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COGRAPHS AND 1-SUMS

JAGDEEP SINGH

Abstract. A graph that can be generated from K1 using joins and
0-sums is called a cograph. We define a sesquicograph to be a graph
that can be generated from K1 using joins, 0-sums, and 1-sums. We
show that, like cographs, sesquicographs are closed under induced mi-
nors. Cographs are precisely the graphs that do not have the 4-vertex
path as an induced subgraph. We obtain an analogue of this result
for sesquicographs, that is, we find those non-sesquicographs for which
every proper induced subgraph is a sesquicograph.

1. Introduction

In this paper, we only consider finite and simple graphs. The notation
and terminology follows [3] except where otherwise indicated. For graphs G
and H having disjoint vertex sets, the 0-sum G ⊕ H of G and H is their
disjoint union. A 1-sum G ⊕1 H of G and H is obtained by identifying a
vertex of G with a vertex of H. The join G▽H of two disjoint graphs G
and H is obtained from the 0-sum of G and H by joining every vertex of
G to every vertex of H. A cograph is a graph that can be generated from
the single- vertex graph K1 using the operations of join and 0-sum. We
define a graph to be a sesquicograph if it can be generated from K1 using
the operations of join, 0-sum, and 1-sum. The class of cographs has been
extensively studied over the last fifty years (see, for example, [2, 4, 9]). Due
to the following characterization, cographs are also called P4-free graphs [1].

Theorem 1.1. A graph G is a cograph if and only if G does not contain
the path P4 on four vertices as an induced subgraph.

Since we consider only simple graphs in this paper, when we write G/e
for an edge e of a graph G, we mean the simple graph obtained from the
multigraph that results from contracting the edge e by deleting all but one
edge from each class of parallel edges. An induced minor of a graph G is
a graph H that can be obtained from G by a sequence of operations each
consisting of a vertex deletion or an edge contraction. In Section 2, we show
that every induced minor of a sesquicograph is a sesquicograph. In addition,
we provide an alternative definition of a sesquicograph in terms of the vertex
connectivities of its induced subgraphs and their complements. The graph
obtained from a 6-cycle by adding a chord to create two 4-cycles is called
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the domino graph. We let C+
6 denote the domino; P5 is the complement of

a 5-vertex path. The next theorem is the main result of the paper.

Theorem 1.2. A graph G is a sesquicograph if and only if G does not
contain any of the following graphs as an induced subgraph:

(i) cycles of length exceeding four, and
(ii) P5, C

+
6 ,H1,H2,H3,H4, and H5,

where the graphs in (ii) are shown in Figure 1.

Its proof occupies most of Section 3. As a consequence of Theorem 1.2, we
have the following characterization of sesquicographs in terms of forbidden
induced minors.

Corollary 1.3. A graph G is a sesquicograph if and only if G has no induced
minor isomorphic to a graph in {C5, P5,H1,H2,H3,H4,H5}, where C5 is the
cycle of length five.

A graph G is a 2-cograph if it can be generated from K1 using the oper-
ations of complementation, 0-sum, and 1-sum. The class of 2-cographs has
been studied in [7]. This paper has some similarities with [7] although the
arguments for sesquicographs are not as complex as they are for 2-cographs.
Since the class of sesquicographs is the smallest class of graphs that con-
tains K1 and is closed under the operations of join, 0-sum, and 1-sum, it
is a proper subclass of 2-cographs and, thus, of the class of perfect graphs.
Note the path P5 on five vertices is a sesquicograph but its complement
P5 is not. It follows that the class of sesquicographs is not closed under
complementation unlike the classes of cographs and 2-cographs.

2. Preliminaries

Let G be a graph. A vertex u of G is a neighbour of a vertex v of G if
uv is an edge of G. The neighbourhood NG(v) of v in G is the set of all
neighbours of v in G. If G is connected, a t-cut of G is set Xt of vertices
of G such that |Xt| = t and G − Xt is disconnected. A graph that has no
t-cuts for all t less than k is k-connected. Viewing G as a subgraph of Kn

where n = |V (G)|, we colour the edges of G green while assigning the colour
red to the non-edges of G. Similar to the terminology in [7], we use the
terms green graph and red graph for G and its complementary graph G,
respectively. An edge of G is called a green edge while a red edge refers
to an edge of G. The green degree of a vertex v of G is the number of
green neighbours of v, while the red degree of v is its number of red
neighbours.

We omit the straightforward proofs of the next three results.

Lemma 2.1. All graphs having at most four vertices are sesquicographs.

Lemma 2.2. A graph G is a join of two graphs if and only if its complement
G is disconnected.
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Figure 1. The induced-subgraph-minimal non-
sesquicographs.

Lemma 2.3. Let G be a graph and let uv be an edge e of G. Then G/e is
the graph obtained by adding a vertex w with neighbourhood NG(u)∩NG(v)

to the graph G− {u, v}.

Lemma 2.4. Every induced subgraph of a sesquicograph is a sesquicograph.

Proof. Let G be a sesquicograph. It is enough to show that, for every vertex
v of G, the graph G−v is a sesquicograph. Note that if |V (G)| ≤ 5, then our
result follows by Lemma 2.1. Let |V (G)| = n. We proceed via induction on
|V (G)| and assume that the result is true for all sesquicographs with order
less than n. Since G is a sesquicograph, G is a 0-sum, a 1-sum, or a join of
proper induced subgraphs X and Y of G. Observe that if G is X ⊕ Y or
X ▽ Y , then G − v equals (X − v) ⊕ Y or (X − v)▽ Y , and so the result
follows by induction. Therefore we may assume that G = X ⊕1 Y . Note
that, in this case, G− v is either (X − v)⊕ (Y − v) or (X − v)⊕1 Y . Thus
our result follows by induction. �

A graph is trivial if it contains only one vertex and no edge. Cographs
can also be characterized as the graphs in which every non-trivial connected
induced subgraph has a disconnected complement. Similarly, a graph G is a
2-cograph if G has no non-trivial induced subgraph H such that both H and
H are 2-connected. Next we show that sesquicographs can be characterized
in a similar way.
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Proposition 2.5. A graph G is a sesquicograph if and only if, for every
non-trivial induced subgraph H of G, the graph H is not 2-connected or H
is disconnected.

Proof. LetG be a sesquicograph and letH be a non-trivial induced subgraph
of G. By Lemma 2.4, H is a sesquicograph. Since H can be decomposed
as a 0-sum, a 1-sum, or a join, it follows by Lemma 2.2, that H is not
2-connected or H is disconnected.

Conversely, let G be a graph such that, for every non-trivial induced
subgraph H of G, the graph H is not 2-connected or H is disconnected. By
Lemma 2.2, it follows that every non-trivial subgraph of G can be written
as a 0-sum, a 1-sum, or a join of smaller induced subgraphs of G. Therefore
G can be generated from K1 using the operations of 0-sum, 1-sum, and join.
Thus G is a sesquicograph. �

A slight variation of the proof of the closure of 2-cographs under contrac-
tions [7, Proposition 2.8] shows that sesquicographs are also closed under
contractions.

Proposition 2.6. Let G be a sesquicograph and e be an edge of G. Then
G/e is a sesquicograph.

Proof. Assume to the contrary that G/e is not a sesquicograph. Then there
is a non-trivial induced subgraph H of G/e such that H is 2-connected and
H is connected. Let e = uv and let w denote the vertex in G/e obtained by
identifying u and v. We may assume that w is a vertex of H, otherwise H
is an induced subgraph of G, a contradiction. We assert that the subgraph
H ′ of G induced on the vertex set (V (H) ∪ {u, v}) − {w} is 2-connected
and its complement H ′ is connected. To see this, note that, since H is
2-connected, H ′ is 2-connected unless one of u and v, say u, is a leaf of
H ′. In the exceptional case, we have H ′ − u ∼= H, so G has a 2-connected
induced subgraph for which its complement is connected, a contradiction.
We deduce that H ′ is 2-connected.

Note that, by Lemma 2.3, H is obtained from H ′ by adding a vertex w
with neighbourhood NH′(u) ∩NH′(v) to the graph H ′ − {u, v}. Since H is

connected, it follows that H ′ is connected, a contradiction. �

It now follows that the class of sesquicographs is closed under taking
induced minors. Since we can compute the components and blocks of a
graph in polynomial time [10, 4.1.23], the algorithm in Figure 2 recognizes
sesquicographs in polynomial time.

3. Induced-subgraph-minimal non-sesquicographs

We noted in Section 2 that sesquicographs are closed under induced sub-
graphs. In this section, we consider those non-sesquicographs for which
every proper induced subgraph is a sesquicograph. We call these graphs
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Require: Input a simple graph G
Set H ← G, BlocksList ← [G]
if |V (H)| ≤ 4 then

remove H from BlocksList
if BlocksList is empty then

return G is a sesquicograph and exit the algorithm
else

update H to be an element of BlocksList
if H is not 2-connected then

remove H from BlocksList
Decompose H into 2-connected blocks and add all the blocks of H
to BlocksList
update H to be an element of BlocksList

else if H is not connected then

remove H from BlocksList
DecomposeH into connected components and add the complements
of all the components to BlocksList
update H to be an element of BlocksList

else

return G is not a sesquicograph and exit the algorithm

Figure 2. Algorithm for recognizing a sesquicograph.

induced-subgraph-minimal non-sesquicographs. The goal of this sec-
tion is to characterize such graphs. We begin by showing that all cycles of
length exceeding four are examples of such graphs.

Lemma 3.1. Let G be a cycle of length exceeding four. Then G is an
induced-subgraph-minimal non-sesquicograph.

Proof. Note that both G and G are 2-connected and so, by Proposition 2.5,
G is not a sesquicograph. It is now enough to show that, for any vertex v
of G, the graph G− v is a sesquicograph. Observe that G− v is a path and
so is a sesquicograph. �

The next result can be easily checked.

Lemma 3.2. The graphs P5, C
+
6 ,H1,H2,H3,H4, and H5 are induced-subgraph-

minimal non-sesquicographs.

Lemma 3.3. Let G be an induced-subgraph-minimal non-sesquicograph.
Then G is 2-connected and G is connected.

Proof. Assume the contrary. Then for some proper induced subgraphs X
and Y of G, we can decompose G as X⊕Y, as X⊕1Y , or, by Lemma 2.2, as
X ▽ Y . Since G is an induced-subgraph-minimal non-sesquicograph, both
X and Y are sesquicographs. It now follows that G is a sesquicograph, a
contradiction. �
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A 2-connected graph H is critically 2-connected if H − v is not 2-
connected for all vertices v of H.

Lemma 3.4. Let G be an induced-subgraph-minimal non-sesquicograph.
Then G is critically 2-connected, or G has vertex connectivity two and G
has vertex connectivity one.

Proof. Note that, by Lemma 3.3, G is 2-connected and G is connected,
and, by Proposition 2.5, for each vertex v of G, the graph G − v is not
2-connected or G − v is disconnected. Observe that G has a vertex v such
that G − v is connected and so G − v is not 2-connected. Therefore G has
vertex connectivity two. Suppose that G is not critically 2-connected. Then
there is a vertex w of G such that G − w is 2-connected and so G − w is
disconnected. Therefore the vertex connectivity of G is one. �

Next we find those induced-subgraph-minimal non-sesquicographs G such
that G is critically 2-connected. We will use the following result of Nebesky
[6].

Lemma 3.5. Let G be a critically 2-connected graph such that |V (G)| ≥ 6.
Then G has at least two distinct paths of length exceeding two such that the
internal vertices of these paths have degree two in G.

Lemma 3.6. Let G be an induced-subgraph-minimal non-sesquicograph such
that G is not isomorphic to a cycle and let wxyz be a path P of G such that
both x and y have degree two in G. Then w and z are adjacent.

Proof. Assume that w and z are not adjacent. By Lemma 3.3, G is 2-
connected, so there is a path P ′ joining w and z such that P and P ′ are
internally disjoint. We may assume that P ′ is a shortest such path. It
now follows that G has a cycle C of length exceeding four as an induced
subgraph. Since a cycle of length exceeding four is not a sesquicograph,
G = C, a contradiction. �

Proposition 3.7. Let G be an induced-subgraph-minimal non-sesquicograph
such that G is critically 2-connected. Then G is isomorphic to a cycle of
length exceeding four or to the domino.

Proof. We may assume that G is not isomorphic to a cycle exceeding four
otherwise we have our result. Note that, by Lemma 2.1, |V (G)| ≥ 5. Since
the cycle of length five is the only critically 2-connected graph on five ver-
tices, we may assume that |V (G)| ≥ 6. By Lemma 3.5, G has two distinct
paths P1 = abcd and P2 = wxyz of length three such that their internal
vertices have degree two. By Lemma 3.6, a and d are adjacent, and w and
z are adjacent. Consider the graph G′ = G − {b, c}. Note that G′ is 2-
connected and so, by Lemma 2.5, G is disconnected. It is now easy to check
that |V (G′)| = 4 and so G is isomorphic to the domino. �
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Set FinalList ← ∅, i← 0
Generate all two connected graphs of order 6 using nauty geng [5] and
store in an iterator L
for g in L such that vertex connectivity of g is 2 and g is 1 do

for v in V (g) do
h = g\v
if vertex connectivity of h < 2 or vertex connectivity of h < 1
then

i← i+ 1
if i equals |V (g)| then

Add g to FinalList

Figure 3. Finding induced-subgraph-minimal non-
sesquicographs of order six.

Proof of Theorem 1.2. We may assume that G is not critically 2-connected
otherwise we are done by Proposition 3.7. By Lemma 3.3, G has vertex
connectivity two and G has vertex connectivity one. We first show the
following.

3.7.1. G has at most three cut vertices.

Let {u, v} be a 2-cut of G and let the components of G − {u, v} be par-
titioned into subgraphs A and B such that |V (A)| ≥ |V (B)| and |V (A)| −
|V (B)| is a minimum. Observe that G − x is connected for a vertex x in
V (G) unless x is the only red neighbour of u or the only red neighbour of
v, or |V (B)| = 1 and x is in V (B). Thus 3.7.1 holds.

We show next that the number of vertices of G can be bounded.

3.7.2. |V (G)| ≤ 6.

Assume that |V (G)| > 6. By 3.7.1, G has at most three cut vertices.
First suppose that G has one cut vertex x. Let the components of G − x
be partitioned into subgraphs R1 and R2 such that |V (R1)| ≥ |V (R2)| and
|V (R1)| − |V (R2)| is a minimum. Since |V (G)| ≥ 7, we have |V (R1)| ≥
3. Observe that, if |V (R2)| ≥ 2, then there exists a vertex r in R1 such
that x has two green neighbours in G − r. Note that every edge joining a
vertex in R1 to a vertex in R2 is a green edge and so G − r is connected.
Since every vertex in V (G) − x is in a green 2-cut, this is a contradiction.
Therefore |V (R2)| = 1 and so |V (R1)| ≥ 5. Let R2 = {α}. Note that G− x
is 2-connected since G is not critically 2-connected. It is now clear that
G−{x, α} is connected. If G−{x, α} has a vertex r such that G−{x, α, r} is
connected and contains two green neighbours of x, then G−α is 2-connected,
a contradiction. It now follows that G− {x, α} is a path and its leaves are
the only green neighbours of x. Note that G−α is a cycle of length exceeding
four, a contradiction.
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Next suppose that G has two cut vertices x1 and x2. For {i, j} = {1, 2},
let Ri be the disjoint union of the components of G−xi that do not contain
xj. Let R3 be the subgraph induced on V (G)− (V (R1)∪V (R2)∪{x1, x2}).
We first consider the case when V (R3) is empty. We may assume that
|V (R1)| ≥ |V (R2)| and so |V (R1)| ≥ 3. Note that if |V (R2)| ≥ 2, then
there is a vertex r in R1 such that G − r is 2-connected, a contradiction.
Therefore |V (R2)| = 1 and so |V (R1)| ≥ 4. Let β be a green neighbour of
x1 in R1. Note that G − r is 2-connected for every vertex r in V (R1) − β,
a contradiction. Therefore V (R3) is non-empty. Observe that, if both R1

and R2 have at least two vertices, then G− r is 2-connected for any vertex
r in R3, a contradiction. Therefore we may assume that |V (R1)| = 1. We
show that neither R2 nor R3 has more than two vertices. Assume that Ri

has more than two vertices for some i in {2, 3}. Then there exists a vertex
r in V (Ri) such that both x1 and x2 have at least two green neighbours in
G−r. Note that G−r is 2-connected, a contradiction. Therefore |V (R2)| =
|V (R3)| = 2. Observe that there is a vertex r in R3 such that both x1 and x2
have green degree at least two in G− r. It follows that G− r is 2-connected,
a contradiction. Thus G has three cut vertices.

Let X = {x1, x2, x3} be the set of cut vertices of G. We may assume that
for the cut vertex x1 of G, the components of G − x1 can be partitioned
into subgraphs P and Q such that x2 is in P and x3 is in Q, and |V (P )| ≥
|V (Q)| ≥ 2. Note that all vertices in P are green neighbours of x3 and all
vertices in Q are green neighbours of x2. If |V (P )| ≥ 4, then there is a vertex
r in P such that all vertices in X have at least two green neighbours in G−r
and so G−r is 2-connected, a contradiction. Therefore |V (P )| = |V (Q)| = 3.
Note that there is a vertex r in P ∪Q such that all vertices in X have at least
two green neighbours in G− r and so G− r is 2-connected, a contradiction.
Thus 3.7.2 holds.

By Lemma 2.1, it is clear that |V (G)| ≥ 5 and so |V (G)| is either 5 or 6.
Suppose |V (G)| = 5. Since P5 is the only graph on five vertices that is not
critically 2-connected, has vertex connectivity two, and whose complement
has vertex connectivity one, by Lemma 3.2, we have G ∼= P5. Next suppose
that |V (G)| = 6. Implementing the algorithm in Figure 3 in Sagemeth
[8], it can be easily checked that G is isomorphic to one of the graphs in
{H1,H2,H3,H4,H5}. This completes the proof. �

Proof of Corollary 1.3. Note that every cycle of length exceeding five has
the cycle of length five as an induced minor. Also, the domino graph C+

6

contains P5 as an induced minor. The result now follows by Theorem 1.2. �
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