Regular graphs with a complete bipartite graph as a star complement[∗]

Xiaona Fang^a, Lihua You^{a†} Rangwei Wu^a, Yufei Huang^b

^aSchool of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P. R. China

 b Department of Mathematics Teaching, Guangzhou Civil Aviation College, Guangzhou, 510403, P. R. China

Abstract: Let G be a graph of order n and μ be an adjacency eigenvalue of G with multiplicity $k \geq 1$. A star complement H for μ in G is an induced subgraph of G of order $n - k$ with no eigenvalue μ , and the vertex subset $X = V(G - H)$ is called a star set for μ in G. The study of star complements and star sets provides a strong link between graph structure and linear algebra. In this paper, we study the regular graphs with $K_{t,s}$ ($s \geq t \geq 2$) as a star complement for an eigenvalue μ , especially, characterize the case of $t = 3$ completely, obtain some properties when $t = s$, and propose some problems for further study.

Keywords: Adjacency eigenvalue; Star set; Star complement; Regular graph. AMS classification: 05C50

1 Introduction

Let G be a simple graph with vertex set $V(G) = \{1, 2, ..., n\} = [n]$ and edge set $E(G)$. The adjacency matrix of G is an $n \times n$ matrix $A(G) = (a_{ij})$, where $a_{ij} = 1$ if vertex i is adjacency to vertex j, and 0 otherwise. We use the notation $i \sim j$ ($i \nsim j$) to indicate that i, j are adjacent (not-adjacent) and the notation $d_G(i)$ to indicate the degree of vertex i in G. The adjacency eigenvalues of G are just the eigenvalues of $A(G)$. For more details on graph spectra, see [\[6\]](#page-19-0).

Let μ be an eigenvalue of G with multiplicity k. A star set for μ in G is a subset X of $V(G)$ such that $|X| = k$ and μ is not an eigenvalue of $G - X$, where $G - X$ is the subgraph of G induced by $\overline{X} = V(G) \setminus X$. In this situation $H = G - X$ is called a *star complement* corresponding to μ . Star sets and star complements exist for any eigenvalue of a graph, and they need not to be unique. The basic properties of star sets are established in Chapter 7 of [\[7\]](#page-19-1).

[∗]This work is supported by the National Natural Science Foundation of China (Grant No. 11971180), the Guangdong Provincial Natural Science Foundation (Grant No. 2019A1515012052).

[†]Corresponding author: ylhua@scnu.edu.cn

There is another equivalent geometric definition for star sets and star complements. Let G be a graph with vertex set $V(G) = \{1, \ldots, n\}$ and adjacency matrix A. Let $\{e_1, \ldots, e_n\}$ be the standard orthonormal basis of \mathbb{R}^n , μ be an eigenvalue of G, and P be the matrix which represents the orthogonal projection of \mathbb{R}^n onto the eigenspace $\mathcal{E}(\mu) = \{x \in \mathbb{R}^n : A(G)x = \mu x \}$ of A with respect to $\{e_1, \ldots, e_n\}$. Since $\mathcal{E}(\mu)$ is spanned by the vectors $Pe_j (j = 1, \ldots, n)$, there exists $X \subseteq V(G)$ such that the vectors $Pe_j (j \in X)$ form a basis for $\mathcal{E}(\mu)$. Such a subset X of $V(G)$ is called a star set for μ in G. In this situation $H = G - X$ is called a star complement for μ .

For any graph G of order n with distinct eigenvalues $\lambda_1, \ldots, \lambda_m$, there exists a partition $V(G)$ = $X_1 \bigcup \cdots \bigcup X_m$ such that X_i is a star set for eigenvalue λ_i $(i = 1, \ldots, m)$. Such a partition is called a *star partition* of G. For any graph G, there exists at least one star partition (10) . Each star partition determines a basis for \mathbb{R}^n consisting of eigenvectors of an adjacency matrix. It provides a strong link between graph structure and linear algebra.

There are a lot of literatures about using star complements to construct and characterize certain graphs $(1, 2, 3, 8, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25]$, especially, regular graphs with a prescribed graph such as $K_{1,s}$, $K_1 \nabla h K_q$, $K_{2,5}$, $K_{2,s}$, $K_{1,1,t}$, $K_{1,1,1,t}$, $\overline{sK_1 \cup K_t}$, P_t ($\mu = 1$), $K_{r,r,r}$ ($\mu = 1$) or $K_{r,s} + tK_1$ ($\mu = 1$) as a star complement were well studied in the literature. Motivated by the above research, in this paper, we introduce the fundamental properties of the theory of star complements in Section [2,](#page-1-0) study the regular graphs with the bipartite graph $K_{t,s}$ ($s \geq$ $t \geq 1$) as a star complement for an eigenvalue μ in Section [3,](#page-4-0) completely characterize the regular graphs with $K_{3,s}$ ($s \geq 3$) as a star complement for an eigenvalue μ in Section [4,](#page-10-0) study some properties of $K_{s,s}$ in Section [5,](#page-15-0) and propose some problems for further research.

2 Preliminaries

In this section, we introduce some results of star sets and star complements that will be required in the sequel. The following fundamental result combines the Reconstruction Theorem $(7, 7)$ Theorem 7.4.1]) with its converse ([\[7,](#page-19-1) Theorem 7.4.4]).

Theorem 2.1. ([\[7\]](#page-19-1)) Let μ be an eigenvalue of G with multiplicity k, X be a set of vertices in the graph G. Suppose that G has adjacency matrix

$$
\begin{pmatrix} A_X & B^T \\ B & C \end{pmatrix},
$$

where A_X is the adjacency matrix of the subgraph induced by X. Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$
\mu I - A_X = B^T (\mu I - C)^{-1} B. \tag{2.1}
$$

In this situation, $\mathcal{E}(\mu)$ consists of the vectors

$$
\begin{pmatrix}\n\boldsymbol{x} \\
(\mu I - C)^{-1} B\boldsymbol{x}\n\end{pmatrix},\n\tag{2.2}
$$

where $\boldsymbol{x} \in \mathbb{R}^k$.

Note that if X is a star set for μ , then the corresponding star complement $H(= G - X)$ has adjacency matrix C, and (2.1) tells us that G can be determined by μ , H and the H-neighbourhood of vertices in X, where the H-neighbourhood of the vertex $u \in X$, denoted by $N_H(u)$, is defined as $N_H(u) = \{v \mid v \sim u, v \in V(H)\}.$

It is usually convenient to apply (2.1) in the form

$$
m(\mu)(\mu I - A_X) = B^T m(\mu)(\mu I - C)^{-1}B,
$$

where $m(x)$ is the minimal polynomial of C. This is because $m(\mu)(\mu I - C)^{-1}$ is given explicitly as follows.

Proposition 2.2. ([\[8\]](#page-19-6), Proposition 0.2) Let C be a square matrix with minimal polynomial

$$
m(x) = x^{d+1} + c_d x^d + c_{d-1} x^{d-1} + \dots + c_1 x + c_0.
$$

If μ is not an eigenvalue of C, then

$$
m(\mu)(\mu I - C)^{-1} = a_d C^d + a_{d-1} C^{d-1} + \dots + a_1 C + a_0 I,
$$

where $a_d = 1$ and for $0 < i \leq d$, $a_{d-i} = \mu^i + c_d \mu^{i-1} + c_{d-1} \mu^{i-2} + \cdots + c_{d-i+1}$.

In order to find all the graphs with a prescribed star complement H for μ , we need to find all solution A_X , B for given μ and C. For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^q$, where $q = |V(H)|$, let

$$
\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T (\mu I - C)^{-1} \mathbf{y}.
$$
 (2.3)

Let \mathbf{b}_u be the column of B for any $u \in X$. By Theorem [2.1,](#page-1-1) we have

Corollary 2.3. ([\[10\]](#page-19-2), Corollary 5.1.8) Suppose that μ is not an eigenvalue of the graph H, where $|V(H)| = q$. There exists a graph G with a star set $X = \{u_1, u_2, \ldots, u_k\}$ for μ such that $G - X = H$ if and only if there exist $(0,1)$ -vectors $\mathbf{b}_{u_1}, \mathbf{b}_{u_2}, \ldots, \mathbf{b}_{u_k}$ in \mathbb{R}^q such that

(1) $\langle \mathbf{b}_u, \mathbf{b}_u \rangle = \mu$ for all $u \in X$, and $(2) \, \left\langle \bm{b}_{u}, \bm{b}_{v} \right\rangle =$ $\int -1$, $u \sim v$ $\begin{array}{c}\n 0, & u \sim v \ \end{array}$ for all pairs u, v in X.

In view of the two equations in the above corollary, we have

Lemma 2.4. ([\[7\]](#page-19-1)) Let X be a star set for μ in G, and $H = G - X$.

(1) If $\mu \neq 0$, then $V(H)$ is a dominating set for G, that is, the H-neighbourhood of any vertex in X are non-empty;

(2) If $\mu \notin \{-1, 0\}$, then $V(H)$ is a location-dominating set for G, that is, the H-neighbourhood of distinct vertices in X are distinct and non-empty.

It follows from (2) of Lemma [2.4](#page-3-0) that there are only finitely regular graphs with a prescribed star complement for $\mu \notin \{-1, 0\}$. If $\mu = 0$ and X has distinct vertices u and v with the same neighbourhood in G, then u and v are called *duplicate vertices*. If $\mu = -1$ and X has distinct vertices u and v with the same closed neighbourhood in G , then u and v are called *co-duplicate vertices* (see $|11|$).

Recall that if the eigenspace $\mathcal{E}(\mu)$ is orthogonal to the all-1 vector j then μ is called a non-main eigenvalue. From (2.2) , we have the following result.

Lemma 2.5. ([\[8\]](#page-19-6), Proposition 0.3) The eigenvalue μ is a non-main eigenvalue if and only if

$$
\langle \mathbf{b}_u, \mathbf{j} \rangle = -1 \quad \text{for all } u \in X,\tag{2.4}
$$

where \boldsymbol{j} is the all-1 vector.

Lemma 2.6. ([\[10\]](#page-19-2), Corollary 3.9.12) In an r-regular graph, all eigenvalues other than r are nonmain.

In the rest of this paper, we let $H \cong K_{t,s}$ ($s \ge t \ge 1$), (V, W) be a bipartition of the graph $K_{t,s}$ with $V = \{v_1, v_2, \dots, v_t\}, W = \{w_1, w_2, \dots, w_s\}.$ We say that a vertex $u \in X$ is of type (a, b) if it has a neighbours in V and b neighbours in W. Clearly $(a, b) \neq (0, 0)$ and $0 \le a \le t$, $0 \le b \le s$.

Let C be the adjacency matrix of H, then C has minimal polynomial $m(x) = x(x^2 - ts)$. Since μ is not an eigenvalue of C, we have $\mu \neq 0$ and $\mu^2 \neq ts$. From Proposition [2.2,](#page-2-2) we have

$$
m(\mu)(\mu I - C)^{-1} = C^2 + \mu C + (\mu^2 - ts)I.
$$
\n(2.5)

If μ is a non-main eigenvalue of G, then by (2.4) and (2.5) we have

$$
\mu^{2}(a+b) + \mu(as+tb) = -\mu(\mu^{2} - ts). \tag{2.6}
$$

Using [\(2.5\)](#page-3-2) to compute $\langle \mathbf{b}_u, \mathbf{b}_u \rangle = \mu$, we obtain the following equation

$$
(\mu^2 - ts)(a + b) + a^2s + tb^2 + 2ab\mu = \mu^2(\mu^2 - ts).
$$
 (2.7)

Let u, v be distinct vertices in X of type (a, b) , (c, d) , respectively. Let $\rho_{uv} = |N_H(u) \cap N_H(v)|$, $a_{uv} = 1$ or 0 according as $u \sim v$ or $u \nsim v$. Using [\(2.5\)](#page-3-2) to compute $\langle \mathbf{b}_u, \mathbf{b}_v \rangle = -a_{uv}$, we have

$$
(\mu^2 - ts)\rho_{uv} + acs + bdt + \mu(ad + bc) = -\mu(\mu^2 - ts)a_{uv}.
$$
\n(2.8)

3 Regular graphs with $K_{t,s}$ as a star complement

An r-regular graph G with n vertices is said to be strongly regular with parameters (n, r, e, f) if every two adjacent vertices in G have e common neighbours and every two non-adjacent vertices have f common neighbours. For example, Petersen graph is strongly regular with parameters $(10, 3, 0, 1).$

For the regular graphs with the complete bipartite graph $K_{t,s}$ as a star complement, the case of $t = 1$ was solved by Rowlinson and Tayfeh-Rezaie in 2010 ([\[19\]](#page-20-4)), the case of $t = 2$, $s = 5$ was solved by Rowlinson and Jackson in 1999 ([\[18\]](#page-20-3)), the case of $t = 2$, $s \neq 5$ was solved by Yuan, Zhao, Liu and Chen in 2018 ($[25]$), and the conclusions are listed below.

Theorem 3.1. ([\[19\]](#page-20-4)) If the r-regular graph G has $K_{1,s}$ ($s > 1$) as a star complement for an eigenvalue μ , then one of the following holds:

(1) $\mu = \pm 2, r = s = 2$ and $G \cong K_{2,2}$; (2) $\mu = \frac{1}{2}$ $rac{1}{2}(-1)$ √ (5) , $r = s = 2$ and G is a 5-cycle;

(3) $\mu \in \mathbb{N}_+$, $r = s$ and G is strongly regular with parameters $((\mu^2 + 3\mu)^2, \mu (\mu^2 + 3\mu + 1), 0, \mu(\mu + 1)).$

Theorem 3.2. ([\[18,](#page-20-3) [25\]](#page-21-0)) Let $s \geq 2$. If the *r*-regular graph G has $K_{2,s}$ as a star complement for an eigenvalue μ , then one of the following holds:

(1)
$$
\mu = \pm 3, r = s = 3
$$
 and $G \cong K_{3,3}$;

(2) $1 \neq \mu \in \mathbb{N}_+$, $r = s$ and G is an r-regular graph of order $(\mu^4 + 10\mu^3 + 27\mu^2 + 10\mu)/4$, where $r = \mu(\mu + 1)(\mu + 4)/2.$

(3) $\mu = 1$, $s = 5$ and either $G \cong Sch_{10}$ or G is isomorphic to one of the eleven induced regular subgraphs of Sch_{10} .

(4) $\mu = -1$, $r \equiv -1 \pmod{2s - 1}$ and $G \cong G'(r)$ (see [\[25\]](#page-21-0) for specific definitions).

In this section, we consider the general case. We prove that there is no regular graph G with $K_{t,s}$ ($s \ge t \ge 1$) as a star complement for $\mu = -t$, characterize the graph G when $\mu = r$, $\mu = -1$, and the case with all vertices in X of type $(0, b)$ for $\mu \notin \{-t, r, -1\}$. Furthermore, we propose a question for further research.

Proposition 3.3. There is not an r-regular graph G with $K_{t,s}$ ($s \ge t \ge 1$) as a star complement for $\mu = -t$.

Proof. Let $\mu = -t$. Since $\mu^2 \neq ts$, we have $s \neq t$ and then $s > t$. Let $u \in X$ be a vertex of type (a, b) , thus $(a, b) \neq (0, 0)$ and $0 \le a \le t, 0 \le b \le s$.

If $t = 1$, from Theorem 2.2 of [\[19\]](#page-20-4), there is no r-regular graph G with $K_{1,s}$ as a star complement for $\mu = -1$.

If $t \geq 2$, by Lemma [2.6,](#page-3-3) we know that $\mu = -t$ is a non-main eigenvalue of G, and by [\(2.6\)](#page-4-1), we have

$$
t(t-s)(a-t) = 0.\t(3.1)
$$

Since $s > t$ and $t \ge 2$, [\(3.1\)](#page-5-0) implies that $a = t$, and thus $s(b - t^2) = b^2 - tb - t^3 + t^2$ by [\(2.7\)](#page-4-2). If $b = t^2$, then $t^4 - 2t^3 + t^2 = 0$, thus $t = 0$ or 1, a contradiction.

If $b \neq t^2$, then $s = \frac{b^2 - tb - t^3 + t^2}{b - t^2}$ $\frac{t b - t^3 + t^2}{b - t^2} = b - t^2 + \frac{t^2 (t-1)^2}{b - t^2}$ $\frac{(t-1)^2}{b-t^2} + 2t^2 - t$. If $b < t^2$, then $s \leq -2\sqrt{t^2(t-1)^2} +$ $2t^2 - t = t$, which contradicts with $s > t$. Thus $b > t^2$ and $s - (b + t - 1) = \frac{b(t-1)^2}{b - t^2} > 0$. Considering degrees, we have

$$
d_G(v_1) = d_G(v_2) = \cdots = d_G(v_t) = s + |X|,
$$

and

$$
d_G(u) \le a + b + |X| - 1 = b + t - 1 + |X|, \ u \in X.
$$

Hence, $d_G(v_1) = d_G(v_2) = \cdots = d_G(v_t) > d_G(u)$ which contradicts to the regularity of G.

Combining the above arguments, there is not an r-regular graph G with $K_{t,s}$ ($s \ge t \ge 1$) as a star complement for $\mu = -t$. \Box

Theorem 3.4. If the r-regular graph G has $K_{t,s}$ ($s \ge t \ge 1$) as a star complement for an eigenvalue $\mu = r$, then $s = t = 1$, $G ≅ C_3$ or $r = s = t + 1$, $G ≅ K_{t+1,t+1}$.

Proof. Since μ is not an eigenvalue of $H \cong K_{t,s}$ ($s \ge t \ge 1$), we have $\mu \ne 0$ and $\mu^2 \ne ts$. By Lemma [2.4,](#page-3-0) $V(K_{t,s})$ is a location-dominating set, and so G is connected.

By G is r-regular and connected, $\mu = r$, we know $k = 1$ and then $|X| = 1$. Since G is regular, we have $d_G(v_1) = d_G(v_2) = \cdots = d_G(v_t)$. Let $X = \{u\}$. Then either $u \sim v_1, u \sim v_2, \ldots, u \sim v_t$, or $u \nsim v_1, u \nsim v_2, \ldots, u \nsim v_t.$

If $u \sim v_1$, $u \sim v_2$, \dots , $u \sim v_t$, then $d_G(v_1) = d_G(v_2) = \dots = d_G(v_t) = s + 1$, which implies that $d_G(u) = s + 1$. It follows that the vertex u is adjacent to $s - t + 1$ (≥ 1) vertices of W, and thus $t = 1$ by $d_G(w_1) = d_G(w_2) = \cdots = d_G(w_s)$. Since $d_G(w_1) = t + 1 = d_G(v_1)$, we have $s = t = 1$ and $G \cong C_3$.

If $u \nsim v_1, u \nsim v_2, \ldots, u \nsim v_t$, in view of the regularity, we have $d_G(u) = d_G(v_1) = d_G(v_2) =$ $\cdots = d_G(v_t) = s$, and then $d_G(w_1) = d_G(w_2) = \cdots = d_G(w_s) = t + 1$. Hence we have $s = r = t + 1$. and $G \cong K_{t+1,t+1}$. \Box

Let $H \cong K_{t,s}$, (V, W) be a bipartition of the graph $K_{t,s}$ with $V = \{v_1, v_2, \ldots, v_t\}$, $W =$ $\{w_1, w_2, \ldots, w_s\}$. We obtain an r-regular graph $G(r)$ with $V(G(r)) = X \cup V(H)$, $X = V_1 \cup V(T)$ $\cdots \cup V_t \cup W_1 \cup \cdots \cup W_s$ where V_i is the set of vertices of type $(1, s)$ adjacent to $v_i \in V$ with $|V_i| = (r+1)(s-1)/(ts-1) - 1$, V_i induces a clique for $1 \le i \le t$, W_i is the set of vertices of type $(t,1)$ adjacent to $w_i \in W$ with $|W_i| = (r+1)(t-1)/(ts-1) - 1$, W_i induces a clique for $1 \le i \le s$. For any *i*, *j*, each vertex in V_i is adjacent to all vertices in W_j .

The greatest common divisor of a and b is denoted by $gcd(a, b)$. For $\mu = -1$, we have the following theorem.

Theorem 3.5. If G is an r-regular graph with $H = K_{t,s}$ ($s \ge t \ge 2$) as a star complement for an eigenvalue -1 , then $r \equiv -1 \pmod{\frac{ts-1}{\gcd(s-1,t-1)}}$ and $G \cong G(r)$.

Proof. Since $K_{t,s}$ is connected and $V(K_{t,s})$ is a dominating set (see Lemma [2.4\)](#page-3-0), we know G is connected. Let $H \cong K_{t,s}$, (V, W) be a bipartition of the graph $K_{t,s}$ as above. Let $u \in X$ be a vertex of type (a, b) , thus $(a, b) \neq (0, 0)$ and $0 \le a \le t$, $0 \le b \le s$. Let $\mu = -1$ in (2.7) , so that

$$
(1 - ts)(a + b - 1) + a2s + tb2 - 2ab = 0.
$$
 (3.2)

By Lemma [2.6,](#page-3-3) we know that $\mu = -1$ is a non-main eigenvalue of G, thus from [\(2.6\)](#page-4-1), we have

$$
1 - ts + a(s - 1) + b(t - 1) = 0.
$$
\n(3.3)

Combining [\(3.2\)](#page-6-0) and [\(3.3\)](#page-6-1), if $a = 1$, then $b = s$; if $a = t$, then $b = 1$; if $1 < a < t$, then $b = a - t + 1, s = 2 - t \text{ or } b = \frac{a}{t}$ $\frac{a}{t}, s = \frac{1}{t}$ $\frac{1}{t}$. It is obvious that $s = 2 - t$ or $s = \frac{1}{t}$ $\frac{1}{t}$ contradicts with $s \in \mathbb{Z}_+$. Therefore, the possible types of vertices in X are $(1, s)$, $(t, 1)$, and the feasible solution of [\(2.8\)](#page-4-3) are shown in Table [1.](#page-7-0)

(a,b)	(c,d)	a_{uv}	ρ_{uv}
(1, s)	(1,s)	-0	\mathcal{S}^-
(1, s)	(1,s)	-1	$s+1$
(t,1)	(t,1)	$\left(\right)$	t_{-}
(t,1)	(t,1)	1	$t+1$
(1,s)	(t,1)	1	2°

Table 1: The feasible solution of [\(2.8\)](#page-4-3)

We observe that when u, v are of different types, they must be adjacent; when u, v are of the same type, $u \sim v$ if and only if they have the same H-neighbourhoods, and thus u, v are coduplicate vertices. We can add arbitrarily many co-duplicate vertices when constructing graphs with a prescribed star complement for -1 .

Now we partition the vertices in X. Let V_i be the set of vertices of type $(1, s)$ in X adjacent to $v_i \in V$, W_i be the set of vertices of type $(t, 1)$ in X adjacent to $w_i \in W$. Then any two vertices in V_i (W_i) are co-duplicate vertices. We do not exclude the possibility that some of the sets V_i , W_i are empty. Then for any $v_i \in V$, we have $d_G(v_i) = s + |V_i| + \sum^s$ $i=1$ $|W_i|$; and for any $w_i \in W$, we have $d_G(w_i) = t + \sum_{i=1}^t$ $i=1$ $|V_i| + |W_i|.$

Since G is r-regular, we have $|V_1| = |V_2| = \cdots = |V_t|$ by $d_G(v_1) = d_G(v_2) = \cdots = d_G(v_t)$ and $|W_1| = |W_2| = \cdots = |W_s|$ by $d_G(w_1) = d_G(w_2) = \cdots = d_G(w_s)$. Then we have

$$
r = d_G(v_1) = s + |V_1| + s \cdot |W_1|
$$
 and $r = d_G(w_1) = t + t \cdot |V_1| + |W_1|$.

It turns out that

$$
|V_1| = \frac{(s-1)(r+1)}{ts-1} - 1, \ |W_1| = \frac{(t-1)(r+1)}{ts-1} - 1.
$$

Since $|V_1| \in \mathbb{N}$, $|W_1| \in \mathbb{N}$ and

$$
\gcd(t-1, ts-1) = \gcd(s-1, ts-1) = \gcd(t-1, s-1),
$$

we have $r \equiv -1 \pmod{\frac{ts-1}{\gcd(s-1,t-1)}}$. Consequently we obtain an r-regular graph $G(r)$. \Box

Remark 3.6. Note that if $V_i^* = V_i \cup \{v_i\}$, $v_i \in V$ and $W_i^* = W_i \cup \{w_i\}$, $w_i \in W$, then each of sets V_i^* , W_i^* induces a clique in $G(r)$.

Next, we consider the case $\mu \notin \{-1, -t, r\}$. The following lemma lists all possible types of vertices in X.

Lemma 3.7. Let G be a graph with $H = K_{t,s}$ $(s \ge t \ge 1)$ as a star complement for μ . If μ is a non-main eigenvalue of G and $\mu \notin \{-1, -t\}$, then the possible types of vertices in the star set X are $(a, \frac{\mu^3 + t\mu^2 - ta + a^2}{\mu + a}$ $\frac{u^2-ta+a^2}{\mu+a}$), where $0 \le a \le t-1$ and $a \ne -\mu$.

Proof. Let $u \in X$ be a vertex of type (a, b) , thus $(a, b) \neq (0, 0)$ and $0 \leq a \leq t, 0 \leq b \leq s$. By [\(2.6\)](#page-4-1), [\(2.7\)](#page-4-2) and $\mu \notin \{0, -1, -t\}$, we have: (1) $a = t, b = -\mu, s = \frac{\mu^2}{t}$ $\frac{u^2}{t}$; (2) $a = -\mu$, $b = \frac{\mu^2}{t}$ $\frac{u^2}{t}, s = \frac{\mu^2}{t}$ $\frac{t^2}{t};$ (3) $0 \le a \le t - 1, a \ne -\mu$, $\int b = \frac{-a\mu}{t}$ $\frac{a\mu}{t},$ $s=\frac{\mu^2}{t}$ $\frac{t^2}{t}$, or $\begin{cases} b = \frac{\mu^3 + t\mu^2 - ta + a^2}{\mu + a} \\ u^4 + (2t+1)u^3 + \mu^2 \end{cases}$ $\frac{u^2-ta+a^2}{\mu+a},$ $s = \frac{\mu^4 + (2t+1)\mu^3 + (2a+t^2)\mu^2 + (2a^2-at)\mu + a^2t-at^2}{(t-a)\mu + a^2t-a^2}$ $\frac{(t-a)\mu^2 + (2a^2 - at)\mu + a^2t - at^2}{(t-a)\mu + at - a^2}.$ Since μ is not an eigenvalue of H, we have $\mu^2 \neq ts$. Thus the possible types of vertices in the star set X are $(a, \frac{\mu^3 + t\mu^2 - ta + a^2}{\mu + a}$ $rac{u^2-ta+a^2}{\mu+a}$). \Box For $\mu \notin \{-1, -t, r\}$, we consider the case $a = 0$ in the following by Lemma [3.7.](#page-8-0)

Theorem 3.8. If the r-regular graph G has $K_{t,s}$ ($s \geq t \geq 1$) as a star complement for $\mu \notin$ ${-1, -t, r}$ and all vertices in X are of type $(0, b)$, then one of the following holds: (1) $\mu = -r, r = s = t + 1$ and $G \cong K_{t+1,t+1};$ (2) $\mu = \frac{1}{2}$ $rac{1}{2}(-1)$ √ 5), $t = 1, r = s = 2$ and G is a 5-cycle; (3) $\mu \in \mathbb{N}_+$, $r = s$ and G is an r-regular graph of order $\mu (\mu + 2t + 1) (\mu^2 + 2t\mu + \mu + t^2 - t) / t^2$, where $r = \mu (\mu^2 + 2t\mu + \mu + t^2)/t$.

Proof. Since μ is not an eigenvalue of $K_{t,s}$, we have $\mu \neq 0$ and $\mu^2 \neq ts$. By Lemma [2.4,](#page-3-0) $V(K_{t,s})$ is a location-dominating set, and so G is connected. Then by $a = 0$ and Lemma [3.7,](#page-8-0) we have

$$
\begin{cases}\n b = \mu^2 + t\mu, \\
 s = \mu \left(\mu^2 + 2t\mu + \mu + t^2\right)/t.\n\end{cases}
$$

Now we consider $H = K_{t,\mu(\mu^2+2t\mu+\mu+t^2)/t}$ and all vertices in X are of type $(0, \mu^2 + t\mu)$. Then $r = s$. Counting the edges between X and $V(H)$, we have $|X|(\mu^2 + t\mu) = s(r - t)$. Thus

$$
|X| = \frac{s(r-t)}{(\mu^2 + t\mu)} = \frac{1}{t^2}(\mu^2 + 2t\mu + \mu + t^2)(\mu^2 + t\mu + \mu - t).
$$
 (3.4)

Case 1: $|X| = 1$.

Then $(\mu + t + 1)(\mu^3 + (2t + 1)\mu^2 + (t^2 - t)\mu - t^2) = 0$ from [\(3.4\)](#page-8-1). When $\mu^3 + (2t + 1)\mu^2 + (t^2 - t)\mu$ $(t)\mu - t^2 = 0$, then $\mu \notin \mathbb{Z}$ and thus $r = \frac{\mu}{t}$ $\frac{\mu}{t}(\mu^2 + 2t\mu + \mu + t^2) - \frac{1}{t}$ $\frac{1}{t}(\mu^3 + (2t+1)\mu^2 + (t^2-t)\mu - t^2) =$ $\mu + t \notin \mathbb{Z}$, a contradiction. When $\mu = -(t + 1)$, then $r = s = t + 1$ and $G \cong K_{t+1,t+1}$.

Case 2: $|X| \ge 2$.

We apply the compatibility condition (2.8) to vertices u, v in X, we find that

$$
\rho_{uv} = \begin{cases} t\mu, & u \approx v, \\ (t-1)\mu, & u \sim v. \end{cases}
$$
\n(3.5)

If $t = 1$ and X induces a clique then $|X| - 1 = r - \mu^2 - \mu$, whence $(\mu + 1)(\mu + 2)(\mu^2 + \mu - 1) = 0$. Thus either $\mu = -2$, $r = s = t + 1 = 2$ and $G \cong K_{2,2}$ which belongs to case (1), or $\mu = \frac{1}{2}$ $\frac{1}{2}(-1\pm$ √ 5) and we have case (2) $([19])$ $([19])$ $([19])$.

Otherwise, it follows from [\(3.5\)](#page-9-0) that $\mu \in \mathbb{N}_+$ and G is $\mu (\mu^2 + 2t\mu + \mu + t^2)/t$ -regular of order $\mu(\mu+2t+1)(\mu^2+2t\mu+\mu+t^2-t)/t^2$ with $K_{t,\mu(\mu^2+2t\mu+\mu+t^2)/t}$ as a star complement for μ . \Box

In [\[19\]](#page-20-4), Rowlinson gave a lemma to determine whether a connected r-regular graph with $K_{1,s}$ as a star complement is a strongly regular graph. Now we extend it to $K_{t,s}$.

Lemma 3.9. Let G be a connected r-regular graph with $\mu(\neq r)$ as an eigenvalue of multiplicity k. Suppose that $|V(G)| = k + t + s$. If $k + t + s - 1 > r$, then

$$
(k+t+s)r - r2 - k\mu2 - \frac{(k\mu+r)^{2}}{s+t-1} \ge 0,
$$

with equality if and only if G is strongly regular.

Proof. Since $k + t + s - 1 > r$, neither G nor \overline{G} is complete. Let $\theta_1, \ldots, \theta_{s+t-1}$ be the eigenvalue of G other than μ and r. We have

$$
\sum_{i=1}^{s+t-1} \theta_i + k\mu + r = 0 \text{ and } \sum_{i=1}^{s+t-1} \theta_i^2 + k\mu^2 + r^2 = (k+t+s)r.
$$

It follows that if $\overline{\theta} = \frac{1}{s+t}$ $s+t-1$ $\sum_{ }^{s+t-1}$ $i=1$ θ_i , then

$$
\sum_{i=1}^{s+t-1} (\theta_i - \overline{\theta})^2 = \sum_{i=1}^{s+t-1} \theta_i^2 - (s+t-1)\overline{\theta}^2 = (k+t+s)r - r^2 - k\mu^2 - \frac{(k\mu+r)^2}{s+t-1} \ge 0.
$$

Equality holds if and only if $\theta_i = \overline{\theta}$ ($i \in [s+t-1]$), equivalently G has just three distinct eigenvalue. By [\[9,](#page-19-8) Theorem 1.2.20], a non-complete connected regular graph is strongly regular if and only if it has exactly three distinct eigenvalues. The proof is completed. \Box

Remark 3.10. From Lemma [3.9,](#page-9-1) we know that the r-regular graph G in (3) of Theorem [3.8](#page-8-2) is strongly regular when $t = 1$, and the graph G isn't strongly regular when $t \geq 2$.

For the cases $1 \le a \le t-1$, we cannot give a characterization. Thus we propose a question for further research.

Question 3.11. Let $s \ge t \ge 1$, $\mu \notin \{-1, -t, r\}$ and $1 \le a \le t-1$. Can we give a characterization of the r-regular graphs with $K_{t,s}$ as a star complement?

4 Regular graphs with $K_{3,s}$ as a star complement

In this section, we completely solve Question [3.11](#page-10-1) when $t = 3$. Since the cases when $\mu \in$ $\{-1, -3, r\}$ $\{-1, -3, r\}$ $\{-1, -3, r\}$ have been solved in Section 3, we consider the cases $\mu \notin \{-1, -3, r\}$ in the following.

Let G be an r-regular graph with $H = K_{3,s}$ ($s \geq 3$) as a star complement for $\mu \notin \{-1, -3, r\}.$ Then $\mu \neq 0$ and $\mu^2 \neq 3s$ for μ is not an eigenvalue of $K_{3,s}$. By Lemma [3.7,](#page-8-0) the possible types of vertices in X are shown in Table [2:](#page-10-2)

Type (a, b)		
	$(0, \mu^2 + 3\mu)$	$\mu(\mu^2 + 7\mu + 9)/3$
\mathbf{H}	$(1, \mu^2 + 2\mu - 2)$	$(\mu+2)(\mu^2+4\mu-3)/2$
Ш	$(2,\frac{\mu^3+3\mu^2-2}{\mu+2})$	$\mu^4 + 7\mu^3 + 13\mu^2 + 2\mu - 6$ $u+2$

Table 2: The possible types of vertices in X

Lemma 4.1. Let G be a graph with $H = K_{3,s}$ ($s \geq 3$) as a star complement for μ . If μ is a non-main eigenvalue of G and $\mu \notin \{-1, -3\}$, then all the vertices in the star set X are of the same type, say, Type I, Type II or Type III.

Proof. Now we show it is impossible that there are two or three types of vertices in X .

Case 1. There exist vertices of Type I and Type III in X .

From Table [2,](#page-10-2) we have

$$
s = \frac{1}{3}\mu(\mu^2 + 7\mu + 9) = \frac{\mu^4 + 7\mu^3 + 13\mu^2 + 2\mu - 6}{\mu + 2}
$$

with solution $\mu = -3, -1$ or 1. Since $\mu \notin \{-1, -3\}$, we have $\mu = 1$, and thus $s = 17/3$, a contraction.

Case 2. There exist vertices of Type II and Type III in X.

From Table [2,](#page-10-2) we have

$$
s = \frac{1}{2}(\mu + 2)(\mu^2 + 4\mu - 3) = \frac{\mu^4 + 7\mu^3 + 13\mu^2 + 2\mu - 6}{\mu + 2}
$$

with solution $\mu = -3$ or 0, a contraction.

Case 3. There exist vertices of Type I and Type II in X .

By Case 1 and Case 2, we know there does not exist vertices of Type III in X.

By Table [2,](#page-10-2) we have

$$
s = \frac{1}{3}\mu(\mu^2 + 7\mu + 9) = \frac{1}{2}(\mu + 2)(\mu^2 + 4\mu - 3)
$$

with solution $\mu = -3$ or 2. Since $\mu \neq -3$, we have $\mu = 2$, and thus $s = 18$. The vertices in X are of type $(0, 10)$, $(1, 6)$. From (2.8) , Table [3](#page-11-0) is obtained.

(a,b)	(c,d)	a_{uv}	ρ_{uv}
(0, 10)	(1,6)	$\overline{0}$	$\overline{4}$
(0, 10)	(1,6)	1	2°
(0, 10)	(0, 10)	$\left(\right)$	$\overline{2}$
(0, 10)	(0, 10)	1	0
(1,6)	(1,6)	$\left(\right)$	$-11/5$
(1,6)	(1,6)	1	$-21/5$

Table 3: The possible adjacency of vertices in X

For any two vertices of type $(1,6)$, $(1,6)$ in X, $\rho_{uv} \notin \mathbb{Z}$, so there is at most one vertex of type $(1, 6)$ in X. For any two vertices of type $(0, 10)$, $(0, 10)$ in X, $\rho_{uv} = 0$ or 2. Since $s = 18$, there are at most two vertices of type $(0, 10)$ in X, and $\rho_{uv} = 2$ if there are two vertices of type $(0, 10)$. Therefore, X has at most three vertices.

Let $V(K_{3,18}) = V \cup W$ with $|V| = 3$, $|W| = 18$. For any $v_i \in V$ and $w_i \in W$, we have $d_G(v_i) \geq 18$ and $d_G(w_i) \leq 3 + 3 = 6$, which contradicts with the regularity of G.

The proof is completed. \square

Now we define three special graphs G_1, G_2 and G_3 (see Figure [1\)](#page-12-0) as follows. Clearly, the graph G_1 is a 4-regular graph of order 9, its spectrum is $[-3, -2^2, 0^2, 1^3, 4]$; G_2 is a 5-regular graph of order 12, its spectrum is $[-3^3, -1^2, 1^6, 5]$; G_3 is a 6-regular graph of order 15, its spectrum is $[-3^5, 1^9, 6]$. By Lemma [3.9,](#page-9-1) we know that G_1 and G_2 isn't strongly regular while G_3 is strongly regular with parameters (15, 6, 1, 3).

Theorem 4.2. Let $s \geq 3$, G be an r-regular graph with $K_{3,s}$ as a star complement for an eigenvalue μ . Then one of the following holds:

(1) $\mu = -1$, $r \equiv -1 \pmod{\frac{3s-1}{(s-1,2)}}$ and $G \cong G(r)$, where $G(r)$ is defined in Theorem [3.5;](#page-6-2) (2) $\mu = \pm 4$, $r = s = 4$ and $G \cong K_{4,4}$;

10 11 12 1 9 8 $\widehat{\mathfrak{Z}}$ 13 14 15 6 5 (c) G_3

Figure 1: Regular graphs G_1 , G_2 , G_3 of Theorem [4.2](#page-11-1)

(3) $\mu \in \mathbb{N}_+$, $r = s$ and G is an r-regular graph of order $\mu(\mu + 7)(\mu + 6)(\mu + 1)/9$, where $r =$ $\mu(\mu^2 + 7\mu + 9)/3;$

(4) $\mu = 1$, $s = 3$, and $G \cong G_1$ $(r = 4)$, $G \cong G_2$ $(r = 5)$ or $G \cong G_3$ $(r = 6)$ (see Figure [1\)](#page-12-0).

Proof. By Theorem [3.5](#page-6-2) and $\mu = -1$, we have (1) holds.

By Theorem [3.4](#page-5-1) and $\mu = r$, we have $s = r = 4$ and $G \cong K_{4,4}$.

If $\mu \notin \{-1, r\}$, then μ is non-main. From Proposition [3.3,](#page-5-2) we know $\mu \neq -3$. Since μ is not an eigenvalue of $H \cong K_{3,s}$, we have $\mu \neq 0$ and $\mu^2 \neq 3s$. By Lemma [2.4,](#page-3-0) $V(K_{3,s})$ is a locationdominating set, and so G is connected. Let $V(K_{3,s}) = V \cup W$ with $|V| = 3$, $|W| = s$. Denote the vertices in V and W by v_1, v_2, v_3 and w_1, w_2, \ldots, w_s , respectively. In the following, we suppose that $\mu \neq \{-1, r, -3, 0\}$ and $\mu^2 \neq 3s$. From Table [2,](#page-10-2) there are only three possible types of vertex in X. By Lemma [4.1,](#page-10-3) we know all the vertices in X are of the same type, and we consider the following three cases:

Case 1. The vertices in X are of Type I.

Then (1) or (3) of Theorem [3.8](#page-8-2) holds by $s \geq 3$, say, either $\mu = -4$, $r = s = 4$ and $G \cong K_{4,4}$, or $\mu \in \mathbb{N}_+$ and G is $\mu(\mu^2 + 7\mu + 9)/3$ -regular of order $\mu(\mu + 7)(\mu + 6)(\mu + 1)/9$ with $K_{3,(\mu^3 + 7\mu^2 + 9\mu)/3}$ as a star complement for μ .

Combining the above case of $\mu = r$, result (2) or (3) holds.

Case 2. The vertices in X are of Type II.

Then $H = K_{3,(\mu+2)(\mu^2+4\mu-3)/2}$ and all vertices in X are of type $(1, \mu^2+2\mu-2)$. Applying the compatibility condition [\(2.8\)](#page-4-3) to vertices u, v of X, since $\mu \neq -3$, we find that

$$
\rho_{uv} = \begin{cases} \mu - 1, & u \sim v, \\ 2\mu - 1, & u \approx v. \end{cases} \tag{4.1}
$$

By regularity of G, we have $d_G(v_1) = d_G(v_2) = d_G(v_3)$. This implies the vertices in X are equally divided into three parts, and each vertex in V is adjacent to every vertex of one part, so

$$
r = s + |X| / 3. \t\t(4.2)
$$

Now we compute the edges between X and $V(H)$ by two ways, and we have

$$
|X| \left(\mu^2 + 2\mu - 1\right) = 3(r - s) + s(r - 3). \tag{4.3}
$$

By [\(4.2\)](#page-13-0), [\(4.3\)](#page-13-1) and $s = (\mu + 2)(\mu^2 + 4\mu - 3)/2$, we have $(\mu + 3)(\mu - 1)(\mu - 2)|X| = -\frac{3}{2}$ $\frac{3}{2}(\mu+2)(\mu^2+$ $4\mu - 3(\mu + 3)(\mu - 1)(\mu + 4)$. Since $\mu \neq -3$, we consider the following three subcases. Subcase 2.1. $\mu \neq 1, 2$.

Then

$$
|X| = -\frac{3}{2}(\mu + 2)(\mu^2 + 4\mu - 3)\frac{\mu + 4}{\mu - 2} = -3s(1 + \frac{6}{\mu - 2}).
$$

Since $|X| \in \mathbb{Z}$ and $s \in \mathbb{Z}$, we have $\mu \in \mathbb{Q}$. Notice that μ is an algebraic integer, then $\mu \in \mathbb{Z}$. From [\(4.1\)](#page-13-2), we know that $\mu \in \mathbb{N}_+ \setminus \{1, 2\}$. Thus $|X| < 0$, a contradiction.

Subcase 2.2. $\mu = 2$.

Then $s = \frac{(\mu+2)(\mu^2+4\mu-3)}{2} = 18$, $H = K_{3,18}$ and all vertices in X are of type (1,6). By [\(4.2\)](#page-13-0) and (4.3) , we obtain $0 = 270$, it is a contradiction.

Subcase 2.3. $\mu = 1$.

Then $s = 3$, $H = K_{3,3}$ with $V = \{v_1, v_2, v_3\}$, $W = \{w_1, w_2, w_3\}$ and all vertices in X are of type $(1, 1)$. Thus $|X| \leq {3 \choose 1}$ $_{1}^{3}$ $\binom{3}{1}$ = 9. From [\(4.1\)](#page-13-2), we have

$$
\rho_{uv} = \begin{cases} 0, & u \sim v, \\ 1, & u \approx v. \end{cases} \tag{4.4}
$$

Since G and H are regular, X induces a r'-regular graph, denoted by $G[X]$.

Claim 1. The graph $G[X]$ cannot contain S_1 , S_2 or S_3 as an induced subgraph (see Figure [2\)](#page-14-0). *Proof.* If $G[X]$ contains S_1 as an induced subgraph, without loss of generality, we suppose that $u_1 \sim v_1, u_1 \sim w_1$. Then by [\(4.4\)](#page-13-3), $\rho_{u_1 u_2} = \rho_{u_1 u_3} = \rho_{u_1 u_4} = 0$, and thus vertices u_2, u_3 and u_4 are adjacent to one vertex in $V \setminus \{v_1\}$ and one vertex in $W \setminus \{w_1\}$ such that $\rho_{u_2u_3} = \rho_{u_2u_4} = \rho_{u_3u_4} = 1$, it is impossible.

If $G[X]$ contains S_2 as an induced subgraph, since the vertices u_5 , u_6 and u_7 are adjacent in pairs, by [\(4.4\)](#page-13-3), without loss of generality, we can suppose that $u_5 \sim v_1, u_5 \sim w_1, u_6 \sim v_2, u_6 \sim v_1$ $w_2, u_7 \sim v_3, u_7 \sim w_3$. Since $u_8 \sim u_6, u_8 \sim u_7$, by [\(4.4\)](#page-13-3), vertex u_8 is adjacent to vertices in $V(K_{3,3}) \setminus \{v_2, w_2, v_3, w_3\}.$ Thus the *H*-neighbourhood of u_5 and u_8 is the same, a contradiction. Similar to the proof of S_2 , it's obvious that $G[X]$ cannot contain S_3 as an induced subgraph. \Box

By $G[X]$ is r'-regular and [\(4.2\)](#page-13-0), for any $u \in X$, $d_G(u) = 2 + r' = r = 3 + |X|/3$. Then $2 \leq r' = 1 + |X|/3 \leq 4$ by $|X| \leq 9$.

If $r' = 2$, then $|X| = 3$, $G[X] \cong C_3$, $G \cong G_1$ by [\(4.4\)](#page-13-3);

If $r' = 3$, then $|X| = 6$ and $G[X]$ is connected since the minimum degree of $G[X]$ is equal to $|X|$ $\frac{\lambda_1}{2}$. By [\[13\]](#page-20-10), there are two non-isomorphic connected 3-regular graphs with 6 vertices (see Figure [3\)](#page-14-0). Since A_2 contains S_1 as an induced subgraph, by Claim 1, $G[X] \ncong A_2$. Then $G[X] \cong A_1$, and the graph G_2 in Figure [1](#page-12-0) is the only non-isomorphic graph satisfying (4.4) .

Figure 2: induced subgraph

Figure 3: 3-regular graphs on 6 vertices.

If $r' = 4$, then $|X| = 9$ and $G[X]$ is connected since the minimum degree of $G[X]$ is equal to $\frac{|X|}{2}$ $\frac{|X|}{2}$. By [\[13\]](#page-20-10), there are 16 non-isomorphic connected 4-regular graphs with 9 vertices (see Figure [4\)](#page-15-1). Since $B_i(i \in \{2, ..., 12\})$ contain S_1 as an induced subgraph, graph B_{13} contain S_3 as an induced subgraph, graph B_j ($j \in \{14, 15, 16\}$) contain S_2 as an induced subgraph, by Claim 1, we have $G[X] \not\cong B_i(i \in \{2,\ldots,16\})$ $G[X] \not\cong B_i(i \in \{2,\ldots,16\})$ $G[X] \not\cong B_i(i \in \{2,\ldots,16\})$. So $G[X] \cong B_1$, and the graph G_3 in Figure 1 is the only non-isomorphic graph satisfying [\(4.4\)](#page-13-3).

Combining the proof of Subcase 2.3, (4) holds.

Figure 4: 4-regular graphs on 9 vertices

Case 3. The vertices in X are of Type III.

Then $H = K_{3,(\mu^4 + 7\mu^3 + 13\mu^2 + 2\mu - 6)/(\mu + 2)}$ and all vertices in X are of type $(2, (\mu^3 + 3\mu^2 - 2)/(\mu + 2))$. Since $\mu \neq -3$, by (2.8) , we have

$$
\rho_{uv} = \begin{cases} \frac{2}{\mu+2}, & u \sim v, \\ \frac{\mu^2 + 2\mu + 2}{\mu+2}, & u \nsim v. \end{cases}
$$

Then $(\mu + 2)$ | 2 by $\rho_{uv} \in \mathbb{Z}$. Noting that $\rho_{uv} \ge 0$ and $\mu \notin \{-1, -3, 0\}$, it is impossible. Therefore, there is not an r-regular graph with $K_{3,s}$ as a star complement in this case.

Combining the above argument, we complete the proof. \Box

5 Regular graphs with $K_{s,s}$ as a star complement

By (4) of Theorem [4.2,](#page-11-1) we know that there are three regular graphs with $K_{3,3}$ as a star complement for $\mu = 1$. In the following, we will study some properties of regular graphs with $K_{s,s}$ as a star complement for an eigenvalue μ , and then give a sharp upper bound for the multiplicity k of μ .

Since μ is not an eigenvalue of $K_{s,s}$, we have $\mu \neq 0$ and $\mu \neq \pm s$. When $\mu = -1$, we have $r \equiv -1 \pmod{(s+1)}$ and $G \cong G(r)$ by Theorem [3.5.](#page-6-2) So we discuss the case when $\mu \notin \{-1,0\}$ in the following.

Proposition 5.1. Let $s \geq 2$ and G be an r-regular graph with $K_{s,s}$ as a star complement for an eigenvalue μ , where $\mu \notin \{-1, 0\}$. Then

- (1) $\mu \in \mathbb{Z}$ and $|\mu| < s$.
- (2) If $\mu = 1$, then $s = 3$ and $G \cong G_1$, G_2 or G_3 .

(3) If all vertices in the star set X are of the same type, then G is an r-regular graph of order $(2\mu+1)(\frac{r}{\mu}-1).$

Proof. Clearly, there is no regular graph G with $K_{s,s}$ as a star complement for $\mu = r$ by Theorem [3.4.](#page-5-1) Thus μ is a non-main eigenvalue. Let $t = s$ in [\(2.6\)](#page-4-1), we have $0 < a + b = s - \mu \leq 2s$, thus $\mu \in \mathbb{Z}$ and $-s \leq \mu < s$. Since $\mu \neq \pm s$, we have $|\mu| < s$, (1) holds.

Since $t = s$, by [\(2.6\)](#page-4-1) and [\(2.7\)](#page-4-2), we have $a = x_1$, $b = x_2$ or $a = x_2$, $b = x_1$ where

$$
x_1 = \frac{s - \mu + \sqrt{-(s + \mu)(2\mu^2 + \mu - s)}}{2}, \ x_2 = \frac{s - \mu - \sqrt{-(s + \mu)(2\mu^2 + \mu - s)}}{2}.
$$
 (5.1)

Since $a, b \in \mathbb{Z}, -(s+\mu)(2\mu^2+\mu-s) = (s-\mu^2)^2 - (\mu^2+\mu)^2$ must be a perfect square. Thus, when $\mu = 1, (s - 1)^2 - 4$ must be a perfect square, so $s = 3$, and thus the graphs G_1 , G_2 and G_3 (see Figure [1\)](#page-12-0) are the regular graphs with $K_{3,3}$ as a star complement for $\mu = 1$ by (4) of Theorem [4.2,](#page-11-1) (2) holds.

Let $u \in X$ be a vertex of type (a, b) . Since G is r-regular with $K_{s,s}$ as a star complement and all vertices in X are of the same type, we have $a = b$. By [\(2.6\)](#page-4-1) and [\(2.7\)](#page-4-2), we have $a = b = s = -\mu$ or $a = b = \mu^2$, $s = 2\mu^2 + \mu$.

If $a = b = s = -\mu$, then $|X| = 1$, $r = 2s = 1 + s$. Thus $s = 1$ and $\mu = -1$, a contradiction.

If $a = b = \mu^2$, $s = 2\mu^2 + \mu$, counting the edges between X and $V(H)$ in two ways, we have $(a + b) \cdot |X| = 2s(r - s)$. Thus $|V(G)| = |X| + 2s = (2\mu + 1)(\frac{r}{\mu} - 1)$, (3) holds. \Box

Remark 5.2. In fact, there are a lot of regular graphs with $H = K_{s,s}$ as a star complement. For example, when $\mu = -2$, it follows from [\(5.1\)](#page-16-0) that $(s-4)^2 - 4$ must be a perfect square, thus $s = 2$ or 6.

When $s = 2$, we have $a = b = 2$ by [\(5.1\)](#page-16-0). Thus $|X| = 1$ by Lemma [2.4.](#page-3-0) In this situation, G is not regular.

But when $s = 6$, we have $a = b = 4$ by [\(5.1\)](#page-16-0). From [\(2.8\)](#page-4-3), we have $\rho_{uv} =$ $\int 4, u \approx v,$ $\begin{array}{cc} \text{4,} & u \sim v, \\ 6, & u \sim v. \end{array}$ Since $|X| \cdot 8 = 12(r-6)$, we have $|X| = \frac{3(r-6)}{2}$ $\frac{a-6}{2} \in \mathbb{Z}$, and then r is even.

Let (V, W) be the bipartition of $H = K_{6,6}$ with $V = \{v_1, v_2, \dots, v_6\}$, $W = \{w_1, w_2, \dots, w_6\}$.

If $r = 8$, then $|X| = 3$. The graph G_4 defined as follows is a regular graph with $K_{6,6}$ as a star complement for $\mu = -2$: $X = \{u_1, u_2, u_3\}$, $V(G_4) = V(H) \cup X$, $G_4[X] = 3K_1$, and $N_H(u_1) = \{v_1, v_2, v_3, v_4, w_1, w_2, w_3, w_4\}, N_H(u_2) = \{v_3, v_4, v_5, v_6, w_3, w_4, w_5, w_6\}, N_H(u_3) =$ $\{v_1, v_2, v_5, v_6, w_1, w_2, w_5, w_6\}.$ The spectrum of G_4 is $[-6, -2^3, 0^8, 2^2, 8].$

If $r = 10$, then $|X| = 6$. The graph G_5 defined as follows is a regular graph with $K_{6,6}$ as a star complement for $\mu = -2$: $X = \{u_1, u_2, \ldots, u_6\}$, $V(G_5) = V(H) \cup X$, $G_5[X] = C_6$ with the edge set $\{u_1u_2, u_2u_3, u_3u_4, u_4u_5, u_5u_6, u_6u_1\}$, and $N_H(u_1) = \{v_1, v_2, v_3, v_4, w_1, w_2, w_3, w_4\}$, $N_H(u_2) =$ {v2, v3, v4, v5, w2, w3, w4, w5}, NH(u3) = {v3, v4, v5, v6, w3, w4, w5, w6}, NH(u4) = {v1, v4, v5, v6, w1, w_4, w_5, w_6 , $N_H(u_5) = \{v_1, v_2, v_5, v_6, w_1, w_2, w_5, w_6\}$, $N_H(u_6) = \{v_1, v_2, v_3, v_6, w_1, w_2, w_3, w_6\}$. The spectrum of G_5 is $[-6, -2^6, 0^6, 1^2, 3^2, 10].$

Since $|X| \leq \frac{1}{2}(q+1)(q-2) = 65$, where $q = |V(H)|$ ([\[4\]](#page-19-9)), there are various choices of r. It can be predicted that there are a lot of graphs that satisfy the conditions. Then the commonalities of the regular graphs with $K_{s,s}$ as a star complement seems to be an interesting question worth studying.

It is shown in [\[17\]](#page-20-11) that if G is a connected r-regular graph of order n with $\mu \notin \{-1, 0\}$ as an eigenvalue of multiplicity k and $r > 2$, $q = n-k$, then $k \leq \frac{1}{2}$ $\frac{1}{2}(r-1)q$. In the following, we will show that when G has $K_{s,s}$ $(q = 2s \geq 2)$ as a star complement for μ , then $k \leq s(r - s) = \frac{1}{2}q(r - \frac{q}{2})$ $\frac{q}{2}) \leq$ 1 $rac{1}{2}(r-1)q.$

For subsets U', V' of $V(G)$, we write $E(V', U')$ for the set of edges between U' and V'. The authors of [\[5\]](#page-19-10) have determined all the graphs with a star set X for which $E(X,\overline{X})$ is a perfect matching. The result is as follows.

Theorem 5.3. ([\[5\]](#page-19-10)) Let G be a graph with X as a star set for an eigenvalue μ . If $E(X,\overline{X})$ is a perfect matching, then one of the following holds:

(1) $G = K_2$ and $\mu = \pm 1$; (2) $G = C_4$ and $\mu = 0$; (3) G is the Petersen graph and $\mu = 1$.

Theorem 5.4. Let G be an r-regular graph of order n with $K_{s,s}$ as a star complement for the eigenvalue $\mu \notin \{-1, 0\}$ of multiplicity k. Then $k \leq s(r - s)$, equivalently $n \leq s(r - s + 2)$, with equality if and only if $\mu = 1$ $\mu = 1$, $G \cong G_1, G_2$ or G_3 (see Figure 1).

Proof. Let $H = K_{s,s}$ and $V(H) = V \cup W$ with $|V| = |W| = s$. By Lemma [2.4,](#page-3-0) $V(K_{s,s})$ is a location-dominating set, and so G is connected. By Lemma [2.4,](#page-3-0) we have $|N_H(u)| \geq 1$. Thus $k = |X| \le \sum_{u \in X} |N_H(u)| = |E(X, \overline{X})| = 2s(r - s).$

When the equality holds, we have $|N_H(u)| = 1$ for all $u \in X$. Since the neighbourhoods $N_H(u)$ ($u \in X$) are distinct, any vertex in H has at most one adjacent vertex in X, thus $2s =$ $|\overline{X}| \geq |X| = 2s(r - s)$ which means $r \leq s + 1$. On the other hand, we have $r \geq s + 1$ by G is r-regular and connected. Thus $r = s + 1$ and then $|X| = 2s$. Therefore $E(X, \overline{X})$ is a perfect matching, but there is no such graph G by Theorem [5.3.](#page-17-0)

Let $t = s$ in [\(2.6\)](#page-4-1), we find that $|N_H(u)| = a + b = s - \mu$ is a constant, which means $|N_H(u_1)| = |N_H(u_2)|$ for any $u_1, u_2 \in X$. Therefore, we have $|N_H(u)| \geq 2$ for any $u \in X$ and $2k \leq \sum$ $u \in X$ $|N_H(u)| = |E(X, \overline{X})| = 2s(r - s)$, equivalently $n \leq s(r - s + 2)$, with equality if and only if $|N_H(u)| = 2$ for any $u \in X$.

If $n = s(r - s + 2)$, we have $\mu = s - 2$ and the possible types for the vertices in X are $(1, 1), (0, 2), (2, 0).$

If there are two vertices of type $(0, 2)$ (or $(2, 0)$) in X, then it follows from (2.8) that $\rho_{uv} =$ $\int_{s=1}^{s}$, $u \nsim v$, $s^2 - 4s + 2$ $\frac{1}{1-s}$, $\frac{1}{u} \sim v$. By (2) of Lemma [2.4,](#page-3-0) we have $\rho_{uv} \neq 2$, then $\rho_{uv} = 0$ or 1, it is a contradiction with $s \in \mathbb{Z}_+$. Therefore, there is at most one vertex of type $(0, 2)$ (or $(2, 0)$).

If there is one vertex of type $(2,0)$ and one vertex of type $(0,2)$ in X, then it follows from (2.8) that $\rho_{uv} =$ $\int \frac{s-2}{s-1}, \quad u \nsim v,$ $s^2 - 4s + 4$ $\frac{1}{1-s}$, $\frac{1}{u} \sim v$. Clearly, $\rho_{uv} = 0$, $s = 2$, and $\mu = 0$, it is a contradiction. Therefore, the vertex of type $(2,0)$ and the vertex of type $(0,2)$ cannot exist at the same time in X.

Suppose that X contains a vertex of type $(0, 2)$ (or $(2, 0)$), then $|E(X, V)| \neq |E(X, W)|$, a contradiction. Thus all vertices in X are of type $(1, 1)$. From (2.8) , we have $\rho_{uv} =$ $\int 1$, $u \approx v$, $3 - s$, $u \sim v$.

If for any $u, v \in X$, $u \nsim v$, then $r = 2$ and $H \cong K_{1,1}$, $G \cong C_3$ and thus $s = 1$ and $\mu = s - 2 = 1$ a contradiction.

If there exists $u, v \in X$ such that $u \sim v$, then $3 - s = 0$ or 1 by (2) of Lemma [2.4.](#page-3-0) If $3 - s = 1$, then $s = 2$ and $\mu = 0$, a contradiction. If $3 - s = 0$, then $s = 3$, $\mu = 1$ and thus $G = G_1, G_2$ or G_3 (see Figure [1\)](#page-12-0) by (4) of Theorem [4.2.](#page-11-1)

The proof is completed. \square

Competing interests

The authors declare that they have no competing interests.

References

- [1] L. Asgharsharghi, D. Kiani, On regular graphs with complete tripartite star complements, Ars Combin. 122 (2015) 431–437.
- [2] F.K. Bell, Characterizing line graphs by star complements, Linear Algebra Appl. 296 (1999) 15-25.
- [3] F.K. Bell, Line graphs of bipartite graphs with hamiltonian paths, J. Graph Theory. 43 (2003) 137-149.
- [4] F.K. Bell, P. Rowlinson, On the multiplicities of graph eigenvalues, Bull. Lond. Math. Soc. 35 (2003) 401–408.
- [5] N.E. Clarke, W.D. Garraway, C.A. Hickman, R.J. Nowakowski, Graphs where star sets are matched to their complements, J. Combin. Math. Combin. Comput. 37 (2001) 177–185.
- [6] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs: Theory and Application, 3rd edition, Jonah Ambrosius Barth Verlag, Heidelberg–Leipzig, 1995.
- [7] D. Cvetković, P. Rowlinson, S. Simić, Eigenspaces of Graphs, Cambridge University Press, Cambridge, 1997.
- [8] D. Cvetković, P. Rowlinson, S. Simić, Some characterization of graphs by star complements, Linear Algebra Appl. 301 (1999) 81–97.
- [9] D. Cvetković, P. Rowlinson, S. Simić, Spectral Generalizations of Line Graphs, Cambridge University Press, Cambridge, 2004.
- [10] D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2010.
- [11] M. Ellingham, Basic subgraphs and graph spectra, Australas. J. Combin. 8 (1993) 247–265.
- [12] X. Fang, L. You, Y. Huang, Maximal graphs with a prescribed complete bipartite graph as a star complement, AIMS Math. 6 (2021) 7153–7169.
- [13] M. Meringer, Fast generation of regular graphs and construction of cages, J Graph Theory. 30 (1999) 137-146.
- [14] F. Ramezani, B. Tayfeh-Rezaie, Graphs with prescribed star complement for the eigenvalue 1, Ars Combin. 116 (2014) 129–145.
- [15] P. Rowlinson, On bipartite graphs with complete bipartite star complements, Linear Algebra Appl. 458 (2014) 149–160.
- [16] P. Rowlinson, An extension of the star complement technique for regular graphs, Linear Algebra Appl. 557 (2018) 496-507.
- [17] P. Rowlinson, Eigenvalue multiplicity in regular graphs, Discrete Appl. Math. 269 (2019) 11–17.
- [18] P. Rowlinson, P.S. Jackson, On graphs with complete bipartite star complements, Linear Algebra Appl. 298 (1999) 9–20.
- [19] P. Rowlinson, B. Tayfeh-Rezaie, Star complements in regular graphs: old and new results, Linear Algebra Appl. 432 (2010) 2230–2242.
- [20] Z. Stanić, On graphs whose second largest eigenvalue equals $1 -$ the star complement technique, Linear Algebra Appl. 420 (2) (2007) 700–710.
- [21] Z. Stanić, S.K. Simić, On graphs with unicyclic star complement for 1 as the second largest eigenvalue, Faculty of Mathematics, University of Belgrade, 351 (2005) 475-484.
- [22] J. Wang, X. Yuan, L. Liu, Regular graphs with a prescribed complete multipartite graph as a star complement, Linear Algebra Appl. 579 (2019) 302–319.
- [23] Y. Yang, Q. Huang, J. Wang, On a conjecture for regular graphs with complete multipartite star complement, [arXiv:1912.07594v](http://arxiv.org/abs/1912.07594)2, 2021.
- [24] X. Yuan, H. Chen, L. Liu, On the characterization of graphs by star complements, Linear Algebra Appl. 533 (2017) 491-506.

[25] X. Yuan, Q. Zhao, L. Liu, H. Chen. On graphs with prescribed star complements, Linear Algebra Appl. 559 (2018) 80-94.