^*)$. Putting $A = B = M(G,\omega)$ in the definition of Γ , we have

$$F := \Gamma(D) \in (M(G,\omega) \hat{\otimes} M(G,\omega))^* = GL(G \times G, 1/\omega^{\otimes})$$

and

$$\begin{array}{lll} \langle D(\mu),\nu\rangle &=& \langle F,\mu\otimes\nu\rangle \\ &=& \int_G F_{\mu\otimes\nu}(x,y) \ d(\mu\otimes\nu)(x,y) \\ &=& \int_G \int_G F_{\mu\otimes\nu}(x,y) \ d\mu(x)d\nu(y). \end{array}$$
(1)

On the other hand, if $P = (p_{\mu})_{\mu \in M(G,\omega)}$, then

$$\langle \operatorname{ad}_{P}(\mu), \nu \rangle = \langle P \cdot \mu - \mu \cdot P, \nu \rangle$$

$$= \langle P, \mu * \nu \rangle - \langle P, \nu * \mu \rangle$$

$$= \int_{G} p_{\mu * \nu} d(\mu * \nu) - \int_{G} p_{\nu * \mu} d(\nu * \mu)$$

$$= \int_{G} \int_{G} (p_{\mu * \nu}(xy) - p_{\nu * \mu}(yx)) d\mu(x) d\nu(y)$$

Now, by the argument used in the proof of Theorem 2.3 in [18], it can be shown that the statement (i) holds. For (ii), assume that $D \in \mathcal{Z}(M(G,\omega), M(G,\omega)^*)$ and $\mu \in M(G,\omega)$. Then

$$D(\mu) \in M(G, \omega)^* = GL(G, 1/\omega).$$

Thus $D(\mu) = (p_{\mu,\nu})_{\nu}$ for some $(p_{\mu,\nu})_{\nu} \in GL(G, 1/\omega)$. Hence for every $\nu \in M(G, \omega)$, we have

$$\langle D(\mu), \nu \rangle = \int_G p_{\mu,\nu} \, d\nu.$$

This together with (1) s shows that

$$p_{\mu,\nu}(y) = \int_G F_{\mu\otimes\nu}(x,y) \ d\mu(x)$$

for almost every where $y \in G$.

We are now in a position to prove the main result of this section.

Theorem 2.4 Let G be a locally compact group and ω be a weight function on G. Then the following assertions are equivalent.

(a) $M(G, \omega)$ is weakly amenable.

(b) For every $D \in \mathcal{Z}(M(G,\omega), M(G,\omega)^*)$ there exists $P = (p_{\mu})_{\mu \in M(G,\omega)}$ such that $\langle D(\mu), \nu \rangle = \int_G \int_G (p_{\mu*\nu}(xy) - p_{\nu*\mu}(yx)) d\mu(x) d\nu(y)$ for all $\mu, \nu \in M(G,\omega)$.

(c) Every generalized quasi-additive function is inner.

(d) M(G) is weakly amenable and $D(G, \omega) = I(G, \omega)$.

(e) G is discrete and every non-inner quasi-additive function in $L^{\infty}(G, 1/\omega)$ is unbounded.

Proof. The implications $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$ follow from Proposition 2.3. By Theorem 1.2 in [3] the implication $(d) \Leftrightarrow (e)$ holds. Also, the implication $(e) \Rightarrow (a)$ follows from Corollary 2.5 in [18]. For $(a) \Rightarrow (e)$, let $M(G, \omega)$ be weakly amenable and φ be a character of M(G). If d is a continuous point derivation at φ on M(G), then $d|_{M(G,\omega)}$ is a continuous point derivation of $M(G, \omega)$ at $\varphi|_{M(G,\omega)}$. Hence d is zero on $M(G, \omega)$. Since $M(G, \omega)$ is dense in M(G), we have d = 0 on M(G) which is implies G is discrete.

Apply Theorem 2.4 in [18] to conclude that $D(G, \omega) = I(G, \omega)$.

From Theorem 4.8 in [19] and Theorem 2.4 and its proof, we may prove the next result.

Corollary 2.5 Let G be a locally compact group. Then the following assertions are equivalent.

(a) $M(G, \omega)$ is weakly amenable.

(b) $M(G, \omega)$ is cyclically weakly amenable.

(c) $M(G, \omega)$ is point amenable.

(d) G is discrete and every non-inner quasi-additive function in $L^{\infty}(G, 1/\omega)$ is unbounded.

An elementary computation shows that the functions ω' and ω^* defined by

 $\omega'(x) = \omega(x^{-1})$ and $\omega^*(x) = \omega \otimes \omega'(x, x)$

are weight functions on G. Combining Theorem 2.4 and the result of [18] we have the following result.

Corollary 2.6 Let ω and ω_0 be weight functions on a locally compact group G. Then the following statements hold.

(i) If $\omega \leq m\omega_0$ for some m > 0, $M(G, \omega_0)$ is weakly amenable and $I(G, \omega_0) = D(G, \omega_0)$, then $M(G, \omega)$ is weakly amenable.

(ii) If ω and ω_0 are equivalent, then weak amenability of $M(G, \omega)$ is equivalent to weak amenability of $M(G, \omega_0)$.

(iii) $M(G, \omega')$ is weakly amenable if and only if $M(G, \omega)$ is weakly amenable.

(iv) If $M(G, \omega^*)$ is weakly amenable and $I(G, \omega^*) = D(G, \omega^*)$, then $M(G, \omega)$ is weakly amenable.

(v) If G is Abelian, then $M(G, \omega^*)$ is weakly amenable if and only if $M(\mathfrak{D}, \omega^{\otimes})$ is weakly amenable, where $\mathfrak{D} := \{(x, x^{-1}) : x \in G\}.$

Let $\phi: G \to G$ be a group epimorphism and ω be a weight function on G. Then the function $\overleftarrow{\omega}: G \to [1, \infty)$ defined by $\overleftarrow{\omega}(x) = \omega(\phi(x))$ is a weight function on G. For every quasi-additive function p, let $\mathfrak{S}(p)$ be the quasi-additive function defined by

$$\mathfrak{S}(p)(x,y) = p(\phi(x),\phi(y)) \qquad (x,y \in G).$$

Theorem 2.4 together with Proposition 4.1 and Theorem 4.6 in [18] proves the next result.

Corollary 2.7 Let ω be weight function on locally compact group G. Then the following statements hold.

(i) If $\phi: G \to G$ is a continuous group epimorphism, $M(G, \overleftarrow{\omega})$ is weakly amenable and $\mathfrak{S}(I(G, \omega)) = I(G, \overleftarrow{\omega})$, then $M(G, \omega)$ is weakly amenable.

(ii) If G is Abelian and $M(G, \tilde{\omega})$ is weakly amenable, then $M(H, \omega|_H)$ is weakly amenable, where H is a subgroup of G.

Corollary 2.8 Let ω_i be a weight function on a locally compact group G_i , for i = 1, 2. Then the following assertions are equivalent.

- (a) $M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$ is weakly amenable.
- (b) $M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$ is cyclically weakly amenable.
- (c) $M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$ is point amenable.
- (d) $M(G_i, \omega_i)$ is weakly amenable and G_i is discrete, for i = 1, 2.

Proof. Let $M(G_1, \omega_1) \otimes M(G_2, \omega_2)$ be point amenable. Since $M(G_i, \omega_i)$ is unital, for i = 1, 2, from Proposition 2.1 we infer that then $M(G_1 \times G_2, \omega_1 \otimes \omega_2)$ is point amenable. By Theorem 2.4, $G_1 \times G_2$ is discrete. It follows that G_i is discrete, for i = 1, 2. Hence $M(G_i, \omega_i) = \ell^1(G_i, \omega_i)$ and so

$$\ell^1(G_1,\omega_1)\hat{\otimes}\ell^1(G_1,\omega_1)) = M(G_1,\omega_1)\hat{\otimes}M(G_2,\omega_2)$$

is weakly amenable. In view of Corollary 4.8 in [18], $\ell^1(G_i, \omega_i)$ is weakly amenable. So (c) implies (d).

Let $M(G_i, \omega_i)$ is weakly amenable and G_i is discrete, for i = 1, 2. By Corollary 2.5, $M(G_i, \omega_i)$ is point amenable, for i = 1, 2. It follows from Theorem 4.1 in [20] and Proposition 2.1 that

$$M(G_1,\omega_1)\hat{\otimes}M(G_2,\omega_2) = M(G_1 \times G_2,\omega_1 \otimes \omega_2)$$

is point amenable. Again, apply Corollary 2.5 to conclude that $M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$ is weakly amenable. That is, (d) implies (a).

As a consequence of Corollary 2.8, we give the next result.

Corollary 2.9 Let ω_i be a weight function on a locally compact discrete group G_i , for i = 1, 2. Then the following assertions are equivalent.

(a) l¹(G₁, ω₁) ⊗l¹(G₂, ω₂) is weakly amenable.
(b) l¹(G₁, ω₁) ⊗l¹(G₂, ω₂) is cyclically weakly amenable.
(c) l¹(G₁, ω₁) ⊗l¹(G₂, ω₂) is point amenable.
(d) l¹(G_i, ω_i) is weakly amenable and G_i is discrete, for i = 1, 2.

We say that $T \in M(G, \omega)^*$ vanishes at infinity if for every $\varepsilon > 0$, there exists a compact subset K of G, for which $|\langle T, \mu \rangle| < \varepsilon$, where $\mu \in M(G, \omega)$ with $|\mu|(K) = 0$ and $\|\mu\|_{\omega} = 1$. We denote by $M_*(G, \omega)$ the subspace of $M(G, \omega)^*$ consisting of all functionals that vanish at infinity. In the case where, $\omega(x) = 1$ for all $x \in G$, we write

$$M_*(G,\omega) := M_*(G).$$

The space $M_*(G, \omega)$ is a norm closed subspace of $M(G, \omega)^*$. It is proved that $M_*(G, \omega)^*$ with the first Arens product is a Banach algebra [16]. For each $f \in L^1(G, \omega)$, we may consider f as a linear functional in $M_*(G)^*$. One can prove that $L^1(G, \omega)$ is a closed ideal in $M_*(G, \omega)^*$ and $M_*(G, \omega)^* = L^1(G, \omega)$ if and only if G is discrete [16]; see [15] for the case $\omega = 1$.

Corollary 2.10 Let G be a locally compact group. Then the following assertions are equivalent.

(a) $M_*(G, \omega)^*$ is weakly amenable.

(b) $M_*(G, \omega)^*$ is cyclically weakly amenable.

(c) $M_*(G, \omega)^*$ is point amenable.

(d) G is discrete and every non-inner quasi-additive function in $L^{\infty}(G, 1/\omega)$ is unbounded.

Proof. Let $M_*(G, \omega)^*$ be point amenable. Since $M(G, \omega)$ is a direct summand of $M_*(G, \omega)^*$, by Theorem 3.7 in [20], $M(G, \omega)$ is point amenable. Hence G is discrete and every non-inner quasi-additive function in $L^{\infty}(G, 1/\omega)$ is unbounded. Thus (c) implies (d). It is easy to see that if G discrete, then

$$M_*(G,\omega)* = \ell^1(G,\omega) = M(G,\omega).$$

It follows that (d) implies (a).

Let $L^{\infty}(G, 1/\omega)$ be the space of all Borel measurable functions f on G with $f/\omega \in L^{\infty}(G)$, the Lebesgue space of bounded Borel measurable functions on G. Let also $L_0^{\infty}(G, 1/\omega)$ denote the subspace of $L^{\infty}(G, 1/\omega)$ consisting of all functions $f \in L^{\infty}(G, 1/\omega)$ that vanish at infinity. It is proved that $L_0^{\infty}(G, 1/\omega)$ is left introverted in $L^{\infty}(G, 1/\omega)$. So $L_0^{\infty}(G, 1/\omega)^*$ is a Banach algebra with the first Arens product [10]; see also [4, 11, 12, 21].

Corollary 2.11 Let G be a locally compact group. Then the following assertions are equivalent.

(a) $L_0^{\infty}(G, 1/\omega)^*$ is weakly amenable.

(b) $L_0^{\infty}(G, 1/\omega)^*$ is cyclically weakly amenable.

(c) $L_0^{\infty}(G, 1/\omega)^*$ is point amenable.

(d) G is discrete and every non-inner quasi-additive function in $L^{\infty}(G, 1/\omega)$ is unbounded.

Corollary 2.12 Let ω_i be a weight function on a locally compact group G_i , for i = 1, 2. Then the following assertions are equivalent.

- (a) $M_*(G_1, \omega_1)^*$ and $M_*(G_2, \omega_2)^*$ are weakly amenable.
- (b) $L_0^{\infty}(G, 1/\omega)^*$ and $L_0^{\infty}(G, 1/\omega)^*$ are weakly amenable.
- (c) $M_*(G_1, \omega_1)^* \hat{\otimes} M_*(G_2, \omega_2)^*$ is weakly amenable and G_i is discrete, for i = 1, 2.
- (d) $L_0^{\infty}(G, 1/\omega)^* \hat{\otimes} L_0^{\infty}(G, 1/\omega)^*$ is weakly amenable and G_i is discrete, for i = 1, 2.

Proof. Assume that $M_*(G_1, \omega_1)^*$ and $M_*(G_2, \omega_2)^*$ are weakly amenable. By Corollary 2.10, G_i is discrete and $M(G_i, \omega_i) = M_*(G_i, \omega_i)^*$ is weakly amenable, for i = 1, 2. It follows from Corollary 2.8 that

$$M_{*}(G_{1},\omega_{1})^{*} \hat{\otimes} M_{*}(G_{2},\omega_{2})^{*} = M(G_{1},\omega_{1}) \hat{\otimes} M(G_{2},\omega_{2})$$

is weakly amenable. So (a) implies (c).

Let $M_*(G_1, \omega_1)^* \hat{\otimes} M_*(G_2, \omega_2)^*$ be weakly amenable and G_i is discrete, for i = 1, 2. This implies that $M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$ is weakly amenable. Thus $M_*(G_i, \omega_i)^* = M(G_i, \omega_i)$ is weakly amenable. Hence (c) implies (a). Similarly, (b) and (d) are equivalent.

Let $\operatorname{LUC}(G, 1/\omega)$ be the space of all continuous function f on G such that f/ω is a left uniformly continuous functions on G; for study of this space see [27]. Let $WAP(\mathfrak{A})$ be the space of all weakly almost periodic functionals on Banach algebra \mathfrak{A} , that is, $f \in \mathfrak{A}^*$ such that the map $a \mapsto af$ from \mathfrak{A} into \mathfrak{A}^* is weakly compact, where $\langle af, b \rangle = \langle f, ba \rangle$ for all $b \in \mathfrak{A}$.

Corollary 2.13 Let $WAP(L^1(G, \omega))^*$ or $LUC(G, \omega)^*$ be 0-point amenable. Then G is discrete.

Let \mathfrak{A} be one of the Banach algebras $M(G, \omega), M_*(G, \omega)^*, L_0^{\infty}(G, 1/\omega)^*, WAP(L^1(G, \omega))^*$ or $LUC(G, \omega)^*$.

Proposition 2.14 Let G be a locally compact group. If \mathfrak{A} is cyclically amenable, then every element of $CD(G, \omega)$ is inner.

Proof. Let $M(G, \omega)$ be cyclically amenable. Since $L^1(G, \omega)$ is a direct summand of $M(G, \omega)$, by Theorem 3.7 in [20], the Banach algebra $L^1(G, \omega)$ is cyclically amenable. It follows from Theorem 5.6 in [18] that every element of $CD(G, \omega)$ is inner. For the other cases, we only need to recall that

$$\mathfrak{A} = M(G, \omega) \oplus \mathfrak{B}$$

for some closed subspace \mathfrak{B} of \mathfrak{A} .

3 The second dual of Banach algebras

The main result of this section is the following which solves an open problem posed in [9].

Theorem 3.1 Let G be a locally compact group. Then the following assertion are equivalent.

(a) $L^1(G, \omega)^{**}$ is weakly amenable. (b) $L^1(G, \omega)^{**}$ is cyclically weakly amenable. (c) $L^1(G, \omega)^{**}$ is point amenable. (d) G is finite.

Proof. Let $\iota : L^1(G, \omega) \to L^1(G)$ be the inclusion map. Since $L^1(G, \omega)$ is dense in $L^1(G), \iota$ is a continuous homomorphism with dense range. So $\iota^{**}: L^1(G, \omega)^{**} \to$ $L^1(G)^{**}$ is epimorphism. Hence if $L^1(G,\omega)^{**}$ is point amenable, then by Theorem 2.1 in [20] the Banach algebra $L^1(G)^{**}$ is point amenable. It follows that every continuous point derivation of $L^1(G)^{**}$ at the discrete augmentation character is zero. From Theorem 11.17 in [5] infer that G is finite. So (c) \Rightarrow (d). The implications (a) \Rightarrow (b) \Rightarrow (c) follows from Theorem 4.1 in [19]. \square

Corollary 3.2 Let G be a locally compact group. Then the following assertion are equivalent.

(a) $M(G, \omega)^{**}$ is weakly amenable. (b) $M(G, \omega)^{**}$ is cyclic amenable. (c) $M(G, \omega)^{**}$ is point amenable. (d) G is finite.

Proof. Let $M(G, \omega)^{**}$ is point amenable. By Proposition 5.2 in [20], the Banach algebra $M(G,\omega)$ is point amenable. In view of Corollary 2.5, G is discrete. Hence $L^1(G,\omega)^{**}$ is weakly amenable. Now, apply Theorem 3.1.

Let us recall that if there exists a compact invariant neighborhood of e in G, then G is called an [IN]-group. The following result is an improvement of Theorem 3.4 in [9].

Theorem 3.3 Let G be a connected locally compact group. If either G_d is amenable or G is an [IN]-group, then the following assertions are equivalent.

(a) $L^1(G, \omega)^{**}$ is weakly amenable. (b) $M(G, \omega)$ is weakly amenable. (c) $G = \{e\}.$

Proof. Let $L^1(G, \omega)^{**}$ be weakly amenable. Since

$$L^1(G,\omega)^{**} = M(G,\omega) \oplus C_0(G,\omega)^{\perp}$$

and $C_0(G, \omega)^{\perp}$ is an ideal in $L^1(G, \omega)^{**}$, we have $M(G, \omega)$ is weakly amenable. So (a) \Rightarrow (b). Let's show that (b) \Rightarrow (c). To this end, let $M(G, \omega)$ be weakly amenable. If follows from Theorem 2.4 that G discrete and M(G) is weakly amenable. If G_d is amenable, then from Theorem 3.3 in [9] we infer that $G = \{e\}$. If G is an [IN]-group, then by Theorem 3.4 in [9], G is compact. Since G is also discrete, it follows that G is finite. Hence G_d is amenable. Thus $G = \{e\}$. So (b) \Rightarrow (c). The implication (c) \Rightarrow (a) is clear.

References

- F. F. Bonsall and J. Duncan, Complete Normed Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, Berlin/ Heidelberg/New York, 1973.
- [2] G. Brown and W. Moran, Point derivations on M(G), Bull. London Math. Soc., 8 (1) (1976) 57–64.
- [3] H. G. Dales, F. Ghahramani and A. Y. A. Helemskii, The amenability of measure algebras, J. London Math. Soc., (2) 66 (2002) 213–226.
- [4] H. G. Dales and A. T. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc., 177 (836) (2005).
- [5] H. G. Dales, A. T. Lau and D. Strauss, Banach algebras on semigroups and on their compactifications, Mem. Amer. Math. Soc., 205 (966) (2010).
- [6] B. Forrest, Weak amenability and the second dual of the Fourier algebra, Proc. Amer. Math. Soc., 125 (8) (1997) 2373-2378.
- [7] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc., 124 (5) (1996) 1489–1497.
- [8] B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc., 23 (3) (1991) 281–284.
- [9] A. T. Lau and R. J. Loy, Weak amenability of Banach algebras on locally compact groups, J. Funct. Anal., 145 (1) (1997) 175–204.
- [10] A. T. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc., 41 (1990) 445–460.
- [11] S. Maghsoudi, M. J. Mehdipour and R. Nasr-Isfahani, Compact right multipliers on a Banach algebra related to locally compact semigroups, Semigroup Forum, 83 (2011), no. 2, 205213. compact semigroups, Semigroup Forum, 83 (2) (2011) 205–213.
- [12] S. Maghsoudi, R. Nasr-Isfahani and A. Rejali, Strong Arens irregularity of Beurling algebras with a locally convex topology, Arch. Math., 86 (5) (2006) 437–448.
- [13] S. Maghsoudi and A. Rejali, Unbounded weighted Radon measures and dual of certain function spaces with strict topology, Bull. Malays. Math. Sci. Soc., 36 (1) (2013) 211–219.

- [14] S. Maghsoudi and A. Rejali, On the dual of certain locally convex function spaces, Bull. Iranian Math. Soc., 41 (4) (2015) 1003–1017.
- [15] D. Malekzadeh Varnosfaderani, Derivations, Multipliers and Topological Centers of Certain Banach Algebras Related to Locally Compact Groups, Thesis (Ph.D.)University of Manitoba, 2017.
- [16] M. J. Mehdipour and GH. R. Moghimi, The existence of non-zero compact right multipliers and Arens regularity of weighted Banach algebras, preprint.
- [17] M. J. Mehdipour and A. Rejali, Regularity and amenability of weighted Banach algebras and their second dual on locally compact groups, arXiv:2112.13286v1.
- [18] M. J. Mehdipour and A. Rejali, Weak amenability of weighted group algebras, arXiv:2209.08346.
- [19] M. J. Mehdipour and A. Rejali, Different types of weak amenability for Banach algebras, arXiv:2209.13580.
- [20] M. J. Mehdipour and A. Rejali, Cohomological properties of different types of weak amenability, arXiv:4532770.
- [21] H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, London Math. Society Monographs, 22, Clarendon Press, Oxford, 2000.
- [22] A. Rejali, The analogue of weighted group algebra for semitopological semigroups, J. Sci. Islam. Repub. Iran, 6 (2) (1995) 113–120.
- [23] A. Rejali, Weighted function spaces on topological groups, Bull. Iranian Math. Soc., 22 (2) (1996) 43–63.
- [24] A. Rejali and H. R. Vishki, Weighted convolution measure algebras characterized by convolution algebras, J. Sci. Islam. Repub. Iran, 19 (2) (2008) 169–173.
- [25] Y. A. Sreider, The structure of maximal ideals in rings of measures with convolution, (Russian) Mat. Sbornik N.S., 27 (69), (1950) 297–318, English translations 1953 in :Amer. Math. Soc. Transl., 81, 365–391.
- [26] R. Stokke, On Beurling measure algebras, arXiv:2107.14694v1.
- [27] Z. Zaffar Jafar Zadeh, Isomorphisms of Banach Algebras Associated with Locally Compact Groups, Thesis (Ph.D.)University of Manitoba, 2015.

Mohammad Javad Mehdipour

Department of Mathematics, Shiraz University of Technology, Shiraz 71555-313, Iran e-mail: mehdipour@.ac.ir **Ali Rejali** Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan 81746-73441, Iran e-mail: rejali@sci.ui.ac.ir