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COGRAPHS AND 1-SUMS

JAGDEEP SINGH

ABSTRACT. A graph that can be generated from K; using joins and
0-sums is called a cograph. We define a sesquicograph to be a graph
that can be generated from K; using joins, 0-sums, and 1-sums. We
show that, like cographs, sesquicographs are closed under induced mi-
nors. Cographs are precisely the graphs that do not have the 4-vertex
path as an induced subgraph. We obtain an analogue of this result
for sesquicographs, that is, we find those non-sesquicographs for which
every proper induced subgraph is a sesquicograph.

1. INTRODUCTION

In this paper, we only consider finite and simple graphs. The notation
and terminology follows [3] except where otherwise indicated. For graphs G
and H having disjoint vertex sets, the O-sum G @ H of G and H is their
disjoint union. A l-sum G &1 H of G and H is obtained by identifying a
vertex of G with a vertex of H. The join G 57 H of two disjoint graphs G
and H is obtained from the 0-sum of G and H by joining every vertex of
G to every vertex of H. A cograph is a graph that can be generated from
the single- vertex graph Kj using the operations of join and 0-sum. We
define a graph to be a sesquicograph if it can be generated from K7 using
the operations of join, 0-sum, and 1-sum. The class of cographs has been
extensively studied over the last fifty years (see, for example, [2, 4, 0]). Due
to the following characterization, cographs are also called Py-free graphs [I].

Theorem 1.1. A graph G is a cograph if and only if G does not contain
the path Py on four vertices as an induced subgraph.

Since we consider only simple graphs in this paper, when we write G/e
for an edge e of a graph G, we mean the simple graph obtained from the
multigraph that results from contracting the edge e by deleting all but one
edge from each class of parallel edges. An induced minor of a graph G is
a graph H that can be obtained from G by a sequence of operations each
consisting of a vertex deletion or an edge contraction. In Section 2, we show
that every induced minor of a sesquicograph is a sesquicograph. In addition,
we provide an alternative definition of a sesquicograph in terms of the vertex
connectivities of its induced subgraphs and their complements. The graph
obtained from a 6-cycle by adding a chord to create two 4-cycles is called
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the domino graph. We let C’gr denote the domino; Ps is the complement of
a 5-vertex path. The next theorem is the main result of the paper.

Theorem 1.2. A graph G is a sesquicograph if and only if G does not
contain any of the following graphs as an induced subgraph:

(i) cycles of length exceeding four, and
(ZZ) P57 08—7 Hla H27 H37 H47 and H5a
where the graphs in (ii) are shown in Figure [

Its proof occupies most of Section 3. As a consequence of Theorem [[L2] we
have the following characterization of sesquicographs in terms of forbidden
induced minors.

Corollary 1.3. A graph G is a sesquicograph if and only if G has no induced
minor isomorphic to a graph in {Cs, Ps, Hy, Ho, Hs, Hy, H5}, where C5 is the
cycle of length five.

A graph G is a 2-cograph if it can be generated from K7 using the oper-
ations of complementation, 0-sum, and 1-sum. The class of 2-cographs has
been studied in [7]. This paper has some similarities with [7] although the
arguments for sesquicographs are not as complex as they are for 2-cographs.
Since the class of sesquicographs is the smallest class of graphs that con-
tains K7 and is closed under the operations of join, 0-sum, and 1-sum, it
is a proper subclass of 2-cographs and, thus, of the class of perfect graphs.
Note the path Ps on five vertices is a sesquicograph but its complement
Ps is not. It follows that the class of sesquicographs is not closed under
complementation unlike the classes of cographs and 2-cographs.

2. PRELIMINARIES

Let G be a graph. A vertex u of GG is a neighbour of a vertex v of G if
uv is an edge of G. The neighbourhood N¢(v) of v in G is the set of all
neighbours of v in G. If G is connected, a t-cut of G is set X; of vertices
of G such that |X;| =t and G — X; is disconnected. A graph that has no
t-cuts for all ¢ less than k is k-connected. Viewing G as a subgraph of K,
where n = |V(G)|, we colour the edges of G green while assigning the colour
red to the non-edges of G. Similar to the terminology in [7], we use the
terms green graph and red graph for G and its complementary graph G,
respectively. An edge of G is called a green edge while a red edge refers
to an edge of G. The green degree of a vertex v of G is the number of
green neighbours of v, while the red degree of v is its number of red
neighbours.

We omit the straightforward proofs of the next three results.

Lemma 2.1. All graphs having at most four vertices are sesquicographs.

Lemma 2.2. A graph G is a join of two graphs if and only if its complement
G is disconnected.



COGRAPHS AND 1-SUMS

S o8

H,y Hy Hj
Cs Hy Hs
P
FIGURE 1. The induced-subgraph-minimal non-
sesquicographs.

Lemma 2.3. Let G be a graph and let uv be an edge e of G. Then G—/e i
the graph obtained by adding a vertex w with neighbourhood Ng(u) N Ng(v)
to the graph G — {u,v}.

Lemma 2.4. Every induced subgraph of a sesquicograph is a sesquicograph.

Proof. Let G be a sesquicograph. It is enough to show that, for every vertex
v of G, the graph G —v is a sesquicograph. Note that if |V (G)| < 5, then our
result follows by Lemma 2l Let |V (G)| = n. We proceed via induction on
|V(G)| and assume that the result is true for all sesquicographs with order
less than n. Since G is a sesquicograph, GG is a 0-sum, a 1-sum, or a join of
proper induced subgraphs X and Y of G. Observe that if G is X &Y or
X VY, then G—vequals (X —v)@Y or (X —v) v Y, and so the result
follows by induction. Therefore we may assume that G = X &1 Y. Note
that, in this case, G — v is either (X —v)® (Y —v) or (X —v) @; Y. Thus
our result follows by induction. U

A graph is trivial if it contains only one vertex and no edge. Cographs
can also be characterized as the graphs in which every non-trivial connected
induced subgraph has a disconnected complement. Similarly, a graph G is a
2-cograph if G has no non-trivial induced subgraph H such that both H and
H are 2-connected. Next we show that sesquicographs can be characterized
in a similar way.
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Proposition 2.5. A graph G is a sesquicograph if and only if, for every
non-trivial induced subgraph H of G, the graph H is not 2-connected or H
is disconnected.

Proof. Let G be a sesquicograph and let H be a non-trivial induced subgraph
of G. By Lemma 2.4 H is a sesquicograph. Since H can be decomposed
as a 0-sum, a 1l-sum, or a join, it follows by Lemma [2.2, that H is not
2-connected or H is disconnected.

Conversely, let G be a graph such that, for every non-trivial induced
subgraph H of G, the graph H is not 2-connected or H is disconnected. By
Lemma [2.2] it follows that every non-trivial subgraph of G can be written
as a 0-sum, a 1-sum, or a join of smaller induced subgraphs of G. Therefore
G can be generated from K7 using the operations of 0-sum, 1-sum, and join.
Thus G is a sesquicograph. O

A slight variation of the proof of the closure of 2-cographs under contrac-
tions [7, Proposition 2.8] shows that sesquicographs are also closed under
contractions.

Proposition 2.6. Let G be a sesquicograph and e be an edge of G. Then
G/e is a sesquicograph.

Proof. Assume to the contrary that G/e is not a sesquicograph. Then there
is a non-trivial induced subgraph H of G/e such that H is 2-connected and
H is connected. Let e = uv and let w denote the vertex in G//e obtained by
identifying u and v. We may assume that w is a vertex of H, otherwise H
is an induced subgraph of GG, a contradiction. We assert that the subgraph
H' of G induced on the vertex set (V(H) U {u,v}) — {w} is 2-connected
and its complement H’ is connected. To see this, note that, since H is
2-connected, H’ is 2-connected unless one of u and v, say u, is a leaf of
H'. In the exceptional case, we have H' — u = H, so G has a 2-connected
induced subgraph for which its complement is connected, a contradiction.
We deduce that H' is 2-connected.

Note that, by Lemma 23, H is obtained from H’ by adding a vertex w
with neighbourhood Ny (u) N Ng7(v) to the graph H' — {u,v}. Since H is
connected, it follows that H’ is connected, a contradiction. O

It now follows that the class of sesquicographs is closed under taking
induced minors. Since we can compute the components and blocks of a
graph in polynomial time [I0} 4.1.23], the algorithm in Figure [2 recognizes
sesquicographs in polynomial time.

3. INDUCED-SUBGRAPH-MINIMAL NON-SESQUICOGRAPHS

We noted in Section 2 that sesquicographs are closed under induced sub-
graphs. In this section, we consider those non-sesquicographs for which
every proper induced subgraph is a sesquicograph. We call these graphs
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Require: Input a simple graph G
Set H + G, BlocksList < [G]
if |V(H)| <4 then
remove H from BlocksList
if BlocksList is empty then
return G is a sesquicograph and exit the algorithm
else
update H to be an element of BlocksList
if H is not 2-connected then
remove H from BlocksList
Decompose H into 2-connected blocks and add all the blocks of H
to BlocksList
update H to be an element of BlocksList
else if H is not connected then
remove H from BlocksList
Decompose H into connected components and add the complements
of all the components to BlocksList
update H to be an element of BlocksList
else
return G is not a sesquicograph and exit the algorithm

FI1GURE 2. Algorithm for recognizing a sesquicograph.

induced-subgraph-minimal non-sesquicographs. The goal of this sec-
tion is to characterize such graphs. We begin by showing that all cycles of
length exceeding four are examples of such graphs.

Lemma 3.1. Let G be a cycle of length exceeding four. Then G is an
induced-subgraph-minimal non-sesquicograph.

Proof. Note that both G and G are 2-connected and so, by Proposition 2.5,
G is not a sesquicograph. It is now enough to show that, for any vertex v
of G, the graph G — v is a sesquicograph. Observe that G — v is a path and
so is a sesquicograph. O

The next result can be easily checked.

Lemma 3.2. The graphs Ps, C’gr, Hi, Ho, Hs, Hy, and Hs are induced-subgraph-
minimal non-sesquicographs.

Lemma 3.3. Let G be an induced-subgraph-minimal non-sesquicograph.
Then G is 2-connected and G is connected.

Proof. Assume the contrary. Then for some proper induced subgraphs X
and Y of G, we can decompose G as X @Y, as X ®1Y, or, by Lemmal[2.2] as
X Y. Since G is an induced-subgraph-minimal non-sesquicograph, both
X and Y are sesquicographs. It now follows that G is a sesquicograph, a
contradiction. O
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A 2-connected graph H is critically 2-connected if H — v is not 2-
connected for all vertices v of H.

Lemma 3.4. Let G be an induced-subgraph-minimal non-sesquicograph.
Then G is critically 2-connected, or G has vertex connectivity two and G
has vertex connectivity one.

Proof. Note that, by Lemma B.3] G is 2-connected and G is connected,
and, by Proposition 23] for each vertex v of G, the graph G — v is not
2-connected or G — v is disconnected. Observe that G has a vertex v such
that G — v is connected and so G — v is not 2-connected. Therefore G has
vertex connectivity two. Suppose that G is not critically 2-connected. Then
there is a vertex w of G such that G — w is 2-connected and so G — w is
disconnected. Therefore the vertex connectivity of G is one. (]

Next we find those induced-subgraph-minimal non-sesquicographs G such
that G is critically 2-connected. We will use the following result of Nebesky

I6].

Lemma 3.5. Let G be a critically 2-connected graph such that |V (G)| > 6.
Then G has at least two distinct paths of length exceeding two such that the
internal vertices of these paths have degree two in G.

Lemma 3.6. Let G be an induced-subgraph-minimal non-sesquicograph such
that G is not isomorphic to a cycle and let wxyz be a path P of G such that
both x and y have degree two in G. Then w and z are adjacent.

Proof. Assume that w and z are not adjacent. By Lemma B3l G is 2-
connected, so there is a path P’ joining w and z such that P and P’ are
internally disjoint. We may assume that P’ is a shortest such path. It
now follows that G has a cycle C of length exceeding four as an induced
subgraph. Since a cycle of length exceeding four is not a sesquicograph,
G = C, a contradiction. O

Proposition 3.7. Let G be an induced-subgraph-minimal non-sesquicograph
such that G is critically 2-connected. Then G is isomorphic to a cycle of
length exceeding four or to the domino.

Proof. We may assume that G is not isomorphic to a cycle exceeding four
otherwise we have our result. Note that, by Lemma 21l |V(G)| > 5. Since
the cycle of length five is the only critically 2-connected graph on five ver-
tices, we may assume that |V (G)| > 6. By Lemma 5] G has two distinct
paths P, = abed and P, = waxyz of length three such that their internal
vertices have degree two. By Lemma B.6, a and d are adjacent, and w and
z are adjacent. Consider the graph G’ = G — {b,c¢}. Note that G’ is 2-
connected and so, by Lemma 2.5, G is disconnected. It is now easy to check
that |[V(G’)| = 4 and so G is isomorphic to the domino. O
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Set FinalList < 0, i < 0
Generate all two connected graphs of order 6 using nauty geng [5] and
store in an iterator L
for ¢ in L such that vertex connectivity of g is 2 and g is 1 do
for v in V(g) do
h=g\v
if vertex connectivity of h < 2 or vertex connectivity of h < 1
then
1 i+1
if 7 equals |V (g)| then
Add g to FinalList

FiGure 3. Finding induced-subgraph-minimal non-
sesquicographs of order six.

Proof of Theorem[I.4. We may assume that G is not critically 2-connected
otherwise we are done by Proposition 3.7l By Lemma B3] G has vertex
connectivity two and G has vertex connectivity one. We first show the
following.

3.7.1. G has at most three cut vertices.

Let {u,v} be a 2-cut of G and let the components of G — {u, v} be par-
titioned into subgraphs A and B such that |V (A)| > |[V(B)| and |V (4)| —
|V(B)| is a minimum. Observe that G — x is connected for a vertex z in
V(G) unless z is the only red neighbour of u or the only red neighbour of
v,or |[V(B)| =1 and z is in V(B). Thus B.7.1] holds.

We show next that the number of vertices of G can be bounded.

3.7.2. [V(G)| < 6.

Assume that [V(G)| > 6. By B.ZIl G has at most three cut vertices.
First suppose that G has one cut vertex z. Let the components of G — z
be partitioned into subgraphs Ry and Rg such that |V (R1)| > [V (R2)| and
[V(R1)| — |V(R2)| is a minimum. Since |V(G)| > 7, we have |V (R;)| >
3. Observe that, if |[V(R2)| > 2, then there exists a vertex r in R; such
that x has two green neighbours in G — r. Note that every edge joining a
vertex in R; to a vertex in Rs is a green edge and so G — r is connected.
Since every vertex in V(G) — z is in a green 2-cut, this is a contradiction.
Therefore |V (Rz2)| =1 and so |V (R;)| > 5. Let Ry = {a}. Note that G —x
is 2-connected since G is not critically 2-connected. It is now clear that
G—{z,a} is connected. If G—{xz, o} has a vertex r such that G—{x, a,r} is
connected and contains two green neighbours of x, then G—« is 2-connected,
a contradiction. It now follows that G — {x, o} is a path and its leaves are
the only green neighbours of x. Note that G—« is a cycle of length exceeding
four, a contradiction.
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Next suppose that G has two cut vertices z1 and 9. For {i,j} = {1,2},
let R; be the disjoint union of the components of G — z; that do not contain
xj. Let R3 be the subgraph induced on V(G) — (V(R1) UV (R2) U {z1, z2}).
We first consider the case when V(Rj3) is empty. We may assume that
|[V(R1)| > |V(R2)| and so |[V(R1)| > 3. Note that if |V (Rg)| > 2, then
there is a vertex r in R; such that G — r is 2-connected, a contradiction.
Therefore |V(R2)| = 1 and so |[V(Ry)| > 4. Let 8 be a green neighbour of
x1 in Ry. Note that G — r is 2-connected for every vertex r in V(R;) — 3,
a contradiction. Therefore V(R3) is non-empty. Observe that, if both R;
and Ry have at least two vertices, then G — r is 2-connected for any vertex
r in Rs, a contradiction. Therefore we may assume that |V(R;)| = 1. We
show that neither Ry nor R3 has more than two vertices. Assume that R;
has more than two vertices for some ¢ in {2,3}. Then there exists a vertex
r in V(R;) such that both z; and z9 have at least two green neighbours in
G —r. Note that G —r is 2-connected, a contradiction. Therefore |V (Rg)| =
|[V(R3)| = 2. Observe that there is a vertex r in R3 such that both x; and x4
have green degree at least two in G —r. It follows that G — r is 2-connected,
a contradiction. Thus G has three cut vertices.

Let X = {x1, 22,23} be the set of cut vertices of G. We may assume that
for the cut vertex z; of G, the components of G — z; can be partitioned
into subgraphs P and @ such that x5 is in P and z3 is in @, and |V (P)| >
|[V(Q)| > 2. Note that all vertices in P are green neighbours of z3 and all
vertices in @) are green neighbours of zo. If |[V(P)| > 4, then there is a vertex
r in P such that all vertices in X have at least two green neighbours in G —r
and so G—r is 2-connected, a contradiction. Therefore |V (P)| = |V (Q)| = 3.
Note that there is a vertex r in PU( such that all vertices in X have at least
two green neighbours in G — r and so G — r is 2-connected, a contradiction.
Thus holds.

By Lemma 21} it is clear that |V (G)| > 5 and so |V (G)] is either 5 or 6.
Suppose |V (G)| = 5. Since Ps is the only graph on five vertices that is not
critically 2-connected, has vertex connectivity two, and whose complement
has vertex connectivity one, by Lemma [3.2] we have G = P5. Next suppose
that |V(G)| = 6. Implementing the algorithm in Figure B] in Sagemeth
[8], it can be easily checked that G is isomorphic to one of the graphs in
{Hy, Hs, Hs, Hy, H5}. This completes the proof. O

Proof of Corollary [I.3. Note that every cycle of length exceeding five has
the cycle of length five as an induced minor. Also, the domino graph C’gr
contains Ps as an induced minor. The result now follows by Theorem[[.2l [
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