COGRAPHS AND 1-SUMS

JAGDEEP SINGH

ABSTRACT. A graph that can be generated from K_1 using joins and 0-sums is called a cograph. We define a sesquicograph to be a graph that can be generated from K_1 using joins, 0-sums, and 1-sums. We show that, like cographs, sesquicographs are closed under induced minors. Cographs are precisely the graphs that do not have the 4-vertex path as an induced subgraph. We obtain an analogue of this result for sesquicographs, that is, we find those non-sesquicographs for which every proper induced subgraph is a sesquicograph.

1. INTRODUCTION

In this paper, we only consider finite and simple graphs. The notation and terminology follows [3] except where otherwise indicated. For graphs Gand H having disjoint vertex sets, the 0-sum $G \oplus H$ of G and H is their disjoint union. A 1-sum $G \oplus_1 H$ of G and H is obtained by identifying a vertex of G with a vertex of H. The join $G \bigtriangledown H$ of two disjoint graphs Gand H is obtained from the 0-sum of G and H by joining every vertex of G to every vertex of H. A cograph is a graph that can be generated from the single- vertex graph K_1 using the operations of join and 0-sum. We define a graph to be a **sesquicograph** if it can be generated from K_1 using the operations of join, 0-sum, and 1-sum. The class of cographs has been extensively studied over the last fifty years (see, for example, [2, 4, 9]). Due to the following characterization, cographs are also called P_4 -free graphs [1].

Theorem 1.1. A graph G is a cograph if and only if G does not contain the path P_4 on four vertices as an induced subgraph.

Since we consider only simple graphs in this paper, when we write G/e for an edge e of a graph G, we mean the simple graph obtained from the multigraph that results from contracting the edge e by deleting all but one edge from each class of parallel edges. An **induced minor** of a graph G is a graph H that can be obtained from G by a sequence of operations each consisting of a vertex deletion or an edge contraction. In Section 2, we show that every induced minor of a sesquicograph is a sesquicograph. In addition, we provide an alternative definition of a sesquicograph in terms of the vertex connectivities of its induced subgraphs and their complements. The graph obtained from a 6-cycle by adding a chord to create two 4-cycles is called

Date: October 11, 2022.

²⁰²⁰ Mathematics Subject Classification. 05C40, 05C75, 05C83.

the **domino** graph. We let C_6^+ denote the domino; $\overline{P_5}$ is the complement of a 5-vertex path. The next theorem is the main result of the paper.

Theorem 1.2. A graph G is a sesquicograph if and only if G does not contain any of the following graphs as an induced subgraph:

- (i) cycles of length exceeding four, and
- (*ii*) $\overline{P_5}, C_6^+, H_1, H_2, H_3, H_4$, and H_5 ,

where the graphs in (ii) are shown in Figure 1.

Its proof occupies most of Section 3. As a consequence of Theorem 1.2, we have the following characterization of sesquicographs in terms of forbidden induced minors.

Corollary 1.3. A graph G is a sesquicograph if and only if G has no induced minor isomorphic to a graph in $\{C_5, \overline{P_5}, H_1, H_2, H_3, H_4, H_5\}$, where C_5 is the cycle of length five.

A graph G is a 2-cograph if it can be generated from K_1 using the operations of complementation, 0-sum, and 1-sum. The class of 2-cographs has been studied in [7]. This paper has some similarities with [7] although the arguments for sesquicographs are not as complex as they are for 2-cographs. Since the class of sesquicographs is the smallest class of graphs that contains K_1 and is closed under the operations of join, 0-sum, and 1-sum, it is a proper subclass of 2-cographs and, thus, of the class of perfect graphs. Note the path P_5 on five vertices is a sesquicograph but its complement $\overline{P_5}$ is not. It follows that the class of sesquicographs and 2-cographs.

2. Preliminaries

Let G be a graph. A vertex u of G is a **neighbour** of a vertex v of G if uv is an edge of G. The **neighbourhood** $N_G(v)$ of v in G is the set of all neighbours of v in G. If G is connected, a *t*-cut of G is set X_t of vertices of G such that $|X_t| = t$ and $G - X_t$ is disconnected. A graph that has no *t*-cuts for all t less than k is k-connected. Viewing G as a subgraph of K_n where n = |V(G)|, we colour the edges of G green while assigning the colour red to the non-edges of G. Similar to the terminology in [7], we use the terms green graph and red graph for G and its complementary graph \overline{G} , respectively. An edge of G is called a green edge while a red edge refers to an edge of \overline{G} . The green degree of a vertex v of G is the number of green neighbours of v, while the red degree of v is its number of red neighbours.

We omit the straightforward proofs of the next three results.

Lemma 2.1. All graphs having at most four vertices are sesquicographs.

Lemma 2.2. A graph G is a join of two graphs if and only if its complement \overline{G} is disconnected.

 $\mathbf{2}$

FIGURE 1. The induced-subgraph-minimal non-sesquicographs.

Lemma 2.3. Let G be a graph and let uv be an edge e of G. Then $\overline{G/e}$ is the graph obtained by adding a vertex w with neighbourhood $N_{\overline{G}}(u) \cap N_{\overline{G}}(v)$ to the graph $\overline{G} - \{u, v\}$.

Lemma 2.4. Every induced subgraph of a sesquicograph is a sesquicograph.

Proof. Let G be a sesquicograph. It is enough to show that, for every vertex v of G, the graph G-v is a sesquicograph. Note that if $|V(G)| \leq 5$, then our result follows by Lemma 2.1. Let |V(G)| = n. We proceed via induction on |V(G)| and assume that the result is true for all sesquicographs with order less than n. Since G is a sesquicograph, G is a 0-sum, a 1-sum, or a join of proper induced subgraphs X and Y of G. Observe that if G is $X \oplus Y$ or $X \bigtriangledown Y$, then G-v equals $(X-v) \oplus Y$ or $(X-v) \bigtriangledown Y$, and so the result follows by induction. Therefore we may assume that $G = X \oplus_1 Y$. Note that, in this case, G-v is either $(X-v) \oplus (Y-v)$ or $(X-v) \oplus_1 Y$. Thus our result follows by induction.

A graph is **trivial** if it contains only one vertex and no edge. Cographs can also be characterized as the graphs in which every non-trivial connected induced subgraph has a disconnected complement. Similarly, a graph G is a 2-cograph if G has no non-trivial induced subgraph H such that both H and \overline{H} are 2-connected. Next we show that sesquicographs can be characterized in a similar way.

Proposition 2.5. A graph G is a sesquicograph if and only if, for every non-trivial induced subgraph H of G, the graph H is not 2-connected or \overline{H} is disconnected.

Proof. Let G be a sesquicograph and let H be a non-trivial induced subgraph of G. By Lemma 2.4, H is a sesquicograph. Since H can be decomposed as a 0-sum, a 1-sum, or a join, it follows by Lemma 2.2, that H is not 2-connected or \overline{H} is disconnected.

Conversely, let G be a graph such that, for every non-trivial induced subgraph H of G, the graph H is not 2-connected or \overline{H} is disconnected. By Lemma 2.2, it follows that every non-trivial subgraph of G can be written as a 0-sum, a 1-sum, or a join of smaller induced subgraphs of G. Therefore G can be generated from K_1 using the operations of 0-sum, 1-sum, and join. Thus G is a sesquicograph. \Box

A slight variation of the proof of the closure of 2-cographs under contractions [7, Proposition 2.8] shows that sesquicographs are also closed under contractions.

Proposition 2.6. Let G be a sesquicograph and e be an edge of G. Then G/e is a sesquicograph.

Proof. Assume to the contrary that G/e is not a sesquicograph. Then there is a non-trivial induced subgraph H of G/e such that H is 2-connected and \overline{H} is connected. Let e = uv and let w denote the vertex in G/e obtained by identifying u and v. We may assume that w is a vertex of H, otherwise His an induced subgraph of G, a contradiction. We assert that the subgraph H' of G induced on the vertex set $(V(H) \cup \{u, v\}) - \{w\}$ is 2-connected and its complement $\overline{H'}$ is connected. To see this, note that, since H is 2-connected, H' is 2-connected unless one of u and v, say u, is a leaf of H'. In the exceptional case, we have $H' - u \cong H$, so G has a 2-connected induced subgraph for which its complement is connected, a contradiction. We deduce that H' is 2-connected.

Note that, by Lemma 2.3, \overline{H} is obtained from $\overline{H'}$ by adding a vertex w with neighbourhood $N_{\overline{H'}}(u) \cap N_{\overline{H'}}(v)$ to the graph $\overline{H'} - \{u, v\}$. Since \overline{H} is connected, it follows that $\overline{H'}$ is connected, a contradiction.

It now follows that the class of sesquicographs is closed under taking induced minors. Since we can compute the components and blocks of a graph in polynomial time [10, 4.1.23], the algorithm in Figure 2 recognizes sesquicographs in polynomial time.

3. INDUCED-SUBGRAPH-MINIMAL NON-SESQUICOGRAPHS

We noted in Section 2 that sesquicographs are closed under induced subgraphs. In this section, we consider those non-sesquicographs for which every proper induced subgraph is a sesquicograph. We call these graphs

4

Require: Input a simple graph GSet $H \leftarrow G$, BlocksList $\leftarrow [G]$ if $|V(H)| \leq 4$ then remove H from BlocksList if BlocksList is empty then return G is a sesquicograph and exit the algorithm else update H to be an element of BlocksList if H is not 2-connected then remove H from BlocksList Decompose H into 2-connected blocks and add all the blocks of Hto BlocksList update H to be an element of BlocksList else if \overline{H} is not connected then remove H from BlocksList Decompose \overline{H} into connected components and add the complements of all the components to BlocksList update H to be an element of BlocksList else return G is not a sesquicograph and exit the algorithm

FIGURE 2. Algorithm for recognizing a sesquicograph.

induced-subgraph-minimal non-sesquicographs. The goal of this section is to characterize such graphs. We begin by showing that all cycles of length exceeding four are examples of such graphs.

Lemma 3.1. Let G be a cycle of length exceeding four. Then G is an induced-subgraph-minimal non-sesquicograph.

Proof. Note that both G and \overline{G} are 2-connected and so, by Proposition 2.5, G is not a sesquicograph. It is now enough to show that, for any vertex v of G, the graph G - v is a sesquicograph. Observe that G - v is a path and so is a sesquicograph.

The next result can be easily checked.

Lemma 3.2. The graphs $\overline{P_5}$, C_6^+ , H_1 , H_2 , H_3 , H_4 , and H_5 are induced-subgraphminimal non-sesquicographs.

Lemma 3.3. Let G be an induced-subgraph-minimal non-sesquicograph. Then G is 2-connected and \overline{G} is connected.

Proof. Assume the contrary. Then for some proper induced subgraphs X and Y of G, we can decompose G as $X \oplus Y$, as $X \oplus_1 Y$, or, by Lemma 2.2, as $X \bigtriangledown Y$. Since G is an induced-subgraph-minimal non-sesquicograph, both X and Y are sesquicographs. It now follows that G is a sesquicograph, a contradiction.

A 2-connected graph H is **critically** 2-connected if H - v is not 2-connected for all vertices v of H.

Lemma 3.4. Let G be an induced-subgraph-minimal non-sesquicograph. Then G is critically 2-connected, or G has vertex connectivity two and \overline{G} has vertex connectivity one.

Proof. Note that, by Lemma 3.3, G is 2-connected and \overline{G} is connected, and, by Proposition 2.5, for each vertex v of G, the graph G - v is not 2-connected or $\overline{G} - v$ is disconnected. Observe that G has a vertex v such that $\overline{G} - v$ is connected and so G - v is not 2-connected. Therefore G has vertex connectivity two. Suppose that G is not critically 2-connected. Then there is a vertex w of G such that G - w is 2-connected and so $\overline{G} - w$ is disconnected. Therefore the vertex connectivity of \overline{G} is one.

Next we find those induced-subgraph-minimal non-sesquicographs G such that G is critically 2-connected. We will use the following result of Nebesky [6].

Lemma 3.5. Let G be a critically 2-connected graph such that $|V(G)| \ge 6$. Then G has at least two distinct paths of length exceeding two such that the internal vertices of these paths have degree two in G.

Lemma 3.6. Let G be an induced-subgraph-minimal non-sesquicograph such that G is not isomorphic to a cycle and let wxyz be a path P of G such that both x and y have degree two in G. Then w and z are adjacent.

Proof. Assume that w and z are not adjacent. By Lemma 3.3, G is 2-connected, so there is a path P' joining w and z such that P and P' are internally disjoint. We may assume that P' is a shortest such path. It now follows that G has a cycle C of length exceeding four as an induced subgraph. Since a cycle of length exceeding four is not a sesquicograph, G = C, a contradiction.

Proposition 3.7. Let G be an induced-subgraph-minimal non-sesquicograph such that G is critically 2-connected. Then G is isomorphic to a cycle of length exceeding four or to the domino.

Proof. We may assume that G is not isomorphic to a cycle exceeding four otherwise we have our result. Note that, by Lemma 2.1, $|V(G)| \ge 5$. Since the cycle of length five is the only critically 2-connected graph on five vertices, we may assume that $|V(G)| \ge 6$. By Lemma 3.5, G has two distinct paths $P_1 = abcd$ and $P_2 = wxyz$ of length three such that their internal vertices have degree two. By Lemma 3.6, a and d are adjacent, and w and z are adjacent. Consider the graph $G' = G - \{b, c\}$. Note that G' is 2connected and so, by Lemma 2.5, \overline{G} is disconnected. It is now easy to check that |V(G')| = 4 and so G is isomorphic to the domino.

 $\mathbf{6}$

Set FinalList $\leftarrow \emptyset$, $i \leftarrow 0$ Generate all two connected graphs of order 6 using nauty geng [5] and store in an iterator Lfor g in L such that vertex connectivity of g is 2 and \overline{g} is 1 do for v in V(g) do $h = g \setminus v$ if vertex connectivity of h < 2 or vertex connectivity of $\overline{h} < 1$ then $i \leftarrow i + 1$ if i equals |V(g)| then Add g to FinalList

FIGURE 3. Finding induced-subgraph-minimal non-sesquicographs of order six.

Proof of Theorem 1.2. We may assume that G is not critically 2-connected otherwise we are done by Proposition 3.7. By Lemma 3.3, G has vertex connectivity two and \overline{G} has vertex connectivity one. We first show the following.

3.7.1. \overline{G} has at most three cut vertices.

Let $\{u, v\}$ be a 2-cut of G and let the components of $G - \{u, v\}$ be partitioned into subgraphs A and B such that $|V(A)| \ge |V(B)|$ and |V(A)| - |V(B)| is a minimum. Observe that $\overline{G} - x$ is connected for a vertex x in V(G) unless x is the only red neighbour of u or the only red neighbour of v, or |V(B)| = 1 and x is in V(B). Thus 3.7.1 holds.

We show next that the number of vertices of G can be bounded.

3.7.2. $|V(G)| \le 6.$

Assume that |V(G)| > 6. By 3.7.1, \overline{G} has at most three cut vertices. First suppose that \overline{G} has one cut vertex x. Let the components of $\overline{G} - x$ be partitioned into subgraphs R_1 and R_2 such that $|V(R_1)| \ge |V(R_2)|$ and $|V(R_1)| - |V(R_2)|$ is a minimum. Since $|V(G)| \ge 7$, we have $|V(R_1)| \ge 3$. Observe that, if $|V(R_2)| \ge 2$, then there exists a vertex r in R_1 such that x has two green neighbours in G - r. Note that every edge joining a vertex in R_1 to a vertex in R_2 is a green edge and so G - r is connected. Since every vertex in V(G) - x is in a green 2-cut, this is a contradiction. Therefore $|V(R_2)| = 1$ and so $|V(R_1)| \ge 5$. Let $R_2 = \{\alpha\}$. Note that G - x is 2-connected since G is not critically 2-connected. It is now clear that $G - \{x, \alpha\}$ is connected. If $G - \{x, \alpha\}$ has a vertex r such that $G - \{x, \alpha, r\}$ is connected. If now follows that $G - \{x, \alpha\}$ is a path and its leaves are the only green neighbours of x. Note that $G - \alpha$ is a cycle of length exceeding four, a contradiction.

Next suppose that \overline{G} has two cut vertices x_1 and x_2 . For $\{i, j\} = \{1, 2\}$, let R_i be the disjoint union of the components of $\overline{G} - x_i$ that do not contain x_i . Let R_3 be the subgraph induced on $V(G) - (V(R_1) \cup V(R_2) \cup \{x_1, x_2\})$. We first consider the case when $V(R_3)$ is empty. We may assume that $|V(R_1)| \ge |V(R_2)|$ and so $|V(R_1)| \ge 3$. Note that if $|V(R_2)| \ge 2$, then there is a vertex r in R_1 such that G - r is 2-connected, a contradiction. Therefore $|V(R_2)| = 1$ and so $|V(R_1)| \ge 4$. Let β be a green neighbour of x_1 in R_1 . Note that G - r is 2-connected for every vertex r in $V(R_1) - \beta$, a contradiction. Therefore $V(R_3)$ is non-empty. Observe that, if both R_1 and R_2 have at least two vertices, then G - r is 2-connected for any vertex r in R_3 , a contradiction. Therefore we may assume that $|V(R_1)| = 1$. We show that neither R_2 nor R_3 has more than two vertices. Assume that R_i has more than two vertices for some i in $\{2,3\}$. Then there exists a vertex r in $V(R_i)$ such that both x_1 and x_2 have at least two green neighbours in G-r. Note that G-r is 2-connected, a contradiction. Therefore $|V(R_2)| =$ $|V(R_3)| = 2$. Observe that there is a vertex r in R_3 such that both x_1 and x_2 have green degree at least two in G-r. It follows that G-r is 2-connected, a contradiction. Thus \overline{G} has three cut vertices.

Let $X = \{x_1, x_2, x_3\}$ be the set of cut vertices of \overline{G} . We may assume that for the cut vertex x_1 of \overline{G} , the components of $\overline{G} - x_1$ can be partitioned into subgraphs P and Q such that x_2 is in P and x_3 is in Q, and $|V(P)| \ge |V(Q)| \ge 2$. Note that all vertices in P are green neighbours of x_3 and all vertices in Q are green neighbours of x_2 . If $|V(P)| \ge 4$, then there is a vertex r in P such that all vertices in X have at least two green neighbours in G-rand so G-r is 2-connected, a contradiction. Therefore |V(P)| = |V(Q)| = 3. Note that there is a vertex r in $P \cup Q$ such that all vertices in X have at least two green neighbours in G-r and so G-r is 2-connected, a contradiction. Thus 3.7.2 holds.

By Lemma 2.1, it is clear that $|V(G)| \ge 5$ and so |V(G)| is either 5 or 6. Suppose |V(G)| = 5. Since $\overline{P_5}$ is the only graph on five vertices that is not critically 2-connected, has vertex connectivity two, and whose complement has vertex connectivity one, by Lemma 3.2, we have $G \cong \overline{P_5}$. Next suppose that |V(G)| = 6. Implementing the algorithm in Figure 3 in Sagemeth [8], it can be easily checked that G is isomorphic to one of the graphs in $\{H_1, H_2, H_3, H_4, H_5\}$. This completes the proof. \Box

Proof of Corollary 1.3. Note that every cycle of length exceeding five has the cycle of length five as an induced minor. Also, the domino graph C_6^+ contains $\overline{P_5}$ as an induced minor. The result now follows by Theorem 1.2.

Acknowledgement

The author thanks James Oxley for helpful suggestions. The author also thanks Thomas Zaslavsky for helpful discussions.

COGRAPHS AND 1-SUMS

References

- D.G. Corneil, H. Lerchs, L. Stewart Burlingham, Complement reducible graphs, *Discrete Appl. Math.* 3 (1981), 163–174.
- [2] D.G. Corneil, Y. Perl, L.K. Stewart, A linear recognition for cographs, SIAM J. Comput. 14 (1985), 926–934.
- [3] R. Diestel, *Graph Theory*, Third edition, Springer, Berlin, 2005.
- [4] H.A. Jung, On a class of posets and the corresponding comparability graphs, J. Combin. Theory Ser. B 24 (1978), 125–133.
- [5] B.D. McKay and A. Piperno, Practical graph isomorphism II, J. Symbolic Comput. 60 (2014), 94–112.
- [6] L. Nebesky, On induced subgraphs of a block, J. Graph Theory 1 (1977), 69–74.
- [7] J. Oxley and J. Singh, Generalizing cographs to 2-cographs, arxiv: 2103.00403.
- [8] SageMath, the Sage Mathematics Software System (Version 8.2), The Sage Developers, 2019, http://www.sagemath.org.
- D. Seinsche, On a property of the class of n-colourable graphs, J. Combin. Theory Ser. B 16 (1974), 191–193.
- [10] D.B West, Introduction to Graph Theory, Second edition, Prentice Hall, Upper Saddle River, N.J., 2001.

DEPARTMENT OF MATHEMATICS AND STATISTICS, BINGHAMTON UNIVERSITY, BINGHAMTON, NEW YORK

Email address: jsingh@binghamton.edu