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Rational cross-sections, bounded generation

and orders on groups

Corentin Bodart

April 30, 2024

Abstract

We provide new examples of groups without rational cross-sections (also called
regular normal forms), using connections with bounded generation and rational
orders on groups. Our examples contain a finitely presented HNN extension of the
first Grigorchuk group. This last group is the first example of finitely presented
group with solvable word problem and without rational cross-sections. It is also
not autostackable, and has no left-regular complete rewriting system.

MSC 2020 Classification: 06F15, 20F05, 20F10, 68Q45

A rational cross-section for a group G is a regular language L of unique representatives
for elements of G. This notion can be traced back to Eilenberg and Schützenberger
[ES69], and was mainly explored by Gilman [Gil87]. A related “Markov property” was
introduced by Gromov [Gro87] and explored by Ghys and de la Harpe [GdlH90].

Rational cross-sections are linked to several subjects in group theory. For instance
constructing a geodesic rational cross-section (i.e., rational cross-section with minimal-
length representatives) over a given generating set is sufficient to prove the rationality
of the corresponding growth series. In particular, the following groups admit geodesic
rational cross-sections for all generating sets:

• Finitely generated abelian groups [NS95]

• Hyperbolic groups [Can84; Gro87; GdlH90]

If you don’t require the section to be geodesic (and we won’t), the property of having
a rational cross-section is independent of the choice of a generating set. The following
groups have been shown to admit rational cross-sections:

• Automatic groups [Eps+92, Theorem 2.5.1]

• Finitely generated Coxeter groups [BH93]

The author acknowledges support of the Swiss NSF grants 200020-178828 and 200020-200400.
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• Thompson’s group F [GS97]

We should also mention that the class of groups with rational cross-sections is closed
under commensurability, extensions, free products [Gil87], graph products [HM95] and
some Bass-Serre constructions [BHS18]. As a corollary,

• virtually polycyclic groups (including virtually nilpotent groups),

• right-angled Artin groups (RAAG’s) and

• Baumslag-Solitar groups BS(m,n)

all admit rational cross-sections.

On the other side, very few groups are known not to have rational cross-sections:

• Infinite torsion groups (see [Gil87; GdlH90])

• Recursively presented groups with undecidable word problem (see eg. [OKK98]).

For completeness, we can also construct new non-examples from old ones:

Theorem ([GS91], see also Theorem 2.1). Consider a product A ∗C B with C finite,
s.t. either A or B doesn’t have a rational cross-section. Then neither does A ∗C B.

Our main objective in the present paper is to add to the list of known non-examples.
We start with the observation (Corollary 3.5) that groups with rational cross-sections
either have bounded generation (see §3 for a definition) or contain free non-abelian
submonoids. Some new non-examples follow, specifically

• some extensions of infinite torsion groups (§3.1)

• some Grigorchuk-type groups (including the Fabrykowski-Gupta group) (§3.2)

We then turn our attention to wreath products. We define property (R+LO), a
strengthening of left-orderability (LO), which means that some positive cone admits
a rational cross-section. We derive the following (positive) result:

Theorem 1 (Theorem 4.3). Let L and Q be two groups such that

• L has a rational cross-section

• Q is virtually (R+LO)

then the restricted wreath L ≀Q has a rational cross-section.

In the other direction, we prove that Q admitting “large” rational partial orders is
actually a necessary condition for L ≀ Q to admit a rational cross-section (under extra
conditions on L). Such rational orders have received attention recently (see [HS17;
Su20; ABR22; ARS21]). We build on these results to prove
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Theorem 2. Let Q be a group satisfying either

(a) Q has arbitrarily large/infinite torsion subgroups; (Theorem 5.5)

(b) Q has infinitely many ends; (Theorem 5.8)

and let L be a non-trivial group without free non-abelian submonoid, then L ≀ Q does
not admit any rational cross-section.

This result provides many elementary non-examples. For instance, Ghys and de la
Harpe ask whether all finitely generated solvable groups have rational cross-sections.
Kharlampovich already constructed finitely presented 3-step solvable groups with un-
solvable word problem [Kha82], which therefore cannot admit any rational cross-section.
To the best of our knowledge, groups like C2 ≀ (C2 ≀ Z) covered in case (a) are the first
set of examples of 3-step solvable groups with solvable word problem and without ra-
tional cross-sections. Examples like Z ≀ F2 covered in case (b) give the first torsion-free
non-examples which “do not rely on the existence of infinite torsion groups”.

Finally, we prove a bounded-generation-like condition for torsion-by-Z groups admitting
rational cross-sections (Proposition 6.1). This result (and some more work) allows us
to prove the following two theorems:

Theorem 3 (Theorem 6.4). The permutation group

H2 =

{

σ ∈ Sym(Z)
∣
∣
∣
∃π ∈ Z such that σ(x) = x+ π
for all but finitely many x ∈ Z

}

doesn’t have any rational cross-section.

This group is often called second Houghton group as part of the family introduced in
[Hou78]. Note that H2 = 〈a, t〉 with a = (1 2) and t(x) = x+ 1. We should mention B.
Neumann introduced an alternating version 〈b, t〉 with b = (1 2 3) much earlier [Neu37].

Theorem 4 (Theorem 7.6). The following HNN extension of the first Grigorchuk group

G =

〈

a, b, c, d, t
∣
∣
∣
a2 = b2 = c2 = d2 = bcd = (ad)4 = (adacac)4 = e
t−1at = aca, t−1bt = d, t−1ct = b, t−1dt = c

〉

(introduced in [Gri98]) doesn’t have any rational cross-section.

This last example is the first known example of finitely presented group with solvable
word problem and without rational cross-section, answering [OKK98, Q4]. As a corol-
lary, it also provides the first example of finitely presented group with solvable word
problem that is not autostackable, answering a question of Hermiller. Another corollary
is that it is not presented by a left-regular complete rewriting system.

Acknowledgment. I would like to thanks Tatiana Nagnibeda for introducing me to
this problem, and for many fruitful discussions. I’m also grateful to Susan Hermiller
and Laurent Bartholdi for sharing some of their thoughts and ideas on the issue. I’d
like to thank Rostislav Grigorchuk and Dmytro Savchuk for pointing to a mistake in
the proof of Proposition 7.4 in a previous version of this paper.
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1 Background information

1.1 Regular languages

Regular languages form the lowest class of languages in the Chomsky hierarchy of
complexities. Informally, a language is regular if its membership problem can be decided
by some computer with finite memory. Our model of computer is the following:

Definition 1.1. An automaton is a 5-uple M = (V,A, δ, ∗, T ) where

• V is a set of states / vertices.

• A is an alphabet.

• δ ⊆ V ×A×V is the transition function. An element (v1, a, v2) ∈ δ should be seen
as an oriented edge from v1 to v2, labeled by a.

• ∗ ∈ V is the initial vertex.

• T ⊆ V is the set of “accept” / terminal vertices.

An automaton is finite if both V and δ are finite.

Here are some examples of finite automata (with terminal vertices in green):

∗ tT tT

Figure 1: M for L = {ε} ∪ {tn, T n | n > 1}

∗
t

t

t
T

t

Figure 2: M for L = {tn | n ≡ 1, 2 (mod 3)}

∗
tT

a

aa

ta

T t

tT

t

tT

Figure 3: M for L ←→
ev

C2 ≀ Z

Definition 1.2. A finite automaton M recognizes a word w ∈ A∗ if w can be read
along some oriented path from the initial state ∗ to some terminal state v ∈ T . A
language L ⊆ A∗ is regular if it can be written as

L = {w ∈ A∗ | w is recognized by M}

for some finite automaton M = (V,A, δ, ∗, T ).

Remark. Whenever ∗ ∈ T the automaton M recognizes the empty word (noted ε).
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Some additional terminology around automata will be needed:

Definition 1.3.

• An automaton is deterministic whenever, for all v ∈ V and a ∈ A, there exists
at most one edge exiting v and labeled by a (i.e.,

∣
∣
(
{v} × {a} × V

)
∩ δ

∣
∣ 6 1).

• For v1, v2 ∈ V , we say that v2 is accessible from v1 is there exists an oriented path
from v1 to v2 in M . An automaton is trimmed if, for all v ∈ V , there exists t ∈ T
such that t is accessible from v and v is accessible from ∗.

• A strongly connected component is a maximal subset C ⊆ V such that, for
every v1, v2 ∈ C, the state v2 is accessible from v1 (and reciprocally).

For instance, automata in Figure 1 and 2 are deterministic, but not in Figure 3. The
automaton in Figure 2 is not trimmed.

A remarkable result due to Rabin and Scott [RS59] is that any regular language is the
set of words recognized by some finite, deterministic, trimmed automaton. Another
fundamental result in the theory of regular language is Kleene’s theorem. (We will use
it without even mentioning it, usually to construct regular languages efficiently.)

Theorem 1.4 (Kleene’s theorem). The class of regular languages (over a finite alphabet
A) is the smallest class of languages containing finite languages (over A), and closed
under the following three operations:

• Finite union

• Concatenation: L1L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}.

• Kleene’s star: L∗ =
⋃

n>0L
n = {w1w2 . . . wn | wi ∈ L, n > 0}

The class of regular languages is also closed under complementation (in A∗), hence
finite intersection, set difference, and in general all Boolean operations.

Finally, we introduce some notations for subwords (in general languages).

Notation 1.5. Consider a word w ∈ A∗. We denote by ℓ = ℓ(w) its length. For
0 6 i < j 6 ℓ, we denote by w(i : j] the subword consisting of all letters from the
(i+ 1)-th to the j-th one (included). If i = 0 we abbreviate the notation to w(:j].

1.2 Rational subsets and cross-sections

We now export those definitions to groups

Definition 1.6. Let G be a group.

• Given a generating set A and a word w ∈ A∗, this word can be evaluated in G.
The corresponding element of G will be denoted ev(w) or w.

5



• A subset R ⊆ G is rational if there exists a generating setA and a regular language
L ⊆ A∗ s.t. ev(L) = R. We denote the class of rational subsets of G by Rat(G).
For example finitely generated subgroups H 6 G are rational.

• If moreover the evaluation map ev : L → R is bijective, we say that L is a rational
cross-section for R.

Our primary interest will be rational cross-sections for the entire R = G.

For instance, automaton in Figure 1 recognizes a rational cross-section for Z = 〈t〉
relative to the generating set A = {t, T = t−1}, while automaton in Figure 3 recognizes
a rational cross-section for C2 ≀ Z = 〈a〉 ≀ 〈t〉 (with A = {a, t, T = t−1}).

It is interesting to know which operations preserve rationality of subsets of a given group
G. Several results directly translate from regular languages to rational subsets: the
class of rational subsets of a group G is closed under finite union, set-theoretic product,
Kleene star. However, contrary to intersections of regular languages, intersections of
rational subsets are not rational in general. That being said, things behave better in
special cases. Let us for instance recall the following classical result (used in §5).

Lemma 1.7 (Benois’ lemma [BS86], see also [BS21]). Consider F2 the free group of
rank 2, and let R ⊆ F2 be a rational subset. Then the set of reduced words representing
elements of R is regular. As a corollary, Rat(F2) is closed under all Boolean operations.

A natural question is how properties “rationality” and “existence of rational cross-
section” for R depend on the choice of a monoid generating set A and on the ambient
group G. It is answered by Gilman [Gil87]:

Proposition 1.8. Let G be a group and R ⊆ G a rational subset,

(a) Let A be any set generating G as a monoid. There exists regular language L ⊆ A∗

such that ev(L) = R. If furthermore R has a rational cross-section, we can ensure
ev : L → R is bijective (possibly for another L ⊆ A∗).

(b) The subgroup 〈R〉 is finitely generated, and R is rational in 〈R〉. It follows that R
is rational in any ambient group H ⊇ R. Moreover, the same holds with “rational”
replaced by “admitting a rational cross-section” everywhere.

1.3 Left-invariant orders

Let G be a group. A left-invariant order on G is a (partial) order ≺ on G satisfying

h1 ≺ h2 =⇒ gh1 ≺ gh2 for all g, h1, h2 ∈ G.

Given a left-invariant order on G, we can define its positive cone

P≺ = {g ∈ G | g ≻ eG}.
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Note that P−1
≺ = {g ∈ G | g ≺ eG}. Each property of the relation ≺ translates into a

property of its positive cone,

(a) Anti-symmetry translates into P≺ ∩ P−1
≺ = ∅.

(b) Transitivity translates into the fact that P≺ is a sub-semigroup, i.e., P≺P≺ ⊆ P≺.

(c) The order ≺ is total if and only if G = P≺ ∪ {e} ∪ P−1
≺ .

The other way around, given a subset P ⊆ G satisfying both (a) and (b), we can define
a left-invariant (partial) order

g ≺P h ⇐⇒ g−1h ∈ P.

Hence we can think interchangeably about orders and their positive cones. This allows
us to define a rational order (sometimes regular order) on G as a left-invariant
order on G whose positive cone is a rational subset of G.

Remark. Most of the recent literature deals with total left-invariant orders, so that
this adjective is usually dropped. We will work with both, hence keep the adjective.

2 Intersections of rational subsets

In the spirit of Benois’ lemma, we study when rationality is preserved when taking
intersections of subsets. First, we have

Proposition 2.1 (Compare with [GS91, Proposition 4.5]). Let G be a group, H a
subgroup, and R ⊆ G a rational subset. If either

(a) G = H ∗C B over a finite subgroup C, or

(b) G = H ∗C t over finite subgroups ι, ι′ : C →֒ H,

then H ∩ R is rational. Moreover, if R had a rational cross-section, so will H ∩R.

Remark. By induction, the same result holds for G the fundamental group of a graph
of groups with finite edge groups, and H any vertex group.

Proof. We will only prove part (a) as part (b) is similar.

Let us first treat two small cases: If C = B then H = G hence H ∩ R = R is still
rational. If C = H , then H is finite hence H ∩R is rational.

Otherwise we can suppose A ⊆ (H ∪B) \ C. Let L ⊆ A∗ be a regular language for R,
and M = (V,A, δ, ∗, T ) an automaton recognizing L. We construct a new automaton
M ′ = (V, (A \B) ⊔ C, δ′, ∗, T ) as follows:

• For each pair of states p, q ∈ V , if there exists an (oriented) path from p to q starting
with an edge labeled by s ∈ B, with associated word evaluating to c ∈ C and no
proper prefix evaluating in C, then add a c-edge from p to q.

7



• Remove all edges labeled by letters s ∈ B \ C.

It should be clear that the language L′ recognized by M ′ evaluate to H ∩ R. Let us
now suppose L was a rational cross-section and prove that the same holds for L′.

Each word w ∈ L′ can be written as w = u0c1u1 . . . cmum with ui ∈ (A\B)∗ and ci ∈ C.
Those words corresponds to words wold ∈ L of the form

wold = u0v1u1 . . . vmum

with vi ∈ A∗ evaluating to ci (in particular w = wold), starting with a letter in B and
without proper prefix evaluating in C. Suppose we have two words w, w̃ ∈ L′ evaluating
to the same element g ∈ H ∩ R. It follows that both words wold, w̃old evaluate to g,
hence they are actually the same word:

u0v1 . . . vmum = wold = w̃old = ũ0ṽ1 . . . ṽnũn

Comparing both expressions we get u0 = ũ0 as those are the longest prefixes without
letters in B. As we keep reading, the shortest word between v1 and ṽ1 is a prefix of the
other, but they both evaluate in C, hence v1 = ṽ1 and c1 = c̃1. Iterating, we get w = w̃
as wanted: L′ is a rational cross-section.

Surprisingly, the reciprocal “if A and B have rational cross-sections (and C is finite)
then A ∗C B has a rational cross-section” seems open. Note that, using Proposition 3.3
from [BHS18], this reduces to the following question:

Question. Suppose that A has a rational cross-section, and C 6 A is a finite
subgroup. Is it true that C has a regular language of cosets representatives?

Next we prove the following result. Note that Proposition 2.1 and Theorem 2.2 lie at
the opposite sides of a spectrum: the subgroup H in Proposition 2.1 is a free factor,
while here H intersects each free factors (and each conjugate) at most once.

Theorem 2.2. Let G be a finitely generated group and R a rational subset. Suppose

(a) G = A ∗C B for C a finite subgroup, or

(b) G = A ∗C t over finite subgroups ι, ι′ : C →֒ A,

Suppose that H 6 G is a finitely generated subgroup acting freely on the associated
Bass-Serre tree (by left multiplication). Then H ∩R is rational.

Remark. These results can be made effective as soon as the rational subset membership
problem is decidable in G (i.e., is decidable in both factors, see [KSS07]).

We start with several lemmas, following the scheme in §3-4 of [Su20]:

Definition 2.3. Let G be a group, A a symmetric generating set, andK > 0 a constant.
Consider v, w ∈ A∗ two words. We say w asymmetrically K-fellow travel with v if
there exists a weakly increasing sequence (in)n=1,...,ℓ(w) such that (using Notation 1.5)

distA
(
w(:n], v(: in]

)
6 K for all n.

8



w

v

Figure 4: w asymmetrically K-fellow travel with v. We see w is strongly
restrained by v while conditions imposed on v by w are much weaker.

Lemma 2.4 (Compare with [Su20, Lemma 3.5]). Let G be a f.g. group, A a finite
symmetric generating set, and K > 0. Consider L ⊆ A∗ a regular language. We define

L̃ = {w ∈ A∗ | ∃v ∈ L, w = v and w asymmetrically K-fellow travel with v}.

Then L̃ is rational and ev(L̃) = ev(L).

Proof. Let M = (V,A, δ, ∗, T ) be a deterministic automaton recognizing L. We con-
struct a new automaton M̃ recognizing L̃ as follows

• The vertex set is Ṽ = V ×BK where BK is the ball of radius K (around e) in the
Cayley graph of G, relative to the generating set A.

• Add an a-edge (a ∈ A) from (p, g) to (q, h) if any of the following conditions hold

1. g = h = e and there was an a-edge from p to q in M ,

2. p = q and h = ga (i.e., there was an a-edge from g to h in BK), or

3. Using only edges of type 1 and 2, there already exists in M̃ an oriented path
from (p, g) to (q, h) with associated word evaluating to a.

• The initial and terminal vertices are ∗̃ = (∗, e) and T̃ = T × {e} respectively.

Note that M can be seen as the sub-automaton consisting of all type 1 edges.

a

b

a

AaA

aA

aA

aA

aA

aA
b

b

b

a

b

b

Figure 5: Part of M̃ for G =
〈
a, b | [a, b], b2

〉
, A = {a,A = a−1, b} and K = 1.

Type 1 edges can be seen in black, type 2 in purple, and some type 3 in pink.
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We show that L̃ coincide with the language recognized by M̃ :

• By construction, each edge e of type 3 (from (p, g) to (q, h), labeled by a ∈ A) can
be associated to a word ve ∈ Lp→q satisfying g

−1veh = a.

Given a word w recognized by M̃ , we construct v recognized by M as follows: pick
an accepted path for w in M̃ . Replace each edge of type 1 by its label, forget about
edges of type 2, and replace each edge e of type 3 by ve. It’s easy to check that
w = v and w asymmetrically K-fellow travel with v, hence w ∈ L̃.

• Reciprocally, let w ∈ A∗ be a word asymmetrically K-fellow traveling with some
word v ∈ L evaluating to the same ev(w) = ev(v). Pick an accepted path for v in
M . Each prefix v(: i] leads to a state pi in M . Moreover, for each 0 6 n 6 ℓ(w),
there exists gn ∈ BK such that w(: n] = v(: in]gn. As v = w we can take i0 = 0,
iℓ(w) = ℓ(v) and g0 = gℓ(w) = e. We argue w is recognized by the path going
through all (pin, gn) in order (and only those), using correct type 3 edges.

It follows that L̃ is the language recognized by M̃ : L̃ is regular.

Proposition 2.5 (Compare with [Su20, Proposition 4.2]). Let G be a f.g. group, A a
finite generating set, and R,S regular languages evaluating to R, S ⊆ G respectively.
Suppose there exists K > 0 such that, for all g ∈ R ∩ S, there exist v ∈ R and w ∈ S
evaluating to g such that w asymmetrically K-fellow travel to v. Then R∩S is rational.

Proof. R̃ ∩ S is rational and evaluates to R ∩ S.

Lemma 2.6 (Nielsen basis). Consider H a group acting freely on a simplicial tree T ,
and fix a vertex p ∈ T . Then H is free, and admits a basis N such that, for any reduced
word w over N± and any 1 6 n 6 ℓ(w), the geodesic path from p to w · p is not covered
by the geodesic paths from p to w(:n− 1] · p and from w(:n] · p to w · p.

Proof of Theorem 2.2. We will only prove part (a), as part (b) is similar.

Fix A ⊆ A ∪B a finite symmetric generating set. Take R ⊆ A∗ a language evaluating
to R. Consider T the Bass-Serre tree1 for G = A ∗C B and p = A. Take N a Nielsen
basis for H as defined above, and consider S the language of reduced words over N±.

We check that, for every pair (v, w) ∈ R × S evaluating to the same point, w asym-
metrically K-fellow travel with v, where

K = max
h∈N

ℓA(h) + diamA(C).

The previous results says that, for each 1 6 n 6 ℓ(w), there exists an edge gnC such
that all w(: j]A with j < n lie in one component of T \ {gnC}, and all w(: j]A with
j > n lie in the other. Looking at the Cayley graph of G (w.r.t. A), this means that the

1For reminder, V T = G/A ⊔G/B and ET = G/C. An edge e is incident to a vertex v if e ⊆ v.
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(coarse) path w “crosses” the cutset gnC exactly once, between w(:n − 1] and w(:n].
On the other side, the (genuine) path v also has to cross this cutset (as it evaluates at
the same endpoint as w). Let in be the smallest index such that v(: in] ∈ gnC. It’s easy
to check that the sequence (in)16n6ℓ(w) is (strictly) increasing and

distA
(
w(:n], v(: in]

)
6 distA

(
w(:n− 1], w(:n]

)
+ diamA(C) 6 K.

e

w(:1]

v = w

v(: i1]

g1C

w

v

Figure 6: The Cayley graph of A ∗C B, and two words v,w.

Everything is in place for Proposition 2.5, except that S 6⊂ A∗. This can be fixed
replacing each letter ofN± by a geodesic representative over A. (We get a new language
SA ⊂ A∗, which is regular and evaluates to H .) We conclude that R∩H is rational.

3 Monsters without rational cross-sections

Let us first recall a classical lemma for regular languages

Lemma 3.1 (Pumping lemma). Let L be a regular language (over A), either

• L is finite, or

• L is infinite and there exist v1, v2, w ∈ A∗ with w 6= ε such that v1{w}∗v2 ⊆ L.

A direct corollary (proven in both [Gil87; GdlH90]) is the following: if L is a rational
cross-section for a group G, then either G is finite, or G contain an element w of infinite
order. In particular, infinite torsion groups don’t have rational cross-sections.

There exist other dichotomies for regular languages that can be used in a similar fashion.
We first need a notion of “smallness” for languages:

11



Definition 3.2 (Bounded language). A language L ⊆ A∗ is bounded if there exist
(not necessarily distinct) words w1, . . . , wn ∈ A∗ such that

L ⊆ {w1}
∗{w2}

∗ . . . {wm}
∗.

A folklore dichotomy is the following:

Lemma 3.3 (See for instance [Tro81]). Let L be a regular language (over A), either

• L has polynomial growth and is bounded, or

• L has exponential growth and there exist v1, v2, w1, w2 ∈ A∗ with w1w2 6= w2w1 and

v1{w1, w2}
∗v2 ⊆ L.

The corresponding notion of “smallness” for groups is

Definition 3.4 (Bounded generation). A group G is boundedly generated if there
exist (not necessarily distinct) elements g1, g2, . . . , gm ∈ G such that

G = 〈g1〉 〈g2〉 . . . 〈gm〉 .

A direct translation of Lemma 3.3 gives

Corollary 3.5. Let G be a group having some rational cross-section L, at least one of
the following must hold true:

• G is boundedly generated

• G contains a free submonoid M2 of rank 2.

Remark. Note that Corollary 3.5 is no longer a dichotomy. For instance the Baumslag-
Solitar group BS(1, 2) has rational cross-sections in both regime of Lemma 3.3, and
indeed it is boundedly generated and contains free submonoids.

Our goal in the next two subsections will be to construct concrete examples of groups
without either properties, hence without rational cross-sections. In both cases, one
condition will be easily discarded, some work being needed to reject the other.

3.1 Extensions of infinite torsion groups

We first look at groups mapping onto infinite torsion groups. Note that bounded
generation goes to homomorphic image so, if G has some quotient T which is not
boundedly generated (e.g. infinite torsion), neither is G. Absence of free submonoid
doesn’t behave as well under extension, however things can be done under conditions

Theorem 3.6. Let G be a group given by a short exact sequence

1 −→ N −֒→ G
π
−→ T −→ 1.

12



Suppose that N 6> M2, and T is torsion, then G 6>M2. As a corollary, if T is infinite,
then G doesn’t have any rational cross-sections.

Proof. Let g1, g2 ∈ G. Let n1, n2 be the (finite) orders of π(g1) and π(g2) respectively,
so that gn1

1 , g
n2

2 ∈ N . As N doesn’t contain any free submonoid, there exists some
non-trivial positive relation

w1(g
n1

1 , g
n2

2 ) = w2(g
n1

1 , g
n2

2 )

between gn1

1 and gn2

2 (in N). Obviously this relation can also be seen as a non-trivial
positive relation between g1 and g2 (in G), so that no pair of elements g1, g2 ∈ G
generates a free submonoid in G.

Corollary 3.7. The following extensions don’t admit any rational cross-sections

(a) Z× T for any infinite torsion group T , for instance Burnside groups B(p, n) with
odd exponent p > 665 and n > 2 generators, or the first Grigorchuk group G(012)∞ .

(b) Z ≀ T for any infinite torsion group T . (Compare with Theorem 5.5.)

(c) Free groups in the variety [xp, yp] = e for odd p > 665 and n > 2 generators.

(d) More generally, relatively free groups in the varieties w1(x
p
1, . . . x

p
r) = w2(x

p
1, . . . , x

p
r),

for distinct positive words w1, w2 ∈Mr, p > 665 odd, and n > 2 generators.

3.2 Groups acting on regular rooted trees

Another class of groups providing non-examples are groups with intermediate growth.
Note that the growth of any cross-section gives a lower bound on the growth of the
group, hence any hypothetical rational cross-section for a group of intermediate growth
should have polynomial growth hence be bounded.

Known groups of intermediate growth mainly comes from two constructions: groups
acting on trees following [Gri85], and groups “of dynamical origin” following [Nek18].
We will focus on Grigorchuk-type groups (not all of which are torsion).

Let Td be the d-ary rooted tree, and Gy Td by automorphisms. We denote by St(Ln)
the pointwise stabilizer of the nth level Ln of the tree, and Gn = G/St(Ln).

Proposition 3.8. If G is boundedly generated, then (|Gn|)n is at most exponential.

We first need a notation:

Definition 3.9. Let G be a group. We define its exponent as

exp(G) = inf{n > 0 | ∀g ∈ G, gn = e}

(with the convention exp(G) =∞ if no such n exists).
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Proof of Proposition 3.8. By construction Gn acts faithfully on the n first levels of Td,
in particular it can be seen as a subgroup of the automorphism group of the first levels,
i.e., a subgroup of the iterated permutational wreath product

Wd,n =
((
Sym(d) ≀ . . .

)
≀ Sym(d)

)
≀ Sym(d)

︸ ︷︷ ︸

n factors

It follows that elements of Gn have relatively small orders, namely bounded by

exp(Wd,n) = exp(Sym(d))n.

Now suppose that G is boundedly generated, and fix elements g1, g2, . . . , gm ∈ G such
that G = 〈g1〉 〈g2〉 . . . 〈gm〉. Factoring by St(n) we get

Gn = 〈g1〉 〈g2〉 . . . 〈gm〉

(where g is the image of g in the quotient Gn) whence

|Gn| 6 |〈g1〉| |〈g2〉| . . . |〈gm〉| 6 exp(Sym(d))mn

as wanted.

This might seem weak, but |Gn| typically grows as a double exponential. This is the case
as soon as the Hausdorff dimension of the closure G inside Wd = Aut(Td) is (strictly)
positive. (Recall that the Hausdorff dimension is given by

hdim(G) = lim inf
n→∞

log |Gn|

log |Wd,n|
= lim inf

n→∞

log |Gn|

dn
·
d− 1

log(d!)
.)

This includes spinal p-groups with p > 3 [FAZR11] and weakly regular branch groups
[Bar06; FA23]. For spinal 2-groups Gω, the orders |Gn| have been computed in [Sie08],
and the analogous lim sup is positive as soon as ω is not eventually constant, that is,
as soon as Gω is not virtually abelian. (The Hausdorff dimension itself is positive only
when ω doesn’t contain arbitrarily long sequences of identical symbols.)

We deduce that none of these groups has bounded generation. Combining this result
with known results on intermediate growth among spinal groups (see [Gri85; Fra20]),
we get new examples of groups without rational cross-sections:

Corollary 3.10. The following spinal groups don’t admit any rational cross-section

(a) Non virtually-abelian spinal groups Gω with p = 2. This includes the (non-torsion)
Grigorchuk-Erschler group G(01)∞ .

(b) Spinal groups Gω with p = 3 satisfying hypothesis of [Fra20, Theorem 4.6]. This
includes the Fabrykowski-Gupta group.

Remark. The same argument works for context-free cross-sections. Indeed, just as
regular languages, context-free languages are either bounded or have exponential growth
[Tro81], so that groups of sub-exponential growth with context-free cross-sections should
have bounded generation. This is not the case for spinal groups covered previously.
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4 Orders and wreath products: Positive results

Let us first recall a known result that started our investigation:

Proposition 4.1 (See [Gil87]). The lamplighter group

C2 ≀ Z =
〈
a, t | a2 = [a, tnat−n] = e for n = 1, 2, . . .

〉

admits a rational cross-section.

Proof. We construct a rational cross-section over A = {a, t, T = t−1}:

L = T ⊔ T a(t+a)∗T

where t+ = tt∗ = {tn : n > 1}, similarly T+ = TT ∗, and T = t+ ⊔ T+ ⊔ {ε}.

Let us be a bit informal. Except for the “all lamps off” elements (translations) covered
by the first term T , these normal forms consist in going through the support from left
to right, changing the state of each lamp to match the element represented, and never
touching those lamps ever after. Similarly, for general wreath products L ≀Q, we would
like to have some order on Q. Of course, this ordering should be “encodable” in a finite
automaton, which forces the order to be left-invariant, at least under the action of some
finite-index subgroup (as the only recognizable subsets of Q are finite-index subgroups
by a theorem of Anissimov and Seifert). This naturally leads to the following definition:

Definition 4.2. A finitely generated group G has property (R+LO) if there exists
a total left-invariant order ≺ on G such that the associated positive cone G+ = {g ∈
G | g ≻ e} admits a rational cross-section G+.

Remark. Property (R+LO) implies that G admits a rational cross-section. Indeed, if
G+ admits a rational cross-section G+, then we can define

G− := {s−1
n . . . s−1

2 s−1
1 | s1s2 . . . sn ∈ G+} ⊂ (A−1)∗

which is also rational (as regularity is preserved under substitution/morphism and mir-
ror image). It follows that G admits

G := G+ ⊔ G− ⊔ {ε} ⊂ (A ∪A−1)∗

as a rational cross-section.

Once this (R+LO) condition defined, Gilman’s construction generalizes easily.

Theorem 4.3. Let L and Q be two groups such that

• L has a rational cross-section;

• Q is virtually (R+LO).

Then L ≀Q has a rational cross-section.
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Proof. Let us first suppose that Q is (R+LO). Let Q, Q+ and L be rational cross-
sections for Q, Q+ and L respectively. We define L0 = L \ ev−1(eL). We claim that

G := Q ⊔QL0(Q+L0)
∗Q

is a rational cross-section for L ≀Q:

Note that the lamplighter only moves “in the positive direction” from the first to the last
state switch, so no switch can be undone. It follows that every word fromQL0(Q+L0)

∗Q
contains at least one non trivial state.

⋆ If g ∈ L ≀Q has empty support, i.e., is a translation, then g has a unique represen-
tative in Q, and no representative in QL0(Q+L0)

∗Q.

⋆ Suppose now that g =
(
(ls)s∈Q, q

)
has non-empty support. Let supp g = {s0 ≺

s1 ≺ . . . ≺ sn}, then

g = s0
∈Q

· ls0
∈L0

·
(
(s−1

0 s1)
∈Q+

· ls1
∈L0

)
· · ·

(
(s−1

n−1sn)
∈Q+

lsn
∈L0

)
· (s−1

n q)
∈Q

is the only word of G mapping to g.

If Q is only virtually (R+LO), denote by H 6 Q a finite index subgroup (say index n)
with property (R+LO). Note that Ln admits a rational cross-section, so the first part
implies that Ln ≀H has a rational cross-section. Moreover Ln ≀H has index n is L ≀Q.
We conclude in turn that L ≀Q admits a rational cross-section.

Examples of Q’s satisfying the (R+LO) condition are

(a) Q = Z with the usual order.

(b) Q = Z
d with lexicographic order.

(c) More generally, consider an extension A
ι
−֒→ B

π
−→ C. If both A and C have the

property (R+LO), then B has (R+LO) too. Indeed, the usual construction for a
positive cone B+ := π−1(C+)∪ ι(A+) has a rational cross-section B+ := C+A∪A+.

As a corollary, poly-Z groups (i.e., Z-by-Z-by-. . . groups) have (R+LO), and all
finitely generated virtually nilpotent groups are virtually (R+LO).

(d) It is shown in [ARS21, Section 3.2.1] that, if both L and Q admits total left-
invariant rational order, then the same is true for G = L ≀ Q. Their argument
adapts to property (R+LO): If both L and Q have (R+LO), then G = L ≀ Q has
(R+LO), with positive language G+ = Q+ ∪QL+(Q+L0)

∗Q.

The positive cone is formed of elements g =
(
(ls)s∈Q, q) ∈ L ≀Q such that

• either (ls)s∈Q ≡ eL and q ∈ Q+,

• or lm ∈ Q+ where m = min{s ∈ Q : ls 6= e}.
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(e) Q = BS(1, n) = 〈a, t | t−1at = an〉 for n > 1, with positive language

Q+ = t+ ⊔ T a(t+a)∗T .

where T = t+ ∪ T+ ∪ {ε}. Note that other solvable Baumslag-Solitar groups
BS(1,−n) have index-2 subgroup isomorphic toBS(1, n2), so are virtually (R+LO).
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t
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t
a

t t t t t t t t t t t t t t t t t t t t t t t

Q+

Figure 7: The positive cone Q+ = ev(Q+) inside Q = BS(1, 2)

(f) For braid groups, the Relaxation Normal Form is regular and compatible with the
Dehornoy order [Jug17, Theorem 5.5], hence Bn is (R+LO).

(g) A closer look at arguments of [ARS21] gives the following: given a finite family of
groups (Gi) with (R+LO), the group

(

∗iGi

)
× Z has property (R+LO).

5 Orders and wreath products: Negative results

In this section we explore our intuition that the only way to build a rational cross-section
for a wreath product L≀Q using an automaton is to switch on lamps monotonously w.r.t.
some rational left-invariant order on Q. This insight translates into Lemma 5.1. We
deduce from this lemma a criterion (Proposition 5.4) ensuring some wreath products do
not admit rational cross-sections, and apply it to groups similar to C2 ≀ (C2 ≀Z). In the
last subsection, we apply the criterion to wreath products L ≀Q with Q infinite ended.

5.1 Main lemma

Lemma 5.1 (Positive cones on Q). Let

1 −→ N −֒→ G
πQ

−→ Q −→ 1

be a short exact sequence, and suppose R ⊆ G has a rational cross-section L. Let
M = (V,A, δ, ∗, T ) be a trimmed automaton accepting L. For each state v ∈ V , we
define the language Lv→v of words we can read along paths from v to v. Finally, we
define Pv = πQ(ev(Lv→v)). Then Pv is a submonoid and

(a) If N is torsion (i.e., N 6>M1), then Pv ∩ P−1
v = {eQ}

(b) If N 6>M2, then Pv ∩ P−1
v is a finite cyclic subgroup of Q.
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Moreover, in either case, Pv \ P−1
v is a rational sub-semigroup of Q so that

g ≺v h ⇐⇒ g−1h ∈ Pv \ P
−1
v

defines a left-invariant rational partial order on Q.

Building a word w ∈ L correspond to following a path in the automaton M . Morally
what our lemma says is that, as long as we stay in the strongly connected component
(or “communication class” using Markov chain terminology) of a vertex v ∈ V , the
projection of w(: i] in Q will move along a chain for ≺v.

∗

The main idea is that, as soon as Pv ∩P−1
v (or rather T in what follows) is big enough,

the language will recognize a bunch of words projecting onto the same element of q ∈ Q,
and embedding all this mess (aka a free submonoid) inside a single lateral class qN isn’t
possible unless N itself contains a free submonoid. (The “trimmed” condition is there
to make sure no part of the automaton remains invisible in the recognized language.)

Examples.

• Let us first look at the rational cross-section for F2 formed by all reduced words
on a, b and their inverses A,B. The group F2 can be seen as a trivial extension
{e} →֒ F2 ։ F2, we have N = {e} torsion, and (for the automaton in Figure 8)

Pv = {e} ∪ {g ∈ F2 whose reduced word has the form s1 . . . sℓ−1a with s1 6= A}

which does satisfy Pv ∩ P−1
v = {e}.

∗
v

A

A

A

A

B BB

B

a

a

a

a

b bb

b

Figure 8: Automaton for F2 = 〈a, b〉

∗

v

a

a

T t

T t

T ta
T

a
t

Figure 9: Automaton for
〈
a, t | a3, [a, t]

〉

Note that the condition N 6> M2 is indeed necessary, as F2 can alternatively be
seen as the extension [F2, F2] →֒ F2 ։ Z

2 in which case Pv = P−1
v = Z

2.
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• Examples with Pv ∩ P−1
v non-trivial are quite easy to come up with. For instance,

the automaton in Figure 9 recognizes a cross-section for C3×Z, which can be seen
as an extension Z →֒ C3 × Z ։ C3, in which case Pv = P−1

v = C3.

• Finally, here is a strongly connected component of the automaton constructed in
section §4 for C2 ≀ Z2.
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Figure 10: Component of an automaton for C2 ≀Z
2 = 〈a〉 ≀〈s, t〉 and some corresponding cones.

It is notable that, even though cones obtained for different choices of v are quite
close in some sense (for instance, we always have

wu→v Pv wv→u ⊆ Pu ⊆ w−1
v→u Pv w

−1
u→v

for some wu→v, wv→u ∈ Q), they can have drastically different behavior (Pv gives
rise to a total order ≺v while ≺u has chain density → 0 w.r.t. balls in Z

2).

Proof of Lemma 5.1. Let us define

T = {w ∈ Lv→v | πQ(w) ∈ Pv ∩ P
−1
v }.

Both cases are pretty similar

(a) Let w+ ∈ T . Denote g = πQ(w+) ∈ Pv ∩ P−1
v , let w− ∈ T satisfying πQ(w−) = g−1

and define w = w+w−. Note that w ∈ Lv→v and w ∈ N . Since the automaton
is trimmed there exist paths from ∗ to v, and from v to a terminal state. Let
v0, v1 ∈ A∗ be words we can read along such paths, we get

v0{w}
∗v1 ⊆ L.

If w 6= ε the language on the right hand side is infinite. As ev : L → G is injective,
we get an infinite order element w in N , absurd! So the only possibility is w =
w+ = w− = ε: we get T = {ε} and Pv ∩ P−1

v = πQ(ev(T )) = {eQ}.

19



(b) We first show that Pv ∩ P−1
v is a torsion subgroup.

Define g, w+, w−, v0 and v1 as in part (a), with the extra assumption that g has
infinite order. In particular, there does not exist another element h ∈ Q such that
both g and g−1 are positive powers of h, hence the same holds for w+ and w−. It
follows that w+w− 6= w−w+ hence {w+w−, w−w+}∗ 6 Lv→v is a free monoid. Since

v0{w+w−, w−w+}
∗v1 ⊆ L

and ev : L → G is injective, we get a submonoid ev{w+w−, w−w+}∗ 6 N , absurd!
We conclude that all elements in Pv ∩ P−1

v = πQ(ev(T )) are torsion.

Suppose there exist w1, w2 ∈ T s.t. w1w2 6= w2w1. Let ni be the (finite) order
of gi = πQ(wi). We get a free monoid {wn1

1 , w
n2

2 }
∗ 6 Lv→v evaluating to a free

submonoid ev{wn1

1 , w
n2

2 }
∗ 6 N , absurd! Hence T is a commutative submonoid of

A∗, i.e., there exists w0 ∈ A∗ such that T ⊆ {w0}∗. It follows that Pv ∩ P−1
v is a

cyclic subgroup (generated by some power of πQ(w0)).

Note that, in both cases, T is a regular language (submonoids of {w0}∗ ≃ N are finitely
generated hence regular), so Lv→v \T is regular too, and evaluates to Pv \P−1

v in Q.

5.2 A criterion for wreath products

Our interest will be directed towards wreath products G = L ≀ Q, in which case N =
⊕

Q L. We first prove that N contains free submonoid if and only if L does.

Proposition 5.2. Let (Gi)i∈I be monoids. Suppose none of the Gi contains free (non-
abelian) submonoids, then

⊕

i∈I Gi doesn’t contain free submonoids either.

We begin by a general result on relations:

Lemma 5.3. Suppose two elements g1, g2 ∈ G do not generate a free monoid, then
they satisfy a relation w1(g1, g2) = w2(g1, g2) with w1, w2 ∈ M2 = {x, y}∗ two distinct
positive words such that ℓ(w1) = ℓ(w2).

Proof of the lemma. First of all, g1, g2 do not generate a free submonoid, so they satisfy
a relation v1(g1, g2) = v2(g1, g2) for some v1 6= v2 ∈ M2. If ℓ(v1) = ℓ(v2) we’re done.
Suppose without lost of generality that ℓ(v1) > ℓ(v2), and that x is the (ℓ(v2) + 1)-th
letter of v1. Let us take w1 = v1yv2 and w2 = v2yv1. Obviously

w1(g1, g2) = v1(g1, g2) g2 v2(g1, g2) = v2(g1, g2) g2 v1(g1, g2) = w2(g1, g2).

Moreover the (ℓ(v2) + 1)-th letter of w1 (resp. w2) is x (resp. y), whence w1 6= w2.
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Proof of Proposition 5.2. We first deal with the case |I| = 2, so the direct sum can be
written as G×H . Fix x1, x2 ∈ G×H , say xi = (gi, hi). Let us construct a non-trivial
positive relation between x1 and x2.

• As G doesn’t contain a free submonoid, there exist distinct words u1, u2 ∈M2 with
ℓ(u1) = ℓ(u2) =: l and u1(g1, g2) = u2(g1, g2) =: g̃. Let h̃i := ui(h1, h2).

• As H doesn’t contain a free submonoid, there exist distinct words v1, v2 ∈M2 with
ℓ(v1) = ℓ(v2) and v1(h̃1, h̃2) = v2(h̃1, h̃2).

• Consider wi(x, y) = vi(u1(x, y), u2(x, y)) for i = 1, 2. The announced relation is

w1(x1, x2) = w2(x1, x2)

This equality clearly holds in the second component. In the first component it reads
as v1(g̃, g̃) = v2(g̃, g̃) which follows from ℓ(v1) = ℓ(v2). Moreover this relation is
non-trivial. Indeed, v1 and v2 differs on some letter, wlog the j-th letter is x in v1
and y in v2, then wi

(
(j − 1)l :jl

]
= ui for i = 1, 2, but u1 6= u2 so that w1 6= w2.

The more general case where I is finite comes by induction from the case |I| = 2. Finally
the result extends to arbitrary sums using that “not containing a free submonoid” is a
local property, hence goes to direct limits.

We are now ready to prove our criterion

Proposition 5.4. Let Q be a finitely generated group. Suppose that, for any finite
sequence of left-invariant rational partial orders ≺1,≺2, . . . ,≺n on Q, there exists an
arbitrarily big set S ⊆ Q which is an antichain w.r.t. to all orders ≺i. Then L ≀ Q
doesn’t have any rational cross-section for any non-trivial group L 6>M2.

Recall that a set S ⊂ Q is an antichain w.r.t. an order ≺ if and only if it doesn’t
contain p, q ∈ S such that p ≺ q (i.e., distincts elements of S are always incomparable).

Proof. For the sake of contradiction, let L be a rational cross-section for L ≀Q. WLOG
assume A ⊂ L ∪ Q. Let M = (V,A, δ, ∗, T ) be a deterministic trimmed automaton
accepting L. Consider all orders ≺v for v ∈ V , and let S ⊆ Q with

|S| >
∑

v∈V

∣
∣Pv ∩ P

−1
v

∣
∣

be a large common antichain. We consider a non-trivial element h ∈ L, and define
g = (h · 1S, eQ) ∈ L ≀Q. We show that no element in L represents g.

By contradiction, suppose that g = w for some w ∈ L. For all s ∈ S, there exists
1 6 is 6 ℓ(w) s.t. the state of the lamp on the site s changes between w(: is − 1] and
w(: is]. Recall that A ⊂ L ∪ Q hence the lamplighter can only change the state of the
lamp he is standing next to. In other words

πQ
(
w(: is − 1]

)
= πQ

(
w(: is]

)
= s.
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By the pigeonhole principle, there exist s, t ∈ S such that following both prefixes w(: is]
and w(: it] in the automaton lead to the same state v ∈ V and such that s−1t 6∈ Pv∩P−1

v .
However

w(is : it] ∈ Lv→v =⇒ s−1t = πQ
(
w(is : it]

)
∈ Pv,

so that s−1t ∈ Pv \ P
−1
v , i.e., s ≺v t, contradiction!

Theorem 5.5. Suppose Q has arbitrarily large or infinite torsion subgroups. Then L≀Q
doesn’t have any rational cross-section for any non-trivial group L 6>M2.

Proof. Distinct elements s, t of a given torsion subgroup can never be comparable w.r.t.
any left-invariant order, as s−1t has finite order. Put another way, large torsion sub-
groups form large common antichains.

Remark. It is natural to ask whether Proposition 5.4 can be improved all the way to
a genuine reciprocal of Theorem 4.3, i.e., is the following statement true?

Conjecture A: The group L ≀Q (with L 6≃ {e}) has a rational cross-section if and
only if Q is virtually (R+LO) and L has a rational cross-section.

Getting back information on L from “L ≀ Q has a rational cross-section” seems quite
difficult. For instance, even for Q = C2, it reduces (up to known results) to “L×L has
a rational cross-section only if L does” which is open. For this reason, we propose

Conjecture B: C2 ≀Q has a rational cross-section iff Q is virtually (R+LO).

Indeed, getting back information on Q seems more doable. A further argument toward
the conjecture is the following strengthening of Proposition 5.4: let ≺ be a partial order
on Q and S ⋐ Q a finite subset. We define the chain density of ≺ as

CD(≺, S) =
1

|S|
max

{
|C| : C ⊆ S is a chain w.r.t. ≺

}

Proposition 5.6. Suppose L≀Q has a rational cross-section L with L 6>M2 non-trivial.
Let M = (V,A, δ, ∗, T ) be a finite automaton recognizing L. There exists ε = ε(M) > 0
such that, for all S ⋐ Q, there exists v ∈ V such that

CD(≺v, S) > ε.

Do these inequalities imply that one of these left-invariant orders restricts to a total
order on a finite index subgroup of Q? This is true whenever Q = Z

d for instance.
Some equivariant version of Dilworth’s theorem might be useful.
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5.3 Rational cones in free and infinite-ended groups

In this section, we prove the following strengthening of a result by Hermiller and Sunic
from [HS17]. We need a slight adaptation of their argument to deal with partial orders.

Proposition 5.7. Let F2 = 〈a, b〉 be a free group. For any rational order ≺ on F2,
there exists S 6 F2 of rank 2 such that S is an antichain w.r.t. ≺.

Proof. Let P = {g ∈ F2 | g ≻ e}. We suppose on the contrary that any subgroup
S 6 F2 of rank 2 intersects P , aiming for a contradiction.

LetA = {a, b, a−1, b−1}, and let P ⊆ A∗ be a regular language for P . By Benois’ lemma,
we may assume P consists only of reduced words over A. Let |V | be the number of
states in a corresponding automaton.

⋆ We show that, for any g ∈ F2, there exists g′ ∈ P such that dist(g−1, g′) < |V |.

Let w ∈ A∗ be the reduced word for g−1. Suppose wlog that w ends with b±1, hence

waba−1w−1, wab−1a−1w−1, wa2ba−2w−1 and wa2b−1a−2w−1

are all reduced words, and S = 〈g−1aba−1g, g−1a2ba−2g〉 is a rank 2 subgroup of F2. By
our assumption there exists k ∈ P ∩ S, with corresponding reduced word

wa . . . a−1w−1 ∈ P.

As a corollary, w is a prefix of a word in P, hence there exists another word v ∈ A∗ of
length ℓ(v) < |V | such that wv ∈ P. Finally g′ = ev(wv) has the announced properties.

⋆ The sequence defined by g0 = e and gn+1 = gng
′
n for all n > 0 is an infinite chain

(w.r.t. ≺) supported in B(e, |V |) (which is finite), contradiction!

Theorem 5.8. Let Q be a group with infinitely many ends. Then L ≀ Q doesn’t have
any rational cross-section for any non-trivial group L 6>M2.

Proof. We use once again Proposition 5.4, we just have to provide large antichains. We
first reduce to the case Q = F2 and then provide an infinite antichain in F2.

⋆ Let ≺1,≺2, . . . ,≺n be a finite sequence of rational orders on Q with corresponding
(rational) positive cones P1, P2, . . . , Pn.

Using Stallings’ classification of groups with infinitely many ends, we know Q is either
a free amalgamated products A ∗C B over a finite subgroup C, or an HNN extension
A ∗C t over finite subgroups ι, ι′ : C →֒ A. In either case standard Bass-Serre theory
gives a free subgroup F2 6 Q of rank 2 acting freely on the corresponding Bass-Serre
tree. Using Theorem 2.2, we get that all intersections Pi ∩ F2 are rational: all these
orders restrict to rational orders on F2.
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⋆ It remains to show that, given rational orders ≺1,≺2, . . . ,≺n on F2, we can find an
infinite antichain. We show by induction on n that there exists a subgroup S 6 F2 of
rank 2 which is a common antichain for all those orders.

The case n = 1 is covered by Proposition 5.7. Suppose our hypothesis holds for n− 1,
and let T 6 F2 of rank 2 be a common antichain for ≺1, . . . ,≺n−1. Let Pn be the
(rational) positive cone of ≺n. Using Benois’ lemma, we know that Pn ∩ T is rational:
≺n restricts to a rational order on T . Using Proposition 5.7 once more, we get a
subgroup S 6 T of rank 2 which is an antichain for ≺n, hence for all ≺1, . . . ,≺n.

Remark. Let us informally explain why Lemma 5.1 is so effective on wreath products.
Given a word w ∈ S∗, we can see it as a path (starting at e) in the Cayley graph
Cay(G, S). We can also consider the projected path in any quotient Q. For generic
extensions, asking for a word w to represent an element g ∈ G only imposes the endpoint
of the projected path (namely πQ(g)). However, for G = L ≀ Q, more is true: the
projected path should also pass by all sites s ∈ Q with “lamps on” (for a well-chosen g,
this could be all sites in a large antichain), and this can be particularly hard to achieve
when building w following a path in an automaton.

6 Torsion-by-Z groups and Houghton’s H2

Particularizing Lemma 5.1 to torsion-by-Z groups, we get that Pv ⊆ Z>0 or Pv ⊆ Z60.
Moreover the only word in Lv→v evaluating to 0 is the empty word ε. This means that,
following a path in a strongly connected component of the automaton M , we should go
up (resp. down) in the Z-coordinate every so often, with only finitely many options in
between those steps up (resp. down). More precisely, we have

Proposition 6.1. Let G be a group given by a short exact sequence

1 −→ N −֒→ G
π
−→ Z −→ 1

with N torsion. Suppose R ⊆ G has a rational cross-section and fix any t ∈ π−1(1).
Then there exists a finite subset S ⊆ N and m ∈ N such that

R ⊆
(
(St)∗(St−1)∗

)m
. (∗)

Remark. For R a subgroup, condition (∗) is weaker than bounded generation. Indeed,

• If g ∈ N , then g has finite order n so that

〈g〉 ⊂
(

{e, g, g2, . . . , gn−1} t
)∗(

{e, g, g2, . . . , gn−1} t−1
)∗

• If g /∈ N , denote h(g) = gt−π(g). We have

〈g〉 ⊆
(

{e, h(g), h(g−1)} t
)∗(

{e, h(g), h(g−1)} t−1
)∗
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It follows that bounded generation, that is the existence of g1, g2, . . . , gm ∈ R such that
R = 〈g1〉 . . . 〈gm〉, implies the existence of a finite S ⊆ N such thatR ⊆

(
(St)∗(St−1)∗

)m
.

Remark. As a reality check, let us consider G = C2 ≀ Z: the entire R = G admits a

rational cross-section, and can indeed be written as R =
(
({e, a}t)∗({e, a}t−1)∗

)2
.

Proof of Proposition 6.1. Let L be a rational cross-section for R andM = (V,A, δ, ∗, T )
be a trimmed automaton accepting L (with A finite). Fix m = 2|V | − 1. We define

h :

(
G −→ N
g 7−→ gt−π(g)

)

Let J := maxs∈A |π(s)| be the largest jump π( · ) can do in one step in the automaton.
For each v ∈ V , we denote its strongly connected component Kv, and LKv→Kv

the
language of words we can read from any vertex in Kv to any other vertex in Kv. Let

S = {e} ∪ h

(

ev(A) ∪

{

w
∣
∣
∣
w ∈ LKv→Kv

for some
v ∈ V and |π(w)| 6 J

})

The remainder of the proof goes as follows:

(a) We prove that S is finite, through an upper bound on the length of possible w’s.

(b) We show that ev(Lv→v) ⊆ (St)∗(St−1)∗.

(c) We quickly check that ev(A) ⊆ (St)∗(St−1)∗.

(d) We decompose each word recognized by M into a product of at most m words of
the previous two types, hence proving

R = ev(L) ⊆
(
(St)∗(St−1)∗

)m
.

(a) Consider a strongly connected component K, and w ∈ LK→K satisfying |π(w)| 6 J .
Suppose w.l.o.g. Pv ⊆ Z>0 (for any - hence all - v ∈ K). Using some Loop-Erasure
algorithm, we decompose any path recognizing w as an union of a simple path labeled
w0, together with a bunch of (non-empty, simple) loops labeled u1, . . . , ur.

w w0

u1

u2

u3

Figure 11: A path inside a component K of the automaton, and its decomposition. For the
decomposition, follow the path. Each time you come back at an already-visited vertex, cut the
simple loop formed between the two visits, and “forget about the loop”, then keep going.
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Even though we cannot reconstruct w from w0 and the ui’s, we at least have

π(w) = π(w0) +
r∑

i=1

π(ui).

Note that ℓ(w0) 6 |K| − 1 hence π(w0) > J(1− |K|). Recall π(ui) > 1 by Lemma 5.1.
Putting everything together J(1− |K|) + r 6 π(w) 6 J hence r 6 J |K| and finally

ℓ(w) = ℓ(w0) +

r∑

i=1

ℓ(ui) < |K|+ r |K| 6 J |K|2 + |K| .

(b) Let w ∈ Lv→v. If w = e, this is trivial. Otherwise, Lemma 5.1 gives π(w) 6= 0,
say π(w) > 1. Recall the notation w(i : j] for the subword of w consisting of all letters
from the (i + 1)th to the jth, included. Let i0 = 0. We define recursively ij as the
largest integer such that uj = w(ij−1 : ij] satisfies π(uj) 6 J . By definition of J , all
uj are non-empty, so we eventually have w = u1u2 . . . ur. By maximality of ij’s (or as
π(w) > 1 whenever r = 1), we have 1 6 π(uj) 6 J so that h(uj) ∈ S. Finally we get

uj = h(uj)t · t
π(uj)−1 ∈ (St)∗

for all j, from which w ∈ (St)∗ follows. Similarly, if π(w) 6 −1, we have w ∈ (St−1)∗.

(c) Let s ∈ A. If π(s) > 0, we have s = h(s)t · tπ(s)−1 ∈ (St)∗. Similarly, if π(s) < 0,
s = h(s)t−1 · tπ(s)+1 ∈ (St−1)∗. If π(s) = 0, we have s = h(s)t · t−1 ∈ (St)∗(St−1)∗.

(d) Let g ∈ R. As L is a rational cross-section for R, there exists w ∈ L such that
w = g. Using another Loop-Erasure algorithm, we can rewrite

w = w1s1w2s2 . . . sn−1wn

with wi ∈ Lvi→vi labeling a (possibly empty) loop at vi, and si labeling an edge from vi
to vi+1, and n 6 |V |. We’ve shown wi, si ∈ (St)∗(St−1)∗ which concludes the proof.

w s1s2 . . . sn−1
w1

w2 w3

Figure 12: A path in the automaton and its decomposition. For the decomposition, start at
the starting vertex ∗ and skip directly to the last visit of ∗, hence bypassing a (possibly empty)
loop ∗ → ∗, then go to the next vertex. Each time you enter a new vertex, skip directly to the
last visit of said vertex (bypassing another loop), then keep going
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6.1 No rational cross-section for Houghton’s group H2

Houghton’s groups form a family of groups with many interesting properties. The first
member is the group H1 = FSym(N) of finitely supported permutation of N, which is
not finitely generated. The second is defined as

H2 =

{

σ ∈ Sym(Z)
∣
∣
∣
∃π ∈ Z such that σ(x) = x+ π
for all but finitely many x ∈ Z

}

.

It is finitely generated but not finitely presented. Higher groups in the family are finitely
presented. Brown proved that Hn has property FPn−1, but not FPn (see [Bro87]). In
particular, Hn’s are examples of groups without finite complete rewriting system, and
therefore good candidates not to have any rational cross-section. We show that H2

doesn’t have any rational cross-section. As a byproduct, it is not boundedly generated.

First note that H2 is indeed a torsion-by-Z group, with the short exact sequence

1 −→ FSym(Z) −֒→ H2
π
−→ Z −→ 1.

We show that subsets of H2 of the form
(
(St)∗(St−1)∗

)m
are “nicer” than H2 as a whole,

hence H2 cannot be of this form. In order to formalize this idea we define a notion of
complexity for elements of H2:

Definition 6.2. Let h ∈ FSym(Z). We define its crossing number as

c(h) = max
p∈Z+ 1

2

#{x ∈ Z : x < p < h(x)}

More generally, if g ∈ H2, we define c(g) = c(gt−π(g)).

Z
p

Figure 13: A permutation h ∈ FSym(Z) and a p reaching the bound c(h) = 3

Lemma 6.3. Crossing numbers satisfy several properties:

(a) c(g) = c(tmgtn) for all m,n ∈ Z.

(b) c(g) = c(g−1)

(c) c(g1g2) 6 c(g1) + c(g2)

(d) c(g) 6 b− a for all g ∈
(
Sym[a, b] t

)∗
.
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Proof. Let us take a deep breath, and prove them one by one:

(a) c(g) = c(gtn) is clear (for all g ∈ H2). Moreover, for all h ∈ FSym(Z), we have
c(tmht−m) = c(h), as those are “translated” permutations. It follows that

c(tmgtn) = c(tm gt−π(g) t−m) = c(gt−π(g)) = c(g).

(b) c(h) = c(h−1) is clear for h ∈ FSym(Z), indeed we have

#{x ∈ Z : h(x) < p < x} = #{x ∈ Z : x < p < h(x)}

due to some “conservation of mass”. For generic g ∈ H2, we have

c(g−1) = c(g−1tπ(g)) = c(t−π(g)g)
(a)
= c(gt−π(g)) = c(g).

(c) This is clear for h1, h2 ∈ FSym(Z), as x < p < h1h2(x) implies that either h2(x) <
p < h1h2(x) or x < p < h2(x). Now for g1, g2 ∈ H2 we have

c(g1g2) = c(g1g2t
−π(g1g2)) = c(g1t

−π(g1) tπ(g1)g2t
−π(g1g2))

6 c(g1t
−π(g1)) + c(tπ(g1)g2t

−π(g1g2))

= c(g1) + c(g2)

(d) Let g ∈ (Sym[a, b] t)n. The associated h = gt−n ∈ FSym(Z) can be written as

h = σ0 · tσ1t
−1 · t2σ2t

−2 · . . . · tn−1σn−1t
−n+1

for some σ0, σ1, σ2, . . . , σn−1 ∈ Sym[a, b]. Note that tiσit
−i ∈ FSym(Z) and satisfies

supp(tiσit
−i) ⊆ [a+ i, b+ i]. The situation can be illustrated as follows:

tn−1σn−1t
−n+1

tn−2σn−2t
−n+2

...

Figure 14: A “braid” diagram for (d)

Now observe that h(x) 6 x+ (b− a), for all x ∈ Z, which concludes.

28



Now that everything is in place, we can proceed and prove this section’s main result

Theorem 6.4. H2 does not admit any rational cross-section.

Proof. Consider a subset R ⊆ H2 admitting a rational cross-section, so that R ⊆
(
(St)∗(St−1)∗

)m
for some finite S ⊆ FSym(Z) by the previous theorem. Fix [a, b] a

finite interval containing the support of each s ∈ S. It follows that

R ⊆
(
(Sym[a, b]t)∗(Sym[a, b]t−1)∗

)m

hence c(g) is uniformly bounded by 2m(b− a) on R (using Lemma 6.3 repetitively).

On the other side, crossing numbers are not uniformly bounded on H2. For instance

hK = (1,−1)(2,−2) . . . (K,−K) ∈ FSym(Z) 6 H2

satisfies c(hK) = K for any K ∈ N. The conclusion follows.

Remark. In the previous section we used that, in order for a word w ∈ A∗ to evaluate
to a well-chosen g ∈ L ≀ Q, the corresponding path in Q should pass by a large set of
elements in Q, which can be complicated. In this section, we show the path correspond-
ing to any word w evaluating to well-chosen g ∈ H2 should do many back-and-forths in
Q = Z, which turns out to be just as complicated.

7 A finitely presented extension of Grigorchuk’s group

The goal of this section is to prove that the finitely presented HNN-extension G of the
first Grigorchuk group defined in [Gri98] doesn’t have a rational cross-section. This
group was introduced as the first example of finitely presented group which is amenable
but not elementary-amenable. In the first subsection, we recall the construction of G,
and exhibit an action of G on the (unrooted) 3-regular tree. The actual proof that G
does not admit rational cross-section, using Proposition 6.1, comes in §7.2.

7.1 An action of G on the 3-regular tree

Let us first recall the definition of the first Grigorchuk’s group.

Definition 7.1 (Grigorchuk’s group, via its action by automorphisms on the infinite
rooted binary tree {0, 1}∗). Grigorchuk’s group is G = G(012)∞ = 〈a, b, c, d〉, where
a, b, c, d ∈ Aut({0, 1}∗) are defined recursively by

{

a(0w) = 1w

a(1w) = 0w

{

b(0w) = 0a(w)

b(1w) = 1c(w)
{

c(0w) = 0a(w)

c(1w) = 1d(w)

{

d(0w) = 0w

d(1w) = 1b(w)
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We will also need the notion of section of an automorphism at a vertex:

Definition 7.2. Let g ∈ Aut({0, 1}∗) and v ∈ {0, 1}∗. The section of g at v is the
unique element gv ∈ Aut({0, 1}∗) such that

∀w ∈ {0, 1}∗, g(vw) = g(v)gv(w).

For instance, the previous definition gives a0 = id, b0 = a, b10 = a, b110 = id, c1 = d.
This will usually be depicted as follows:

a

a

a

a

a

a

a

a

a

a

Figure 15: From left to right a, b, c and d. Black triangles denotes id sections.

Grigorchuk’s group admits an L-presentation, exhibited by Lysenok in [Lys85]

G =
〈
a, c, d | φi(a2) = φi(ad)4 = φi(adacac)4 = e ∀i > 0

〉

where φ : {a, c, d}∗ → {a, c, d}∗ is defined by φ(a) = aca, φ(c) = cd and φ(d) = c.

The previous φ defines an injective endomorphism φ : G→ G. Pictorially we get

ad b ca da

Figure 16: From left to right φ(a), φ(b), φ(c) and φ(d).

so that φ(g) ∈ St(0) for all g ∈ G, and φ(g)1 = g. (This last equality proves injec-
tivity, and will be central in order to define an action of G.) Using this presentation,
Grigorchuk [Gri98] constructed the following finitely presented group:

Definition 7.3. The group G is defined as the following (ascending) HNN-extension

G = G ∗φ t =

〈

a, b, c, d, t
∣
∣
∣
a2 = b2 = c2 = d2 = bcd = (ad)4 = (adacac)4 = e
t−1at = aca, t−1bt = d, t−1ct = b, t−1dt = c

〉
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Proposition 7.4. The group G acts faithfully, by automorphisms, on the 3-regular tree.

Construction. We will parametrize vertices of the 3-regular tree by pairs (n, w) ∈ Z×
{0, 1}∗, under the extra identification (m, 1nw) ∼ (m+n, w). We have an edge between
vertices (n, w) and (n, ws) for all n ∈ Z, w ∈ {0, 1}∗ and s ∈ {0, 1}.

(2, ε) = (0, 11)

(1, ε) = (0, 1)

(0, ε)

(−1, ε)

(2, 0)

(1, 0) = (0, 10)

(0, 0)

(−1, 0)

(1, 01)

(0, 01)

(−1, 01)

(1, 00)

(0, 00)

(−1, 00)

For g ∈ 〈a, b, c, d〉 we define g · (0, w) = (0, gw) through the usual action G y {0, 1}∗.
Outside of this subtree, we define the action branch by branch:

• We start by a · (−1, 0w) = (−1, 0(d · w)) and a · (−2, 0w) = (−2, 0(dad · w)), and
a · (n, 0w) = (n, 0(x ·w)) with x = e, a, a for n ≡ 0, 1, 2 (mod 3) resp. (for n < −2)

• b · (n, 0w) = (n, 0(x · w)) with x = a, a, e for n ≡ 0, 1, 2 (mod 3) respectively,

• c · (n, 0w) = (n, 0(x · w)) with x = a, e, a for n ≡ 0, 1, 2 (mod 3) respectively,

• d · (n, 0w) = (n, 0(x · w)) with x = e, a, a for n ≡ 0, 1, 2 (mod 3) respectively,

Finally t · (n, w) = (n− 1, w).

In particular the G-action on each branch {(n, 0w) | w ∈ {0, 1}∗} factors through
D8 = 〈a, d〉 for n = −1, through V4 = 〈a, dad〉 for n = −2, and through C2 = 〈a〉 for
n < −2 (the morphism ψn onto C2 depending only on n mod 3).

ψ−1(a) = d
ψ−2(a) = dad

ψ0(a) = ψ2(b) = ψ1(c) = ψ0(d) = e
and

ψ1(a) = ψ2(a) = a
ψ0(b) = ψ1(b) = a
ψ0(c) = ψ2(c) = a

ψ1(d) = ψ2(d) = a

This defines an action of F (a, b, c, d, t), remains to check that each relation is satisfied

• The first line of relations holds in G (so holds in the subtree below (0, ε)), obviously
a2, b2, c2, d2 acts as the identity on each branch, and x4 = e is a law in D8

• Relations t−1bt = d, t−1ct = b and t−1dt = c are trivial.
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• t−1at = aca is equivalent to a bunch of conditions on the actions ψ−i(a). First, we
should have ψ−1(a) = d (compare with the left diagram of Figure 16). Then

∀i > 1, ψ−(i+1)(a) = ψ−i(a)ψ−i(c)ψ−i(a)

so ψ−2(a) = dad, ψ−3(a) = dad e dad = e, ψ−4(a) = eae = a, and so on.

ad

dad

a

ca

a

a

gψ−1(g)

ψ−2(g)

ψ−3(g)

ψ−4(g)

Figure 17: Action of a, c and a random g ∈ G on the tree. The highlighted vertex is (0, ε)

So we get a genuine G-action. Moreover, the action restricted to tnGt−n is faithful (look
under (−n, ε)), and any g /∈ N =

⋃

n t
n
Gt−n shifts levels so acts non-trivially.

Remark/Definition 7.5. Our tree has slightly more structure as it is graduated.
Indeed we can define the level of vertex (n, v) as n+ ℓ(v), where ℓ(v) is the length of
v. In particular we can define a relation “is a descendant of”, which is preserved by the
action. Therefore we can still define the section of an automorphism g at a vertex
(n, v) as the unique element g(n,v) ∈ Aut({0, 1}∗) satisfying

g · (n, vw) = (ñ, ṽ g(n,v)w), where (ñ, ṽ) = g · (n, v).

Remark. The boundary of the tree can be identified with the set of doubly infinite
sequences of 0 and 1, starting with infinitely many 1’s (together with a globally fixed
end −∞, which can be considered as the root at infinity). The induced action can
easily be described. For v ∈ {0, 1}∗, s ∈ {0, 1} and w ∈ {0, 1}∞, we have

• t shifts to the left: t · . . . 11v|sw = . . . 11vs|w

• Elements g ∈ G act on the main subtree as g · . . . 11|w = . . . 11|(gw) where gw is
defined by the usual action G y {0, 1}∞.

• Finally, g ∈ G acts on other branches as g · . . . 110v|w = . . . 110(ψi(g)v)|(ψi(g)vw)
where i < 0 is the position of the first 0.
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Remark. The existence of an action can also be seen abstractly. Consider a sequence
of nested groups Gn acting on nested sets/graphs Ωn

G0 G1 G2 G3 · · ·

Ω0 Ω1 Ω2 Ω3 . . .

φ0 φ1 φ2 φ3

ι0 ι1 ι2 ι3

If all of this is equivariant, in the sense ιn(g · ω) = φn(g) · ιn(ω) for all g ∈ Gn, ω ∈ Ωn,
then we get an action lim−→Gn y lim−→Ωn. If moreover all Gn, Ωn, φn and ιn are equal
to fixed G, Ω, φ and ι respectively, then we get an action

G ∗φ t = lim−→Gn ⋊ 〈t〉 y lim−→Ωn.

Here, we just take G = G and Ω = {0, 1}∗, φ = φ and ι : w 7→ 1w. The direct limit of
all G’s is

⋃

n t
n
Gt−n, while the direct limit of {0, 1}∗ is our tree. (If it wasn’t clear, this

shows that the graph acted on is indeed a tree since direct limits of trees are trees.)

7.2 No rational cross-section for G

We apply Proposition 6.1 (rather its contrapositive), hence proving the following result.

Theorem 7.6. The extension G doesn’t have any rational cross-section.

Proof. Let N =
⋃

n t
n
Gt−n. Fix S ⊂ N a finite set and m ∈ N. We’re aiming to show

G 6=
(
(St)∗(St−1)∗

)m
.

Up to conjugation by some power of t, we may suppose S ⊂ G. We also add e ∈ S.
The strategy is the following: for X ⊆ N , we consider

secn(X) = {xvSt(Ln) | x ∈ X, v ∈ L0} ⊆ Aut({0, 1}∗)/St(Ln)

the set of sections below vertices at level 0, but we only care about the action down
until level n. (Recall that St(Ln) is the pointwise stabilizer of Ln.)

In the one hand, secn(N) contains the usual congruence quotient secn(G) = Gn, which
has size 25·2

n−3+2 (as soon as n > 3, see [Gri00]). It follows |secn(N)| grows as a double
exponential. In the other hand, we show the cardinal of

secn

(

N ∩
(
(St)∗(St−1)∗

)m
)

grows exponentially in n, so that
(
(St)∗(St−1)∗

)m
cannot fully cover N , nor G.

Observation. The chain rule (xy)v = xy(v)yv gives

secn(XY ) ⊆ secn(X) secn(Y ) for X, Y ⊆ N.
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This allows to decompose the problem into simpler parts. Indeed, each element h ∈
N ∩

(
(St)∗(St−1)∗

)m
can be written as a product h = a0a1 . . . aℓ with

ai ∈ t
j(i)St−j(i) for some height function j : [[1, ℓ]]→ Z

satisfying j(i+1)− j(i) = ±1, with the sign of this difference changing at most 2m− 1
times (and some additional boundary conditions). Pictorially,

G

t−n
Gtn

Figure 18: j(i) versus i, and the bunching. Here m = 3.

If we bunch together all contiguous ai with j(i) > 0 (red pikes), and all contiguous
ai with j(i) 6 −n (green valleys), we get elements of U :=

⋃

J>1 t(St)
J−1(St−1)J and

t−n
Gtn respectively, so that

N∩
(
(St)∗(St−1)∗

)m
⊆ S·U ·

(
S · t−1St · . . . · tn−1St1−n · t−n

Gtn · tn−1St1−n · . . . · S · U
)m−1

.

We then find estimates on the number of possibles sections for each subset:

(a) For n > 0, we have |secn(t−n
Gtn)| 6 266.

(b) For each 0 6 j 6 n− 1, we have |secn(t−jStj)| 6 |S|+ 10.

(c) We have |secn(U)| 6 L, for L a constant depending on S, but crucially not on n.

Combining these bounds with the previous observation, we would get

∣
∣
∣secn

(

N ∩
(
(St)∗(St−1)∗

)m
)∣
∣
∣ 6 (|S|+ 10) · L ·

(
(|S|+ 10)2n · 266 · L

)m−1

which is indeed (simply) exponential in n. Remains to prove estimates (a-b-c):

(a) Let g ∈ G and denote h = t−ngtn. If v = (0, ε), then hv (mod Ln) is fully de-
termined by the values (ψ−2(g), ψ−1(g), ψ0(g), ψ1(g), ψ2(g)) (at most 8 · 4 · 23 = 256
different sections). Otherwise, hv is a subsection of some ψ∗(g) ∈ 〈a, d〉, i.e., belongs to
{e, a, b, c, d, ad, da, ada, dad, adad} (10 sections).

(b) Let s ∈ S and denote h = t−jstj . If v = (0, ε), then hv is fully determined by s (so
|S| choices). Otherwise, hv is a subsection of an element ψ∗(g) ∈ 〈a, d〉, i.e., belongs to
{e, a, b, c, d, ad, da, ada, dad, adad}. We get |S|+ 10 sections.

34



gψ−1(g)

ψ−2(g)

ψ−3(g)

ψ−4(g)

ψ∗(g)

Ln

v

Figure 19: Section of t−ngtn below v = (0, ε).
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v

Figure 20: Section of t−jstj below v = (0, ε).

(c) We’ll need some more artillery this time. Let us start with a definition and some
properties inspired by [BR10]

Definition 7.7. Let h ∈ N . We define the complexity level k(h) as the smallest
integer k such that all vertices v ∈ Lk have sections hv belonging to {e, a, b, c, d} (with
the convention k(e) = k(b) = k(c) = k(d) = −∞).

Lemma 7.8. For g, h ∈ N , we have

(i) k(a) = 0

(ii) k(tgt−1) = k(g)− 1

(iii) k(gh) 6 max{k(g), k(h)}+ 1.

As a corollary, k is finite on N \ {e, b, c, d}.

Let us go back to estimate (c). Let K = maxs∈S k(s). Each h ∈ U can be written as

h = ts1t
−1 · t2s2t

−2 · . . . · tJsJt
−J · tJ−1sJ+1t

1−J · . . . · ts2J−1t
−1

with m > 1 and s1, s2, . . . , s2J−1 ∈ S. Using Lemma 7.8 (ii-iii) repetitively gives
k(h) 6 K + 1. It follows that, for any vertex v ∈ L0, the section hv is given by some
automorphism of the K + 1 first levels and then a choice from {e, a, b, c, d} for the
section at each vertex of the (K + 1)-th level. In total, this gives a bound of

L = 22
K+1−1 · 52

K+1

possibles sections.
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