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ON THE FOURIER COEFFICIENTS OF WORD MAPS ON UNITARY GROUPS

NIR AVNI AND ITAY GLAZER

In memory of Steve Zelditch

Abstract. Given a word w(x1, . . . , xr), i.e., an element in the free group on r elements, and an

integer d ≥ 1, we study the characteristic polynomial of the random matrix w(X1, . . . , Xr), where

Xi are Haar-random independent d × d unitary matrices. If cm(X) denotes the m-th coefficient of

the characteristic polynomial of X, our main theorem implies that there is a positive constant ǫ(w),

depending only on w, such that

|E (cm (w(X1, . . . , Xr)))| ≤

(

d

m

)1−ǫ(w)

,

for every d and every 1 ≤ m ≤ d.

Our main computational tool is the Weingarten Calculus, which allows us to express integrals on

unitary groups such as the expectation above, as certain sums on symmetric groups. We exploit a

hidden symmetry to find cancellations in the sum expressing E (cm(w)). These cancellations, coming

from averaging a Weingarten function over cosets, follow from Schur’s orthogonality relations.

1. Introduction

Let w be a word on r letters, i.e., an element in the free group on the letters x1, . . . , xr. Let X1, . . . ,Xr

be random d×d unitary matrices, chosen independently at random according to the Haar probability

measure, and consider the random matrix w(X1, . . . ,Xr), obtained by substituting Xi for xi in w.

For example, if w = x1x2x
−1
1 x−1

2 , then w(X1,X2) = X1X2X
−1
1 X−1

2 . In this paper, we study the

distribution of the characteristic polynomial of w(X1, . . . ,Xr).

To set notation, given a d × d-matrix A and 1 ≤ m ≤ d, let cm(A) be the coefficient of td−m

in the characteristic polynomial det(t · Id − A) of A. Note that cm(A) = (−1)mtr (
∧mA), where∧mA :

∧mCd → ∧mCd is the m-th exterior power of A. If A is unitary, all eigenvalues have

absolute value 1, so we get the trivial bound |cm(A)| ≤
( d
m

)
.

Our main theorem is the following:

Theorem 1.1. For every non-trivial word w ∈ Fr, there exists a constant ǫ(w) > 0 such that

E
(
|cm (w(X1, . . . ,Xr))|2

)
≤
(
d

m

)2(1−ǫ(w))
,

for every d and every 1 ≤ m ≤ d. In particular, we have

E (|cm (w(X1, . . . ,Xr))|) ≤
(
d

m

)1−ǫ(w)
.

Remark 1.2.

(1) In the proof of Theorem 1.1, we show that, if the length of w is ℓ and d ≥ (25ℓ)7ℓ, then one

can take ǫ(w) = 1
72 (25ℓ)

−2ℓ. We believe ǫ(w)−1 can be taken to be a polynomial in ℓ, for

d≫ℓ 1.
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(2) On the other hand, it follows from [ET15, Theorem 5.2] that, for a fixed d, one has to take

ǫ(w) . e−
√
ℓ, for some arbitrarily long words, even for m = 1.

Theorem 1.1 relies on the following:

Theorem 1.3. For every m, ℓ ∈ N, every d ≥ mℓ, and every word w ∈ Fr of length ℓ, one has:

(1.1) E
(
|cm (w(X1, . . . ,Xr))|2

)
≤ (22ℓ)mℓ.

In particular, if d ≥ (22ℓ)ℓm, we have

E
(
|cm (w(X1, . . . ,Xr))|2

)
≤
(
d

m

)
.

In addition, we show that similar bounds hold for symmetric powers:

Theorem 1.4. For every ℓ ∈ N, every d ≥ mℓ, and every word w ∈ Fr of length ℓ, one has:

E
(
|tr (Symmw(X1, . . . ,Xr))|2

)
≤ (16ℓ)mℓ.

In particular, if d ≥ (16ℓ)ℓm, we have

E
(
|tr (Symmw(X1, . . . ,Xr))|2

)
≤
(
d+m− 1

m

)
= dimSymmCd,

and by the Cauchy–Schwarz inequality,

|E (tr (Symmw(X1, . . . ,Xr)))| ≤
(
dimSymmCd

) 1
2
.

Remark 1.5. Theorem 1.4 is an analogue of Theorem 1.3. It is also an analogue of Theorem 1.1 for

m at most linear in d. Contrary to exterior powers, the methods of this paper are insufficient for

finding bounds similar to Theorem 1.1 for |E (tr (Symmw(X1, . . . ,Xr)))|, in the regime where m is

superlinear in d.

1.1. Related work. Word maps on unitary groups and their eigenvalues have been extensively stud-

ied in the past few decades.

The case w = x, namely, the study of a Haar-random unitary matrix X, also known as the Circular

Unitary Ensemble (CUE), is an important object of study in random matrix theory (see e.g. [AGZ10,

Mec19] and the references within). The joint density of the eigenvalues of X is given by the Weyl

Integration Formula [Wey39]. Schur’s orthogonality relations immediately imply that E
(
|cm(X)|2

)
=

1 for all 1 ≤ m ≤ d. Various other properties of the characteristic polynomial of a random unitary

matrix X have been extensively studied (see e.g. [KS00, HKO01, CFK+03, DG06, BG06, BHNY08,

ABB17, CMN18, PZ18]).

Diaconis and Shahshahani [DS94] have shown that, for a fixed m ∈ N, the sequence of random

variables tr(X), tr(X2), . . . , tr(Xm) converges in distribution, as d→ ∞, to a sequence of independent

complex normal random variables. For the proof, which relies on the moment method, they computed

the joint moments of those random variables and showed that

(1.2) E




m∏

j=1

tr(Xj)aj tr(X
j
)bj


 = δa,b

m∏

j=1

jajaj!,

for d ≥
∑m

j=1(aj+bj)j. The rate of convergence was later shown to be super-exponential by Johansson

[Joh97].
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When w = xℓ, (1.2) gives a formula for the moments of traces, and one can use Newton’s identities

relating elementary symmetric polynomials and power sums, to deduce that

E

(∣∣∣cm(Xℓ)
∣∣∣
2
)

= E
(
|tr (Symmw)|2

)
=

(
ℓ+m− 1

m

)
,

for d ≥ 2mℓ (see Appendix A). In [Rai97, Rai03], Rains partially extended (1.2) for small d and gave

an explicit formula for the joint density of the eigenvalues of Xℓ (see [Rai03, Theorem 1.3]).

We now move to general words w ∈ Fr. The case m = 1, namely, the asymptotics as d → ∞ of the

distribution of the random variable tr (w(X1, . . . ,Xr)), was studied in the context of Voiculescu’s free

probability (see e.g. [VDN92, MS17]). In particular, in [Voi91, R0̆6, MSS07] it was shown that, for

a fixed w ∈ Fr, the sequence of random variables tr (w(X1, . . . ,Xr)), for d = 1, 2, . . ., converges in

distribution, as d → ∞, to a complex normal random variable (with suitable normalization). As a

direct consequence, for a fixed m ∈ N, the random variables cm (w(X1, . . . ,Xr)) converge, as d→ ∞,

to a certain explicit polynomial of Gaussian random variables. This is done in Appendix A, Corollary

A.4, following [DG06].

In [MP19], Magee and Puder have shown that E (tr (w(X1, . . . ,Xr))) coincides with a rational function

of d, if d is sufficiently large, and bounded its degree in terms of the commutator length of w. They

also found a geometric interpretation for the coefficients of the expansion of that rational function as

a power series in d−1, see [MP19, Corollaries 1.8 and 1.11]. See [Bro24] for additional work in this

direction.

1.2. Ideas of proofs. With a few exceptions, the results stated in §1.1 are asymptotic in d, but not

uniform in both m and d. We will try to explain some of the challenges in proving results that are

uniform in m, while explaining the idea of the proof of Theorem 1.1.

Our main tool (which is also used in the papers [R0̆6, MSS07, MP19] above) to study integrals on

unitary groups is the Weingarten Calculus ([Wei78, Col03, CS06]). Roughly speaking, the Weingarten

Calculus utilizes the Schur–Weyl Duality to express integrals on unitary groups as sums of so called

Weingarten functions over symmetric groups. In our case, in order to prove Theorem 1.1, we need to

estimate the integral

(1.3) E
(
|cm(w)|2

)
=

∫

Ur
d

∣∣∣tr
(∧m

w(X1, . . . ,Xr)
)∣∣∣

2
dX1 . . . dXr.

Using Weingarten calculus (Theorem 2.12), we express (1.3) as a finite sum

(1.4)
∑

(π1,...,π2r)∈
∏2r

i=1 Smℓi

F (π1, . . . , π2r)

r∏

i=1

Wg
(i)
d (πiπ

−1
i+r),

where ℓ1, . . . , ℓ2r ∈ N and F :
∏2r
i=1 Smℓi → Z are related to combinatorial properties of w, and each

Wg
(i)
d : Smℓi → R is a Weingarten function (see Definition 2.10). There are two main difficulties when

dealing with sums such as (1.4) in the region when m is unbounded:

(1) While the asymptotics of Weingarten functions Wgd : Sm → R are well understood when

d ≫ m (see [Col03, Section 2.2] and [CM17, Therem 1.1]), much less is known in the regime

where m is comparable with d.

(2) Even if we have a good understanding of a single Weingarten function, the number of sum-

mands in (1.4) is large and it is not enough to bound each individual Weingarten function.

Luckily, there are plenty of cancellations in the sum (1.4). To understand these cancellations, we

identify a symmetry of (1.4). More precisely, we find a group H acting on
∏2r
i=1 Smℓi such that F is
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equivariant with respect to H, and such that the contribution of any H-orbit to the sum (1.4) is a

product of terms, each of which has the form

(1.5)
1

m!2ℓi

∑

h,h′∈Sℓi
m

sgn
(
hh′
)
Wg

(i)
d

(
h′πihπ

−1
i+r

)
,

where sgn(x) is the sign of x and the sum is over the Young subgroup Sℓim ⊆ Smℓi , see Corollary 5.3.

Weingarten functions are class functions, so they are linear combinations of irreducible characters of

Smℓi . Explicitly, we have (see [CS06, Eq. (13)]):

(1.6) Wg
(i)
d (σ) =

1

(mℓi)!2

∑

λ⊢mℓi,ℓ(λ)≤d

χλ(1)
2

ρλ(1)
χλ(σ), σ ∈ Smℓi ,

where each λ is a partition of mℓi with at most d parts and χλ and ρλ are the corresponding irreducible

characters of Smℓi and Ud, respectively. The cancellations that we get in the sum (1.5) come from

averaging irreducible characters of Smℓi over Sℓim-cosets. Sℓim is a large subgroup of Smℓi , so these

cancellations will be significant as well. For example, all terms in (1.6) for which λ has more than ℓi
columns vanish. See Lemmas 2.7 and 2.8 for the precise bounds.

After we bound the average contribution of each H-orbit in the sum (1.4) by a function C(m,d,w),

we bound (1.4) by |Z| ·C(m,d,w) for some finite set Z. This becomes a counting problem, which we

solve in §6, see Proposition 6.1.

The proof of Theorem 1.1 occupies Sections 4, 5, 6 and 7. Since the combinatorics of general words

is a bit complicated, we prove a simplified version of Theorem 1.3 for the special case of the Engel

word [[x, y], y] in §3. The proof for this special case contains the main ideas of the paper, while being

easier to understand.

1.3. Further discussion and some open questions. The results of this paper fit in the larger

framework of the study of word measures and their Fourier coefficients.

Let G be a compact group, and let µG be the Haar probability measure on G. To each word

w(x1, . . . , xr) ∈ Fr we associate the corresponding word map wG : Gr → G, defined by (g1, . . . , gr) 7→
w(g1, . . . , gr). The pushforward measure (wG)∗(µrG) is called the word measure τw,G associated with

w and G. Let Irr(G) be the set of irreducible characters of G. The Fourier coefficient of τw,G at

ρ ∈ Irr(G) is

(1.7) aw,G,ρ :=

∫

Gr

ρ(w(x1, . . . , xr))µ
r
G =

∫

G
ρ(y)τw,G.

If w 6= 1 and G is a compact semisimple Lie group, then by Borel’s theorem [Bor83], the map wG :

Gr → G is a submersion outside a proper subvariety inGr. It follows that τw,G is absolutely continuous

with respect to µG and, therefore, τw,G = fw,G·µG, where fw,G ∈ L1(G) is the Radon–Nikodym

density. In this case, fw,G =
∑

ρ∈Irr(G) aw,G,ρ · ρ.
In [LST19, Theorem 4], Larsen, Shalev, and Tiep proved uniform L∞-mixing time for convolutions

of word measures on sufficiently large finite simple groups. From this, the following can be deduced:

Theorem 1.6. For every w ∈ Fr, there exists N(w) ∈ N such that if G is a finite simple group with

at least N(w) elements, then

(1.8) |aw,G,ρ| ≤ (dim ρ)1−ǫ(w),

for ǫ(w) = C · ℓ(w)−4 and some absolute constant C.

The proof of Theorem 1.6 is given at the end of §7.
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We believe that a similar statement should be true for compact semisimple Lie groups.

Conjecture 1.7. For every 1 6= w ∈ Fr, there exists ǫ(w) > 0 such that, for every compact connected

semisimple Lie group G and every ρ ∈ Irr(G),

|aw,G,ρ| ≤ (dim ρ)1−ǫ(w).

It is natural to estimate ǫ(w) in terms of the length ℓ(w) of the word w. For simple groups of bounded

rank, Item (2) of Remark 1.2 (i.e. [ET15, Theorem 5.2]) shows that there are arbitrarily long words

w for which ǫ(w) cannot be larger than e−
√
ℓ(w). However, we believe that better Fourier decay can

be achieved for the high rank case.

Question 1.8. Can one take ǫ(w) to be a polynomial in ℓ(w), if rk(G) ≫ℓ(w) 1?

Theorem 1.1 gives evidence to Conjecture 1.7 for G = SUd and the collection of fundamental rep-

resentations
{∧mCd

}d
m=1

. Indeed, for every ρ ∈ Irr(Ud), since |ρ(λA)| = |ρ(A)| for A ∈ SUd and

λ ∈ U1, and since µUd
is the pushforward of µU1 × µSUd

by the multiplication map (λ,A) 7→ λA, we

have,

|aw,SUd,ρ|2 ≤ EX1,...,Xr∈SUd

(
|ρ (w(X1, . . . ,Xr))|2

)
(1.9)

=E(λ1,X1),...,(λr ,Xr)∈SUd×U1

(
|ρ (w(λ1, . . . , λr)w(X1, . . . ,Xr))|2

)

=E(λ1,X1),...,(λr ,Xr)∈SUd×U1

(
|ρ (w(λ1X1, . . . , λrXr))|2

)
= EUd

(
|ρ (w(X1, . . . ,Xr))|2

)
,

Theorem 1.4 deals with another family of irreducible representations
{
SymmCd

}⌊d/(16ℓ)ℓ⌋
m=1

, giving

further evidence for Conjecture 1.7.

Verifying Conjecture 1.7 will imply that, for every word w, the random walks induced by the collection

of measures {τw,G}G, where G runs over all compact connected simple Lie groups, admit a uniform

L∞-mixing time. Namely, using [GLM12, Theorem 1], it will show the existence of t(w) ∈ N such

that

(1.10)

∥∥∥∥∥∥
τ
∗t(w)
w,G

µG
− 1

∥∥∥∥∥∥
∞

< 1/2,

for every compact connected simple Lie group G. By the above discussion, t(w) grows at least

exponentially with
√
ℓ(w) under no restriction on the rank. If the condition (1.10) is replaced by the

condition that τ∗t(w)w,G has bounded density, one might hope for polynomial bounds.

Question 1.9. Let 1 6= w ∈ Fr. Can one find t(w) ∈ N such that for every compact connected

semisimple Lie group G, τ
∗t(w)
w,G has bounded density with respect to µG? can t(w) be chosen to have

polynomial dependence on ℓ(w)?

Question 1.9 can be seen as an analytic specialization of a geometric phenomenon. Let ϕ : X → Y

be a polynomial map between smooth Q-varieties. We say that ϕ is (FRS) if it is flat and its fibers

all have rational singularities. In [AA16, Theorem 3.4], Aizenbud and the first author showed that

if ϕ is (FRS), then for every non-Archimedean local field F and every smooth, compactly supported

measure µ on X(F ), the pushforward ϕ∗µ has bounded density. This result was extended in [Rei]

to the Archimedean case, F = R or C, and, moreover, if one runs over a large enough family of

local fields, the condition of (FRS) is in fact necessary as well for the densities of pushforwards to be

bounded (see [AA16, Theorem 3.4] and [GHS, Corollary 6.2]).

To rephrase Question 1.9 in geometric term, we further need the following notion from [GH19, GH21].



ON THE FOURIER COEFFICIENTS OF WORD MAPS ON UNITARY GROUPS 6

Definition 1.10 ([GH19, Definition 1.1]). Let ϕ : X → G and ψ : Y → G be morphisms from

algebraic varieties X,Y to an algebraic group G. We define their convolution by

ϕ ∗ ψ : X × Y → G, (x, y) 7→ ϕ(x) · ψ(y).

We denote by ϕ∗k : Xk → G the k-fold convolution of ϕ with itself.

Based on the above discussion, a positive answer to the following question will answer Question 1.9

positively.

Question 1.11 ([GH24, Question 1.15]). Can we find α,C > 0 such that, for every w ∈ Fr of length

ℓ and every simple algebraic group G, the word map w∗Cℓα
G is (FRS)?

In [GH19, GH21], Yotam Hendel and the second author and have shown that any dominant map

ϕ : X → G from a smooth variety to a connected algebraic group becomes (FRS) after sufficiently

many self-convolutions. Concrete bounds were given in [GHS, Corollary 1.9]. Based on these results,

we prove Conjecture 1.7 and answer Question 1.9 for the bounded rank case (see Proposition 7.2).

To conclude the discussion, we remark that a positive answer for Question 1.11 will answer Question

1.9 for compact semisimple p-adic groups as well. A significant progress in this direction was done

in the work [GH24], by Yotam Hendel and the second author, where singularities of word maps on

semisimple Lie algebras and algebraic groups were studied.

1.4. Conventions and notations.

(1) We denote the set {1, . . . , N} by [N ].

(2) For a finite set X, we denote the symmetric group on X by Sym(X) and the space of functions

f : X → C by C[X] .

(3) We write (−1)σ for the sign of a permutation σ.

(4) For a group G, a representation is a pair (π, V ), with π : G → GL(V ) a homomorphism. We

denote the character of (π, V ) by χπ and denote its dual by (π∨, V ∨).

Acknowledgement. We thank Rami Aizenbud, Yotam Hendel, Michael Larsen, Michael Magee, Doron

Puder, Yotam Shomroni, Ofer Zeitouni and Steve Zelditch for useful conversations. We thank the

referees for their useful comments and for improving the readability of the paper. NA was supported

by NSF grant DMS–1902041, IG was supported by AMS–Simons travel grant, and both of us were

supported by BSF grant 2018201.

2. Preliminaries

2.1. Some facts in representation theory. For a compact groupG, we denote the set of irreducible

complex characters of G by Irr(G). Given a subgroup H ≤ G and a character χ ∈ Irr(H), we denote

the induction of χ to G by IndGHχ. We normalize the Haar measure to be a probability measure

and denote the expectation with respect to the Haar measure by E. The standard inner product on

functions on G is 〈f1, f2〉G = Ef1f2.

2.1.1. Representation theory of the symmetric group. Given m ∈ N, a partition of m is a non-

increasing sequence λ = (λ1, .., λk) of non-negative integers that sum to m. In this case, we write

λ ⊢ m. Two partitions are equivalent if they differ only by a string of 0’s at the end. A partition

λ = (λ1, .., λk), with λk > 0, is graphically encoded by a Young diagram, which is a finite collection

of boxes (or cells) arranged in k left-justified rows, where the j-th row has λj boxes. The length ℓ(λ)
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of a partition λ ⊢ m is the number of non-zero parts λi or equivalently the number of rows in the

corresponding Young diagram.

The irreducible representations of Sm are in bijection with partitions λ ⊢ m. We write χλ ∈ Irr(Sm)

for the corresponding character. For each cell (i, j) in the Young diagram of λ, the hook length hλ(i, j)

is the number of cells (a, b) in the Young diagram of λ such that either a = i and b ≥ j, or a ≥ i and

b = j. The hook-length formula states that

(2.1) χλ(1) =
m!∏

(i,j)∈λ hλ(i, j)
.

Definition 2.1.

(1) Fix a Young Diagram λ and let n ∈ N. An n-expansion of λ is any Young diagram obtained

by adding n boxes to λ in such a way that no two boxes are added in the same column.

(2) Given a partition λ = (λ1, . . . , λl1) ⊢ k and a partition µ = (µ1, . . . , µl2) ⊢ l, a µ-expansion of

λ is defined to be a µl2-expansion of a µl2−1-expansion of a · · · of a µ1-expansion of the Young

diagram of λ. For a µ-expansion of λ, we label the boxes added in the µlj -expansion by the

number j and order the boxes lexicographically by their position, first from top to bottom and

then from right to left. We say that a µ-expansion of λ is strict if, for every p ∈ {1, . . . , l2−1}
and every box t, the number of boxes coming before t that are labeled p is greater than or

equal to the number of boxes coming before t that are labeled (p+ 1).

Theorem 2.2 (Littlewood–Richardson rule, [Mac95, I.9]). Let λ ⊢ k and µ ⊢ m. Then,

Ind
Sk+m

Sk×Sm
(χλ ⊗ χµ) =

⊕

ν⊢k+m
Nλµνχν ,

where Nλµν is the number of strict µ-expansions of λ that are a Young diagram of the partition ν.

We will need the following consequence of Theorem 2.2.

Lemma 2.3. Let l ∈ Z≥2 and identify Slm with its image in the standard embedding Slm →֒ Sml. Then,

each χν ∈ Irr(Sml) appearing in IndSml

Slm
(1) (resp., IndSml

Slm
(sgn)) corresponds to a partition ν ⊢ ml with

at most l rows (resp., l columns).

Proof. We prove the statement for the trivial representation 1 by induction on l. The proof for sgn

is similar. The character 1 of Sm corresponds to the partition λ consisting of one row of length m.

By the induction hypothesis, we may assume that Ind
Smj

Sjm
(1) =

⊕
µ⊢mj mµχµ, with mµ > 0 only if µ

has at most j rows, for all j < l. Hence we can write

(2.2) IndSml

Slm
(1) = IndSml

Sm(l−1)×Sm
(Ind

Sm(l−1)

Sl−1
m

(1)⊗ 1) =
⊕

µ⊢m(l−1)

mµInd
Sml

Sm(l−1)×Sm
(χµ ⊗ 1).

By Theorem 2.2 and since a strict λ-expansion of µ increases the number of rows by at most one, the

lemma follows. �

2.1.2. Representation theory of the unitary group. The irreducible representations of Ud can be iden-

tified with the irreducible rational representations of GLd(C). More precisely, the restriction map

ρ 7→ ρ|Ud
induces a bijection Irr(GLd(C)) → Irr(Ud). Moreover, the set Irr(Ud) is in bijection with

the set Λ of dominant weights,

Λ := {(λ1, . . . , λd) : λ1 ≥ . . . ≥ λd, λi ∈ Z} .

We denote the representation corresponding to λ ∈ Λ by (ρλ, Vλ). The irreducible representations

Cd,
∧2

Cd, . . . ,
∧d

Cd,
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are called the fundamental representations, and we have
∧mCd ≃ V(1,...,1,0,...,0), with 1 appearing m

times. In particular, the standard representation Cd is V(1,0,...,0). Note that
∧d Cd is the determinant

representation χdet. We identify a weight λ ∈ Λ such that λd ≥ 0 with a partition (λ1, . . . , λd).

Remark 2.4 ([FH91, I.6, Exc. 6.4]). For each λ = (λ1, . . . , λd) ⊢ m,

(2.3) ρλ(1) =
χλ(1) ·

∏
(i,j)∈λ(d+ j − i)

m!
,

where (i, j) are the coordinates of the cells in the Young diagram with shape λ.

Given λ, µ ∈ Λ, the irreducible subrepresentations of ρλ⊗ρµ are determined by the Littlewood–Richardson

rule as follows.

Theorem 2.5 (Littlewood–Richardson rule, see e.g. [FH91, I.6, Eq. (6.7)]). Let λ, µ ∈ Λ and suppose

that λd, µd ≥ 0. Let Nλµν be the coefficients from Theorem 2.2. Then:

ρλ ⊗ ρµ =
⊕

ν:νd≥0

Nλµνρν .

Remark 2.6. For λ, µ ∈ Λ, set λ̃ := λ− (λd, . . . , λd) and µ̃ := µ − (µd, . . . , µd). Then ρλ = χλddet · ρλ̃
and ρµ = χµddet · ρµ̃, and hence by Theorem 2.5, one has:

(2.4) ρλ ⊗ ρµ = χλd+µddet ρ
λ̃
⊗ ρµ̃ = χλd+µddet

⊕

ν

N
λ̃µ̃ν

ρν .

2.1.3. Averaging characters over cosets.

Lemma 2.7. Let G be a finite group, let (π, V ) be an irreducible representation of G, let H ≤ G be

a subgroup, and let λ be any one-dimensional character of H. Then, for every g ∈ G,
∣∣∣∣∣
1

|H|
∑

h∈H
λ−1(h)χπ(gh)

∣∣∣∣∣ ≤ 〈χπ|H , λ〉H .

In particular, if 〈χπ|H , λ〉H = 0, then
∑

h∈H λ
−1(h)χπ(gh) = 0.

Proof. Write π|H =
⊕Ñ

i=1 πi with each (πi, Vi) an irreducible representation of H. For each i and

h′ ∈ H,
(
∑

h∈H
λ−1(h)πi(h)

)
πi(h

′) =
∑

h∈H
λ−1(h)πi(hh

′) =
∑

h∈H
λ−1(hh′−1)πi(h)

=
∑

h∈H
λ−1(h′−1h)πi(h) =

∑

h∈H
λ−1(h)πi(h

′h) = πi(h
′)

(
∑

h∈H
λ−1(h)πi(h)

)
.

By Schur’s lemma,
∑

h∈H λ
−1(h)πi(h) is a scalar matrix α · IVi , for some α ∈ C. Hence,

(2.5) α · χπi(1) = tr

(
∑

h∈H
λ−1(h)πi(h)

)
=
∑

h

λ−1(h)χπi(h) =




|H| if χπi = λ

0 else
.

Let L := {v ∈ V : π(h)v = λ(h) · v, ∀h ∈ H} be the subspace of (H,λ)-equivariant vectors in V and

let L⊥ be anH-invariant subspace of V with V = L⊕L⊥. By (2.5), the map A :=
∑

h∈H λ
−1(h)π(h) ∈

End(V ) satisfies A|L⊥ = 0 and A|L = |H| · IL. Take an orthonormal basis v1, . . . , vN for V with

L = 〈v1, . . . , vM 〉, L⊥ = 〈vM+1, . . . , vN 〉. Then:
∣∣∣∣∣
∑

h∈H
λ−1(h)χπ(gh)

∣∣∣∣∣ =
∣∣∣∣∣

N∑

i=1

〈π(g)
(
∑

h∈H
λ−1(h)π(h)

)
vi, vi〉

∣∣∣∣∣ = |H|
∣∣∣∣∣

M∑

i=1

〈π(g)vi, vi〉
∣∣∣∣∣ ≤M |H| ,
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and the lemma follows. �

The following lemma gives a different estimate on the average of a character over a coset, and this

estimate is sharper when the double coset HgH is large. We will not need these alternative estimates,

but we thought it could be useful to state them.

Lemma 2.8. Let G be a finite group, and let H ≤ G be a subgroup. Then, for each χ ∈ Irr(G) and

each g ∈ G, ∣∣∣∣∣
1

|H|
∑

h∈H
χ(hg)

∣∣∣∣∣ ≤
〈χ, 1〉1/2H · |G|1/2

|HgH|1/2 χ(1)1/2
.

Proof. Let G be a finite group. For each χ ∈ Irr(G), we denote by (πχ, Vχ) the representation

corresponding to χ. The non-commutative Fourier transform (see e.g. [App14, Section 2.3]) is

the map F : C[G] → ⊕
χ∈Irr(G) End(Vχ) defined by f 7→ f̂ :=

(
f̂(χ)

)
χ∈Irr(G)

, where f̂(χ) =

1
|G|
∑

g′∈G f(g
′)πχ(g′−1). We denote by ‖f‖2 :=

(
1
|G|
∑

g′∈G |f(g′)|2
) 1

2
. Similarly, for a collection

of endomorphisms (Aχ)χ∈Irr(G) ∈
⊕

χ∈Irr(G) End(Vχ), with Aχ ∈ End(Vχ), we define

∥∥(Aχ)χ∈Irr(G)

∥∥
2
:=


 ∑

χ∈Irr(G)

χ(1) · ‖Aχ‖2HS




1
2

,

where ‖Aχ‖HS := tr(Aχ · A∗
χ)

1
2 is the Hilbert–Schmidt norm on End(Vχ). The Plancherel Theorem

(see e.g. [App14, Theorem 2.3.1(2)]), states that

(2.6) ‖f‖2 =
∥∥∥f̂
∥∥∥
2
.

Let ψHgH := 1
|HgH|1HgH . For each χ ∈ Irr(G), one has

ψ̂HgH(χ) =
1

|G|
∑

g′∈G
ψHgH(g

′)πχ(g
′−1) =

1

|HgH| |G|
∑

g′∈HgH
πχ(g

′−1).

The square of the L2-norm of ψHgH is given by:

(2.7) ‖ψHgH‖22 =
1

|G|
∑

g′∈G

(
ψHgH(g

′)
)2

=
1

|G|
∑

g′∈HgH

1

|HgH|2
=

1

|HgH| |G| .

Let v1, . . . , vM be an orthonormal basis of V H
χ := {v ∈ Vχ : πχ(h).v = v, ∀h ∈ H} with respect to

some G-invariant inner product 〈 , 〉 on Vχ, with M = 〈χ, 1〉H . Let
(
V H
χ

)⊥
be the orthogonal com-

plement to V H
χ in Vχ. In the proof of Lemma 2.7, in the case that λ = 1, we have seen that

(2.8)
∑

h∈H
πχ(h).v =




0 if v ∈

(
V H
χ

)⊥

|H| · v if v ∈ V H
χ .

In particular, we have
〈
∑

g′∈HgH
πχ(g

′−1).v, v

〉
=

|HgH|
|H|2

〈
∑

h′,h∈H
πχ(h

′g−1h).v, v

〉
=

|HgH|
|H|2

〈
(
∑

h′∈H
πχ(h

′)).(
∑

h∈H
πχ(g

−1h).v), v

〉

=
|HgH|
|H|2

〈
∑

h∈H
πχ(g

−1h).v,
∑

h′∈H
πχ(h

′)v

〉
=




0 if v ∈

(
V H
χ

)⊥

|HgH| 〈πχ(g−1).v, v〉 if v ∈ V H
χ .
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Hence,

(2.9)

∥∥∥ψ̂HgH
∥∥∥
2

2
=

∑

χ∈Irr(G)

χ(1)

∥∥∥∥∥∥
1

|HgH| |G|
∑

g′∈HgH
πχ(g

′−1)

∥∥∥∥∥∥

2

HS

=
∑

χ∈Irr(G)

χ(1)

|G|2
M∑

i,j=1

∣∣〈πχ(g−1).vi, vj〉
∣∣2 ,

By (2.6), (2.7) is equal to (2.9), hence,
∣∣∣∣∣
1

|H|
∑

h∈H
χ(hg−1)

∣∣∣∣∣

2

=

∣∣∣∣∣

M∑

i=1

〈πχ(g−1).vi, vi〉
∣∣∣∣∣

2

≤M
M∑

i=1

∣∣〈πχ(g−1).vi, vi〉
∣∣2

≤M

M∑

i,j=1

∣∣〈πχ(g−1).vi, vj〉
∣∣2 ≤ M |G|

χ(1) |HgH| ,

where the first equality follows from (2.8), and the first inequality follows from Cauchy–Schwarz

inequality. �

2.2. Weingarten calculus. In §2.1.1, 2.1.2 we stated that each partition λ ⊢ m with ℓ(λ) ≤ d

induces two different representations, ρλ ∈ Irr(Ud) and χλ ∈ Irr(Sm). There is a deeper connection

between ρλ and χλ coming from the Schur–Weyl duality: the space
(
Cd
)⊗m

carries a natural action

of Ud×Sm, where A ∈ Ud acts diagonally A. (v1 ⊗ · · · ⊗ vm) = Av1 ⊗ · · · ⊗Avm, and σ ∈ Sm acts by

σ. (v1 ⊗ · · · ⊗ vm) = vσ(1) ⊗ · · · ⊗ vσ(m). The Schur–Weyl duality can be phrased as follows.

Theorem 2.9 (Schur–Weyl duality, [Wey39]). The space
(
Cd
)⊗m

is a multiplicity-free representation

of Ud × Sm. The decomposition of
(
Cd
)⊗m

into irreducible components is given by

(2.10)
(
Cd
)⊗m

=
⊕

λ⊢m,ℓ(λ)≤d
ρλ ⊗ χλ.

There are two special functions on Sm which come from (2.10). Firstly, writing ℓ(σ) for the number of

disjoint cycles in σ ∈ Sm, the character of
(
Cd
)⊗m

as a representation of Sm is the function σ 7→ dℓ(σ).

Recall we have an isomorphism of algebras C[Sm] ≃
⊕

λ⊢m End(Vχλ
), where the multiplication in

C[Sm] is the convolution operation f1 ∗ f2(y) :=
∑

x∈Sm
f(x)g(x−1y). We denote by Cd[Sm] the

subalgebra corresponding to
⊕

λ⊢m,ℓ(λ)≤d End(Vχλ
).

Definition 2.10 ([CS06, Proposition 2.3]). Let d ∈ N. The Weingarten function Wgd : Sm → C is

the inverse of the function dℓ(σ) in the ring Cd[Sm]. It has the following Fourier expansion:

(2.11) Wgd(σ) =
1

m!2

∑

λ⊢m,ℓ(λ)≤d

χλ(1)
2

ρλ(1)
χλ(σ).

Remark 2.11. Since in this paper we only consider Wgd′(σ) for d′ = d, we write Wg instead of Wgd.

The Weingarten Calculus, developed in [Wei78, Col03, CS06] utilizes the Schur–Weyl duality to

express integrals on unitary groups as finite sums of Weingarten functions on symmetric groups. One

formulation is the following theorem by Collins and Śniady:

Theorem 2.12 ([CS06, Corollary 2.4]). Let (i1, . . . , im), (j1, . . . , jm), (i′1, . . . , i
′
m), and (j′1, . . . , j

′
m)

be tuples of integers in [d]. Then:

EX∈Ud

(
Xi1,j1 · · ·Xim,jm ·Xi′1,j

′
1
· · ·Xi′m,j

′
m

)

=
∑

σ,τ∈Sm

δi1,i′σ(1)
· · · δim,i′σ(m)

δj1,j′τ(1)
· · · δjm,j′τ(m)

·Wgd(σ
−1τ).(2.12)
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We will use a coordinate-free version of Theorem 2.12 which we proceed to state.

Definition 2.13. Let Ω be a set.

(1) A symmetric partition Φ of Ω is a partition Ω =
⊔r
i=1Ai ⊔

⊔r
i=1Bi, where |Ai| = |Bi|.

(2) Given a symmetric partition Φ = (A1, . . . , Ar, B1, . . . , Br), let

SΦ = {Σ ∈ Sym(Ω) : Σ(Ai) = Bi, Σ(Bi) = Ai} .

(3) If Σ ∈ SΦ, then Σ2(Ai) = Ai and we define W̃g(Σ2) =
∏r
i=1 Wg(Σ2|Ai

).

Proposition 2.14. Let Φ = (A,B) be a symmetric partition of Ω and let F,H : Ω → [d]. Then

EX∈Ud


∏

x∈A
XF (x),H(x)

∏

y∈B
X−1
F (y),H(y)


 = E


∏

x∈A
XF (x),H(x)

∏

y∈B
XH(y),F (y)


 =

∑

Σ∈SΦ:H=F◦Σ
W̃g(Σ2).

Proof. Identify A ∼= {1, . . . ,m} and B ∼= {−1, . . . ,−m} and let
−→
i ,

−→
j ,

−→
i ′,

−→
j ′ ∈ [d]m be

ik = F (k) jk = H(k) i′k = H(−k) j′k = F (−k).

Then, by Theorem 2.12,

EX∈Ud


∏

x∈A
XF (x),H(x)

∏

y∈B
X−1
F (y),H(y)


 = EX∈Ud

(
Xi1,j1 · · ·Xim,jmXi′1,j

′
1
· · ·Xi′m,j

′
m

)

=
∑

σ,τ∈Sm

δi1,i′σ(1)
· · · δim,i′σ(m)

· δj1,j′τ(1) · · · δjm,j′τ(m)
·Wg(σ−1τ).

For σ, τ ∈ Sm, let Σ(σ,τ) ∈ Sym(A ⊔B) ∼= Sym({−m, . . . ,−1, 1, . . . ,m}) be the permutation

Σ(σ,τ)(x) =




−τ(x) x ∈ {1, . . . ,m}
σ−1(−x) x ∈ {−1, . . . ,−m} .

The map (σ, τ) 7→ Σ(σ,τ) is a bijection S2
m

∼= SΦ and the condition δi1,i′σ(1)
· · · δim,i′σ(m)

·δj1,j′τ(1) · · · δjm,j′τ(m)
=

1 is equivalent to H = F ◦ Σ(σ,τ). Finally, the permutation
(
Σ(σ,τ)

)2
acts on A as σ−1τ , and the

result follows. �

Corollary 2.15. Let Φ = (A1, . . . , Ar, B1, . . . , Br) be a symmetric partition of Ω and let F,H : Ω →
[d]. Then

E




r∏

i=1


∏

x∈Ai

(Xi)F (x),H(x)

∏

y∈Bi

(X−1
i )F (y),H(y)




 =

∑

Σ∈SΦ:H=F◦Σ
W̃g(Σ2).

3. The Engel word as a model case

“Those who run to long words are mainly the unskillful and tasteless; they confuse

pomposity with dignity, flaccidity with ease, and bulk with force.”1

In this section we prove the following simplified version of Theorem 1.3 for the Engel word. We

chose the Engel word since it is short enough to make the proof easier to digest, while at same time

complicated enough so that the proof contains most of the key ideas in the paper.

Theorem 3.1. Let X,Y be independent random variables with respect to the normalized Haar measure

on Ud. For every d ≥ 2m, one has:

E (cm ([[X,Y ], Y ])) < 217m.

1H.W Fowler, A Dictionary of Modern English Usage, 1965.
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Let w = [[x, y], y] = xyx−1yxy−1x−1y−1 be the Engel word. We would like to compute E (tr
∧m w(X,Y )).

Denote Im,d := {a1 < . . . < am : ai ∈ [d]}, and note that

(3.1) tr
(∧m

w(X,Y )
)
=

∑

−→a ∈Im,d

∑

π∈Sm

(−1)πw(X,Y )a1aπ(1)
· · ·w(X,Y )amaπ(m)

.

We have

w(X,Y )aiaπ(i)
=

∑

bi,ci,di,Ai,Bi,Ci,Di∈[d]
Xai,Di

YDi,ciX
−1
ci,Ai

YAi,biXbi,Ci
Y −1
Ci,di

X−1
di,Bi

Y −1
Bi,aπ(i)

=
∑

bi,ci,di,Ai,Bi,Ci,Di∈[d]
Xai,Di

Xbi,Ci
XAi,ciXBi,diYAi,biYDi,ciYaπ(i),Bi

Ydi,Ci
.(3.2)

The group Sm acts on [d]m by σ(−→v )i = −→v σ−1(i) for any σ ∈ Sm and −→v ∈ [d]m. Similarly,

given −→v ,−→w ∈ [d]m and τ ∈ S2m, we denote by (−→v ,−→w ) the element in [d]2m given by (−→v ,−→w )i =


−→v i if i ≤ m

−→w i−m if m < i ≤ 2m
, and denote by τ(−→v ,−→w )i = (−→v ,−→w )τ−1(i). In particular, writing X−→v ,−→u :=

∏m
i=1Xvi,ui for −→v ,−→u ∈ [d]m, we have:

(3.3)

tr
(∧m

w(X,Y )
)
=

∑

−→a ∈Im,d

∑

−→
b ,...,

−→
D∈[d]m

∑

π∈Sm

(−1)π
(
X−→a ,−→DX−→

b ,
−→
C
X−→
A,−→c X−→

B,
−→
d

)(
Y−→
A,

−→
b
Y−→
D,−→c Yπ−1(−→a ),

−→
B
Y−→
d ,

−→
C

)
.

We now rewrite the expected value of (3.3) using Weingarten calculus. For this, define:

S(−→a , . . . ,−→D) :=

{
(σ1, σ2, τ1, τ2) ∈ S4

2m :
(
−→
A,

−→
B ) = σ1(

−→a ,−→b ), (−→c ,−→d ) = τ1(
−→
D,

−→
C )

(−→a ,−→d ) = σ2(
−→
A,

−→
D), (

−→
B,

−→
C ) = τ2(

−→
b ,−→c )

}
,

and

(3.4) Z :=
{
(−→a , . . . ,−→D,σ1, σ2, τ1, τ2) ∈ Im,d × [d]7m × S4

2m : (σ1, σ2, τ1, τ2) ∈ S(−→a , . . . ,−→D)
}
.

Lemma 3.2. We have:

(3.5) E
(
tr
∧m

w(X,Y )
)
=

∑

(−→a ,...,−→D,σ1,σ2,τ1,τ2)∈Z

∑

π∈Sm

(−1)πWg(σ−1
1 τ1)Wg(σ−1

2 (π × Id)τ2).

Proof. Using Weingarten calculus, i.e., Theorem 2.12, and (3.3),

E
(
tr
∧m

w(X,Y )
)
=

∑

−→a ∈Im,d

∑

−→
b ,...,

−→
D∈[d]m

∑

π∈Sm

(−1)π
∑

σ1,σ̃2,τ1,τ2∈S2m

δ
(−→a ,−→b ),σ−1

1 (
−→
A,

−→
B )

· δ
(
−→
D,

−→
C ),τ−1

1 (−→c ,−→d )Wg(σ−1
1 τ1)

· δ
(
−→
A,

−→
D),σ̃−1

2 (π−1(−→a ),
−→
d )

· δ
(
−→
b ,−→c ),τ−1

2 (
−→
B,

−→
C )

Wg(σ̃−1
2 τ2).(3.6)

Applying the change of coordinate σ2 := (π × Id) ◦ σ̃2, and observing that σ̃−1
2 (π−1(−→a ),−→d ) =

σ−1
2 (−→a ,−→d ), (3.6) becomes:

E
(
tr
∧m

w(X,Y )
)
=

∑

(−→a ,...,−→D,σ1,σ2,τ1,τ2)∈Z

∑

π∈Sm

(−1)πWg(σ−1
1 τ1) ·Wg(σ−1

2 (π × Id)τ2). �

In order to bound (3.5), we consider a natural action of S7
m on Z, and find a suitable change of

coordinates such that the average of the product of the Weingarten functions in (3.5) over any S7
m-

orbit is equal to a product of averages of individual Weingarten functions over cosets (see (3.8)). We

then use Lemma 2.7 to estimate the contribution in (3.5) of each S7
m-orbit. To conclude the estimates

of (3.5), we will further provide estimates for |Z|.
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We first describe the action of S7
m. The element (πb, πc, . . . , πD) ∈ S7

m acts on (−→a , . . . ,−→D) by

(−→a , πb(
−→
b ), πc(

−→c ), . . . , πD(
−→
D)) and it acts on (σ1, σ2, τ1, τ2) by:

σ1 7→ (πA × πB) ◦ σ1 ◦ (Id× π−1
b )

τ1 7→ (πc × πd) ◦ τ1 ◦ (π−1
D × π−1

C )

σ2 7→ (Id× πd) ◦ σ2 ◦ (π−1
A × π−1

D )

τ2 7→ (πB × πC) ◦ τ2 ◦ (π−1
b × π−1

c ).

This gives rise to an action of S7
m on Z. The action on the input of the Weingarten functions becomes

(3.7) Wg((π−1
D × π−1

C πb)σ
−1
1 (π−1

A πc × π−1
B πd)τ1) and Wg(π−1

b πA × π−1
c πD)σ

−1
2 (ππB × π−1

d πC)τ2),

where we used the conjugacy invariance of Wg to move permutations from right to left. Consider

the bijection ψ : S8
m → S8

m, defined by (x1, . . . , x8) 7→ (x1, x1x2, . . . , x1x2 · · · x8). Under the change

of coordinates (θD, θc, θA, θb, θC , θd, θB , θ) := ψ−1(πD, πc, πA, πb, πC , πd, πB , π
−1), the summation of

(3.5) over an S7
m-orbit splits into a product of two separate sums:

∑

(πD,...,π)∈S8
m

(−1)πWg((π−1
D × π−1

C πb)σ
−1
1 (π−1

A πc × π−1
B πd)τ1)Wg(π−1

b πA × π−1
c πD)σ

−1
2 (ππB × π−1

d πC)τ2)

=
∑

(θD ,...,θ)∈S8
m

(−1)θD ···θWg((θ−1
D × θ−1

C )σ−1
1 (θ−1

A × θ−1
B )τ1)Wg(θ−1

b × θ−1
c )σ−1

2 (θ−1 × θ−1
d )τ2)

=
∑

η1,η′1∈S2
m

(−1)η1η
′
1Wg(η1σ

−1
1 η′1τ1)

∑

η2,η′2∈S2
m

(−1)η2η
′
2Wg(η2σ

−1
2 η′2τ2).

(3.8)

We can now use the Fourier expansion of Wg (2.11) and the estimates in §2.1.3 to bound the contri-

bution of an S7
m-orbit in Z to (3.5):

Proposition 3.3. Let ṽ := (−̃→a , . . . , −̃→D, σ̃1, σ̃2, τ̃1, τ̃2) ∈ Z and let Oṽ := S7
mṽ be its S7

m-orbit. Then,

(3.9)

∣∣∣∣∣∣
1

|Oṽ|
∑

(−→a ,...,τ2)∈Oṽ

∑

π∈Sm

(−1)πWg(σ−1
1 τ1)Wg(σ−1

2 (π × Id)τ2)

∣∣∣∣∣∣
≤ 1

(2m)!2m!3

(
d

2m

)−2

.

Proof. By the Orbit-Stabilizer Theorem, the LHS of (3.9) is the same as summing over all (πD, . . . , πB) ∈
S7
m and dividing by m!7. By (3.8), the LHS of (3.9) is equal to

1

m!7

∣∣∣∣∣∣

∑

η1,η′1∈S2
m

(−1)η1η
′
1Wg(η1σ̃

−1
1 η′1τ̃1)

∑

η2,η′2∈S2
m

(−1)η2η
′
2Wg(η2σ̃

−1
2 η′2τ̃2)

∣∣∣∣∣∣
.

Note that (S2m, Sm × Sm) is a sgn-twisted Gelfand pair, that is, the representation IndS2m

S2
m

sgn is

multiplicity-free. By Frobenius reciprocity, each irreducible subrepresentation (Vλ, πλ) of IndS2m

S2
m

sgn

has a unique (S2
m, sgn)-invariant unit vector, so

〈
χλ|S2

m
, sgn

〉
S2
m
= 1. By Lemma 2.7, for each σ ∈ S2m,

we have

(3.10)

∣∣∣∣∣∣

∑

h∈S2
m

(−1)hχλ(hσ)

∣∣∣∣∣∣
≤ m!2

〈
χλ|S2

m
, sgn

〉
S2
m
=




m!2 if πλ →֒ IndS2m

S2
m

sgn

0 otherwise.
.
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By Lemma 2.3 it follows that πλ →֒ IndS2m

S2
m

sgn if and only if the young diagram of λ ⊢ 2m has at

most two columns. Combining with (3.10), we have:
∣∣∣∣∣∣

∑

η1,η′1∈S2
m

(−1)η1η
′
1χλ(η1σ̃

−1
1 η′1τ̃1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

η′1∈S2
m

(−1)η
′
1

∑

η1∈S2
m

(−1)η1χλ(η1σ̃
−1
1 η′1τ̃1)

∣∣∣∣∣∣
(3.11)

≤
∑

η′1∈S2
m

∣∣∣∣∣∣

∑

η1∈S2
m

(−1)η1χλ(η1σ̃
−1
1 η′1τ̃1)

∣∣∣∣∣∣
≤




m!4 if λ ⊢ 2m, λ has ≤ 2 columns,

0 otherwise.

By (2.11), (3.11), (2.3), and by our assumption that d ≥ 2m, we have
∣∣∣∣∣∣

∑

η1,η′1∈S2
m

(−1)η1η
′
1Wg(η1σ̃

−1
1 η′1τ̃1)

∣∣∣∣∣∣
=

1

(2m)!2

∣∣∣∣∣∣

∑

λ⊢2m

χλ(1)
2

ρλ(1)

∑

η1,η′1∈S2
m

(−1)η1η
′
1χλ(η1σ̃

−1
1 η′1τ̃1)

∣∣∣∣∣∣

≤ m!4

(2m)!2

∑

λ⊢2m, λ has ≤2 columns

χλ(1)
2

ρλ(1)
=

m!4

(2m)!

∑

λ⊢2m, λ has ≤2 columns

χλ(1)∏
(i,j)∈λ(d+ j − i)

≤ m!4

(2m)!
· 1

d · · · · · (d− 2m+ 1)

∑

λ⊢2m, λ has ≤2 columns

χλ(1) =
m!4

(2m)!

dim IndS2m

S2
m

sgn

d · · · · · (d− 2m+ 1)
=

m!2

(2m)!

(
d

2m

)−1

.

This concludes the proposition. �

We now turn to the last ingredient in the proof of Theorem 3.1.

Definition 3.4. Let f : S → [d] be a function on a set S. We define the shape νf : [d] → N of f as

νf = (νf,1, . . . , νf,d) := (
∣∣f−1(1)

∣∣ , . . . ,
∣∣f−1(d)

∣∣),

and denote νf ! :=
∏d
u=1 νf,u.

Proposition 3.5. Let Z be as in (3.4). Then:

|Z| ≤ m!7
(
2m

m

)4( d
m

)(
d+m− 1

m

)3

.

Proof. We need to count all the possible tuples (−→a , . . . ,−→D,σ1, σ2, τ1, τ2) in Z. Suppose we have

already fixed −→a and the shapes ν−→
b
, ν−→c and ν−→

d
of

−→
b ,−→c and

−→
d , where

−→
b ,−→c ,−→d are considered as a

functions [m] → [d]. Given this data:

(1) There are m!3

ν−→
b
!ν−→c !ν−→

d
! options for

−→
b ,−→c ,−→d with the above shapes.

(2) There are (2m)!2 options for σ2 and τ2.

(3) There are at most
(2m
m

)2
options for choosing τ−1

1 ([m]) and σ1([m]), as subsets of [2m]. Note

that we count both valid and invalid options.

(4) After fixing the subsets τ−1
1 ([m]) and σ1([m]), there are at most ν−→c !ν−→d ! options for τ1 and

ν−→
b
! options for σ1.

Summarizing the above items, we get there are at most
m!3(2m)!2ν−→

b
!ν−→c !ν−→

d
!

ν−→
b
!ν−→c !ν−→

d
!

(
2m
m

)2
= m!7

(
2m
m

)4
options

for (−→a , . . . ,−→D,σ1, σ2, τ1, τ2) ∈ Z with the initial data −→a , ν−→
b
, ν−→c , ν−→d . Note that there are

( d
m

)
possible

options for −→a , and
(d+m−1

m

)3
options for ν−→

b
, ν−→c , ν−→d . This gives the desired upper bound. �

We can now finish the proof of Theorem 3.1.
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Proof of Theorem 3.1. Note that for every k ≥ 1 and n ≥ k we have

(3.12)
(n
k

)k
≤

k−1∏

j=0

(
n− j

k − j

)
=

(
n

k

)
≤ nk

k!
≤
(n
k

)k
ek,

where the rightmost inequality follows from Stirling’s approximation. By Lemma 3.2 and by Propo-

sitions 3.3 and 3.5,

∣∣∣E
(
tr
∧m

w(X,Y )
)∣∣∣ = |Z| ·

∣∣∣∣∣∣∣

1

|Z|
∑

(−→a ,...,−→D,σ1,σ2,τ1,τ2)∈Z

∑

π∈Sm

(−1)πWg(σ−1
1 τ1) ·Wg(σ−1

2 (π × Id)τ2)

∣∣∣∣∣∣∣

≤ |Z| · 1

(2m)!2m!3

(
d

2m

)−2

≤
(
2m

m

)2( d
m

)(
d+m

m

)3( d

2m

)−2

.(3.13)

By (3.13), (3.12), by the inequality
(
2m
m

)
≤ 22m, and by our assumption that d ≥ 2m,

∣∣∣E
(
tr
∧m

w(X,Y )
)∣∣∣ ≤

24me4m
(
d
m

)m (d+m
m

)3m
(
d
2m

)4m ≤ 27me4m
(
d
m

)4m
(
d
2m

)4m ≤ 211me4m ≤ 217m. �

Remark 3.6. The current proof of Proposition 3.5 depends on the special structure of the Engel word.

One can give a slightly more complicated argument, which can be easily generalized for every word

w (this is done in §6). Here are the main ideas of this alternative argument.

We encode the expression

(3.14) Xa,DYD,cX
−1
c,AYA,bXb,CY

−1
C,dX

−1
d,BY

−1
B,a

from (3.2), graphically, by the 4× 4 matrix

(3.15)




· C D ·
c · · b

d · · a

· B A ·


 ,

which is constructed as follows. The rows and columns are indexed by x, y, x−1, y−1. We order the

rows by x < y < y−1 < x−1 and order the columns by x−1 < y−1 < y < x. To find the (x, y−1)-entry

of this matrix (i.e. the (1, 2)-entry), we look for the subword XY −1 in (3.14) and record the letter of

the common index, which is C. All other entries are determined in similar fashion. Note that we do

not have elements in the main diagonal since w is cyclically reduced.

We denote η1 = τ1, η2 = τ2, η3 = σ−1
2 , η4 = σ−1

1 . Note that ηi sends the ith row of (3.15) into

a permuted copy of its ith column. The alternative counting argument in Proposition 3.5 goes as

follows. We fix the upper triangular part, i.e.,
−→
C ,

−→
D,−→a ,−→b (instead of −→a ,−→b ,−→c ,−→d in the proof

above). We then choose η1 (with 2m! options), which gives us −→c ,−→d and, in particular, reveals the

second row. Next, we choose all possible η2 : (
−→
b ,−→c ) → (

−→
B,

−→
C ), taking into consideration the fact

that
−→
C is already known. We then proceed to the next row and guess η3, taking into consideration

that we already know
−→
D . At this point, the vectors −→a ,−→b , . . . ,−→C ,−→D and the permutations η1, η2, η3

are known, and the number of options for η4 is determined by the shapes of −→a ,−→b . This argument

will be generalized in §6 for arbitrary words, where, instead of a 4× 4 matrix, we will have a 2r × 2r

matrix and, each time we choose η1, . . . , ηk, the k + 1-st row is revealed, allowing us to proceed by

induction.
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4. Rewriting Theorem 1.3 using Weingarten calculus

In this section, we rewrite the expression E
(
|tr∧m w(X1, . . . ,Xr)|2

)
of Theorem 1.3 as a finite sum

of Weingarten functions.

Let ℓ,m, d,w be as in Theorem 1.3. We may assume that w is cyclically reduced, i.e., it does not

contain a subword of the form xjx
−1
j and the first and last letters of w are not inverse of each other.

For u ∈ [ℓ], let

w(u) =




a if the uth letter of w is xa

−a if the uth letter of w is x−1
a

.

If we denote x−a = x−1
a , then w =

∏
u xw(u). We write w−1 for the inverse word,

(4.1) w−1 := x−w(ℓ)x−w(ℓ−1) · · · x−1.

We start by noting that

E

(∣∣∣tr
(∧m

w(X1, . . . ,Xr)
)∣∣∣

2
)

= E

(
tr
(∧m

w(X1, . . . ,Xr)
)
· tr
(∧m

w(X1, . . . ,Xr)
))

(4.2)

= E
(
tr
(∧m

w(X1, . . . ,Xr)
)
· tr
(∧m

w−1(X1, . . . ,Xr)
))

.

Define T̃ ∈ Sym([ℓ]× [m]) by

(4.3) T̃ (u, k) =




(u+ 1, k) u 6= ℓ

(1, k) u = ℓ
.

Recall that Im,d = {a1 < . . . < am : ai ∈ [d]}. We have

tr
(∧m

w(X1, . . . ,Xr)
)
=

∑

−→a ∈Im,d

∑

π∈Sm

(−1)π
m∏

k=1

w(X1, . . . ,Xr)ak,aπ(k)

=
∑

−→a ∈Im,d

∑

π∈Sm

(−1)π
m∏

k=1

∑

fk:[ℓ+1]→[d]
fk(1)=ak ,fk(ℓ+1)=aπ(k)

ℓ∏

u=1

(
Xw(u)

)
fk(u),fk(u+1)

=
∑

−→a ∈Im,d

∑

π∈Sm

(−1)π
∑

f :[ℓ+1]×[m]→[d]
f(1,k′)=ak′ ,f(ℓ+1,k′)=aπ(k′),∀k′

∏

(u,k)∈[ℓ]×[m]

(
Xw(u)

)
f(u,k),f(u+1,k)

=
∑

π∈Sm

(−1)π
∑

f :[ℓ+1]×[m]→[d]
f(ℓ+1,k′)=f(1,π(k′)),∀k′

f(1,−) increasing

∏

(u,k)∈[ℓ]×[m]

(
Xw(u)

)
f(u,k),f(u+1,k)

=
∑

π∈Sym({ℓ}×[m])

(−1)π
∑

F :[ℓ]×[m]→[d]
F (1,−) increasing

∏

(u,k)∈[ℓ]×[m]

(
Xw(u)

)
F (u,k),F (T̃π(u,k))

,(4.4)

where in the last equality we use the natural embedding Sym({ℓ} × [m]) →֒ Sym([ℓ]× [m]) obtained

by acting trivially on [ℓ− 1]× [m]. Applying this to w−1, we get

(4.5)

tr
∧m

w(X1, . . . ,Xr) =
∑

π′∈Sym({ℓ}×[m])

(−1)π
′ ∑

F ′:[ℓ]×[m]→[d]
F ′(1,−) increasing

∏

(u,k)∈[ℓ]×[m]

(
Xw−1(u)

)
F ′(u,k),F ′(T̃ π′(u,k))

.
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Set Ω = [2]× [ℓ]× [m], Ωs,u = {s} × {u} × [m], and for γ ∈ Ω, define

w̃(γ) =




w(u) γ = (1, u, k)

w−1(u) γ = (2, u, k)
.

Define T ∈ Sym(Ω) by

(4.6) T (s, u, k) := (s, T̃ (u, k)).

By combining (4.4) and (4.5), we get

(4.7)∣∣∣tr
∧m

w(X1, . . . ,Xr)
∣∣∣
2
=

∑

(π,π′)∈∏2
s=1 Sym(Ωs,ℓ)

(−1)ππ
′ ∑

F :Ω→[d]
F (1,1,−) increasing
F (2,1,−) increasing

∏

γ∈Ω

(
Xw̃(γ)

)
F (γ),F (Tππ′(γ))

.

The map π 7→ TπT−1 is an isomorphism Sym(Ωs,ℓ)
≃→ Sym(Ωs,1), for s ∈ [2]. Hence,

∣∣∣tr
∧m

w(X1, . . . ,Xr)
∣∣∣
2
=

∑

(π,π′)∈Sym(Ω1,1)×Sym(Ω2,1)

(−1)ππ
′ ∑

F :Ω→[d]
F (1,1,−) increasing
F (2,1,−) increasing

∏

γ∈Ω

(
Xw̃(γ)

)
F (γ),F (ππ′T (γ))

=
∑

(π,π′)∈Sym(Ω1,1)×Sym(Ω2,1)

(−1)ππ
′ ∑

F :Ω→[d]
F (1,1,−) increasing
F (2,1,−) increasing

∏

γ∈Ω

(
Xw̃(γ)

)
F (γ),F ((ππ′)−1T (γ))

=
∑

(π,π′)∈Sym(Ω1,1)×Sym(Ω2,1)

(−1)ππ
′ ∑

F :Ω→[d]
F◦π(1,1,−) increasing
F◦π′(2,1,−) increasing

∏

γ∈Ω

(
Xw̃(γ)

)
F (ππ′γ),F (T (γ))

,(4.8)

where, in the last equality, we replaced F by F ◦ (π′π)−1.

Let Φ = (A1, . . . , Ar, B1, . . . , Br) be the partition given by

(4.9) Ai = {(s, u, k) | w̃(s, u, k) = i} Bi = {(s, u, k) | w̃(s, u, k) = −i} .

For each (π, π′) ∈ Sym(Ω1,1)× Sym(Ω2,1), set

(4.10) Zπ,π′ :=

{
(F,Σ) :

F :Ω→[d],Σ∈SΦ

F◦π(1,1,−),F◦π′(2,1,−) increasing
F◦T=F◦ππ′◦Σ

}
.

The sets Zπ,π′ are disjoint. We denote

(4.11) Z :=
⋃

π,π′

Zπ,π′ .

Remark 4.1. Note that we have a map Z → Sym(Ω1,1)×Sym(Ω2,1) sending (F,Σ) to the unique pair

(πF , π
′
F ) such that (F,Σ) ∈ ZπF ,π′

F
.

Rewriting (4.8) using Weingarten calculus (Corollary 2.15), we have:

Proposition 4.2. Let w ∈ Fr be a cyclically reduced word. Then:

(4.12) E

(∣∣∣tr
(∧m

w(X1, . . . ,Xr)
)∣∣∣

2
)

=
∑

(F,Σ)∈Z
(−1)πF π

′
F W̃g(Σ2).

5. Estimating the contribution of a single orbit in Z

In this section we introduce an action of H :=
∏

(s,u)∈[2]×[ℓ] Sym(Ωs,u) on Z, and estimate (4.12)

restricted to each H-orbit. The action can be described as follows.



ON THE FOURIER COEFFICIENTS OF WORD MAPS ON UNITARY GROUPS 18

For every (s, u) ∈ [2] × [ℓ], the group Sym(Ωs,u) acts on Z in the following way: if u 6= 1, the action

of πs,u ∈ Sym(Ωs,u) is

(5.1) πs,u.(F,Σ) = (F ◦ π−1
s,u, πs,u ◦ Σ ◦ T−1π−1

s,uT ).

If s ∈ [2] and πs,1 ∈ Sym(Ωs,1), then

(5.2) πs,1.(F,Σ) = (F ◦ π−1
s,1 , Σ ◦ T−1π−1

s,1T ).

The above group actions commute, which gives rise to an action of H. Note that (π1,1, π2,1).Zπ,π′ =

Zπ1,1π,π2,1π′ . If u 6= 1, then πs,u.(Zπ,π′) = Zπ,π′ .

Definition 5.1. For each u, v ∈ [ℓ], we define ∗ :Sym(Ωs,u)× Sym(Ωs,v) → Sym(Ωs,v) by

(5.3) πs,u ∗ πs,v := T v−uπs,uT
u−vπs,v.

Note that ∗ is associative.

Let h :=
∏

(s,u) πs,u ∈ H and denote h :=
∏

(s,u)6=(1,1),(2,1) πs,u. Then h.Σ = h ◦Σ ◦ T−1h−1T . Since

W̃g is invariant under conjugation in H,

W̃g
(
(h.(Σ))2

)
= W̃g (Ψh ◦Σ ◦Ψh ◦Σ) ,

where Ψh = T−1h−1Th ∈ H. On each Ωs,u, Ψh has the following form:

Lemma 5.2. We have

Ψh|Ωs,u =





T−1π−1
s,2T if u = 1

π−1
s,u+1 ∗ πs,u if u 6= 1, ℓ

π−1
s,1 ∗ πs,ℓ if u = ℓ.

Corollary 5.3. Let (F̂ , Σ̂) be a representative of an H-orbit O(F̂ ,Σ̂), with (πF̂ , π
′
F̂
) = (Id, Id). Then:

(5.4)
1∣∣∣O(F̂ ,Σ̂)

∣∣∣

∑

(F,Σ)∈O
(F̂ ,Σ̂)

(−1)πF π
′
F W̃g(Σ2) =

1

m!2ℓ

r∏

i=1

∑

hi∈
∏

w̃=i Sym(Ωs,u)
h′i∈

∏
w̃=−i Sym(Ωs,u)

(−1)hih
′
iWg

(
hiΣ̂|Bi

h′iΣ̂|Ai

)
.

Proof. For each h =
∏

(s,u) πs,u ∈ H, write ν(h) := (−1)π1,1π2,1 . Consider the bijection ψ : H → H,

ψ
(∏

(s,u) πs,u

)
=
∏

(s,u) θs,u, where, for s = 1, 2,

(θs,2, . . . , θs,ℓ, θs,1) = (πs,2, πs,2 ∗ πs,3, . . . , πs,2 ∗ · · · ∗ πs,ℓ, πs,2 ∗ · · · ∗ πs,ℓ ∗ πs,1),

and observe that ν(ψ(h)) = (−1)h = (−1)T
−1h−1T . Further note that

(πs,2 ∗ · · · ∗ πs,u+1)
−1 ∗ πs,2 ∗ · · · ∗ πs,u = T−1π−1

s,u+1T,

and hence Ψψ(h) =
∏

(s,u) T
−1π−1

s,uT . Changing variables using ψ, the left hand side of (5.4) is:

1

|H|
∑

h∈H
ν(h)W̃g

(
Ψh ◦ Σ̂ ◦Ψh ◦ Σ̂

)
=

1

m!2ℓ

∑

h∈H
ν(ψ(h))W̃g


∏

(s,u)

T−1π−1
s,uT ◦ Σ̂ ◦

∏

(s,u)

T−1π−1
s,uT ◦ Σ̂




=
1

m!2ℓ

∑

h∈H
(−1)hW̃g


∏

(s,u)

πs,u ◦ Σ̂ ◦
∏

(s,u)

πs,u ◦ Σ̂




=
1

m!2ℓ

∑

h∈H
(−1)h

r∏

i=1

Wg


 ∏

(s,u):w̃=i

πs,uΣ̂|Bi

∏

(s,u):w̃=−i
πs,uΣ̂|Ai


 ,



ON THE FOURIER COEFFICIENTS OF WORD MAPS ON UNITARY GROUPS 19

where in each line above, h =
∏

(s,u) πs,u. �

Corollary 5.4. Set ℓi :=
|Ai|
m for each i ∈ [r]. Then the following holds:

(5.5) E

(∣∣∣tr
(∧m

w(X1, . . . ,Xr)
)∣∣∣

2
)

≤ |Z|
m!ℓ

r∏

i=1

1

d · · · (d−mℓi + 1)
.

Proof. By Proposition 4.2, Corollary 5.3, Equation (2.11), Lemma 2.7, and by Equation (2.3),

E

(∣∣∣tr
(∧m

w(X1, . . . ,Xr)
)∣∣∣

2
)

=
∑

(F̂ ,Σ̂)∈Z

(−1)
π
F̂
π′
F̂ W̃g(Σ̂2)

=
∑

(F̂ ,Σ̂)∈Z

1∣∣∣O(F̂ ,Σ̂)

∣∣∣

∑

(F,Σ)∈O
(F̂ ,Σ̂)

(−1)πF π
′
F W̃g(Σ2)

≤
∑

(F̂ ,Σ̂)∈Z

1

m!2ℓ

r∏

i=1

∣∣∣∣∣∣∣∣∣

∑

hi∈
∏

w̃=i Sym(Ωs,u)
h′i∈

∏
w̃=−i Sym(Ωs,u)

(−1)hih
′
iWg

(
hiΣ̂|Bi

h′iΣ̂|Ai

)
∣∣∣∣∣∣∣∣∣

≤
∑

(F̂ ,Σ̂)∈Z

1

m!2ℓ

r∏

i=1

m!2ℓi

(mℓi)!2

∑

λ⊢mℓi:χλ⊆Ind
Smℓi

S
ℓi
m

(sgn)

〈χλ, sgn〉Sℓim
χλ(1)

2

ρλ(1)

=
|Z|
m!ℓ

r∏

i=1

m!ℓi

(mℓi)!

∑

λ⊢mℓi:χλ⊆Ind
Smℓi

S
ℓi
m

(sgn)

〈χλ, sgn〉Sℓimχλ(1)∏
(a,b)∈λ(d+ b− a)

.(5.6)

Note that the irreducible characters χλ in Ind
Smℓi

S
ℓi
m

(sgn) correspond to Young diagrams λ ⊢ mℓi with

at most ℓi columns. If the columns of λ are of lengths j1 ≥ . . . ≥ jℓi then

(5.7)
∏

(a,b)∈λ
(d+ b−a) ≥ d · · · (d− j1+1) ·d · · · (d− j2+1) · . . . ·d · · · (d− jℓi +1) ≥ d · · · (d−mℓi+1).

Combining (5.6) with (5.7) implies the corollary. �

6. Estimates on |Z|

In this section we give upper bounds on |Z|, defined in (4.11). We first set some notation. For each

0 6= i, j ∈ [−r, r], set

Ri :=
{
γ ∈ Ω : w̃ ◦ T−1(γ) = i

}
=




T (Ai) i > 0

T (B−i) i < 0
,

Cj := {γ ∈ Ω : w̃(γ) = −j} =




Bj j > 0

A−j j < 0
,

Vij :=
{
γ ∈ Ω : w̃ ◦ T−1(γ) = i, w̃(γ) = −j

}
= Ri ∩ Cj .

Following Remark 3.6, it is helpful to picture a 2r × 2r matrix, whose (i, j)-th entry is the set Vij,

with R−r, . . . , Rr correspond to rows, and C−r, . . . , Cr correspond to columns. Denote

(6.1) ℓi,j :=
|Vij|
m

and ℓi :=
|Ri|
m

=
|Ci|
m

.
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Observe that ℓi = ℓ−i, ℓi,j = ℓj,i and note that ℓi =
|Ai|
m if i > 0, so that (6.1) extends the definition

of ℓi in Corollary 5.4. For each 0 6= j ∈ [−r, r] set

C+
j :=

⋃

i<j

Vij, C+ :=
⋃

j

C+
j .

For each i ∈ [r] and each Σ ∈ SΦ, denote ηi := T ◦
(
Σ−1

)
|Bi

and η−i := T ◦
(
Σ−1

)
|Ai

. Notice that

ηi(Ci) = Ri for all i. Define the following sets:

(6.2) W ′ := {(F : Ω → [d], Σ ∈ SΦ) : F ◦ T = F ◦Σ} ,

and

W :=
{
(F,Σ) ∈W ′ : F (s, 1,−) is one-to-one ∀s ∈ [2]

}
.

Proposition 6.1. We have

|Z| = |W | ≤
∣∣W ′∣∣ ≤

(
d+mℓ

mℓ

)
(mℓ)!

r∏

06=k=−r

(mℓk)!(∑
i<kmℓi,k

)
!
.

Proof. The map (F,Σ) 7→
(
F ◦ πFπ′F , Σ ◦ T−1πFπ

′
FT
)

is a bijection between Z and W , giving the

first equality. Clearly, |W | ≤ |W ′|.
In order to prove the last inequality, we use the map Φ+ : W ′ → {f : C+ → [d]}, sending (F,Σ) ∈W ′

to F |C+ . We estimate |W ′| by analyzing the fibers of Φ+. Let f ∈ Φ+(W
′) and suppose it has a shape

ν+ (see Definition 3.4). We write νj,+ for the shapes of f |C+
j
. We reveal (F,Σ) ∈ Φ−1

+ (f) row by row,

starting with the −r-th row R−r and making sure that, in each step, F ◦ T |T−1(Rk) = F ◦Σ|T−1(Rk),

or, equivalently, F |Rk
= F ◦ η−1

k |Rk
.

(1) There are at most (mℓ−r)! options for η−r. Note that R−r ⊆ C+ and hence by (6.2), the

choice of η−r determines F |C−r . At this point, F |R−r+1 is determined as well.

(2) Note that C+
−r+1 = V−r,−r+1. There are at most:

(a)
( mℓ−r+1

mℓ−r,−r+1

)
options for the sets η−r+1(C

+
−r+1) and η−r+1(C−r+1\C+

−r+1).

(b) (m(ℓ−r+1 − ℓ−r,−r+1))! options for η−r+1|C−r+1\C+
−r+1

: C−r+1\C+
−r+1 → η−r+1(C−r+1\C+

−r+1).

(c) (ν−r+1,+)! options for η−r+1 : C
+
−r+1 → η−r+1(C

+
−r+1).

(3) More generally, assume, by induction, that we have fixed (ηi)i<k, and, thus, we have already

determined F |Ri
for i ≤ k, F |Ci

for i < k, and F |C+ . Then there are at most:

(a)
( mℓk∑

i<kmℓi,k

)
options for the sets ηk(C

+
k ) and ηk(Ck\C+

k ).

(b)
(
m(ℓk −

∑
i<k ℓi,k)

)
! options for ηk|Ck\C+

k
: Ck\C+

k → ηk(Ck\C+
k ).

(c) (νk,+)! options for ηk|C+
k
: C+

k → ηk(C
+
k ).

After choosing η−r, . . . , ηr, we have determined F . Furthermore, since
∑r

06=k=−r νk,+ = ν+, we have∏r
06=k=−r (νk,+)! ≤ ν+!. Hence,

∣∣Φ−1
+ (f)

∣∣ ≤
r∏

06=k=−r

((
mℓk∑
i<kmℓi,k

)(
m(ℓk −

∑

i<k

ℓi,k)

)
! (νk,+)!

)

=

r∏

06=k=−r
(νk,+)!

(mℓk)!(∑
i<kmℓi,k

)
!
≤ ν+!

r∏

06=k=−r

(mℓk)!(∑
i<kmℓi,k

)
!
.(6.3)

Since |C+| = mℓ, we have

(6.4)
∣∣{f ∈ Φ+(W

′) : f is of shape ν+
}∣∣ ≤ (mℓ)!

ν+!
,
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and there are at most
(d+mℓ
mℓ

)
possible shapes ν+. Combining (6.3) and (6.4) we conclude:

∣∣W ′∣∣ ≤
∑

ν+

∣∣{f ∈ Φ+(W
′) : f is of shape ν+

}∣∣ ·
∣∣Φ−1

+ (f)
∣∣

≤
∑

ν+

(mℓ)!

ν+!
· ν+!

r∏

06=k=−r

(mℓk)!(∑
i<kmℓi,k

)
!
≤
(
d+mℓ

mℓ

)
(mℓ)!

r∏

06=k=−r

(mℓk)!(∑
i<kmℓi,k

)
!
. �

7. Proof of Theorems 1.1 and 1.3

In this section we use the results of Sections 4, 5 and 6 to prove Theorems 1.1 and 1.3. We end the

section with the proof of Theorem 1.6.

Proof of Theorem 1.3. Assume that d = am for a ≥ ℓ ≥ 2. By (3.12), we have:

(7.1)

(
d

mℓ

)
=

(
am

mℓ

)
≥ amℓ

ℓmℓ
,

(7.2)

(
d+mℓ

mℓ

)
≤
(
a+ ℓ

ℓ

)mℓ
emℓ ≤ amℓ(2e)mℓ

ℓmℓ
.

We remind the reader the definition of ℓi and ℓi,j in (6.1). Concretely, for each 0 6= i, j ∈ [−r, r], ℓi
is the combined number of appearances of the letter xi (with the convention that x−i = x−1

i ) in w

and w−1, and ℓi,j is the combined number of appearances of the string “xix
−1
j ” in w and in w−1. In

particular, we have
∑r

i=1 ℓi = ℓ, ℓi,i = 0 and
∑

06=i∈[−r,r] ℓi,k = ℓk and therefore:

(7.3)
r∏

i=1

d · · · (d−mℓi+1) ≥ d · · · (d−mℓ+1) and
(mℓk)!(∑

i<kmℓi,k
)
!
(∑

i>kmℓi,k
)
!
=

(
mℓk∑
i>kmℓi,k

)
≤ 2mℓk .

By Corollary 5.4, Proposition 6.1 and by (7.3), (7.1) and (7.2), we obtain:

E

(∣∣∣tr
(∧m

w(X1, . . . ,Xr)
)∣∣∣

2
)

≤ |Z|
m!ℓ

r∏

i=1

1

d · · · (d−mℓi + 1)

≤
(
d+mℓ

mℓ

)
· (mℓ)!∏r

i=1 d · · · (d−mℓi + 1)
· 1

m!ℓ
·

r∏

06=k=−r

(mℓk)!(∑
i<kmℓi,k

)
!

≤
(
d+mℓ

mℓ

)
· (mℓ)!

d · · · (d−mℓ+ 1)
·
∏r

06=k=−r
(∑

i>kmℓi,k
)
!

m!ℓ
·

r∏

06=k=−r

(mℓk)!(∑
i<kmℓi,k

)
!
(∑

i>kmℓi,k
)
!

≤
(
d+mℓ

mℓ

)
·
(
d

mℓ

)−1

· (mℓ)!
m!ℓ

·
r∏

06=k=−r
2mℓk ≤ (2e)mℓℓmℓ · 22mℓ ≤ (8eℓ)mℓ ≤ (22ℓ)mℓ.

Finally, note that if d ≥ (22ℓ)ℓm then (22ℓ)mℓ ≤ ( dm )m ≤
( d
m

)
. �

We now turn to the proof of Theorem 1.1. We first deal with the case when the rank is bounded (and

prove Conjecture 1.7 in this case) and then prove Theorem 1.1 in the unbounded case.

Definition 7.1. Given w1 ∈ Fr1 and w2 ∈ Fr2 , we denote by w1 ∗ w2 ∈ Fr1+r2 their concatenation.

For example, if w = [x, y], then w ∗ w = [x, y] · [z, w].

We remind the reader the for a compact group G, and a word w ∈ Fr, we denote by τw,G := (wG)∗(µrG)

the word measure associated to w and G, and the Fourier coefficient of τw,G at ρ ∈ Irr(G) is aw,G,ρ :=∫
Gr ρ(w(x1, . . . , xr))µ

r
G =

∫
G ρ(y)τw,G. If G is a compact connected semisimple Lie group, by [Bor83],

the map wG : Gr → G is a submersion outside a proper subvariety in Gr. It follows that in this case,
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or e.g. when G is a finite group, τw,G is absolutely continuous with respect to µG, and we can write

τw,G = fw,G·µG, with fw,G ∈ L1(G). Since τw,G is conjugate invariant, fw,G is a class function, and

it can be written as a linear combination of characters fw,G =
∑

ρ∈Irr(G) aw,G,ρ · ρ.
By Definition 7.1, we see that τw1∗w2,G = τw1,G ∗ τw2,G for every w1 ∈ Fr1 and w2 ∈ Fr2 . Since

ρ1 ∗ ρ2 = δρ1,ρ2
ρ1(1)

· ρ1 for every ρ1, ρ2 ∈ Irr(G), we have:

(7.4) aw1∗w2,G,ρ =

∫

G
ρ(g)τw1∗w2,G(g) =

∫

G
ρ(g)τw1,G ∗ τw2,G(g) =

aw1,G,ρ · aw2,G,ρ

ρ(1)
.

Proposition 7.2. For every 1 6= w ∈ Fr and d ∈ N, there exists ǫ(d,w) > 0 such that:

(1) For every compact connected semisimple Lie group G of rank d and every ρ ∈ Irr(G), we have

|aw,G,ρ| ≤ ρ(1)1−ǫ(d,w).

(2) In particular, for every 1 ≤ m ≤ d,

EUd

(∣∣∣tr
(∧m

w(X1, . . . ,Xr)
)∣∣∣

2
)

= ESUd

(∣∣∣tr
(∧m

w(X1, . . . ,Xr)
)∣∣∣

2
)

≤
(
d

m

)2(1−ǫ(d,w))
.

Proof. We first prove Item (1). Fix w ∈ Fr and a compact connected semisimple Lie group G. Let

τw,G = fw,GµG be the word measure. By (7.4), and since aw−1,G,ρ = aw,G,ρ for each ρ ∈ Irr(G), we

have

(7.5) aw∗w−1,G,ρ =
|aw,G,ρ|2
ρ(1)

.

Replacing w by w ∗ w−1, we may assume that all Fourier coefficients aw,G,ρ are in R≥0.

It follows from [GHS, Theorem 1.1] that fw,G ∈ L1+ǫ′(G) for some ǫ′ = ǫ′(G,w) > 0. By Young’s

convolution inequality, it follows that f∗tw,G ∈ L∞(G) for all t ≥ t0(G,w) :=
⌈
1+ǫ′(G,w)
ǫ′(G,w)

⌉
(see e.g. [GHS,

Section 1.1, end of p.3]). In particular, by (7.4), we deduce that:

f∗t0w,G(1) =
∑

ρ∈Irr(G)

ρ(1)2−t0at0w,G,ρ <∞.

Since aw,G,ρ ≥ 0, we deduce that aw,G,ρ < ρ(1)
1− 2

t0(G,w) for all but finitely many ρ ∈ Irr(G). To

deal with the remaining finitely many (non-trivial) representations of G, we simply use the bound

aw,G,ρ < ρ(1), which follows e.g. by the Itô–Kawada equidistribution theorem [KI40] (see also [App14,

Theorem 4.6.3]), since Supp(τw,G) generates G. Since there are only finitely many compact semisimple

connected Lie groups of rank d, this implies Item (1).

Note that the character ρ(1m) ⊗ ρ∨(1m) of the representation
∧mCd ⊗

(∧mCd
)∨

of SUd is given by

|tr (∧m(A))|2. Since ρ(1m) ⊗ ρ∨(1m) is a sum of irreducible characters, by applying the Itô–Kawada

equidistribution theorem to each irreducible character, for each 1 ≤ m ≤ d, we have

ESUd

(∣∣∣tr
(∧m

(w(X1, . . . ,Xr))
)∣∣∣

2
)

= ESUd

(
ρ(1m) ⊗ ρ∨(1m)(w(X1, . . . ,Xr))

)
< ρ(1m)⊗ρ∨(1m)(1) =

(
d

m

)2

.

Since there are only finitely many such m’s, this implies Item (2). �

Theorem 1.1 now follows from Proposition 7.2 and the following Theorem.

Theorem 7.3. For every ℓ ∈ N, there exist ǫ(ℓ), C(ℓ) > 0 such that, for every d ≥ C(ℓ), every

1 ≤ m ≤ d, and every word w ∈ Fr of length ℓ, one has:

E

(∣∣∣tr
(∧m

w(X1, . . . ,Xr)
)∣∣∣

2
)

≤
(
d

m

)2(1−ǫ(ℓ))
.

In order to prove Theorem 7.3, we need the following technical lemma.
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Lemma 7.4. Let H(x) = −x log(x)− (1− x) log(1− x) be the binary entropy function. Then:

(1) For every d ∈ N and every 0 < x < 1 such that dx ∈ N, we have 2dH(x)√
8dx(1−x)

≤
( d
xd

)
≤

2dH(x)√
πdx(1−x)

≤ 2dH(x).

(2) Let 0 < δ ≤ 1
2 . Then for every b ∈ [δ, 12 ], a ∈ [δ, b], and d > 1

δ4
such that bd, ad, d are integers,

one has: (
d

(b− a)d

)
≤
(
d

bd

)1−δ2

.

Proof. Item (1) follows e.g. from [CT06, Lemma 17.5.1]. The Taylor series of H(x) around 1/2 is

(7.6) H(x) = 1− 1

2 ln 2

∞∑

n=1

(1− 2x)2n

n(2n− 1)
.

Since H ′(x) = log(1−xx ), H(x) is monotone increasing in (0, 1/2), and therefore,

H(b)−H(b− a) ≥ H(b)−H(b− δ) =
1

2 ln 2

( ∞∑

n=1

(1− 2b+ 2δ)2n − (1− 2b)2n

n(2n− 1)

)

≥ 1

2 ln 2

(
(1− 2b+ 2δ)2 − (1− 2b)2

)
=

1

2 ln 2

(
4δ2 + 4δ(1 − 2b)

)
≥ 2δ2.

Since d > 1
δ4 ≥ 16, we have log(d)

d ≤ 1√
d
≤ δ2. Combining with Item (1), we have:

(
d

(b− a)d

)
≤ 2dH(b−a) ≤

√
8db(1 − b)2d(H(b−a)−H(b))

(
d

bd

)
≤ 2−2dδ2+log(d)

(
d

bd

)

≤ 2−dδ
2

(
d

bd

)
=
(
2−dH(b)

) δ2

H(b)

(
d

bd

)
≤
(
d

bd

)1− δ2

H(b)

≤
(
d

bd

)1−δ2

. �

Proof of Theorem 7.3. Since
∧m V ≃

(∧d−m V
)∨

⊗ χdet, we may assume that 2m ≤ d. Let δ(ℓ) :=

(25ℓ)−ℓ, let C(ℓ) = δ(ℓ)−7, and suppose that d ≥ C(ℓ). By Theorem 1.3, we may assume that

d ≤ δ(ℓ)−1m, and, in particular, m ≥ δ(ℓ)−6. As in the proof of Proposition 7.2, by replacing w by

w ∗ w−1, we may assume that aw,Ud,ρ ∈ R≥0 for all ρ ∈ Irr(Ud). By Theorem 2.5, we have for all

c ≤ d
2 :

∧c
V ⊗

∧c
V ∨ ≃

(∧c
V ⊗

∧d−c
V

)
⊗ χ−1

det ≃
c⊕

j=0

Vλ(j) ,

where λ(j) = (1, . . . , 1, 0, . . . , 0,−1, . . . ,−1), with −1 and 1 appearing j times. Moreover, Vλ(c) is the

largest irreducible subrepresentation of
∧c V ⊗∧c V ∨, and we have ρλ(c)(1) ≥ 1

c+1

(d
c

)2 ≥
(d
c

)3/2
. By

Theorem 1.3, and since all aw,Ud,ρ are non-negative, if c ≤ ⌈δ(ℓ)d⌉ ≤ (22ℓ)−ℓd, then

E
(
ρλ(c) ◦ w

)
≤

c∑

j=0

E
(
ρλ(j) ◦ w

)
= E

(
ρ∧c V⊗∧c V ∨ ◦ w

)
= E

(∣∣(ρ∧c V ◦ w
)∣∣2
)
≤
(
d

c

)
≤ ρλ(c)(1)

2/3.

Applying the last inequality for w∗9, recalling that aw∗t,Ud,ρ =
atw,Ud,ρ

ρ(1)t−1 for all ρ ∈ Irr(Ud), we get

(7.7)

E

(∣∣∣∣tr
(∧⌈δ(ℓ)d⌉

w∗9(X1, . . . ,Xr)

)∣∣∣∣
2
)

=

⌈δ(ℓ)d⌉∑

j=0

E
(
ρλ(j) ◦ w∗9

)
≤

⌈δ(ℓ)d⌉∑

j=0

ρλ(j)(1)
−2 ≤

∞∑

j=1

1

j2
< 2.

Note that, for each δ(ℓ)d ≤ m ≤ d
2 ,
∧m V is a subrepresentation of

∧⌈δ(ℓ)d⌉ V ⊗∧m−⌈δ(ℓ)d⌉ V , so

∧m
V ⊗

(∧m
V
)∨

→֒
(∧⌈δ(ℓ)d⌉

V ⊗
(∧⌈δ(ℓ)d⌉

V

)∨)
⊗
(∧m−⌈δ(ℓ)d⌉

V ⊗
(∧m−⌈δ(ℓ)d⌉

V

)∨)
.
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Finally, by the positivity of the Fourier coefficients of w, by (7.7), by Lemma 7.4 (note that m ≥
⌈δ(ℓ)d⌉) and by (3.12) (note that δ(ℓ)2m ≥ 1),

E

(∣∣∣tr
(∧m

w∗9(X1, . . . ,Xr)
)∣∣∣

2
)

≤ E

(∣∣∣∣tr
(∧⌈δ(ℓ)d⌉

w∗9(X1, . . . ,Xr)

)∣∣∣∣
2 ∣∣∣∣tr

(∧m−⌈δ(ℓ)d⌉
w∗9(X1, . . . ,Xr)

)∣∣∣∣
2
)

≤ E

(∣∣∣∣tr
(∧⌈δ(ℓ)d⌉

w∗9(X1, . . . ,Xr)

)∣∣∣∣
2
)

·
(

d

m− ⌈δ(ℓ)d⌉

)2

≤ 2

(
d

m− ⌈δ(ℓ)d⌉

)2

≤ d

m

(
d

m

)2−2δ(ℓ)2

≤
(
d

m

)2−δ(ℓ)2

.

By (3.12), m+ 1 ≤ 22
√
m ≤

( d
m

)2/√m
for each m ≤ d

2 . Hence,

(7.8) ρλ(m)
(1) ≥ 1

m+ 1

(
d

m

)2

≥
(
d

m

)2(1− 1√
m
)

≥
(
d

m

)2−2δ(ℓ)3

.

Consequently, we get
(
E
(
ρλ(m)

◦ w
))9

= E
(
ρλ(m)

◦ w∗9
)
ρλ(m)

(1)8 ≤ E

(∣∣∣tr
(∧m

w∗9(X1, . . . ,Xr)
)∣∣∣

2
)
ρλ(m)

(1)8

≤
(
d

m

)2−δ(ℓ)2

ρλ(m)
(1)8 ≤ ρλ(m)

(1)9−
δ(ℓ)2

4 ,

and thus E
(
ρλ(m)

◦ w
)
≤ ρλ(m)

(1)1−
δ(ℓ)2

36 . Taking ǫ(ℓ) := δ(ℓ)2

72 , and using m+ 1 ≤
( d
m

)2δ(ℓ)3
, we get

E

(∣∣∣tr
(∧m

w(X1, . . . ,Xr)
)∣∣∣

2
)

=

m∑

j=0

E
(
ρλ(j) ◦ w

)
≤ (m+ 1)

(
d

m

)2−4ǫ(ℓ)

≤
(
d

m

)2(1−ǫ(ℓ))
. �

We end the section with a proof of Theorem 1.6.

Proof of Theorem 1.6. Let w ∈ Fr. Denote w̃ := w ∗ w−1. Recall that τw̃,G = fw̃,GµG and note that

for every t ∈ N,

fw̃∗t,G = f∗tw̃,G.

Applying [LST19, Theorem 4], there are C ′,M(w) ∈ N such that, for N(w) := C ′ℓ(w)4 and for every

finite simple group G of size > M(w), one has
∣∣∣∣∣∣

∑

16=ρ∈Irr(G)

a
N(w)
w̃,G,ρ

ρ(1)N(w)−1
ρ(1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

16=ρ∈Irr(G)

aw̃∗N(w),G,ρρ(1)

∣∣∣∣∣∣
=
∣∣∣fw̃∗N(w),G(1)− 1

∣∣∣ =
∣∣∣f∗N(w)
w̃,G (1)− 1

∣∣∣ < 1,

where the first equality follows from (7.4). Since aw̃,G,ρ =
|aw,G,ρ|2
ρ(1) ≥ 0, we deduce that for each

1 6= ρ ∈ Irr(G)

|aw,G,ρ|2N(w)

ρ(1)2N(w)−2
=

|aw,G,ρ|2N(w)

ρ(1)2N(w)−1
ρ(1) =

a
N(w)
w̃,G,ρ

ρ(1)N(w)−1
ρ(1) < 1,

from which the theorem follows for ǫ = 1
N(w) =

1
C′ℓ(w)4 . �

8. Fourier coefficients of symmetric powers

In this section, we prove Theorem 1.4. Denote Jm,d = {c1 ≤ . . . ≤ cm : ci ∈ [d]}. We first claim that,

for each A ∈ End(Cd) and m ≥ 1,

tr (SymmA) =
1

m!

∑

−→a ∈[d]m

∑

π∈Sm

Aa1aπ(1)
· · ·Aamaπ(m)

.
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Indeed, for each −→c ∈ Jm,d, let ν−→c be the shape of −→c (see Definition 3.4) and set

v−→c :=

√
1

m! · ν−→c !
∑

π∈Sm

ecπ(1)
⊗ . . . ⊗ ecπ(m)

.

Then {v−→c }−→c ∈Jm,d
is an orthonormal basis for Symm(Cd). Given A ∈ End(Cd), we have:

tr (SymmA) =
∑

−→c ∈Jm,d

〈A.v−→c , v−→c 〉 =
∑

−→c ∈Jm,d

1

m! · ν−→c !
∑

π,π′∈Sm

〈Aecπ(1)
⊗ . . .⊗Aecπ(m)

, ecπ′(1) ⊗ . . . ⊗ ecπ′(m)
〉

=
∑

−→c ∈Jm,d

1

ν−→c !

∑

π∈Sm

〈Aec1 ⊗ . . .⊗Aecm , ecπ(1)
⊗ . . .⊗ ecπ(m)

〉

=
∑

−→c ∈Jm,d

1

ν−→c !

∑

π∈Sm

Ac1cπ(1)
· · ·Acmcπ(m)

=
1

m!

∑

−→a ∈[d]m

∑

π∈Sm

Aa1aπ(1)
· · ·Aamaπ(m)

,

where the last equality follows since
∑

π∈Sm
Ac1cπ(1)

· · ·Acmcπ(m)
is invariant under permuting c1, . . . , cm,

and since there are m!
ν−→c ! vectors −→a ∈ [d]m of a shape ν−→c . In particular, for any word w,

(8.1) tr (Symmw(X1, . . . ,Xr)) =
1

m!

∑

−→a ∈[d]m

∑

π∈Sm

w(X1, . . . ,Xr)a1aπ(1)
· · ·w(X1, . . . ,Xr)amaπ(m)

.

Proposition 8.1. Let w ∈ Fr be a cyclically reduced word. With Φ, T,Ω,Ωs,u as in §4, we have:

(8.2) E
(
|tr (Symmw(X1, . . . ,Xr))|2

)
=

1

m!2

∑

(π,π′,F,Σ)∈Z̃

W̃g(Σ2),

where

Z̃ :=

{
(π, π′, F,Σ) :

F :Ω→[d],Σ∈SΦ

π,π′∈Sym(Ω1,1)×Sym(Ω2,1)
F◦T=F◦ππ′◦Σ

}
.

Proof. Similarly to (4.4), we have

tr (Symmw(X1, . . . ,Xr)) =
1

m!

∑

−→a ∈[d]m

∑

π∈Sm

∑

f :[ℓ+1]×[m]→[d]
f(1,k)=ak ,f(ℓ+1,k)=aπ(k)

∏

(u,k)∈[ℓ]×[m]

(
Xw(u)

)
f(u,k),f(u+1,k)

=
∑

π∈Sym({ℓ}×[m])

∑

F :[ℓ]×[m]→[d]

∏

(u,k)∈[ℓ]×[m]

(
Xw(u)

)
F (u,k),F (T̃π(u,k))

.

Consequently, as in (4.8), we have:

E
(
|tr (Symmw(X1, . . . ,Xr))|2

)
=

1

m!2

∑

(π,π′)∈Sym(Ω1,1)×Sym(Ω2,1)

∑

F :Ω→[d]

∏

γ∈Ω

(
Xw̃(γ)

)
F (ππ′γ),F (T (γ))

.

The Proposition now follows from Corollary 2.15. �

We next define an action of H :=
∏

(s,u)∈[2]×[ℓ] Sym(Ωs,u) on Z̃ in the same way as in §5. For

(s, u) ∈ [2]× ([ℓ]\{1}) and πs,u ∈ Sym(Ωs,u),

πs,u.
(
π, π′, F,Σ

)
:=
(
π, π′, F ◦ π−1

s,u, πs,u ◦Σ ◦ T−1π−1
s,uT

)
,

and if (π1,1, π2,1) ∈ Sym(Ω1,1)× Sym(Ω2,1),

(π1,1, π2,1) .
(
π, π′, F,Σ

)
:=
(
π1,1π, π2,1π

′, F ◦ π−1
1,1π

−1
2,1, Σ ◦ T−1π−1

1,1π
−1
2,1T

)
.

Proof of Theorem 1.4. The proof is similar to the proof of Theorem 1.3. The only difference is that

now, summing over the H-orbit kills all representations that do not appear in Ind
Smℓi

S
ℓi
m

(1), rather

than the representations not in Ind
Smℓi

S
ℓi
m

(sgn). By Lemma 2.3, the irreducible subrepresentations
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χλ of Ind
Smℓi

S
ℓi
m

(1) correspond to partitions λ = (λ1, . . . , λℓi) with at most ℓi rows, and, therefore,
∏

(a,b)∈λ(d+b−a) ≥ (d−ℓ)mℓi . As in Corollary 5.3 and (5.6), the average of W̃g(Σ2) over an H-orbit

H.(π̂, π̂′, F̂ , Σ̂) is bounded by

1

m!2ℓ

r∏

i=1

∣∣∣∣∣∣∣∣∣

∑

hi∈
∏

w̃=i Sym(Ωs,u)
h′i∈

∏
w̃=−i Sym(Ωs,u)

Wg
(
hiΣ̂|Bi

h′iΣ̂|Ai

)
∣∣∣∣∣∣∣∣∣

≤ 1

m!ℓ

r∏

i=1

m!ℓi

(mℓi)!

∑

λ⊢mℓi:χλ⊆Ind
Smℓi

S
ℓi
m

(1)

χλ(1)〈χλ, 1〉Sℓim∏
(a,b)∈λ(d+ b− a)

≤ 1

m!ℓ
1

(d− ℓ)mℓ
.(8.3)

Denote Z̃π,π′ :=
{
(F,Σ) : (π, π′, F,Σ) ∈ Z̃

}
. Since Z̃Id,Id =W ′, Proposition 6.1 implies that

(8.4)
∣∣∣Z̃
∣∣∣ = m!2

∣∣∣Z̃Id,Id

∣∣∣ = m!2
∣∣W ′∣∣ ≤ m!2

(
d+mℓ

mℓ

)
(mℓ)!

r∏

06=k=−r

(mℓk)!(∑
i<kmℓi,k

)
!
.

As in the proof of Theorem 1.3, if d ≥ mℓ, then

E
(
|tr (Symmw(X1, . . . ,Xr))|2

)
=

1

m!2

∑

(π,π′,F,Σ)∈Z̃

W̃g(Σ2) ≤
∣∣∣Z̃
∣∣∣ 1

m!ℓ+2

1

(d− ℓ)mℓ

≤ (d+mℓ) · · · (d+ 1)

(d− ℓ)mℓm!ℓ

r∏

06=k=−r

(mℓk)!(∑
i<kmℓi,k

)
!

≤ 4mℓℓmℓ
r∏

06=k=−r

(
mℓk
mℓk/2

)
4mℓℓmℓ22mℓ = (16ℓ)mℓ. �

Appendix A. Fourier coefficients of the power word and a Diaconis–Shahshahani

type result

In this Appendix, we formulate two results. The first is a computation of the Fourier coefficients of

the power word w = xl for representations ρλ ∈ Irr (Ud), where λ̃ (see Remark 2.6) has at most d
2l

boxes. The second is a Diaconis–Shahshahani type result for the m-th coefficient of the characteristic

polynomial of a word w in random unitary matrices. Both statements are consequences of known

results.

Proposition A.1. Let w = xl be the l-th power word. Then, for every m ∈ N and every d ≥ 2ml,

(1) We have

E
(
|ρλ ◦ w|2

)
=

1

m!

∑

σ∈Sm

lℓ(σ) |χλ(σ)|2 ,

for all λ ⊢ m. In particular, E
(
|ρλ ◦ w|2

)
≤ lm.

(2) We have

E

(∣∣∣tr
(∧m

w
)∣∣∣

2
)

= E
(
|tr (Symmw)|2

)
=

(
l +m− 1

m

)
.

Proof. For every matrix A ∈ Ud and every µ ⊢ m, set

(A.1) trµ(A) :=

m∏

j=1

tr(Aj)aj ,
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where µ = (1a1 · · ·mam) is the partition m = (1 + . . . + 1)︸ ︷︷ ︸
a1 times

+ . . . + (m+ . . . +m)︸ ︷︷ ︸
am times

. The functions

trµ correspond to the power-sums symmetric functions pµ. Given λ ⊢ m, the character ρλ(A) is a

Schur polynomial in the eigenvalues of A, and, hence, it can be expressed in terms of trµ(A) via the

following formula (see e.g. [Mac95, I.7, page 114]),

(A.2) ρλ(A) =
∑

µ⊢m

χλ(µ)∏m
j=1 aj !j

aj
· trµ(A),

where χλ(µ) is the value of the character χλ ∈ Irr(Sm) on the elements with cycle type µ. In addition,

by (1.2), for every pair of partitions µ = (1a1 · · ·mam) and µ′ = (1b1 · · ·mbm) of m, we have:

(A.3) E
(
trµ(X

l)trµ′(X
l
)
)
= E




m∏

j=1

tr(Xjl)aj tr(X
jl
)bj


 = δµ,µ′

m∏

j=1

(jl)ajaj !.

Combining (A.2) and (A.3), and using the fact that the number of permutations σ ∈ Sm of cycle type

µ = (1a1 · · ·mam) is m!∏m
j=1 aj !j

aj , we obtain:

E

(∣∣∣ρλ
(
X l
)∣∣∣

2
)

=
∑

µ⊢m
|χλ(µ)|2

E
(∣∣trµ

(
X l
)∣∣2
)

(∏m
j=1 aj!j

aj
)2 =

∑

µ⊢m

lℓ(µ) |χλ(µ)|2∏m
j=1 aj !j

aj

=
1

m!

∑

µ⊢m

m!∏m
j=1 aj!j

aj
lℓ(µ) |χλ(µ)|2 =

1

m!

∑

σ∈Sm

lℓ(σ) |χλ(σ)|2 .(A.4)

The second claim of Item (1) follows from Schur orthogonality and the inequality lℓ(σ) ≤ lm.

For Item (2), note that tr (
∧m w) = ρ(1m) ◦ w and tr (Symmw) = ρ(m1) ◦ w. The corresponding

characters of Sm are the sign and the trivial characters. Thus, (A.4) becomes

E

(∣∣∣tr
(∧m

w
)∣∣∣

2
)

= E
(
|tr (Symmw)|2

)
= ESm

(
lℓ(σ)

)
=

1

m!

m∑

k=1

[
m

k

]
lk =

(
l +m− 1

m

)
,

where

[
m

k

]
is the number of permutations of m elements with exactly k disjoint cycles, also known

as the unsigned Stirling number of the first kind. The last equality follows e.g. from [GKP94, Equation

(6.11)]. This concludes Item (2). �

We next prove a Diaconis–Shahshahani type result. We first recall the following proposition, which

is a consequence of [MSS07, Theorem 2] and [R0̆6, Theorem 4.1] (see also [MP19, Corollary 1.13]).

Proposition A.2. Let w ∈ Fr, and let µ = (1a1 · · ·mam), µ′ = (1b1 · · ·mbm) be partitions of m. Let

p(w) ∈ N be such that w = up(w) with u ∈ Fr a non-power. Then:

(A.5) lim
d→∞

EUd

(
trµ(w)trµ′(w

−1)
)
= lim

d→∞
EUd




m∏

j=1

tr(wj)aj tr(w−j)bj


 = δµ,µ′

m∏

j=1

aj!(jp(w))
aj .

Since the joint moments of tr(w1), . . . , tr(wm) converge, as d→ ∞, to the joint moments of indepen-

dent complex normal random variables, an application of the moment method (as was done in [DS94]

for w = x, and later in [R0̆6, MSS07] for a general word) implies

Corollary A.3 ([R0̆6, Theorem 4.1], [MSS07, Theorem 2]). The random variables tr(w1), . . . , tr(wm)

converge in distribution to
√
p(w)Z1, . . . ,

√
mp(w)Zm, as d→ ∞, where Z1, . . . , Zm are independent

complex normal variables.
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In [DG06], Diaconis and Gamburd combined Corollary A.3 for w = x (namely [DS94]), together with

Newton’s identities relating elementary and power sum symmetric functions to give a formula for the

limit behavior of the random variables tr
∧mX with X is a random unitary matrix in Ud. Repeating

the argument for a general word w yields the following description of lim
d→∞

trUd

∧mw.

Corollary A.4 (cf. [DG06, Proposition 4]). Let w ∈ Fr be a word and let m ∈ N. Then the sequence

of random variables trUd

∧m w converges in distribution, as d→ ∞, to the polynomial in the normal

variables Z1, . . . , Zm given by:

1

m!
det




√
p(w)Z1 1 0 . . . 0√
2p(w)Z2

√
p(w)Z1 2 . . . 0

...
...

...
. . .

...√
(m− 1)p(w)Zm−1

√
(m− 2)p(w)Zm−2

√
(m− 3)p(w)Zm−3 . . . (m− 1)√

mp(w)Zm
√

(m− 1)p(w)Zm−1

√
(m− 2)p(w)Zm−2 . . .

√
p(w)Z1



.

Example A.5. Let m = 3. Then for every Borel set A ⊆ C,

lim
d→∞

P
(
trUd

∧3
w(X1, ...,Xr) ∈ A

)
= P (f(Z1, Z2, Z3) ∈ A) ,

where Z1, Z2, Z3 are i.i.d normal variables, and

f(Z1, Z2, Z3) =
p(w)3/2

6
Z3
1 − p(w)√

2
Z1Z2 +

p(w)1/2√
3

Z3.
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