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GRAPHS WITH EQUAL GIRTH AND CIRCUMFERENCE

LEWIS STANTON*, JEFFREY THOMPSON

Abstract. We characterise the form of all simple, finite graphs for which the girth of the graph is

equal to the circumference of the graph. We apply this to prove a bound on the number of edges

in such a graph.

1. Introduction

Cycles are a natural object which arise from the definition of a graph, and the invariants related to

cycles have been extensively studied. In particular, the girth and circumference of a graph (being the

length of the shortest and longest cycle in a graph respectively) are invariants which arise naturally

from the definition of a cycle. An interesting problem is to try to determine the structure of graphs

for which the girth and circumference have specific values. In this paper, we characterise the graphs

for which the girth and circumference are equal. In other words, graphs for which all of the cycles

contained within it have the same length.

Similar questions to this have been studied before. For example, [AH] considered graphs G for

which G and its complement have the same girth. Graphs G such that G and its complement have

circumference 3 or 4 were also characterised. The opposite extreme to having a graph G with equal

cycle lengths has also been studied. Erdös posed the problem of determining the maximum number

f(n) of edges in a simple graph with n vertices in which any two cycles are of different lengths

[BM][p. 247, Problem 11]. There are currently lower bounds [S] and upper bounds [BCFY] on f(n),

however this is still an open problem.

In this paper, we fully characterise graphs G for which the girth and circumference are equal.

First it is shown that G must be planar. Now let G be a finite, simple and planar graph containing

at least one cycle. Two faces F and F ′ of G are adjacent if the cycles bounding them share an edge,

and F and F ′ are connected if there is a sequence of faces F1, · · · , Fm where F1 = F , Fm = F ′

and Fk is adjacent to Fk+1 for all 1 ≤ k ≤ m − 1. A strict face component GF containing a

face F of G consists of the vertices and edges of the cycles bounding the faces connected to F .

The characterisation of graphs with equal girth and circumference is in terms of its strict face

components, as in Corollary 3.13. This leads to an alternative characterisation in Theorem 3.14 in

terms of blocks, which can be used to give an algorithm for determining if a given graph has equal
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girth and circumference. Finally in Section 4, we give an upper bound on the number of edges in

a finite, simple, connected and planar graph G on n vertices with equal girth and circumference

r. In particular, if the value of r is known, it is proved in Theorem 4.9 that if r is even, then

|E(G)| ≤ n−1+
⌊

n− r

2
−1

r

2
−1

⌋

, or if r is odd, then |E(G)| ≤ n−1+
⌊

n−1
r−1

⌋

. If the value of r is unknown,

it is proved in Corollary 4.10 that |E(G)| ≤ 2n − 4. This has applications in showing whether a

given graph must have two cycles of different lengths, solely in terms of the number of vertices and

edges.

2. Basic Definitions

In this section, we define the basic notions in graph theory which will be required in this paper.

We will use the definitions from Gross, Yellen and Zhang [GYZ]. We restrict our attention to

simple, finite and connected graphs. There are two invariants of graphs related to cycles known as

the girth and the circumference. These invariants are well defined when the graph G contains a

cycle. Connected graphs which do not contain cycles are known as trees. The girth of G, denoted

girth(G), is the length of the shortest cycle in G. The circumference of G, denoted circum(G), is

the length of the longest cycle in G.

Let H be a subgraph of a graph G. The values of the girth and circumference of H and G can

be related through an inequality. A graph invariant µ is monotone if µ(H) ≤ µ(G) for all simple,

connected and finite subgraphs H of a simple, connected and finite graph G. A graph invariant

µ is anti-monotone if µ(G) ≤ µ(H) for all simple, connected and finite subgraphs H of a simple,

connected and finite graph G. It follows from the definitions of girth and circumference that the

girth of a graph is anti-monotone and the circumference of a graph is monotone.

It will be shown that a necessary condition for a graph with girth(G) = circum(G) is for a graph

to be planar. A graph G is planar if it can be embedded in R
2. An embedding of a planar graph

G into the plane is known as a plane representation of G. A face of a given plane representation

of a graph G is a component of the complement of the plane representation in the plane. For a

given plane embedding of a graph G, we will need to differentiate between two types of faces. An

internal face of a graph G is a bounded component of the complement of the plane representation

in the plane. The external face of a graph G is the unbounded component of the complement of

the plane representation in the plane. The structure of the internal faces of G will turn out to be

closely related to subgraphs known as blocks. A cut vertex v of G is a vertex v such that removing

it disconnects G. A block in a graph G is a maximally connected subgraph that does not contain a

cut vertex. If G is connected and contains no cut vertices, then G is called a block graph.

We will also require the notion of homeomorphic graphs. This involves an operation on graphs

known as subdivision of an edge. For any edge e = x · y ∈ E(G) in a graph G, we can form a new

graph G′ by introducing a new vertex z in the interior of e. This forms two new edges in G′, namely
2



e1 = x · z and e2 = z ·y. A graph G′ is a subdivision of a graph G if we can obtain G′ by subdividing

the edges of G.

Before defining a homeomorphism, we define the notion of a homomorphism between graphs. Let

G and H be graphs. A homomorphism between G and H is a function φ : V (G) → V (H) such that

if v is adjacent to w in G, φ(v) is adjacent to φ(w) in H . A bijective homomorphism is called an

isomorphism. If there exists an isomorphism between two graphs G and H , we say that G and H are

isomorphic and we denote this by G ∼= H . Two graphs are homeomorphic if there exist subdivisions

G′ and H ′ of G and H respectively such that G′ ∼= H ′.

Finally, we define special types of graphs which will be used throughout the paper. The complete

graph on n vertices, denoted Kn, is the graph such that every pair of distinct vertices are adjacent.

There is a variant of the complete graph for bipartite graphs. For m ≥ 1 and n ≥ 1, the complete

bipartite graph, denotedKm,n, is the graph whose vertex set is the union of two sets V (Km,n) = A∪B,

where A and B are disjoint sets with |A| = m and |B| = n. The edge set E(Kn,m) consists of all

edges of the form e = a · b where a ∈ A and b ∈ B. The path graph Pn is a tree on n+1 vertices with

2 vertices of degree 1 and n− 1 vertices of degree 2. Finally, the cycle graph on n vertices, denoted

Cn is the graph consisting of a single cycle of length n.

3. Characterising graphs with equal girth and circumference

3.1. Non-Planar Graphs. In this section, it is proven that non-planar graphs G have girth(G) 6=

circum(G). From this point onwards, any references to faces will be taken to be internal faces unless

otherwise specified. To do this, a well known characterisation of planar graphs will be required

known as Kuratowski’s theorem [K].

Theorem 3.1. A simple, connected and finite graph G is non-planar if and only if G contains a

subgraph that is homeomorphic to either K5 or to K3,3. �

We will also require the following lemma.

Lemma 3.2. Let G be a simple, connected and finite graph with subgraph H which contains a cycle.

If girth(G) = circum(G), then girth(G) = girth(H) = circum(H).

Proof. Let C be the set of cycles in G and C′ ⊆ C be the set of cycles in H . Note that by as-

sumption, C′ is non-empty. Each cycle C ∈ C must all be of the same length l = girth(G)

since girth(G) = circum(G). Therefore, all the cycles in H must have length l = girth(G) and

so girth(G) = girth(H) = circum(H). �

Using Theorem 3.1 and Lemma 3.2, we can prove the desired result.

Theorem 3.3. Let G be a simple, connected and finite non-planar graph. Then girth(G) 6=

circum(G).
3



Proof. It suffices to find a subgraph H with girth(H) 6= circum(H). This is because if H is a

subgraph with girth(H) 6= circum(H), then H contains two cycles which have two distinct lengths.

These cycles will also be contained in G and so girth(G) 6= circum(G). By Theorem 3.1, there exists

a subgraph H in G which is homeomorphic to either K5 or to K3,3. Therefore, it suffices to prove

that any subgraph H homeomorphic to K5 or to K3,3 has girth(H) 6= circum(H).

First, consider the case where H is homeomorphic to K5 and suppose H satisfies girth(H) =

circum(H). This means H can be obtained by subdividing the edges of K5. Let e1, · · · , e10 be

the edges of K5 and denote by di the number of times the edge ei is subdivided to obtain H . Let

C1, · · · , C10 be the 3-cycles in K5.

To ensure that girth(H) = circum(H), the length of each 3-cycle after subdividing must equal

a fixed number N ≥ 3. In particular, this means that for each 3-cycle Ck where k ∈ {1, · · · , 10},
∑

ei∈Ck
di = N . Each edge ei of K5 is contained in at least one cycle ofK5 and so this gives a system

of 10 equations with 11 unknowns. As the reader can easily check, the dimension of the null space of

the matrix associated with this system of equations is 1. Since each cycle Ck contains three edges,

letting di = d for any d ∈ N0 is the only solution to this system of equations. Hence for girth(H)

to be equal to circum(H), each edge must be subdivided d times. However, K5 contains a 5-cycle.

Subdividing the edge of a 5-cycle d times gives a cycle of length 5+ 5d, and so circum(H) = 5+ 5d.

Subdividing the edge of a 3-cycle d times gives a cycle of length 3 + 3d, and so girth(H) = 3 + 3d.

These are not equal for d ≥ 0. Hence, girth(H) 6= circum(H).

Now, consider the case where H is homeomorphic to K3,3 and suppose H satisfies girth(H) =

circum(H). This means H can be obtained by subdividing the edges of K3,3. Let e1, · · · , e9 be the

edges of K3,3 and denote by di the number of times the edge ei must be subdivided to obtain H .

Let C1, · · · , C9 be the 4-cycles in K5.

To ensure that girth(H) = circum(H), the length of each 4-cycle after subdividing must equal

a fixed number N ≥ 4. In particular, this means that for each 4-cycle Ck where k ∈ {1, · · · , 9},
∑

ei∈Ck
di = N . Each edge ei of K3,3 is contained in at least one cycle of K3,3 and so this gives

a system of 9 equations with 10 unknowns. As the reader can easily check, the dimension of the

null space of the matrix associated with this system of equations is 1. Since each cycle Ck contains

four edges, letting di = d for any d ∈ N0 is the only solution to this system of equations. Therefore

for girth(G) to be equal to circum(H), each edge must be subdivided d times. However, K3,3

contains a 6-cycle. Subdividing the edge of a 6-cycle d times gives a cycle of length 6 + 6d, and so

circum(H) = 6 + 6d. Subdividing the edge of a 4-cycle d times gives a cycle of length 4 + 4d, and

so girth(H) = 4 + 4d. These are not equal for d ≥ 0. Hence girth(H) 6= circum(H).

�

3.2. Planar Graphs. Theorem 3.3 implies that any graph with girth(G) = circum(G) must be

planar. To characterise planar graphs with girth(G) = circum(G), we first define subgraphs of G
4



which we will consider as building blocks for G. This involves introducing the notion of a strict

face-connected graph.

Definition 3.4. Suppose G is a finite, simple and planar graph. Let F and F ′ be two faces of G

and let C and C′ be the cycles which bound them. The faces F and F ′ are adjacent if C and C′

share at least one common edge.

Definition 3.5. Let G be a finite, simple, planar graph containing at least one cycle. Two faces F

and F ′ in G are connected if there is a sequence of faces F1, · · · , Fm where F1 = F , Fm = F ′ and

Fk is adjacent to Fk+1 for all 1 ≤ k ≤ m− 1. The graph G is face-connected if any two faces Fi and

Fj of G are connected.

Definition 3.6. A finite, simple and planar graph G containing a cycle is strict face-connected if

it is face-connected and the vertices and edges of G are the union of the vertices and edges of the

cycles bounding the internal faces.

The following figure gives an example of a graph that is strict face-connected (G1), a graph that

is face-connected but not strict face-connected (G2) and a graph that is not face-connected (G3).

(1) G1 G2 G3.

Definition 3.7. Let G be a finite, simple and planar graph containing at least one cycle. Let F

be a face of G. A strict face component GF containing F consists of the vertices and edges of the

cycles bounding the faces connected to F .

In (1), since G1 and G2 are face-connected, they have one strict face component although note

that the strict face component of G2 is not the whole graph. The graph G3 has two strict face

components, namely the sequence of 4-cycles on the left and the one 3-cycle on the right.

The notion of a strict face component is closely related to blocks. To see this, we first prove how

strict face components are related.

Lemma 3.8. Let G be a simple, finite and planar graph and let F1, · · · ,Fk be the strict face

components of G. Then for any two distinct strict face components Fi and Fj, E(Fi) ∩E(Fj) = ∅.

Moreover, V (Fi) ∩ V (Fj) = {v}, where v is a cut vertex of G or V (Fi) ∩ V (Fj) = ∅.

Proof. Let Fi and Fj be two distinct strict face components and suppose E(Fi) ∩ E(Fj) 6= ∅. This

implies there exist faces Fi in Fi and Fj in Fj which are adjacent, and so Fi = Fj.
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Now suppose V (Fi) ∩ V (Fj) = {v1, · · · , vl} for l ≥ 2. Observe that Fi is connected as if not,

for a face F in a connected component C, any vertex not contained in C can not be in the strict

face component containing F . Therefore, there exists a path Pi contained in Fi between v1 and

v2. Similarly, there exists a path Pj in Fj between v1 and v2. Since the edge sets of Fi and Fj

are disjoint, the edge sets of these paths must be disjoint. This implies that v1 and v2 are part

of a cycle C which has edges contained in both Fi and Fj. Therefore, C has an edge adjacent to

a face in Fi and an edge adjacent to a face in Fj , and so it follows that Fi = Fj . Hence, either

V (Fi) ∩ V (Fj) = {v} or V (Fi) ∩ V (Fj) = ∅.

Finally, suppose V (Fi) ∩ V (Fj) = {v} and v is not a cut vertex. Since Fi and Fj are connected,

there exist vertices vi ∈ Fi and vj ∈ Fj which are adjacent to v. Since v is not a cut vertex, removing

v from G results in a graph G′ which is still connected. Therefore there exists a path P between

vi and vj contained in G′. Adding v back in gives a cycle C containing v in G which contains the

edges v · vi ∈ E(Fi) and v · vj ∈ E(Fj). Hence, C is a cycle containing an edge in both Fi and Fj ,

which is a contradiction. �

In the following, we will require the notion of the wedge sum of graphs.

Definition 3.9. Let G and H be simple graphs and let vG ∈ V (G) and vH ∈ V (H) be chosen

vertices, known as base vertices. The wedge sum G ∨H of G and H is the graph formed from the

disjoint union of G and H by identifying the base vertices. Define the identified vertex in G ∨H as

the base vertex of the wedge sum.

Observe that the base vertex of G ∨H is a cut vertex.

Proposition 3.10. A planar graph G containing a cycle is strict face-connected iff G is a planar

block graph.

Proof. Suppose G is a planar block graph containing a cycle but not strict face-connected. By

definition of block, this implies that G contains no cut vertices and so also has no bridges. Therefore,

the only possibility for G is to contain at least 2 strict-face components. Since G is connected and

contains no bridges, by Lemma 3.8, there must exist two strict face-components F1 and F2 such

that V (Fi) ∩ V (Fj) = {v} where v is a cut vertex, which is a contradiction.

Now suppose G is strict face-connected but not a block graph. This implies that G must contain

a cut vertex v. Removing v gives a graph G′ with two connected components C1 and C2. Therefore,

every path in G between vertices v1 ∈ C1 and v2 ∈ C2 must pass through v. It follows that

G = H1∨H2 for some graphs H1 and H2. However, no face F1 in H1 can be adjacent to a face F2 in

H2 since E(H1)∩E(H2) = ∅. Therefore, G is not strict face-connected which is a contradiction. �

6



Proposition 3.10 shows that each strict face component of a planar graph G is a block. However,

the converse is not true. For example for G2 in (1), the induced subgraph on the vertex of degree

one along with its adjacent vertex forms a block, however this is not part of a strict face component.

Let G be a finite, simple and planar graph with strict face components F1, · · · ,Fm. Observe

that each cycle of G is contained within a single strict face component. This observation gives the

following result.

Proposition 3.11. Let G be a finite, simple and planar graph with strict face components denoted

F1, · · · ,Fm. Then

girth(G) = min{girth(F1), · · · , girth(Fm)} and circum(G) = min{circum(F1), · · · , circum(Fm)}.

�

Proposition 3.11 implies that if G is a finite, simple and planar graph with girth(G) = circum(G),

then each face component must also have equal girth and circumference. Therefore, it suffices

to consider strict face-connected graphs. First, we will introduce a collection of graphs known as

generalised book graphs. A generalised book graph is denoted B(n, L, p) where 1 ≤ n ≤ L− 2, L ≥ 3

and p ≥ 2. These graphs will be the building blocks for graphs with equal girth and circumference.

The graph B(n, L, p) is p cycles CL of length L glued together over a common path Pn of length n.

For example, B(1, 3, 2) is the graph

1

2

3

4

and the generalised book graph B(1, 3, 3) is

.

For the theorem that follows, we draw the generalised book graph in its planar form. For example

B(2, 4, 4) is a graph of the form

.

Observe that the generalised book graph B(n, L, p) has p faces and is strict face-connected. We can

now prove the characterisation theorem for planar graphs with girth equal to circumference.
7



Theorem 3.12. Let G be a finite, simple and strict face-connected graph with girth(G) = circum(G).

Then if G has p = 1 face, then G = Cl for some l ≥ 3. If G has p ≥ 2 faces, then girth(G) =

circum(G) = 2k for some k ∈ N, k ≥ 2 and G = B(k, 2k, p).

Proof. First, if G = Cm for some m then the result is clear. Therefore we consider the case where

G has two or more faces.

We proceed by induction. Let G be a simple, strict face-connected and finite graph with two

faces, F1 and F2 with cycles C1 bounding F1 and C2 bounding F2. Since girth(G) = circum(G), C1

and C2 have length L for some L ≥ 3. The faces F1 and F2 are adjacent, which implies that the

cycles C1 and C2 must intersect along a common path Pk for some k ≥ 1. This creates a new cycle

C3 which starts at the endpoint of Pk, goes around C1 (in the direction which does not travel along

Pk) to the other endpoint of Pk and then around C2 (in the direction which does not travel along

Pk). This is illustrated by the following diagram.

C1C2

This cycle has length 2(L−k). Since girth(G) = circum(G), 2(L−k) = L which implies that L = 2k.

Therefore, the cycle must have length 2k and so G = B(k, 2k, 2).

Now consider a simple, strict face-connected and finite graph G with three faces F1, F2 and F3

bounded by cycles C1, C2 and C3. By assumption, girth(G) = circum(G) and so these cycles have a

common length L. Since G is face-connected, C1 must be adjacent to another face. Suppose without

loss of generality C1 is adjacent to C2. Considering the induced subgraph H on the vertices of C1

and C2, the n = 2 case implies H = B(k, 2k, 2) for some k ≥ 2. By Lemma 3.2, the lengths of

the cycles in H must be equal to the lengths of the cycles in G and so L = 2k. By definition of

B(k, 2k, 2), C1 and C2 intersect over a common path of length k.

Now consider the cycle C3 and assume without loss of generality that C3 is adjacent to C2. By

a similar argument, considering the induced subgraph H ′ on the vertices of C2 and C3, C2 and C3

must intersect over a common path of length k. Therefore, C1 and C3 are both adjacent to C2 over

a path of length k. However, the edge set of these paths of length k must be disjoint as G is planar

and so G = B(k, 2k, 3).

Suppose the result is true for a strict face-connected graph with k ≤ m faces and consider a

simple, strict face-connected and finite graph G with m+ 1 faces, m ≥ 3. Let F1, · · · , Fm+1 be the

faces of G and let Ci be the cycle bounding the face Fi for 1 ≤ i ≤ m. Since girth(G) = circum(G),

Ci must have a common length L for all i. Suppose without loss of generality that Fm+1 is adjacent

to the external face of G. Consider the induced subgraph H on the vertices of the remaining cycles
8



C1, · · · , Cm. Observe that H is a graph with m faces and so by the inductive hypothesis has the

form B(k, 2k,m) for some k ≥ 2. By Lemma 3.2, the lengths of the cycles in H must be equal to

the lengths of the cycles in G and so L = 2k. Also by the structure of the generalised book graph,

we can order the cycles C1, · · · , Cm such that consecutive cycles intersect along a common path of

length k and any two non-consecutive cycles Ci and Cj intersect at two vertices {v0, v1} independent

of i and j.

Now consider the remaining face Fm+1. Since G is face-connected, there exists 1 ≤ l ≤ m such

that Fn+1 is adjacent to Fl. Suppose 1 < l < m. The induced subgraph Hl on the vertices of Cl

and Cm+1 has two faces and so Hl = B(kl, 2kl, 2). By Lemma 3.2, the lengths of the cycles in Hl

must be equal to the lengths of the cycles in G and so kl = k. This implies that Cm+1 intersects Cl

over a path of length k. However by definition of H , this implies that Fm+1 is also adjacent to Fl−1

or Fl+1. Suppose without loss of generality, that Fm+1 is adjacent to Fl+1 and consider the induced

subgraph Hl+1 on the vertices of Fm+1 and Fl+1. By the same argument, Hl+1 = B(k, 2k, 2) and

Cm+1 intersects Cl+1 over a path of length k. The cycle Cm+1 is adjacent to both Cl and Cl+1

over paths of length k. However since G is planar, the edge set of these paths must be disjoint

which cannot happen as Fl and Fl+1 are adjacent. Therefore, Cm+1 cannot be adjacent to Cl for

1 < l < m.

Now suppose without loss of generality that Fm+1 is adjacent to Fm and is not adjacent to Fl

for 1 < l < m. Consider the induced subgraph H on the vertices of Cm and Cm+1. By a similar

argument to the previous case, the cycles Cm and Cm+1 must intersect over a common path of

length k. Now, suppose Fm+1 is also adjacent to F1. By considering the induced subgraph H ′ on

the vertices of Cm and C1, the cycles Cm and C1 must intersect over a common path of length k.

However since G is planar, the edge set of these paths must be disjoint which cannot happen as

Fm+1 is an internal face. Therefore, Cm+1 cannot be adjacent to C1. Hence G = B(k, 2k,m+ 1) as

desired. �

Combining Proposition 3.11 and Theorem 3.12 gives the following corollary.

Corollary 3.13. Let G be a finite, simple and planar graph with r = girth(G) = circum(G). Let

F1, · · · ,Fm be the strict face components of G. If r is even, then Fi = B
(

r
2 , r, p

)

or Fi = Cr. If r

is odd, then Fi = Cr. �

This fully characterises the structure of a graph with girth equal to circumference. However given a

simple, planar graph G, it may not be easy to determine if G has the required form. Proposition 3.10

can be used to rephrase Corollary 3.13 in terms of blocks in order to determine if G has the required

form algorithmically. In particular, let G be a finite, simple and planar graph and define GB to be

the graph obtained from removing the bridges in G, and then removing the isolated vertices. Since
9



an edge is a bridge iff it is not contained in a cycle, GB is the union of the strict face components of

G. By Proposition 3.10, these strict face components are blocks and we obtain the following result.

Theorem 3.14. Let G be a finite, simple and planar graph and H1, · · · , Hk be the blocks of GB .

Then G has r = girth(G) = circum(G) iff for all 1 ≤ i ≤ k, Hi = B
(

r
2 , r, pi

)

or Hi = Cr and r is

even, or Hi = Cr for all 1 ≤ i ≤ k, if r is odd. �

4. Upper bounds on the number of edges in a graph with equal girth and

circumference

In this section, we prove upper bounds on the number of edges in a graph with girth equal to

circumference. To do this, we will consider a general construction of planar graphs. Let G1, · · · , Gk

be graphs. Construct a graph G′

2 from the disjoint union of G1 and G2 by identifying a vertex in

G1 and a vertex in G2. Iteratively define G′

i for 3 ≤ i ≤ k from the disjoint union of G′

i−1 and Gi

by identifying a vertex in G′

i−1 and a vertex in Gi. Since at each stage of the construction, we are

identifying a single vertex of two graphs together, we obtain the following result.

Lemma 4.1. The number of vertices and edges in the graphs G′

1, · · · , G
′

k are invariant under the

choice of vertex identification. �

Construction 4.2. Let G be a simple, finite and planar graph and let F1, · · · ,Fk be the strict face

components of G. Lemma 3.8 implies that any edge contained in a cycle in G must be contained in

a unique strict face component of G. Conversely, any edge not contained in any cycle is a bridge.

Therefore, we can view G as strict face components joined together by a single cut vertex (by

Lemma 3.8) or trees. This implies that we can construct any planar graph G iteratively in the

following way. Define a graph G2 as the disjoint union of a strict face component and another strict

face component or a tree as appropriate and identifying a single vertex in each graph. Continue this

process by defining Gi to be the disjoint union of Gi−1 and a strict face component or a tree and

identifying a single vertex in each graph. Since G is a finite graph, this process will terminate giving

G = Gn for some n ≥ 1.

In what follows, we will only be concerned with the number of edges and vertices contained within

G. Lemma 4.1 implies that the choice of vertex identification does not affect the number of vertices

or edges in the graph. Therefore, it will be simplest to consider the wedge sum of the strict face

components and trees.

The number of vertices and edges of a wedge sum can be determined easily in terms of the

summands. At each stage, only one vertex is being identified. Therefore, the number of edges is

unaffected, and two vertices in the disjoint union become one vertex in the wedge sum. Therefore,

we obtain the following.
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Lemma 4.3. Let G1, · · · , Gn be graphs, then
∣

∣

∣

∣

∣

V

(

n
∨

i=1

Gi

)∣

∣

∣

∣

∣

=

n
∑

i=1

|V (Gi)| − (n− 1),

∣

∣

∣

∣

∣

E

(

n
∨

i=1

Gi

)∣

∣

∣

∣

∣

=

n
∑

i=1

|E(Gi)|.

�

By Corollary 3.13, Construction 4.2 and Lemma 4.1, to consider the number of edges in a finite,

simple and planar graph G with r = girth(G) = circum(G), it suffices to consider
∨k1

i=1 Fi ∨
∨k2

j=1 Tj

where Tj is a tree and Fi = B( r2 , r, pi) for some pi ≥ 2 or Fi = Cr if r is even, or Fi = Cr if r is odd.

Further, without loss of generality we can consider G′ =
∨m

i=1 Fi ∨ Pk by Lemma 4.1. In the case

that r is even, we can view Cr as two paths of length r
2 glued together by their endpoints, therefore

it makes sense to define B( r2 , r, 1) as Cr in this case.

We now study the properties of the wedge sum of generalised book graphs and path graphs which

will then be applied to determine a bound on the number of edges in G. Viewing B(k, 2k, p) as p+1

path graphs Pk of length k glued together by their end points, we obtain the following result.

Lemma 4.4. Let B(k, 2k, p) be a generalised book graph with k ≥ 1 and p ≥ 1. Then

|V (B(k, 2k, p))| = (k − 1)(p+ 1) + 2, |E(B(k, 2k, p))| = k(p+ 1).

�

Now, for a fixed number of vertices, we bound the number of edges of the wedge sum of two

generalised book graphs.

Lemma 4.5. Let B( r2 , r, a) and B( r2 , r, b) be generalised book graphs with r ≥ 4, r even and a, b ≥ 1.

Let

n =
∣

∣

∣V
(

B
( r

2
, r, a

)

∨B
(r

2
, r, b

))∣

∣

∣ , p =

⌊

(

r
2 − 1

)

(a+ b+ 1) + 1
r
2 − 1

⌋

, c = n− 2−
(r

2
− 1
)

(p+ 1) .

Then

(i)
∣

∣

∣V
(

B
(r

2
, r, a

)

∨B
( r

2
, r, b

))∣

∣

∣ =
∣

∣

∣V
(

B
( r

2
, r, p

)

∨ Pc

)∣

∣

∣

(ii)
∣

∣

∣E
(

B
( r

2
, r, a

)

∨B
( r

2
, r, b

))∣

∣

∣ ≤
∣

∣

∣E
(

B
( r

2
, r, p

)

∨ Pc

)∣

∣

∣ .

Proof. First, by Lemma 4.3 and Lemma 4.4,

n =
(r

2
− 1
)

(a+ 1) + 2 +
( r

2
− 1
)

(b+ 1) + 2− 1 = 2 +

(

(

r
2 − 1

)

(a+ b+ 1) + 1
r
2 − 1

+ 1

)

(r

2
− 1
)

≥ 2 + (p+ 1)
(r

2
− 1
)

=
∣

∣

∣
V (B(

r

2
, r, p))

∣

∣

∣
.

Therefore c ≥ 0, and so Pc is well defined. Moreover, (i) follows from Lemma 4.3 and Lemma 4.4.

For (ii), consider
∣

∣E
(

B
(

r
2 , r, a

)

∨B
(

r
2 , r, b

))∣

∣. By Lemma 4.3 and Lemma 4.4,

∣

∣

∣E
(

B
(r

2
, r, a

)

∨B
( r

2
, r, b

))∣

∣

∣ =
r

2
(a+ 1) +

r

2
(b + 1)

11



=

⌊

(

r
2 − 1

)

(a+ b+ 1)
r
2 − 1

⌋

+
( r

2
− 1
)

(a+b+2)+1 ≤

⌊

(

r
2 − 1

)

(a+ b+ 1) + 1
r
2 − 1

⌋

+
( r

2
− 1
)

(a+b+2)+1

<

⌊

(

r
2 − 1

)

(a+ b+ 1) + 1
r
2 − 1

⌋

+
(r

2
− 1
)

(a+ b+ 2) + 2 =

⌊

(

r
2 − 1

)

(a+ b+ 1) + 1
r
2 − 1

⌋

+ n− 1

=
∣

∣

∣E
(

B
( r

2
, r, p

)

∨ Pc

)∣

∣

∣ .

�

Next, for a fixed number of vertices, we bound the number of edges of the wedge sum of a

generalised book graph and a path graph.

Lemma 4.6. Let B( r2 , r, p) and B( r2 , r, p
′) be generalised book graphs with r ≥ 4 where r is even,

and 1 ≤ p′ ≤ p. Let Pc and Pc′ be path graphs with 0 ≤ c ≤ c′. If
∣

∣V
(

B
(

r
2 , r, p

)

∨ Pc

)∣

∣ =
∣

∣V
(

B
(

r
2 , r, p

′
)

∨ Pc′
)∣

∣, then

∣

∣

∣E
(

B
( r

2
, r, p′

)

∨ Pc′

)∣

∣

∣ ≤
∣

∣

∣E
(

B
(r

2
, r, p

)

∨ Pc

)∣

∣

∣ .

Proof. By Lemma 4.3 and Lemma 4.4, the assumption
∣

∣V
(

B
(

r
2 , r, p

)

∨ Pc

)∣

∣ =
∣

∣V
(

B
(

r
2 , r, p

′
)

∨ Pc′
)∣

∣

implies that c′ =
(

r
2 − 1

)

(p− p′) + c. Now by Lemma 4.3 and Lemma 4.4,

∣

∣

∣
E
(

B
( r

2
, r, p′

)

∨ Pc′

)∣

∣

∣
=

r

2
(p′ + 1) + c′ = p′ − p+

r

2
(p+ 1) + c

≤
r

2
(p+ 1) + c =

∣

∣

∣
E
(

B
( r

2
, r, p

)

∨ Pc

)∣

∣

∣

where the last inequality follows since p′ ≤ p. �

This gives us everything we need to bound the number of edges for a simple, connected, finite

and planar graph G with r = girth(G) = circum(G). We first consider the case that r is even.

Lemma 4.7. Let G be a simple, connected, finite and planar graph with n ≥ 4 vertices and r =

girth(G) = circum(G) where r is even. Let

p =

⌊

n− r
2 − 1

r
2 − 1

⌋

and c = n− 2−
( r

2
− 1
)

(p+ 1)

Then

|E(G)| ≤
∣

∣

∣E
(

B
(r

2
, r, p

)

∨ Pc

)∣

∣

∣ .

Proof. First by Lemma 4.4,

∣

∣

∣V
(

B
( r

2
, r, p

))∣

∣

∣ =
(r

2
− 1
)

(p+ 1) + 2 ≤
( r

2
− 1
)

(

n− r
2 − 1

r
2 − 1

+ 1

)

+ 2 = n.

Therefore by Lemma 4.3 and Lemma 4.4, c ≥ 0, and so Pc is well defined. Moreover, it follows that
∣

∣V
(

B
(

r
2 , r, p

)

∨ Pc

)∣

∣ = n. Now, we show that the number of vertices in the graph B
(

r
2 , r, p+ 1

)

is

greater than n. In particular by Lemma 4.6, this implies that any other graph H of the form B ∨ T

where B is a generalised book graph and T is a tree with n = |V (H)| =
∣

∣V
(

B
(

r
2 , r, p

)

∨ Pc

)∣

∣ has

(2) |E(H)| ≤
∣

∣

∣E
(

B
( r

2
, r, p

)

∨ Pc

)∣

∣

∣ .
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By Lemma 4.4,

∣

∣

∣V
(

B
(r

2
, r, p+ 1

))∣

∣

∣ =
r

2
+ 1 +

(⌊

n− r
2 − 1

r
2 − 1

⌋

+ 1

)

( r

2
− 1
)

>
r

2
+ 1 +

(

n− r
2 − 1

r
2 − 1

− 1 + 1

)

(r

2
− 1
)

= n.

Since we are only considering the number of edges in G, by Lemma 4.1 and Construction 4.2, it

suffices to consider the graph G′ =
∨m

i=1 Fi ∨ Pj where Fi are the strict face components of G and

Pj is a path graph. Corollary 3.13 implies that Fi = B( r2 , r, pi) for pi ≥ 1, with the convention that

B( r2 , r, 1) = Cr.

Now consider |E(G′)| = |E (
∨m

i=1 Fi ∨ Pk)|. Observe that by definition, the wedge sum is asso-

ciative and commutative, up to isomorphism. Applying Lemma 4.5 to Fm−1 ∨ Fm, we obtain

∣

∣

∣

∣

∣

E

(

m
∨

i=1

Fi ∨ Pk

)∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

E

(

m−2
∨

i=1

Fi ∨B′ ∨ Pc1 ∨ Pk

)∣

∣

∣

∣

∣

for some generalised book graph B′ and path graph Pc1 . Moreover, Lemma 4.1 implies that
∣

∣

∣E
(

∨m−2
i=1 Fi ∨B′ ∨ Pc1 ∨ Pk

)∣

∣

∣ =
∣

∣

∣E
(

∨m−2
i=1 Fi ∨B′ ∨ P ′

)∣

∣

∣ for some path graph P ′. Iterate this

process by considering the last strict face component in the wedge summand and B′ to obtain

∣

∣

∣

∣

∣

E

(

m
∨

i=1

Fi ∨ Pk

)∣

∣

∣

∣

∣

≤
∣

∣E(B ∨ P )
∣

∣

for some generalised book graph B and path graph P . However, by (2)

E(B ∨ P ) ≤
∣

∣

∣E
(

B
( r

2
, r, p

)

∨ Pc

)∣

∣

∣ .

�

The case for r odd is similar.

Lemma 4.8. Let G be a simple, connected, finite and planar graph with n ≥ 3 vertices and r =

girth(G) = circum(G) where r is odd. Let

p′ =

⌊

n− 1

r − 1

⌋

.

Then

|E(G)| ≤

∣

∣

∣

∣

∣

∣

E





p′

∨

i=1

Cr ∨ Pn−1+p′(1−r)





∣

∣

∣

∣

∣

∣

.

Sketch. It follows from Lemma 4.3,

n− 1 + p′(1− r) ≥ 0 and

∣

∣

∣

∣

∣

∣

V





p′

∨

i=1

Cr ∨ Pn−1+p′(1−r)





∣

∣

∣

∣

∣

∣

= n.
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Similar to Lemma 4.6, it can be shown that for graphs
∨k

i=1 Cr ∨ Pl and
∨k′

i=1 Cr ∨ Pl′ with k ≥ k′,

l ≤ l′ and
∣

∣

∣V
(

∨k

i=1 Cr ∨ Pl

)∣

∣

∣ =
∣

∣

∣V
(

∨k′

i=1 Cr ∨ Pl

)∣

∣

∣, that

(3)

∣

∣

∣

∣

∣

∣

E





k′

∨

i=1

Cr ∨ Pl′





∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

E

(

k
∨

i=1

Cr ∨ Pl

)∣

∣

∣

∣

∣

.

By Lemma 4.1 and Construction 4.2, it suffices to consider the graph G′ =
∨m

i=1 Fi ∨ Pj where

Fi are the strict face components of G and Pj is a path graph. Corollary 3.13 implies that Fi = Cr.

Therefore by (3), to maximise E(G′) we wish to maximise m which is achieved by m = p′. �

Let G be a simple, connected, finite and planar graph with n vertices and r = girth(G) =

circum(G). Lemma 4.7 and Lemma 4.8 gives us a sharp upper bound for |E(G)|.

Theorem 4.9. Let G be a simple, connected, finite and planar graph with n vertices and r =

girth(G) = circum(G). Then if r is even and n ≥ 4,

|E(G)| ≤ n− 1 +

⌊

n− r
2 − 1

r
2 − 1

⌋

,

and if r is odd and n ≥ 3,

|E(G)| ≤ n− 1 +

⌊

n− 1

r − 1

⌋

.

Proof. For r even, Lemma 4.7 shows that the graph G′ = B
(

r
2 , r, p

)

∨ Pc where p =
⌊

n− r

2
−1

r

2
−1

⌋

and c = n − 2 −
(

r
2 − 1

)

(p+ 1) has |E(G)| ≤ |E(G′)| for all graphs G with n ≥ 4 vertices and

r = girth(G) = circum(G) for r even. By Lemma 4.3 and Lemma 4.4,

|E(G′)| = n− 1 +

⌊

n− r
2 − 1

r
2 − 1

⌋

.

For r odd, Lemma 4.8 shows that the graph G′ =
∨p′

i=1 Cr ∨ Pn−1+p′(1−r) where p′ =
⌊

n−1
r−1

⌋

has

|E(G)| ≤ |E(G′)| for all graphs G with n ≥ 3 vertices and r = girth(G) = circum(G) for r odd. By

Lemma 4.3 and Lemma 4.4,

|E(G′)| = n− 1 +

⌊

n− 1

r − 1

⌋

.

�

Theorem 4.9 can be used to prove an upper bound that is independent of r.

Corollary 4.10. Let G be a simple, connected, finite and planar graph with n ≥ 4 vertices and

r = girth(G) = circum(G). Then

|E(G)| ≤ 2n− 4.

Proof. By Theorem 4.9, if r is even, then |E(G)| ≤ n−1+
⌊

n− r

2
−1

r

2
−1

⌋

. This is monotonically decreasing

for r ≥ 4 and so

|E(G)| ≤ n− 1 +

⌊

n− 4
2 − 1

4
2 − 1

⌋

= 2n− 4.
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If r is odd, then by Theorem 4.9, |E(G)| ≤ n − 1 +
⌊

n−1
r−1

⌋

. This is monotonically decreasing for

r ≥ 3 and so

|E(G)| ≤ n− 1 +

⌊

n− 1

2

⌋

.

Consider n− 1 +
⌊

n−1
2

⌋

. By definition of floor, n− 1 +
⌊

n−1
2

⌋

≤ n− 1 + n−1
2 = 3

2n− 3
2 . For all

n ≥ 5, 3
2n − 3

2 ≤ 2n− 4 and so the bound holds for all r ≥ 3 and n ≥ 5. For n = 4 and r odd, by

Corollary 3.13, the only possibility for G is G = C3∨P2 which has 4 ≤ 2 ·4−4 = 4 edges. Therefore,

the bound holds for all n ≥ 4 and r ≥ 3. �

Theorem 4.9 and Corollary 4.10 can be used to prove the existence of two cycles of different

lengths in a planar graph.

Example 4.11. Let G be a simple, connected, finite and planar graph with 16 vertices and 29

edges. Suppose all the cycles in G are of the same length, in other words, girth(G) = circum(G).

Then by Corollary 4.10, |E(G)| ≤ 2 ·16−4 = 28 which is a contradiction. Therefore, G must contain

two cycles of different lengths.

Example 4.12. Let G be a simple, connected, finite and planar graph with 16 vertices, 22 edges

and a cycle of length 6. Suppose all the cycles in G are of the same length, in other words,

6 = girth(G) = circum(G). Then by Corollary 4.9, |E(G)| ≤ 16 − 1 +
⌊

16−3−1
3−1

⌋

= 21 which is

a contradiction. Therefore, G must contain two cycles of different lengths.
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