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Weak amenability of weighted measure algebras

and their second duals

M. J. Mehdipour and A. Rejali
∗

Abstract. In this paper, we study the weak amenability of weighted measure algebras and prove

that M(G,ω) is weakly amenable if and only if G is discrete and every bounded quasi-additive function

is inner. We also study the weak amenability of L1(G,ω)∗∗ and M(G,ω)∗∗ and show that the weak

amenability of theses Banach algebras are equivalent to finiteness of G. This gives an answer to the

question concerning weak amenability of L1(G,ω)∗∗ and M(G,ω)∗∗.

1 Introduction

Let G be a locally compact group with an identity element e. Let us recall that a
continuous function ω : G→ [1,∞) is called a weight function if for every x, y ∈ G

ω(xy) ≤ ω(x) ω(y) and ω(e) = 1.

Let C0(G, 1/ω) be the space of all functions f on G such that f/ω ∈ C0(G), the space of
all bounded continuous functions on G that vanish at infinity. Let also M(G, ω) be the
Banach space of all complex regular Borel measures µ on G for which ωµ ∈M(G), the
measure algebra of G. It is well-known that M(G, ω) is the dual space of C0(G, 1/ω)
[4, 21, 26], see [22, 24] for study of weighted semigroup measure algebras; see also
[13, 14, 17]. Note that M(G, ω) is a Banach algebra with the norm ‖µ‖ω := ‖ωµ‖ and
the convolution product “∗”defined by

µ ∗ ν(f) =
∫
G

∫
G
f(xy) dµ(x)dν(y) (µ, ν ∈M(G, ω), f ∈ C0(G, 1/ω)).

Let L1(G, ω) be the Banach space of all Borel measurable functions f on G such that
ωf ∈ L1(G), the group algebra of G. Then L1(G, ω) with the convolution product “∗”
and the norm ‖f‖1,ω = ‖ωf‖1 is a Banach algebras.
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2 Weak amenability of weighted measure algebras

A Borel measurable function p from G × G into C is called quasi-additive if for
almost every where x, y, z ∈ G

p(xy, z) = p(x, yz) + p(y, zx).

If there exists h ∈ L∞(G, 1/ω) such that

p(x, y) = h(xy)− h(yx)

for almost every where x, y ∈ G, then p is called inner. Let D(G, ω) be the set of all
quasi-additive functions p on G such that

sup
x,y∈G

|p(x, y)|

ω⊗(x, y)
<∞.

We denote by I(G, ω) the set of inner quasi-additive functions. For µ ∈ M(G, ω), let
L∞(|µ|, ω) be the Banach space of all ω−bounded Borel measurable functions p on G
such that ‖p‖ω,µ = ‖p/ω‖µ <∞. An element

P = (pµ)µ ∈ Π{L∞(|µ|, ω) : µ ∈ M(G, ω)}

is called a ω−generlized function on G if

sup{‖pµ‖ω,µ : µ ∈ M(G, ω)} <∞

and for every µ, ν ∈ M(G, ω) with |µ| ≪ |ν| we have pµ = pν , |µ| − a.e.. The space of
all ω−generlized function on G is denoted by GL(G, 1/ω). It is well-known from [25]
that GL(G, 1/ω) is the dual of M(G, ω) for the pairing

〈(pµ)µ, ν〉 =
∫
G
pν dν.

A function F = (Fµ⊗ν)µ,ν∈M(G,ω) ∈ GL(G×G, ω⊗) is called a generalized quasi-additive
function if

F(µ∗ν)⊗η(xy, z) = Fµ⊗(ν∗η)(x, yz) + Fν⊗(η∗µ)(y, zx)

for all µ, ν, η ∈ M(G, ω) and x, y, z ∈ G. The set of all generalized quasi-additive
functions is denoted by GD(G, ω). If there exists p = (pµ) ∈ GL(G, 1/ω) such that for
every µ, ν ∈M(G, ω) and for almost every where x, y ∈ G

Fµ⊗ν(x, y) = pµ∗ν(xy)− pν∗µ(yx),

then F is said to be a generalized inner quasi-additive function. The set of all gener-
alized inner quasi-additive functions is denoted by GI(G, ω).
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Let A be a Banach algebra and D : A → A∗ be a bounded linear operator. Then
D is called cyclic if 〈D(a), a〉 = 0 for all a ∈ A. Let us recall that a bounded linear
operator D : A→ A∗ is called a derivation if

D(ab) = D(a) · b+ a ·D(b)

for all a, b ∈ A. The space of all bounded continuous derivations from A into A∗

is denoted by Z(A,A∗). If every element of Z(A,A∗) is cyclic, then A is called
cyclically weakly amenable, however, A is called weakly amenable if every derivation
D ∈ Z(A,A∗) is inner; that is, there exists z ∈ A∗ such that for every a ∈ A

D(a) = adz(a) := z · a− a · z.

The weak amenability of group algebras have been study by several authors. For
example, Brown and Moran [2] studied the weak amenability of measure algebra of
locally compact Abelian groups and showed that if zero is the only continuous point
derivation of M(G), then G is discrete. Note that if G is discrete, then M(G) is weakly
amenable, because in this case M(G) = ℓ1(G) is always weakly amenable [8]. One can
prove that if d is a non-zero continuous point derivation of M(G) at

ϕ ∈ ∆(M(G)) ∪ {0},

then the map µ 7→ d(µ)ϕ is a continuous non-inner derivation from M(G) into M(G)∗.
In other words, M(G) is not weakly amenable. These facts give rise to the conjecture
that for a locally compact group G, the Banach algebra M(G) is weakly amenable if
and only if G is discrete; or equivalently, zero is the only continuous point derivation
of M(G) at a character. Dales, Ghahramani and Helemskii [3] proved this conjec-
ture. Some authors investigated the weak amenability of the second dual of Banach
algebras. For instance, Ghahramani, Loy and Willis [7] proved that if G is a locally
compact Abelian group and L1(G)∗∗ is weakly amenable, then G is discrete. Forrest
[6] investigated the weak amenability of the dual of a topological introverted subspace
X of V N(G). Under certain conditions, he showed that if A(G)∗∗ is weakly amenable,
then every Abelian subgroup of G is finite. As a consequence of this result, he improved
the result of Ghahramani, Loy and Willis. In fact, for a locally compact Abelian group
G, he proved that weak amenability of L1(G)∗∗ is equivalent to the finiteness of G. Lau
and Loy [9] considered a left introverted subspace of L∞(G) containing AP (G), say X ,
and studied weak amenability of X∗. One can obtain the result of weak amenability
of L1(G)∗∗ from Lau-Loy’s theorem. Finally, Dales, Lau and Strauss [5] proved that
L1(G)∗∗ is weakly amenable if and only if there is no non-zero continuous point deriva-
tion of L1(G)∗∗ at the discrete augmentation character; or equivalently, G is finite.

This paper is organized as follow. In Section 2 we study the weak amenability
of M(G, ω) and show that M(G, ω) is weakly amenable if and only if G is discrete
and every bounded quasi-additive function is inner. We also prove that cyclic weak
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amenability and point amenability of M(G, ω) are equivalent to weak amenability of
it. Section 3 is devoted to studies of the weak amenability of second dual of L1(G, ω)
and M(G, ω). We proved that L1(G, ω)∗∗ is weakly amenable if and only if M(G, ω)∗∗

is weakly amenable; or equivalently, G is finite. We verify that cyclic weak amenability
and point amenability of L1(G, ω)∗∗ and M(G, ω)∗∗ are equivalent to finiteness of G.

2 Weighted measure algebras

Let ωi be a weight function on locally compact group Gi for i = 1, 2. Define the weight
function ω1 ⊗ ω2 on G1 ×G2 by

ω1 ⊗ ω2(x1, x2) = ω1(x1)ω2(x2)

for all x1 ∈ G1 and x2 ∈ G2. In the case where, G1 = G2 = G and ω1 = ω2 = ω, we set
ω⊗ = ω1 ⊗ ω2. The following result is needed to prove our results.

Proposition 2.1 Let ωi be a weight function on locally compact group Gi for i = 1, 2.
Then

M(G1, ω1)⊗̂M(G2, ω2) = M(G1 ×G2, ω1 ⊗ ω2).

Proof. Let ηi ∈M(Gi, ωi), for i = 1, 2. Then for every f ∈ C0(G1 ×G2), we have

〈η1 ⊗ η2, f〉 =
∫
G1

∫
G2

f(x, y) dη1(x)dη2(y).

It is easy to prove that

η1 ⊗ η2 ∈ C0(G1 ×G2, 1/ω1 ⊗ ω2)
∗ = M(G1 ×G2, ω1 ⊗ ω2).

Conversely, let η ∈ M(G1 × G2, ω1 ⊗ ω2). In view of Theorem Lusin’s theorem, there
exists sequences (fn) and (gn) in the unit ball Cc(G1, 1/ω1) and Cc(G2, 1/ω2) with
compact support, respectively, such that for almost every where x ∈ G1 and y ∈ G2

fn(x)→ 1 and gn(y)→ 1

as n→∞. We define the functionals η1 and η2 by

η1(f) = lim
n

η(f ⊗ gn) and η2(g) = lim
n

η(fn ⊗ g)

for all f ∈ C0(G1, 1/ω1) and g ∈ C0(G2, 1/ω2). Then η1 ∈ M(G1, ω1), η2 ∈ M(G, ω2).
In fact,

|η1(f)| ≤ ‖η‖‖f‖∞,1/ω and |η2(g)| ≤ ‖η‖‖g‖∞,1/ω.
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On the other hand,

η1 ⊗ η2(f ⊗ g) = lim
n

η(f ⊗ gn)η(fn ⊗ g)

= lim
n

∫
G1×G2

f(x)fn(x)g(y)gn(y) dη(x, y).

Since η is bounded, it follows from Lebesgue dominated convergence theorem that
‖fn ⊗ gn‖∞,1/ω ≤ 1 and 1 ∈ L1(η). Furthermore, fn ⊗ gn(x, y) → 1 for every x ∈
G1, y ∈ G2. For every f ∈ C0(G1, 1/ω1) and g ∈ C0(G2, 1/ω2)

η1 ⊗ η2(f ⊗ g) =
∫
G1×G2

f ⊗ g(x, y) dη(x, y) = η(f ⊗ g).

It follows that for every h ∈ C0(G1, 1/ω1)⊗ C0(G2, 1/ω2)

η1 ⊗ η2(h) = η(h)

and so for every h ∈ C0(G1 ×G2, 1/ω1 ⊗ ω2)

η1 ⊗ η2(h) = η(h).

Therefore, η1 ⊗ η2 = η. �

For every f ∈ L1(G, ω), we define the seminorm Tf : M(G, ω)→ [0,∞) by

Tf(µ) = ‖f ∗ µ‖1,ω + ‖µ ∗ f‖1,ω.

The locally convex topology defined by the family of seminorms (Tf)f∈L1(G,ω) is called
the strict topology on M(G, ω) with respect to L1(G, ω) (or briefly strict topology).

Proposition 2.2 Let G be a locally compact group and ω be a weight function on G. If
p ∈ D(G, ω), then there exists a unique bounded derivation D ∈ Z(M(G, ω),M(G, ω)∗)
such that p(x, y) = 〈D(δx), δy〉 for all x, y ∈ G, where δ· is the Diract measure at ·.

Proof. Let p ∈ D(G, ω). Then Γ(D1) = p for some D1 ∈ Z(L
1(G, ω), L∞(G, 1/ω)).

By Proposition 2.1.6 [23], there exists D2 ∈ Z(M(G, ω), L∞(G, 1/ω)) such that D2 is
strict-weak∗ continuous and D2|L1(G,ω) = D1. Hence for every f ∈ L1(G, ω),

〈D2(δx), f〉 = lim〈D1(eα ∗ δx), f〉

= lim
∫
G

∫
G
p(x, y)(eα ∗ δx)(z)f(z) dzdy

=
∫
G

∫
G
p(x, y)eα(zx

−1)f(y) dzdy.

On the other hand, there exists a linear functional T1 : L
1(G×G, ω⊗)→ C such that

〈T1, f ⊗ g〉 = 〈D1(f), g〉



6 Weak amenability of weighted measure algebras

for all f, g ∈ L1(G, ω). Since L1(G × G, ω⊗) is a closed ideal in M(G × G, ω⊗), it
follows that T1 has a strict continuous extension, say T2 : M(G, ω)⊗̂M(G, ω) → C.
Define D : M(G, ω)→M(G, ω)∗ by

〈D(µ), ν〉 = 〈T2, µ⊗ ν〉

for all µ, ν ∈M(G, ω). If (eα) is a bounded approximate identity of L1(G, ω), then for
every x ∈ G, eα ∗ δx → δx in the strict topology. So

T2(eα ∗ δx ⊗ eα ∗ δy)→ T2(δx ⊗ δy).

Therefore,

〈D(δx), δy〉 = lim〈T2(eα ∗ δx ⊗ eα ∗ δy)

= lim〈D2(eα ∗ δx), eα ∗ δy〉 = p(x, y),

as claimed. �

In the following, let Inn(M(G, ω),M(G, ω)∗) be the set of all inner derivations from
M(G, ω) into M(G, ω)∗, and let B(M(G, ω),M(G, ω)∗) be the space of bounded linear
operators from M(G, ω) into M(G, ω)∗. Define the isometric isomorphism Γ from
Banach space B(M(G, ω),M(G, ω)∗) onto (M(G, ω)⊗̂M(G, ω))∗ by

〈Γ(T ), µ⊗ ν〉 = 〈T (µ), ν〉,

M(G, ω)⊗̂M(G, ω) is the projective tensor product of M(G, ω); see Proposition 13 VI
in [1].

Proposition 2.3 Let G be a locally compact group and ω be a weight function on G.
Then the following statements hold.

(i) The function Γ : Z(M(G, ω),M(G, ω)∗) → GD(G, ω) is an isometric isomor-
phism. Furthermore, Γ(Inn(M(G, ω),M(G, ω)∗)) = GI(G, ω).

(ii) If D ∈ Z(M(G, ω),M(G, ω)∗), then for every µ ∈ M(G, ω) there exists F =
(Fµ⊗ν)ν ∈ GD(G, ω) such that D(µ) = (pµ,ν)ν and pµ,ν(y) =

∫
G Fµ⊗ν(x, y) dµ(x) for

almost every where y ∈ G.

Proof. Let D ∈ Z(M(G, ω),M(G, ω)∗). Then D ∈ B(M(G, ω),M(G, ω)∗). Putting
A = B = M(G, ω) in the definition of Γ, we have

F := Γ(D) ∈ (M(G, ω)⊗̂M(G, ω))∗ = GL(G×G, 1/ω⊗)

and

〈D(µ), ν〉 = 〈F, µ⊗ ν〉

=
∫
G
Fµ⊗ν(x, y) d(µ⊗ ν)(x, y) (1)

=
∫
G

∫
G
Fµ⊗ν(x, y) dµ(x)dν(y).
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On the other hand, if P = (pµ)µ∈M(G,ω), then

〈adP (µ), ν〉 = 〈P · µ− µ · P, ν〉

= 〈P, µ ∗ ν〉 − 〈P, ν ∗ µ〉

=
∫
G
pµ∗ν d(µ ∗ ν)−

∫
G
pν∗µ d(ν ∗ µ)

=
∫
G

∫
G
(pµ∗ν(xy)− pν∗µ(yx)) dµ(x)dν(y).

Now, by the argument used in the proof of Theorem 2.3 in [18], it can be shown
that the statement (i) holds. For (ii), assume that D ∈ Z(M(G, ω),M(G, ω)∗) and
µ ∈M(G, ω). Then

D(µ) ∈ M(G, ω)∗ = GL(G, 1/ω).

Thus D(µ) = (pµ,ν)ν for some (pµ,ν)ν ∈ GL(G, 1/ω). Hence for every ν ∈M(G, ω), we
have

〈D(µ), ν〉 =
∫
G
pµ,ν dν.

This together with (1) s shows that

pµ,ν(y) =
∫
G
Fµ⊗ν(x, y) dµ(x)

for almost every where y ∈ G. �

We are now in a position to prove the main result of this section.

Theorem 2.4 Let G be a locally compact group and ω be a weight function on G.
Then the following assertions are equivalent.

(a) M(G, ω) is weakly amenable.
(b) For every D ∈ Z(M(G, ω),M(G, ω)∗) there exists P = (pµ)µ∈M(G,ω) such that

〈D(µ), ν〉 =
∫
G

∫
G(pµ∗ν(xy)− pν∗µ(yx)) dµ(x)dν(y) for all µ, ν ∈M(G, ω).

(c) Every generalized quasi-additive function is inner.
(d) M(G) is weakly amenable and D(G, ω) = I(G, ω).
(e) G is discrete and every non-inner quasi-additive function in L∞(G, 1/ω) is

unbounded.

Proof. The implications (a)⇒(b)⇒(c)⇒(a) follow from Proposition 2.3. By Theorem
1.2 in [3] the implication (d)⇔(e) holds. Also, the implication (e)⇒(a) follows from
Corollary 2.5 in [18]. For (a)⇒(e), let M(G, ω) be weakly amenable and ϕ be a char-
acter of M(G). If d is a continuous point derivation at ϕ on M(G), then d|M(G,ω) is a
continuous point derivation of M(G, ω) at ϕ|M(G,ω). Hence d is zero on M(G, ω). Since
M(G, ω) is dense in M(G), we have d = 0 on M(G) which is implies G is discrete.
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Apply Theorem 2.4 in [18] to conclude that D(G, ω) = I(G, ω). �

From Theorem 4.8 in [19] and Theorem 2.4 and its proof, we may prove the next
result.

Corollary 2.5 Let G be a locally compact group. Then the following assertions are
equivalent.

(a) M(G, ω) is weakly amenable.

(b) M(G, ω) is cyclically weakly amenable.

(c) M(G, ω) is point amenable.

(d) G is discrete and every non-inner quasi-additive function in L∞(G, 1/ω) is
unbounded.

An elementary computation shows that the functions ω′ and ω∗ defined by

ω′(x) = ω(x−1) and ω∗(x) = ω ⊗ ω′(x, x)

are weight functions on G. Combining Theorem 2.4 and the result of [18] we have the
following result.

Corollary 2.6 Let ω and ω0 be weight functions on a locally compact group G. Then
the following statements hold.

(i) If ω ≤ mω0 for some m > 0, M(G, ω0) is weakly amenable and I(G, ω0) =
D(G, ω0) , then M(G, ω) is weakly amenable.

(ii) If ω and ω0 are equivalent, then weak amenability of M(G, ω) is equivalent to
weak amenability of M(G, ω0).

(iii) M(G, ω′) is weakly amenable if and only if M(G, ω) is weakly amenable.

(iv) If M(G, ω∗) is weakly amenable and I(G, ω∗) = D(G, ω∗), then M(G, ω) is
weakly amenable.

(v) If G is Abelian, then M(G, ω∗) is weakly amenable if and only if M(D, ω⊗) is
weakly amenable, where D := {(x, x−1) : x ∈ G}.

Let φ : G → G be a group epimorphism and ω be a weight function on G. Then
the function ←−ω : G → [1,∞) defined by ←−ω (x) = ω(φ(x)) is a weight function on G.
For every quasi-additive function p, let S(p) be the quasi-additive function defined by

S(p)(x, y) = p(φ(x), φ(y)) (x, y ∈ G).

Theorem 2.4 together with Proposition 4.1 and Theorem 4.6 in [18] proves the next
result.
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Corollary 2.7 Let ω be weight function on locally compact group G. Then the follow-
ing statements hold.

(i) If φ : G→ G is a continuous group epimorphism, M(G,←−ω ) is weakly amenable
and S(I(G, ω)) = I(G,←−ω ), then M(G, ω) is weakly amenable.

(ii) If G is Abelian and M(G, ω̃) is weakly amenable, then M(H,ω|H) is weakly
amenable, where H is a subgroup of G.

Corollary 2.8 Let ωi be a weight function on a locally compact group Gi, for i = 1, 2.
Then the following assertions are equivalent.

(a) M(G1, ω1)⊗̂M(G2, ω2) is weakly amenable.

(b) M(G1, ω1)⊗̂M(G2, ω2) is cyclically weakly amenable.

(c) M(G1, ω1)⊗̂M(G2, ω2) is point amenable.

(d) M(Gi, ωi) is weakly amenable and Gi is discrete, for i = 1, 2.

Proof. Let M(G1, ω1)⊗̂M(G2, ω2) be point amenable. Since M(Gi, ωi) is unital, for
i = 1, 2, from Proposition 2.1 we infer that then M(G1×G2, ω1⊗ω2) is point amenable.
By Theorem 2.4, G1 ×G2 is discrete. It follows that Gi is discrete, for i = 1, 2. Hence
M(Gi, ωi) = ℓ1(Gi, ωi) and so

ℓ1(G1, ω1)⊗̂ℓ
1(G1, ω1)) = M(G1, ω1)⊗̂M(G2, ω2)

is weakly amenable. In view of Corollary 4.8 in [18], ℓ1(Gi, ωi) is weakly amenable. So
(c) implies (d).

Let M(Gi, ωi) is weakly amenable and Gi is discrete, for i = 1, 2. By Corollary
2.5, M(Gi, ωi) is point amenable, for i = 1, 2. It follows from Theorem 4.1 in [20] and
Proposition 2.1 that

M(G1, ω1)⊗̂M(G2, ω2) = M(G1 ×G2, ω1 ⊗ ω2)

is point amenable. Again, apply Corollary 2.5 to conclude that M(G1, ω1)⊗̂M(G2, ω2)
is weakly amenable. That is, (d) implies (a). �

As a consequence of Corollary 2.8, we give the next result.

Corollary 2.9 Let ωi be a weight function on a locally compact discrete group Gi, for
i = 1, 2. Then the following assertions are equivalent.

(a) ℓ1(G1, ω1)⊗̂ℓ
1(G2, ω2) is weakly amenable.

(b) ℓ1(G1, ω1)⊗̂ℓ
1(G2, ω2) is cyclically weakly amenable.

(c) ℓ1(G1, ω1)⊗̂ℓ
1(G2, ω2) is point amenable.

(d) ℓ1(Gi, ωi) is weakly amenable and Gi is discrete, for i = 1, 2.
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We say that T ∈ M(G, ω)∗ vanishes at infinity if for every ε > 0, there exists a
compact subset K of G, for which |〈T, µ〉| < ε, where µ ∈ M(G, ω) with |µ|(K) = 0
and ‖µ‖ω = 1. We denote by M∗(G, ω) the subspace of M(G, ω)∗ consisting of all
functionals that vanish at infinity. In the case where, ω(x) = 1 for all x ∈ G, we write

M∗(G, ω) := M∗(G).

The spaceM∗(G, ω) is a norm closed subspace ofM(G, ω)∗. It is proved thatM∗(G, ω)∗

with the first Arens product is a Banach algebra [16]. For each f ∈ L1(G, ω), we may
consider f as a linear functional in M∗(G)∗. One can prove that L1(G, ω) is a closed
ideal in M∗(G, ω)∗ and M∗(G, ω)∗ = L1(G, ω) if and only if G is discrete [16]; see [15]
for the case ω = 1.

Corollary 2.10 Let G be a locally compact group. Then the following assertions are
equivalent.

(a) M∗(G, ω)∗ is weakly amenable.
(b) M∗(G, ω)∗ is cyclically weakly amenable.
(c) M∗(G, ω)∗ is point amenable.
(d) G is discrete and every non-inner quasi-additive function in L∞(G, 1/ω) is

unbounded.

Proof. Let M∗(G, ω)∗ be point amenable. Since M(G, ω) is a direct summand of
M∗(G, ω)∗, by Theorem 3.7 in [20], M(G, ω) is point amenable. Hence G is discrete
and every non-inner quasi-additive function in L∞(G, 1/ω) is unbounded. Thus (c)
implies (d). It is easy to see that if G discrete, then

M∗(G, ω)∗ = ℓ1(G, ω) = M(G, ω).

It follows that (d) implies (a). �

Let L∞(G, 1/ω) be the space of all Borel measurable functions f on G with f/ω ∈
L∞(G), the Lebesgue space of bounded Borel measurable functions on G. Let also
L∞
0 (G, 1/ω) denote the subspace of L∞(G, 1/ω) consisting of all functions f ∈ L∞(G, 1/ω)

that vanish at infinity. It is proved that L∞
0 (G, 1/ω) is left introverted in L∞(G, 1/ω).

So L∞
0 (G, 1/ω)∗ is a Banach algebra with the first Arens product [10]; see also [4, 11,

12, 21].

Corollary 2.11 Let G be a locally compact group. Then the following assertions are
equivalent.

(a) L∞
0 (G, 1/ω)∗ is weakly amenable.

(b)L∞
0 (G, 1/ω)∗ is cyclically weakly amenable.

(c) L∞
0 (G, 1/ω)∗ is point amenable.

(d) G is discrete and every non-inner quasi-additive function in L∞(G, 1/ω) is
unbounded.



M. J. Mehdipour and A. Rejali 11

Corollary 2.12 Let ωi be a weight function on a locally compact group Gi, for i = 1, 2.
Then the following assertions are equivalent.

(a) M∗(G1, ω1)
∗ and M∗(G2, ω2)

∗ are weakly amenable.
(b) L∞

0 (G, 1/ω)∗ and L∞
0 (G, 1/ω)∗ are weakly amenable.

(c) M∗(G1, ω1)
∗⊗̂M∗(G2, ω2)

∗ is weakly amenable and Gi is discrete, for i = 1, 2.
(d) L∞

0 (G, 1/ω)∗⊗̂L∞
0 (G, 1/ω)∗ is weakly amenable and Gi is discrete, for i = 1, 2.

Proof. Assume that M∗(G1, ω1)
∗ and M∗(G2, ω2)

∗ are weakly amenable. By Corollary
2.10, Gi is discrete and M(Gi, ωi) = M∗(Gi, ωi)

∗ is weakly amenable, for i = 1, 2. It
follows from Corollary 2.8 that

M∗(G1, ω1)
∗⊗̂M∗(G2, ω2)

∗ = M(G1, ω1)⊗̂M(G2, ω2)

is weakly amenable. So (a) implies (c).
Let M∗(G1, ω1)

∗⊗̂M∗(G2, ω2)
∗ be weakly amenable and Gi is discrete, for i = 1, 2.

This implies that M(G1, ω1)⊗̂M(G2, ω2) is weakly amenable. Thus M∗(Gi, ωi)
∗ =

M(Gi, ωi) is weakly amenable. Hence (c) implies (a). Similarly, (b) and (d) are
equivalent. �

Let LUC(G, 1/ω) be the space of all continuous function f on G such that f/ω
is a left uniformly continuous functions on G; for study of this space see [27]. Let
WAP (A) be the space of all weakly almost periodic functionals on Banach algebra A,
that is, f ∈ A

∗ such that the map a 7→ af from A into A
∗ is weakly compact, where

〈af, b〉 = 〈f, ba〉 for all b ∈ A.

Corollary 2.13 Let WAP(L1(G, ω))∗ or LUC(G, ω)∗ be 0-point amenable. Then G is
discrete.

Let A be one of the Banach algebrasM(G, ω),M∗(G, ω)∗, L∞
0 (G, 1/ω)∗, WAP(L1(G, ω))∗

or LUC(G, ω)∗.

Proposition 2.14 Let G be a locally compact group. If A is cyclically amenable, then
every element of CD(G, ω) is inner.

Proof. Let M(G, ω) be cyclically amenable. Since L1(G, ω) is a direct summand of
M(G, ω), by Theorem 3.7 in [20], the Banach algebra L1(G, ω) is cyclically amenable.
It follows from Theorem 5.6 in[18] that every element of CD(G, ω) is inner. For the
other cases, we only need to recall that

A = M(G, ω)⊕B

for some closed subspace B of A. �
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3 The second dual of Banach algebras

The main result of this section is the following which solves an open problem posed in
[9].

Theorem 3.1 Let G be a locally compact group. Then the following assertion are
equivalent.

(a) L1(G, ω)∗∗ is weakly amenable.

(b) L1(G, ω)∗∗ is cyclically weakly amenable.

(c) L1(G, ω)∗∗ is point amenable.

(d) G is finite.

Proof. Let ι : L1(G, ω) → L1(G) be the inclusion map. Since L1(G, ω) is dense in
L1(G), ι is a continuous homomorphism with dense range. So ι∗∗ : L1(G, ω)∗∗ →
L1(G)∗∗ is epimorphism. Hence if L1(G, ω)∗∗ is point amenable, then by Theorem 2.1
in [20] the Banach algebra L1(G)∗∗ is point amenable. It follows that every continuous
point derivation of L1(G)∗∗ at the discrete augmentation character is zero. From The-
orem 11.17 in [5] infer that G is finite. So (c)⇒(d). The implications (a)⇒(b)⇒(c)
follows from Theorem 4.1 in [19]. �

Corollary 3.2 Let G be a locally compact group. Then the following assertion are
equivalent.

(a) M(G, ω)∗∗ is weakly amenable.

(b) M(G, ω)∗∗ is cyclic amenable.

(c) M(G, ω)∗∗ is point amenable.

(d) G is finite.

Proof. LetM(G, ω)∗∗ is point amenable. By Proposition 5.2 in [20], the Banach algebra
M(G, ω) is point amenable. In view of Corollary 2.5, G is discrete. Hence L1(G, ω)∗∗

is weakly amenable. Now, apply Theorem 3.1. �

Let us recall that if there exists a compact invariant neighborhood of e in G, then
G is called an [IN ]−group. The following result is an improvement of Theorem 3.4 in
[9].

Theorem 3.3 Let G be a connected locally compact group. If either Gd is amenable
or G is an [IN ]−group, then the following assertions are equivalent.

(a) L1(G, ω)∗∗ is weakly amenable.

(b) M(G, ω) is weakly amenable.

(c) G = {e}.
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Proof. Let L1(G, ω)∗∗ be weakly amenable. Since

L1(G, ω)∗∗ = M(G, ω)⊕ C0(G, ω)⊥

and C0(G, ω)⊥ is an ideal in L1(G, ω)∗∗ , we have M(G, ω) is weakly amenable. So
(a)⇒(b). Let’s show that (b)⇒(c). To this end, let M(G, ω) be weakly amenable.
It follows from Theorem 2.4 that G discrete and M(G) is weakly amenable. If Gd is
amenable, then from Theorem 3.3 in [9] we infer that G = {e}. If G is an [IN ]−group,
then by Theorem 3.4 in [9], G is compact. Since G is also discrete, it follows that G is
finite. Hence Gd is amenable. Thus G = {e}. So (b)⇒(c). The implication (c)⇒(a) is
clear. �
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