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eigenvalue µ, and the vertex subset X = V (G −H) is called a star set for µ in G. The study of
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eigenvalue µ, especially, characterize the case of t = 3 completely, obtain some properties when
t = s, and propose some problems for further study.
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1 Introduction

Let G be a simple graph with vertex set V (G) = {1, 2, . . . , n} = [n] and edge set E(G). The

adjacency matrix of G is an n × n matrix A(G) = (aij), where aij = 1 if vertex i is adjacency to

vertex j, and 0 otherwise. We use the notation i ∼ j (i � j) to indicate that i, j are adjacent

(not-adjacent) and the notation dG(i) to indicate the degree of vertex i in G. The adjacency

eigenvalues of G are just the eigenvalues of A(G). For more details on graph spectra, see [6].

Let µ be an eigenvalue of G with multiplicity k. A star set for µ in G is a subset X of V (G)

such that |X| = k and µ is not an eigenvalue of G−X, where G−X is the subgraph of G induced

by X = V (G) \ X. In this situation H = G − X is called a star complement corresponding to

µ. Star sets and star complements exist for any eigenvalue of a graph, and they need not to be

unique. The basic properties of star sets are established in Chapter 7 of [7].
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There is another equivalent geometric definition for star sets and star complements. Let G

be a graph with vertex set V (G) = {1, . . . , n} and adjacency matrix A. Let {e1, . . . , en} be the

standard orthonormal basis of Rn, µ be an eigenvalue of G, and P be the matrix which represents

the orthogonal projection of Rn onto the eigenspace E(µ) = {x ∈ Rn : A(G)x = µx } of A with

respect to {e1, . . . , en}. Since E(µ) is spanned by the vectors Pej(j = 1, . . . , n), there exists

X ⊆ V (G) such that the vectors Pej(j ∈ X) form a basis for E(µ). Such a subset X of V (G) is

called a star set for µ in G. In this situation H = G−X is called a star complement for µ.

For any graph G of order n with distinct eigenvalues λ1, . . . , λm, there exists a partition V (G) =

X1

⋃
· · ·
⋃
Xm such that Xi is a star set for eigenvalue λi (i = 1, . . . ,m). Such a partition is called

a star partition of G. For any graph G, there exists at least one star partition ([10]). Each star

partition determines a basis for Rn consisting of eigenvectors of an adjacency matrix. It provides

a strong link between graph structure and linear algebra.

There are a lot of literatures about using star complements to construct and characterize

certain graphs([1, 2, 3, 8, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25]), especially, regular graphs

with a prescribed graph such as K1,s, K1OhKq, K2,5, K2,s, K1,1,t, K1,1,1,t, sK1 ∪Kt, Pt (µ = 1),

Kr,r,r (µ = 1) or Kr,s + tK1 (µ = 1) as a star complement were well studied in the literature.

Motivated by the above research, in this paper, we introduce the fundamental properties of the

theory of star complements in Section 2, study the regular graphs with the bipartite graph Kt,s (s ≥

t ≥ 1) as a star complement for an eigenvalue µ in Section 3, completely characterize the regular

graphs with K3,s (s ≥ 3) as a star complement for an eigenvalue µ in Section 4, study some

properties of Ks,s in Section 5, and propose some problems for further research.

2 Preliminaries

In this section, we introduce some results of star sets and star complements that will be re-

quired in the sequel. The following fundamental result combines the Reconstruction Theorem ([7,

Theorem 7.4.1]) with its converse ([7, Theorem 7.4.4]).

Theorem 2.1. ([7]) Let µ be an eigenvalue of G with multiplicity k, X be a set of vertices in the

graph G. Suppose that G has adjacency matrix(
AX BT

B C

)
,
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where AX is the adjacency matrix of the subgraph induced by X. Then X is a star set for µ in G

if and only if µ is not an eigenvalue of C and

µI − AX = BT (µI − C)−1B. (2.1)

In this situation, E(µ) consists of the vectors(
x

(µI − C)−1Bx

)
, (2.2)

where x ∈ Rk.

Note that if X is a star set for µ, then the corresponding star complement H(= G − X) has

adjacency matrix C, and (2.1) tells us that G can be determined by µ, H and the H-neighbourhood

of vertices in X, where the H-neighbourhood of the vertex u ∈ X, denoted by NH(u), is defined

as NH(u) = {v | v ∼ u, v ∈ V (H)}.

It is usually convenient to apply (2.1) in the form

m(µ)(µI − AX) = BTm(µ)(µI − C)−1B,

where m(x) is the minimal polynomial of C. This is because m(µ)(µI − C)−1 is given explicitly

as follows.

Proposition 2.2. ([8], Proposition 0.2) Let C be a square matrix with minimal polynomial

m(x) = xd+1 + cdx
d + cd−1x

d−1 + · · ·+ c1x+ c0.

If µ is not an eigenvalue of C, then

m(µ)(µI − C)−1 = adC
d + ad−1C

d−1 + · · ·+ a1C + a0I,

where ad = 1 and for 0 < i ≤ d, ad−i = µi + cdµ
i−1 + cd−1µ

i−2 + · · ·+ cd−i+1.

In order to find all the graphs with a prescribed star complement H for µ, we need to find all

solution AX , B for given µ and C. For any x,y ∈ Rq, where q = |V (H)|, let

〈x,y〉 = xT (µI − C)−1y. (2.3)

Let bu be the column of B for any u ∈ X. By Theorem 2.1, we have
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Corollary 2.3. ([10], Corollary 5.1.8 ) Suppose that µ is not an eigenvalue of the graph H, where

|V (H)| = q. There exists a graph G with a star set X = {u1, u2, . . . , uk} for µ such that G−X = H

if and only if there exist (0, 1)-vectors bu1 , bu2 , . . . , buk in Rq such that

(1) 〈bu, bu〉 = µ for all u ∈ X, and

(2) 〈bu, bv〉 =

{
−1, u ∼ v
0, u � v

for all pairs u, v in X.

In view of the two equations in the above corollary, we have

Lemma 2.4. ([7]) Let X be a star set for µ in G, and H = G−X.

(1) If µ 6= 0, then V (H) is a dominating set for G, that is, the H-neighbourhood of any vertex in

X are non-empty;

(2) If µ /∈ {−1, 0}, then V (H) is a location-dominating set for G, that is, the H-neighbourhood of

distinct vertices in X are distinct and non-empty.

It follows from (2) of Lemma 2.4 that there are only finitely regular graphs with a prescribed

star complement for µ /∈ {−1, 0}. If µ = 0 and X has distinct vertices u and v with the same

neighbourhood in G, then u and v are called duplicate vertices. If µ = −1 and X has distinct

vertices u and v with the same closed neighbourhood in G, then u and v are called co-duplicate

vertices (see [11]).

Recall that if the eigenspace E(µ) is orthogonal to the all-1 vector j then µ is called a non-main

eigenvalue. From (2.2), we have the following result.

Lemma 2.5. ([8], Proposition 0.3) The eigenvalue µ is a non-main eigenvalue if and only if

〈bu, j 〉 = −1 for all u ∈ X, (2.4)

where j is the all-1 vector.

Lemma 2.6. ([10], Corollary 3.9.12) In an r-regular graph, all eigenvalues other than r are non-

main.

In the rest of this paper, we let H ∼= Kt,s (s ≥ t ≥ 1), (V,W ) be a bipartition of the graph Kt,s

with V = {v1, v2, . . . , vt}, W = {w1, w2, . . . , ws}. We say that a vertex u ∈ X is of type (a, b) if it

has a neighbours in V and b neighbours in W . Clearly (a, b) 6= (0, 0) and 0 ≤ a ≤ t, 0 ≤ b ≤ s.

Let C be the adjacency matrix of H, then C has minimal polynomial m(x) = x(x2− ts). Since

µ is not an eigenvalue of C, we have µ 6= 0 and µ2 6= ts. From Proposition 2.2, we have

m(µ)(µI − C)−1 = C2 + µC + (µ2 − ts)I. (2.5)
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If µ is a non-main eigenvalue of G, then by (2.4) and (2.5) we have

µ2(a+ b) + µ(as+ tb) = −µ(µ2 − ts). (2.6)

Using (2.5) to compute 〈bu,bu〉 = µ, we obtain the following equation

(µ2 − ts)(a+ b) + a2s+ tb2 + 2abµ = µ2(µ2 − ts). (2.7)

Let u, v be distinct vertices in X of type (a, b), (c, d), respectively. Let ρuv = |NH(u) ∩NH(v)|,

auv = 1 or 0 according as u ∼ v or u � v. Using (2.5) to compute 〈bu,bv〉 = −auv, we have

(µ2 − ts)ρuv + acs+ bdt+ µ(ad+ bc) = −µ(µ2 − ts)auv. (2.8)

3 Regular graphs with Kt,s as a star complement

An r-regular graph G with n vertices is said to be strongly regular with parameters (n, r, e, f)

if every two adjacent vertices in G have e common neighbours and every two non-adjacent vertices

have f common neighbours. For example, Petersen graph is strongly regular with parameters

(10, 3, 0, 1).

For the regular graphs with the complete bipartite graph Kt,s as a star complement, the case

of t = 1 was solved by Rowlinson and Tayfeh-Rezaie in 2010 ([19]), the case of t = 2, s = 5 was

solved by Rowlinson and Jackson in 1999 ([18]), the case of t = 2, s 6= 5 was solved by Yuan,

Zhao, Liu and Chen in 2018 ([25]), and the conclusions are listed below.

Theorem 3.1. ([19]) If the r-regular graph G has K1,s (s > 1) as a star complement for an eigen-

value µ, then one of the following holds:

(1) µ = ±2, r = s = 2 and G ∼= K2,2;

(2) µ = 1
2
(−1±

√
5), r = s = 2 and G is a 5-cycle;

(3) µ ∈ N+, r = s andG is strongly regular with parameters
(

(µ2 + 3µ)
2
, µ (µ2 + 3µ+ 1) , 0, µ(µ+ 1)

)
.

Theorem 3.2. ([18, 25]) Let s ≥ 2. If the r-regular graph G has K2,s as a star complement for

an eigenvalue µ, then one of the following holds:

(1) µ = ±3, r = s = 3 and G ∼= K3,3;

(2) 1 6= µ ∈ N+, r = s and G is an r-regular graph of order (µ4 + 10µ3 + 27µ2 + 10µ) /4, where

r = µ(µ+ 1)(µ+ 4)/2.
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(3) µ = 1, s = 5 and either G ∼= Sch10 or G is isomorphic to one of the eleven induced regular

subgraphs of Sch10.

(4) µ = −1, r ≡ −1 (mod 2s− 1) and G ∼= G′(r) (see [25] for specific definitions).

In this section, we consider the general case. We prove that there is no regular graph G with

Kt,s (s ≥ t ≥ 1) as a star complement for µ = −t, characterize the graph G when µ = r, µ = −1,

and the case with all vertices in X of type (0, b) for µ /∈ {−t, r,−1}. Furthermore, we propose a

question for further research.

Proposition 3.3. There is not an r-regular graph G with Kt,s (s ≥ t ≥ 1) as a star complement

for µ = −t.

Proof. Let µ = −t. Since µ2 6= ts, we have s 6= t and then s > t. Let u ∈ X be a vertex of type

(a, b), thus (a, b) 6= (0, 0) and 0 ≤ a ≤ t, 0 ≤ b ≤ s.

If t = 1, from Theorem 2.2 of [19], there is no r-regular graph G with K1,s as a star complement

for µ = −1.

If t ≥ 2, by Lemma 2.6, we know that µ = −t is a non-main eigenvalue of G, and by (2.6), we

have

t(t− s)(a− t) = 0. (3.1)

Since s > t and t ≥ 2, (3.1) implies that a = t, and thus s(b− t2) = b2 − tb− t3 + t2 by (2.7).

If b = t2, then t4 − 2t3 + t2 = 0, thus t = 0 or 1, a contradiction.

If b 6= t2, then s = b2−tb−t3+t2
b−t2 = b− t2 + t2(t−1)2

b−t2 + 2t2 − t. If b < t2, then s ≤ −2
√
t2(t− 1)2 +

2t2− t = t, which contradicts with s > t. Thus b > t2 and s− (b+ t−1) = b(t−1)2
b−t2 > 0. Considering

degrees, we have

dG(v1) = dG(v2) = · · · = dG(vt) = s+ |X| ,

and

dG(u) ≤ a+ b+ |X| − 1 = b+ t− 1 + |X|, u ∈ X.

Hence, dG(v1) = dG(v2) = · · · = dG(vt) > dG(u) which contradicts to the regularity of G.

Combining the above arguments, there is not an r-regular graph G with Kt,s (s ≥ t ≥ 1) as a

star complement for µ = −t. �

Theorem 3.4. If the r-regular graph G has Kt,s (s ≥ t ≥ 1) as a star complement for an eigenvalue

µ = r, then s = t = 1, G ∼= C3 or r = s = t+ 1, G ∼= Kt+1,t+1.
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Proof. Since µ is not an eigenvalue of H ∼= Kt,s (s ≥ t ≥ 1), we have µ 6= 0 and µ2 6= ts. By

Lemma 2.4, V (Kt,s) is a location-dominating set, and so G is connected.

By G is r-regular and connected, µ = r, we know k = 1 and then |X| = 1. Since G is regular,

we have dG(v1) = dG(v2) = · · · = dG(vt). Let X = {u}. Then either u ∼ v1, u ∼ v2, . . . ,u ∼ vt, or

u � v1, u � v2,. . . , u � vt.

If u ∼ v1, u ∼ v2, . . . ,u ∼ vt, then dG(v1) = dG(v2) = · · · = dG(vt) = s + 1, which implies that

dG(u) = s + 1. It follows that the vertex u is adjacent to s − t + 1(≥ 1) vertices of W , and thus

t = 1 by dG(w1) = dG(w2) = · · · = dG(ws). Since dG(w1) = t+ 1 = dG(v1), we have s = t = 1 and

G ∼= C3.

If u � v1, u � v2, . . . , u � vt, in view of the regularity, we have dG(u) = dG(v1) = dG(v2) =

· · · = dG(vt) = s, and then dG(w1) = dG(w2) = · · · = dG(ws) = t+ 1. Hence we have s = r = t+ 1

and G ∼= Kt+1,t+1.�

Let H ∼= Kt,s, (V,W ) be a bipartition of the graph Kt,s with V = {v1, v2, . . . , vt}, W =

{w1, w2, . . . , ws}. We obtain an r-regular graph G(r) with V (G(r)) = X ∪ V (H), X = V1 ∪

· · · ∪ Vt ∪ W1 ∪ · · · ∪ Ws where Vi is the set of vertices of type (1, s) adjacent to vi ∈ V with

|Vi| = (r+ 1)(s− 1)/(ts− 1)− 1, Vi induces a clique for 1 ≤ i ≤ t, Wi is the set of vertices of type

(t, 1) adjacent to wi ∈ W with |Wi| = (r+ 1)(t− 1)/(ts− 1)− 1, Wi induces a clique for 1 ≤ i ≤ s.

For any i, j, each vertex in Vi is adjacent to all vertices in Wj.

The greatest common divisor of a and b is denoted by gcd(a, b). For µ = −1, we have the

following theorem.

Theorem 3.5. If G is an r-regular graph with H = Kt,s (s ≥ t ≥ 2) as a star complement for an

eigenvalue −1, then r ≡ −1 (mod ts−1
gcd(s−1,t−1)) and G ∼= G(r).

Proof. Since Kt,s is connected and V (Kt,s) is a dominating set (see Lemma 2.4), we know G is

connected. Let H ∼= Kt,s, (V,W ) be a bipartition of the graph Kt,s as above. Let u ∈ X be a

vertex of type (a, b), thus (a, b) 6= (0, 0) and 0 ≤ a ≤ t, 0 ≤ b ≤ s. Let µ = −1 in (2.7), so that

(1− ts)(a+ b− 1) + a2s+ tb2 − 2ab = 0. (3.2)

By Lemma 2.6, we know that µ = −1 is a non-main eigenvalue of G, thus from (2.6), we have

1− ts+ a(s− 1) + b(t− 1) = 0. (3.3)
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Combining (3.2) and (3.3), if a = 1, then b = s; if a = t, then b = 1; if 1 < a < t, then

b = a − t + 1, s = 2 − t or b = a
t
, s = 1

t
. It is obvious that s = 2 − t or s = 1

t
contradicts with

s ∈ Z+. Therefore, the possible types of vertices in X are (1, s), (t, 1), and the feasible solution of

(2.8) are shown in Table 1.

(a, b) (c, d) auv ρuv
(1, s) (1, s) 0 s
(1, s) (1, s) 1 s+ 1
(t, 1) (t, 1) 0 t
(t, 1) (t, 1) 1 t+ 1
(1, s) (t, 1) 1 2

Table 1: The feasible solution of (2.8)

We observe that when u, v are of different types, they must be adjacent; when u, v are of the

same type, u ∼ v if and only if they have the same H-neighbourhoods, and thus u, v are co-

duplicate vertices. We can add arbitrarily many co-duplicate vertices when constructing graphs

with a prescribed star complement for −1.

Now we partition the vertices in X. Let Vi be the set of vertices of type (1, s) in X adjacent to

vi ∈ V , Wi be the set of vertices of type (t, 1) in X adjacent to wi ∈ W . Then any two vertices in

Vi (Wi) are co-duplicate vertices. We do not exclude the possibility that some of the sets Vi, Wi

are empty. Then for any vi ∈ V , we have dG(vi) = s+ |Vi|+
s∑
i=1

|Wi|; and for any wi ∈ W , we have

dG(wi) = t+
t∑
i=1

|Vi|+ |Wi|.

Since G is r-regular, we have |V1| = |V2| = · · · = |Vt| by dG(v1) = dG(v2) = · · · = dG(vt) and

|W1| = |W2| = · · · = |Ws| by dG(w1) = dG(w2) = · · · = dG(ws). Then we have

r = dG(v1) = s+ |V1|+ s · |W1| and r = dG(w1) = t+ t · |V1|+ |W1|.

It turns out that

|V1| =
(s− 1)(r + 1)

ts− 1
− 1, |W1| =

(t− 1)(r + 1)

ts− 1
− 1.

Since |V1| ∈ N, |W1| ∈ N and

gcd(t− 1, ts− 1) = gcd(s− 1, ts− 1) = gcd(t− 1, s− 1),

we have r ≡ −1 (mod ts−1
gcd(s−1,t−1)). Consequently we obtain an r-regular graph G(r). �

Remark 3.6. Note that if V ∗i = Vi ∪ {vi} , vi ∈ V and W ∗
i = Wi ∪ {wi} , wi ∈ W , then each of

sets V ∗i , W ∗
i induces a clique in G(r).
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Next, we consider the case µ /∈ {−1,−t, r}. The following lemma lists all possible types of

vertices in X.

Lemma 3.7. Let G be a graph with H = Kt,s (s ≥ t ≥ 1) as a star complement for µ. If µ is a

non-main eigenvalue of G and µ /∈ {−1,−t}, then the possible types of vertices in the star set X

are (a, µ
3+tµ2−ta+a2

µ+a
), where 0 ≤ a ≤ t− 1 and a 6= −µ.

Proof. Let u ∈ X be a vertex of type (a, b), thus (a, b) 6= (0, 0) and 0 ≤ a ≤ t, 0 ≤ b ≤ s. By

(2.6), (2.7) and µ /∈ {0,−1,−t}, we have: (1) a = t, b = −µ, s = µ2

t
; (2) a = −µ, b = µ2

t
, s = µ2

t
;

(3) 0 ≤ a ≤ t− 1, a 6= −µ,

{
b = −aµ

t
,

s = µ2

t
,

or

{
b = µ3+tµ2−ta+a2

µ+a
,

s = µ4+(2t+1)µ3+(2a+t2)µ2+(2a2−at)µ+a2t−at2
(t−a)µ+at−a2 .

Since µ is not

an eigenvalue of H, we have µ2 6= ts. Thus the possible types of vertices in the star set X are

(a, µ
3+tµ2−ta+a2

µ+a
). �

For µ /∈ {−1,−t, r}, we consider the case a = 0 in the following by Lemma 3.7.

Theorem 3.8. If the r-regular graph G has Kt,s (s ≥ t ≥ 1) as a star complement for µ /∈

{−1,−t, r} and all vertices in X are of type (0, b), then one of the following holds:

(1) µ = −r, r = s = t+ 1 and G ∼= Kt+1,t+1;

(2) µ = 1
2
(−1±

√
5), t = 1, r = s = 2 and G is a 5-cycle;

(3) µ ∈ N+, r = s and G is an r-regular graph of order µ (µ+ 2t+ 1) (µ2 + 2tµ+ µ+ t2 − t) /t2,

where r = µ (µ2 + 2tµ+ µ+ t2) /t.

Proof. Since µ is not an eigenvalue of Kt,s, we have µ 6= 0 and µ2 6= ts. By Lemma 2.4, V (Kt,s) is

a location-dominating set, and so G is connected. Then by a = 0 and Lemma 3.7, we have{
b = µ2 + tµ,

s = µ (µ2 + 2tµ+ µ+ t2) /t.

Now we consider H = Kt,µ(µ2+2tµ+µ+t2)/t and all vertices in X are of type (0, µ2 + tµ). Then

r = s. Counting the edges between X and V (H), we have |X| (µ2 + tµ) = s(r − t). Thus

|X| = s(r − t)
(µ2 + tµ)

=
1

t2
(µ2 + 2tµ+ µ+ t2)(µ2 + tµ+ µ− t). (3.4)

Case 1: |X| = 1.

Then (µ+ t+ 1) (µ3 + (2t+ 1)µ2 + (t2 − t)µ− t2) = 0 from (3.4). When µ3 + (2t+ 1)µ2 + (t2−

t)µ− t2 = 0, then µ /∈ Z and thus r = µ
t

(µ2 + 2tµ+ µ+ t2)− 1
t
(µ3 + (2t+ 1)µ2 + (t2− t)µ− t2) =

µ+ t /∈ Z, a contradiction. When µ = −(t+ 1), then r = s = t+ 1 and G ∼= Kt+1,t+1.
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Case 2: |X| ≥ 2.

We apply the compatibility condition (2.8) to vertices u, v in X, we find that

ρuv =

{
tµ, u � v,

(t− 1)µ, u ∼ v.
(3.5)

If t = 1 and X induces a clique then |X|−1 = r−µ2−µ, whence (µ+1)(µ+2)(µ2 +µ−1) = 0.

Thus either µ = −2, r = s = t+1 = 2 and G ∼= K2,2 which belongs to case (1), or µ = 1
2
(−1±

√
5)

and we have case (2) ([19]).

Otherwise, it follows from (3.5) that µ ∈ N+ and G is µ (µ2 + 2tµ+ µ+ t2) /t-regular of order

µ(µ+ 2t+ 1)(µ2 + 2tµ+ µ+ t2 − t)/t2 with Kt,µ(µ2+2tµ+µ+t2)/t as a star complement for µ. �

In [19], Rowlinson gave a lemma to determine whether a connected r-regular graph with K1,s

as a star complement is a strongly regular graph. Now we extend it to Kt,s.

Lemma 3.9. Let G be a connected r-regular graph with µ( 6= r) as an eigenvalue of multiplicity k.

Suppose that |V (G)| = k + t+ s. If k + t+ s− 1 > r, then

(k + t+ s)r − r2 − kµ2 − (kµ+ r)2

s+ t− 1
≥ 0,

with equality if and only if G is strongly regular.

Proof. Since k + t + s − 1 > r, neither G nor G is complete. Let θ1, . . . , θs+t−1 be the eigenvalue

of G other than µ and r. We have

s+t−1∑
i=1

θi + kµ+ r = 0 and
s+t−1∑
i=1

θ2i + kµ2 + r2 = (k + t+ s)r.

It follows that if θ = 1
s+t−1

s+t−1∑
i=1

θi, then

s+t−1∑
i=1

(θi − θ)2 =
s+t−1∑
i=1

θ2i − (s+ t− 1)θ
2

= (k + t+ s)r − r2 − kµ2 − (kµ+ r)2

s+ t− 1
≥ 0.

Equality holds if and only if θi = θ (i ∈ [s+t−1]), equivalently G has just three distinct eigenvalue.

By [9, Theorem 1.2.20], a non-complete connected regular graph is strongly regular if and only if

it has exactly three distinct eigenvalues. The proof is completed. �

Remark 3.10. From Lemma 3.9, we know that the r-regular graph G in (3) of Theorem 3.8 is

strongly regular when t = 1, and the graph G isn’t strongly regular when t ≥ 2.
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For the cases 1 ≤ a ≤ t− 1, we cannot give a characterization. Thus we propose a question for

further research.

Question 3.11. Let s ≥ t ≥ 1, µ /∈ {−1,−t, r} and 1 ≤ a ≤ t−1. Can we give a characterization

of the r-regular graphs with Kt,s as a star complement?

4 Regular graphs with K3,s as a star complement

In this section, we completely solve Question 3.11 when t = 3. Since the cases when µ ∈

{−1,−3, r} have been solved in Section 3, we consider the cases µ /∈ {−1,−3, r} in the following.

Let G be an r-regular graph with H = K3,s (s ≥ 3) as a star complement for µ /∈ {−1,−3, r}.

Then µ 6= 0 and µ2 6= 3s for µ is not an eigenvalue of K3,s. By Lemma 3.7, the possible types of

vertices in X are shown in Table 2:

Type (a, b) s

I (0, µ2 + 3µ) µ(µ2 + 7µ+ 9)/3

II (1, µ2 + 2µ− 2) (µ+ 2)(µ2 + 4µ− 3)/2

III (2, µ
3+3µ2−2
µ+2 ) µ4+7µ3+13µ2+2µ−6

µ+2

Table 2: The possible types of vertices in X

Lemma 4.1. Let G be a graph with H = K3,s (s ≥ 3) as a star complement for µ. If µ is a

non-main eigenvalue of G and µ /∈ {−1,−3}, then all the vertices in the star set X are of the

same type, say, Type I, Type II or Type III.

Proof. Now we show it is impossible that there are two or three types of vertices in X.

Case 1. There exist vertices of Type I and Type III in X.

From Table 2, we have

s =
1

3
µ(µ2 + 7µ+ 9) =

µ4 + 7µ3 + 13µ2 + 2µ− 6

µ+ 2

with solution µ = −3, −1 or 1. Since µ /∈ {−1,−3}, we have µ = 1, and thus s = 17/3, a

contraction.

Case 2. There exist vertices of Type II and Type III in X.

From Table 2, we have

s =
1

2
(µ+ 2)(µ2 + 4µ− 3) =

µ4 + 7µ3 + 13µ2 + 2µ− 6

µ+ 2

11



with solution µ = −3 or 0, a contraction.

Case 3. There exist vertices of Type I and Type II in X.

By Case 1 and Case 2, we know there does not exist vertices of Type III in X.

By Table 2, we have

s =
1

3
µ(µ2 + 7µ+ 9) =

1

2
(µ+ 2)(µ2 + 4µ− 3)

with solution µ = −3 or 2. Since µ 6= −3, we have µ = 2, and thus s = 18. The vertices in X are

of type (0, 10), (1, 6). From (2.8), Table 3 is obtained.

(a, b) (c, d) auv ρuv
(0, 10) (1, 6) 0 4
(0, 10) (1, 6) 1 2
(0, 10) (0, 10) 0 2
(0, 10) (0, 10) 1 0
(1, 6) (1, 6) 0 −11/5
(1, 6) (1, 6) 1 −21/5

Table 3: The possible adjacency of vertices in X

For any two vertices of type (1, 6), (1, 6) in X, ρuv /∈ Z, so there is at most one vertex of type

(1, 6) in X. For any two vertices of type (0, 10), (0, 10) in X, ρuv = 0 or 2. Since s = 18, there

are at most two vertices of type (0, 10) in X, and ρuv = 2 if there are two vertices of type (0, 10).

Therefore, X has at most three vertices.

Let V (K3,18) = V ∪ W with |V | = 3, |W | = 18. For any vi ∈ V and wi ∈ W , we have

dG(vi) ≥ 18 and dG(wi) ≤ 3 + 3 = 6, which contradicts with the regularity of G.

The proof is completed. �

Now we define three special graphs G1, G2 and G3 (see Figure 1) as follows. Clearly, the graph

G1 is a 4-regular graph of order 9, its spectrum is [−3,−22, 02, 13, 4]; G2 is a 5-regular graph of

order 12, its spectrum is [−33,−12, 16, 5]; G3 is a 6-regular graph of order 15, its spectrum is

[−35, 19, 6]. By Lemma 3.9, we know that G1 and G2 isn’t strongly regular while G3 is strongly

regular with parameters (15, 6, 1, 3).

Theorem 4.2. Let s ≥ 3, G be an r-regular graph with K3,s as a star complement for an eigenvalue

µ. Then one of the following holds:

(1) µ = −1, r ≡ −1 (mod 3s−1
(s−1,2)) and G ∼= G(r), where G(r) is defined in Theorem 3.5;

(2) µ = ±4, r = s = 4 and G ∼= K4,4;

12



(a) G1
(b) G2

(c) G3

Figure 1: Regular graphs G1, G2, G3 of Theorem 4.2

(3) µ ∈ N+, r = s and G is an r-regular graph of order µ(µ + 7)(µ + 6)(µ + 1)/9, where r =

µ(µ2 + 7µ+ 9)/3;

(4) µ = 1, s = 3, and G ∼= G1 (r = 4), G ∼= G2 (r = 5) or G ∼= G3 (r = 6) (see Figure 1).

Proof. By Theorem 3.5 and µ = −1, we have (1) holds.

By Theorem 3.4 and µ = r, we have s = r = 4 and G ∼= K4,4.

If µ /∈ {−1, r}, then µ is non-main. From Proposition 3.3, we know µ 6= −3. Since µ is not

an eigenvalue of H ∼= K3,s, we have µ 6= 0 and µ2 6= 3s. By Lemma 2.4, V (K3,s) is a location-

dominating set, and so G is connected. Let V (K3,s) = V ∪W with |V | = 3, |W | = s. Denote

the vertices in V and W by v1, v2, v3 and w1, w2, . . . , ws, respectively. In the following, we suppose

that µ 6= {−1, r,−3, 0} and µ2 6= 3s. From Table 2, there are only three possible types of vertex

in X. By Lemma 4.1, we know all the vertices in X are of the same type, and we consider the

13



following three cases:

Case 1. The vertices in X are of Type I.

Then (1) or (3) of Theorem 3.8 holds by s ≥ 3, say, either µ = −4, r = s = 4 and G ∼= K4,4, or

µ ∈ N+ and G is µ(µ2 + 7µ+ 9)/3-regular of order µ(µ+ 7)(µ+ 6)(µ+ 1)/9 with K3,(µ3+7µ2+9µ)/3

as a star complement for µ.

Combining the above case of µ = r, result (2) or (3) holds.

Case 2. The vertices in X are of Type II.

Then H = K3,(µ+2)(µ2+4µ−3)/2 and all vertices in X are of type (1, µ2 + 2µ − 2). Applying the

compatibility condition (2.8) to vertices u, v of X, since µ 6= −3, we find that

ρuv =

{
µ− 1, u ∼ v,
2µ− 1, u � v.

(4.1)

By regularity of G, we have dG(v1) = dG(v2) = dG(v3). This implies the vertices in X are

equally divided into three parts, and each vertex in V is adjacent to every vertex of one part, so

r = s+ |X| /3. (4.2)

Now we compute the edges between X and V (H) by two ways, and we have

|X| (µ2 + 2µ− 1) = 3(r − s) + s(r − 3). (4.3)

By (4.2), (4.3) and s = (µ+ 2)(µ2 + 4µ− 3)/2, we have (µ+ 3)(µ− 1)(µ− 2) |X| = −3
2
(µ+ 2)(µ2 +

4µ− 3)(µ+ 3)(µ− 1)(µ+ 4). Since µ 6= −3, we consider the following three subcases.

Subcase 2.1. µ 6= 1, 2.

Then

|X| = −3

2
(µ+ 2)(µ2 + 4µ− 3)

µ+ 4

µ− 2
= −3s(1 +

6

µ− 2
).

Since |X| ∈ Z and s ∈ Z, we have µ ∈ Q. Notice that µ is an algebraic integer, then µ ∈ Z. From

(4.1), we know that µ ∈ N+ \ {1, 2}. Thus |X| < 0, a contradiction.

Subcase 2.2. µ = 2.

Then s = (µ+2)(µ2+4µ−3)
2

= 18, H = K3,18 and all vertices in X are of type (1, 6). By (4.2) and

(4.3), we obtain 0 = 270, it is a contradiction.

Subcase 2.3. µ = 1.

Then s = 3, H = K3,3 with V = {v1, v2, v3}, W = {w1, w2, w3} and all vertices in X are of

type (1, 1). Thus |X| ≤
(
3
1

)(
3
1

)
= 9. From (4.1), we have

ρuv =

{
0, u ∼ v,
1, u � v.

(4.4)

14



Since G and H are regular, X induces a r′-regular graph, denoted by G[X].

Claim 1. The graph G[X] cannot contain S1, S2 or S3 as an induced subgraph (see Figure 2).

Proof. If G[X] contains S1 as an induced subgraph, without loss of generality, we suppose that

u1 ∼ v1, u1 ∼ w1. Then by (4.4), ρu1u2 = ρu1u3 = ρu1u4 = 0, and thus vertices u2, u3 and u4 are

adjacent to one vertex in V \ {v1} and one vertex in W \ {w1} such that ρu2u3 = ρu2u4 = ρu3u4 = 1,

it is impossible.

If G[X] contains S2 as an induced subgraph, since the vertices u5, u6 and u7 are adjacent in

pairs, by (4.4), without loss of generality, we can suppose that u5 ∼ v1, u5 ∼ w1, u6 ∼ v2, u6 ∼

w2, u7 ∼ v3, u7 ∼ w3. Since u8 ∼ u6, u8 ∼ u7, by (4.4), vertex u8 is adjacent to vertices in

V (K3,3) \ {v2, w2, v3, w3}. Thus the H-neighbourhood of u5 and u8 is the same, a contradiction.

Similar to the proof of S2, it’s obvious thatG[X] cannot contain S3 as an induced subgraph. �

By G[X] is r′-regular and (4.2), for any u ∈ X, dG(u) = 2 + r′ = r = 3 + |X| /3. Then

2 ≤ r′ = 1 + |X| /3 ≤ 4 by |X| ≤ 9.

If r′ = 2, then |X| = 3, G[X] ∼= C3, G ∼= G1 by (4.4);

If r′ = 3, then |X| = 6 and G[X] is connected since the minimum degree of G[X] is equal to

|X|
2

. By [13], there are two non-isomorphic connected 3-regular graphs with 6 vertices (see Figure

3). Since A2 contains S1 as an induced subgraph, by Claim 1, G[X] � A2. Then G[X] ∼= A1, and

the graph G2 in Figure 1 is the only non-isomorphic graph satisfying (4.4).

(a) S1 (b) S2 (c) S3

Figure 2: induced subgraph

(a) A1 (b) A2

Figure 3: 3-regular graphs on 6 vertices.

If r′ = 4, then |X| = 9 and G[X] is connected since the minimum degree of G[X] is equal

to
⌊
|X|
2

⌋
. By [13], there are 16 non-isomorphic connected 4-regular graphs with 9 vertices (see

Figure 4). Since Bi(i ∈ {2, . . . , 12}) contain S1 as an induced subgraph, graph B13 contain S3 as

an induced subgraph, graph Bj(j ∈ {14, 15, 16}) contain S2 as an induced subgraph, by Claim 1,

we have G[X] � Bi(i ∈ {2, . . . , 16}). So G[X] ∼= B1, and the graph G3 in Figure 1 is the only
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non-isomorphic graph satisfying (4.4).

Combining the proof of Subcase 2.3, (4) holds.

(a) B1 (b) B2 (c) B3 (d) B4 (e) B5 (f) B6

(g) B7 (h) B8 (i) B9 (j) B10 (k) B11 (l) B12

(m) B13 (n) B14 (o) B15 (p) B16

Figure 4: 4-regular graphs on 9 vertices

Case 3. The vertices in X are of Type III.

Then H = K3,(µ4+7µ3+13µ2+2µ−6)/(µ+2) and all vertices in X are of type (2, (µ3+3µ2−2)/(µ+2)).

Since µ 6= −3, by (2.8), we have

ρuv =

{
2

µ+2
, u ∼ v,

µ2+2µ+2
µ+2

, u � v.

Then (µ+ 2) | 2 by ρuv ∈ Z. Noting that ρuv ≥ 0 and µ /∈ {−1,−3, 0}, it is impossible. Therefore,

there is not an r-regular graph with K3,s as a star complement in this case.

Combining the above argument, we complete the proof. �

5 Regular graphs with Ks,s as a star complement

By (4) of Theorem 4.2, we know that there are three regular graphs with K3,3 as a star

complement for µ = 1. In the following, we will study some properties of regular graphs with Ks,s

as a star complement for an eigenvalue µ, and then give a sharp upper bound for the multiplicity

k of µ.
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Since µ is not an eigenvalue of Ks,s, we have µ 6= 0 and µ 6= ±s. When µ = −1, we have

r ≡ −1(mod (s+ 1)) and G ∼= G(r) by Theorem 3.5. So we discuss the case when µ /∈ {−1, 0} in

the following.

Proposition 5.1. Let s ≥ 2 and G be an r-regular graph with Ks,s as a star complement for an

eigenvalue µ, where µ /∈ {−1, 0}. Then

(1) µ ∈ Z and |µ| < s.

(2) If µ = 1, then s = 3 and G ∼= G1, G2 or G3.

(3) If all vertices in the star set X are of the same type, then G is an r-regular graph of order

(2µ+ 1)( r
µ
− 1).

Proof. Clearly, there is no regular graph G with Ks,s as a star complement for µ = r by Theorem

3.4. Thus µ is a non-main eigenvalue. Let t = s in (2.6), we have 0 < a + b = s − µ ≤ 2s, thus

µ ∈ Z and −s ≤ µ < s. Since µ 6= ±s, we have |µ| < s, (1) holds.

Since t = s, by (2.6) and (2.7), we have a = x1, b = x2 or a = x2, b = x1 where

x1 =
s− µ+

√
−(s+ µ)(2µ2 + µ− s)

2
, x2 =

s− µ−
√
−(s+ µ)(2µ2 + µ− s)

2
. (5.1)

Since a, b ∈ Z, −(s+µ)(2µ2 +µ− s) = (s−µ2)2− (µ2 +µ)2 must be a perfect square. Thus, when

µ = 1, (s − 1)2 − 4 must be a perfect square, so s = 3, and thus the graphs G1, G2 and G3 (see

Figure 1) are the regular graphs with K3,3 as a star complement for µ = 1 by (4) of Theorem 4.2,

(2) holds.

Let u ∈ X be a vertex of type (a, b). Since G is r-regular with Ks,s as a star complement and

all vertices in X are of the same type, we have a = b. By (2.6) and (2.7), we have a = b = s = −µ

or a = b = µ2, s = 2µ2 + µ.

If a = b = s = −µ, then |X| = 1, r = 2s = 1 + s. Thus s = 1 and µ = −1, a contradiction.

If a = b = µ2, s = 2µ2 + µ, counting the edges between X and V (H) in two ways, we have

(a+ b) · |X| = 2s(r − s). Thus |V (G)| = |X|+ 2s = (2µ+ 1)( r
µ
− 1), (3) holds. �

Remark 5.2. In fact, there are a lot of regular graphs with H = Ks,s as a star complement. For

example, when µ = −2, it follows from (5.1) that (s− 4)2− 4 must be a perfect square, thus s = 2

or 6.

When s = 2, we have a = b = 2 by (5.1). Thus |X| = 1 by Lemma 2.4. In this situation, G is

not regular.
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But when s = 6, we have a = b = 4 by (5.1). From (2.8), we have ρuv =

{
4, u � v,
6, u ∼ v.

Since

|X| · 8 = 12(r − 6), we have |X| = 3(r−6)
2
∈ Z, and then r is even.

Let (V,W ) be the bipartition of H = K6,6 with V = {v1, v2, · · · , v6}, W = {w1, w2, · · · , w6}.

If r = 8, then |X| = 3. The graph G4 defined as follows is a regular graph with K6,6

as a star complement for µ = −2: X = {u1, u2, u3}, V (G4) = V (H) ∪ X, G4[X] = 3K1,

and NH(u1) = {v1, v2, v3, v4, w1, w2, w3, w4}, NH(u2) = {v3, v4, v5, v6, w3, w4, w5, w6}, NH(u3) =

{v1, v2, v5, v6, w1, w2, w5, w6}. The spectrum of G4 is [−6,−23, 08, 22, 8].

If r = 10, then |X| = 6. The graph G5 defined as follows is a regular graph with K6,6 as a

star complement for µ = −2: X = {u1, u2, . . . , u6}, V (G5) = V (H) ∪ X, G5[X] = C6 with the

edge set {u1u2, u2u3, u3u4, u4u5, u5u6, u6u1}, and NH(u1) = {v1, v2, v3, v4, w1, w2, w3, w4}, NH(u2) =

{v2, v3, v4, v5, w2, w3, w4, w5}, NH(u3) = {v3, v4, v5, v6, w3, w4, w5, w6}, NH(u4) = {v1, v4, v5, v6, w1,

w4, w5, w6}, NH(u5) = {v1, v2, v5, v6, w1, w2, w5, w6}, NH(u6) = {v1, v2, v3, v6, w1, w2, w3, w6}. The

spectrum of G5 is [−6,−26, 06, 12, 32, 10].

Since |X| ≤ 1
2
(q + 1)(q − 2) = 65, where q = |V (H)| ([4]), there are various choices of r. It

can be predicted that there are a lot of graphs that satisfy the conditions. Then the commonalities

of the regular graphs with Ks,s as a star complement seems to be an interesting question worth

studying.

It is shown in [17] that if G is a connected r-regular graph of order n with µ /∈ {−1, 0} as an

eigenvalue of multiplicity k and r > 2, q = n−k, then k ≤ 1
2
(r−1)q. In the following, we will show

that when G has Ks,s (q = 2s ≥ 2) as a star complement for µ, then k ≤ s(r − s) = 1
2
q(r − q

2
) ≤

1
2
(r − 1)q.

For subsets U ′, V ′ of V (G), we write E(V ′, U ′) for the set of edges between U ′ and V ′. The

authors of [5] have determined all the graphs with a star set X for which E(X,X) is a perfect

matching. The result is as follows.

Theorem 5.3. ([5]) Let G be a graph with X as a star set for an eigenvalue µ. If E(X,X) is a

perfect matching, then one of the following holds:

(1) G = K2 and µ = ±1; (2) G = C4 and µ = 0; (3) G is the Petersen graph and µ = 1.

Theorem 5.4. Let G be an r-regular graph of order n with Ks,s as a star complement for the

eigenvalue µ /∈ {−1, 0} of multiplicity k. Then k ≤ s(r − s), equivalently n ≤ s(r − s + 2), with

equality if and only if µ = 1, G ∼= G1, G2 or G3 (see Figure 1).
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Proof. Let H = Ks,s and V (H) = V ∪ W with |V | = |W | = s. By Lemma 2.4, V (Ks,s) is a

location-dominating set, and so G is connected. By Lemma 2.4, we have |NH(u)| ≥ 1. Thus

k = |X| ≤
∑

u∈X |NH(u)| = |E(X,X)| = 2s(r − s).

When the equality holds, we have |NH(u)| = 1 for all u ∈ X. Since the neighbourhoods

NH(u) (u ∈ X) are distinct, any vertex in H has at most one adjacent vertex in X, thus 2s =

|X| ≥ |X| = 2s(r − s) which means r ≤ s + 1. On the other hand, we have r ≥ s + 1 by G

is r-regular and connected. Thus r = s + 1 and then |X| = 2s. Therefore E(X,X) is a perfect

matching, but there is no such graph G by Theorem 5.3.

Let t = s in (2.6), we find that |NH(u)| = a + b = s − µ is a constant, which means

|NH(u1)| = |NH(u2)| for any u1, u2 ∈ X. Therefore, we have |NH(u)| ≥ 2 for any u ∈ X and

2k ≤
∑
u∈X
|NH(u)| = |E(X,X)| = 2s(r− s), equivalently n ≤ s(r− s+ 2), with equality if and only

if |NH(u)| = 2 for any u ∈ X.

If n = s(r − s + 2), we have µ = s − 2 and the possible types for the vertices in X are

(1, 1), (0, 2), (2, 0).

If there are two vertices of type (0, 2) (or (2, 0)) in X, then it follows from (2.8) that ρuv ={ s
s−1 , u � v,

s2−4s+2
1−s , u ∼ v.

By (2) of Lemma 2.4, we have ρuv 6= 2, then ρuv = 0 or 1, it is a contradiction

with s ∈ Z+. Therefore, there is at most one vertex of type (0, 2) (or (2, 0)).

If there is one vertex of type (2, 0) and one vertex of type (0, 2) in X, then it follows from (2.8)

that ρuv =

{ s−2
s−1 , u � v,

s2−4s+4
1−s , u ∼ v.

Clearly, ρuv = 0, s = 2, and µ = 0, it is a contradiction. Therefore,

the vertex of type (2, 0) and the vertex of type (0, 2) cannot exist at the same time in X.

Suppose that X contains a vertex of type (0, 2) (or (2, 0)), then |E(X, V )| 6= |E(X,W )|, a

contradiction. Thus all vertices in X are of type (1, 1). From (2.8), we have ρuv =

{
1, u � v,

3− s, u ∼ v.
If for any u, v ∈ X, u � v, then r = 2 and H ∼= K1,1, G ∼= C3 and thus s = 1 and µ = s−2 = −1,

a contradiction.

If there exists u, v ∈ X such that u ∼ v, then 3− s = 0 or 1 by (2) of Lemma 2.4. If 3− s = 1,

then s = 2 and µ = 0, a contradiction. If 3− s = 0, then s = 3, µ = 1 and thus G = G1, G2 or G3

(see Figure 1) by (4) of Theorem 4.2.

The proof is completed. �
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