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Abstract

The paper studies several properties of Laplace hyperfunctions introduced by
H. Komatsu in the one dimensional case and by the authors in the higher dimen-
sional cases from the viewpoint of Cech-Dolbeault cohomology theory, which enables
us, for example, to construct the Laplace transformation and its inverse in a simple
way. We also give some applications to a system of PDEs with constant coefficients.
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1 Introduction

A Laplace hyperfunction on the one dimensional space was first introduced by H. Komatsu
([B]-[10]) to justify the operational calculus for arbitrary functions without any growth
condition at infinity. After his great success of the one dimensional Laplace hyperfunc-
tions, the authors of this paper established an Oka type vanishing theorem (Theorem 3.7
[2]) and an edge of the wedge type theorem (Theorem 3.12 [3]) for the sheaf of holomor-
phic functions of several variables with exponential growth at infinity. Thanks to these
fundamental theorems, we were succeeded in defining the sheaf 8P of Laplace hyperfunc-
tion of several variables as a local cohomology groups along the radial compactification
Dr» = R™ LU S"! of R™ with coefficients in the sheaf &°® of holomorphic functions with
exponential growth, and also showing that #*® is a soft sheaf (Corollary 5.9 [3]).

Since a Laplace hyperfunction is defined as an element of the local cohomology group,
to understand its concrete expression we need some interpretation of the local cohomology
group, which is done by usually considering its Cech representation through the relative
Cech cohomology group or more generally its “intuitive representation” introduced in [11]
Section 4 (see Subsection .3 also).

Recently T. Suwa [12] proposed another method to compute a local cohomology group
by using a soft resolution of a coefficient sheaf, which is called the Cech-Dolbeault co-
homology when we distinguish it from the usual sheaf cohomology. This implies, in
particular, the sheaf of Sato’s hyperfunction can be computed with the famous Dolbeault
resolution of holomorphic functions by using the Cech-Dolbeault cohomology theory. In
fact, N. Honda, T. Izawa and T. Suwa [1] studies Sato’s hyperfunctions from the viewpoint
of Cech-Dolbeault cohomology theory and finds that several operations to a hyperfunction
such as the integration of a hyperfunction along fibers, etc. have very simple and easily
understandable descriptions in this framework because a hyperfunction is represented by
a pair (uy, po1) of C*°-differential forms.

The purpose of this paper is to study Laplace hyperfunctions from the viewpoint of
Cech-Dolbeault cohomology theory, which gives us several advantages to their treatments
like the case of Sato’s hyperfunctions. To make this point more clear, we briefly explain,
as such an example, an inverse Laplace transformation Z£ in the framework of Cech-
Dolbeault cohomology: It is given by a quite simple form (see Definition for details)

2.0 = [(%2) [ stormesiing. e crac]

where v* is an appropriate real n-dimensional chain asymptotic to +/—1R" and a pair
p(w)(0, z) of C*-differential forms represents, roughly speaking, the constant function 1
in Cech-Dolbeault cohomology on S"~! x D¢» which also satisfies the support condition

supp(p(w)) € ~{(#,2) € S"' x C"; (9, Imz) > 0} C 5" " x Den.
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Here Den = C"LS?" 1 is the radial compactification of C*, and see Definition 2.2.2) for the
symbol *(e). Note that the above support condition for p(w) guarantees the convergence
of the integral. The existence of such a kernel p(w)e$* with the desired support condition
is crucial in the definition of the inverse Laplace transformation, which comes from the
fact that in Cech-Dolbeault cohomology group the support of a representative can be cut
off in a desired way.

Furthermore, as was seen in the proof of Lemma [7.0.5 we can estimate the support
of a Laplace hyperfunction ZL,(f) by using the fact that any derivative of p(w) becomes
zero as a cohomology class because it is cohomologically constant. Thus Cech-Dolbeault
cohomology theory gives us several new ideas and methods in a study of Laplace hyper-
functions.

The paper is organized as follows: In Section 2, after a short review of Cech-Dolbeault
cohomology theory, we introduce several geometrical notations which are used through
the whole paper. Then we establish the fundamental de-Rham and Dolbeault theorems in
Section 3 and give the definition of the sheaf of Laplace hyperfunctions in Section 4. We
also give several expressions of Laplace hyperfunctions via Cech cohomology and Cech-
Dolbeault cohomology in the same section. The one of important facts in hyperfunction
theory is the notion of boundary values of holomorphic functions. We construct a bound-
ary value morphism for Laplace hyperfunctions in Section 5. The Laplace transformation
and its inverse in the framework of Cech-Dolbeault cohomology are defined in Sections 6
and 7, and the fact that they are inverse to each other is shown in Section 8. The last
section gives some applications to a system of PDEs with constant coefficients.

2 Preparations

Through the paper, we use the language of the derived categories: Notations Mod(Z),
Mod(Zy), CT(Mod(Zx)), Kt*(Mod(Zx)), D" (Mod(Zx)), etc. are the same as those in
the book [4], for example, Mod(Z) denotes the category of abelian groups, Mod(Zx) the
category of sheaves on X of abelian groups, CT(Mod(Zyx)) the category of complexes
bounded below of sheaves on X of abelian groups, and D*(Mod(Zx)) is the subcategory
consisting of complexes bounded below of the derived category of Mod(Zx).

2.1 Cech-Dolbeault complex

In this subsection, we briefly recall the definition of a Cech-Dolbeault complex. For
details, refer the readers to [I]. Let X be a locally compact and o-compact Hausdorff
space and K its closed subset, and let S = {U,};cp be an open covering of X and A’ a
subset of A such that &’ = {U;}ienr (A’ C A) becomes an open covering of X \ K. For
a=(ag,ag, -, a;) € A we set

Uy = Usy NUs, N -+ N Uy,

Let .Z be a sheaf of Z modules on X. We denote by C(S,S’; .%) the Cech complex
of # with respect to the pair (S,S8’) of coverings, that is, C(S,S’; F) is the complex

5k71 5k+2

L NS, 8 F) S oS, S F) S s, S F) S



Here C*(S,S’; F) consists of alternating sections {s, }acas+1 with s, € % (U,) and s, = 0
if o € (A')*!, and the differential 6* is defined by

k+2

5k({5a}aeAk+1)5 = Z(_l)iﬂ

i=1

(B € A2,

where 8V denotes the sequence such that the i-th element of 5 is removed.
Let .7* be a complex with bounded below of sheaves of Z modules

dk 1 dk+2
yk yk-ﬁ-l gk—lﬂ .

Then we denote by C(S,S")(.#*) the single complex associated with the double complex

T T T
Ja—1 Cp+1(5,5/; rgn;) ﬂ Cp—i—l(S,S/; yq—i-l) da+1 Cp+l(5 S 7 g\q+2) Ja+2
T oF T o Tor :
I ovs, Sz Y oS, s ey I ows, s ey I
T T T
that is, the complex is given by
CHS,SN(Z*) = @ C(S.8; F9)
p+q=k

and, forw = @ wPie CHS,8)(F°),

p+q=k

déﬁssﬂcg'ﬂaﬁ = @ (Y w ) + (=1)PdrHwPrh).
’ pa=k+1

Let .# be a sheaf of Z modules on X and % — #* a resolution of F by soft sheaves.
Then we sometimes call the complex C(S,8")(%#*) the Cech-Dolbeault complex of #
(with respect to the pair (S,S’) of coverings).

Theorem 2.1.1 ([1]). Under the above situation, there exists the canonical isomorphism
in DT (Mod(Zx))
RIk(X; 7)) ~C(S,S)(F*).

Example 2.1.2. If we take

as coverings of X and X \ K, then the complex C(V,V')(.#*) becomes quite simple as
follows:

C*YV)N(F°) = FH W) @ F5 (Vo)
where Vo1 = Vo N V4, and dlé‘(vy’)(/m) is given by

FrW) @ F Vo) 3 (w1, wor) = (dFwr, wilvg, — d" 'we) € FHH) @ ZF(Vin).



2.2 Radial compactification

Let M be an n-dimensional real vector space with the norm | e | and £ = M ®@g C. We
denote by Dg (resp. D) the radial compactification E LI S~ (resp. M U S™!) of E
(resp. M) as usual (see Definition 2.1 [3]). Note that Dy, = M holds, where M is the
closure of M in Dgp. We also set My, =Dy, \ M and E,, =Dg \ E.

We define an R, -action on Dg by, for A € R, and x € Dg,

A ifx ekl
Ar = )
r ifx e FEL.

The R -action on D, is defined to be the restriction of the one in Dg to Dy;. And we
also define an addition for a« € M (resp. a € E) and = € Dy, (resp. = € Dg) by

a+x ifxe M (resp. x € E),
a+x = .
x if v € My (resp. x € Ey).

Definition 2.2.1. A subset K in D, is said to be a cone with vertex a € M in D, if
there exists an R, -conic set L C D), such that

K=a+ L.

The notion of a cone in Dg is similarly defined. We often need to extend an open
subset in E to the one in Dg.

Definition 2.2.2. Let V' be an open subset in E, we define the open subset V in Dg by
V=Dg\(E\V).

Note that we sometimes write “V instead of V. For an open subset U in M, we can
define an open subset U in Dy, in the same way as that in Dg.

Lemma 2.2.3. V is the largest open subset W in Dy with V =W N E.

In Definition 3.4 of [2], we introduced the notion that an open subset U in Dg is
regular at oo. In this paper, we call such an open subset “l-regular at oo” to distinguish
it from the similar notion for a closed subset.

Definition 2.2.4. A closed subset F' C D is said to be regular if N E = F holds.

It is clear that a closed cone K C Dg with vertex a becomes regular if and only if
e, (x) EKNEy < a+zr €K

holds for any = € E'\ {0}. Here 1, : £\ {0} - E = (E \ {0})/R; is the canonical
projection. Note also that, for example, the set consisting of the only one point in E, is
a closed cone in our definition, however, which is not regular.

Lemma 2.2.5 (2], Lemma 3.5). Let K C Dg be a closed cone. The conditions below
are equivalent:

1. K is regular.



2. “(E\ K) =D\ K holds.
3. Dg \ K is a l-regular at oo.

The following definition are often used through the paper: For open subsets U and I’
in M, define an open subset Ux+/—1I" in Dy by

Uxy/—1I' = ~(U x v/—1TI') C Dg. (2.1)

Let M* and E* be dual vector spaces of M and F, respectively. Then we can define
the radial compactification Dy+ and M7, (resp. Dg+ and EZ) for a vector space M* (resp.
E*) in the same way as those of Dy, and M, (resp. D and E).

We also define the open subset VinD g+ for an open subset V in E* in the same way
as that in Dg, that is, R

V =Dg \ (E*\V). (2.2)

Now we introduce the subset N7 (Z) in £} and the canonical projection @y as follows:
The canonical projection @y, : EX \ /—1M% — MZ is defined by

ESN\V=IML, = (M \{0}) & V-1M") /Ry == (M*\{0})/Ry = M, (2.3)

which is induced from the canonical projection E* = M* & /—1M* — M*, that is, w
is given by

B N\V-IML 56+ V-1n ((§n) € S, £#0) = ¢/l¢] € M.
Let Z be a subset in Dg.
Definition 2.2.6. The subset N (7) in E, is defined by

{CeE;Re(z, () >0 (Vz€ZNEL)}
Note that Ny .(Z) is an open subset in E% and that N7 .(Z) = EX holds if ZNEy = 0.

Definition 2.2.7. We say that Z is properly contained in a half space of D with direction
¢ € E if there exists r € R such that

Z C {z € E; Re(z, ¢) >}, (2.4)

where ( is regarded as a unit vector in E*. If a subset Z is properly contained in a half
space of Dy with some direction, then Z is often said to be proper in Dg.

Then it is easy to see:

Lemma 2.2.8. Let ( € EX and Z C Dg. The Z is properly contained in a half space of
Dg with direction ¢ if and only if ¢ € N7 (7).

Example 2.2.9. Let G be an R -conic closed subset in £ and a € E. Set K =a+ G C

Dg. Then we have
Np(K) = Np.(G) = 7(G°) N ES,

where G° is a dual open cone of G in E*, that is,
G°={C € E*;Re(z, () >0 (Vz € G)}.
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3 Several variants of de-Rham and Dolbeault theo-
rems on Dy

Let V' be an open subset in Dg and f a measurable function on VN E. We fix a coordinate
system z = 2 + /—1y of E in what follows.

We say that f is of exponential type (at oo) on V' if, for any compact subset K in V,
there exists Hyx > 0 such that |exp(—Hg|z|) f(2)] is essentially bounded on K N E, i.e.,

|lexp(=Hxl2]) f ()L xnm < +oo. (3.1)

Set

Any higher derivative of ith tt iabl dz
Do (V)= fec™(VnE): ny higher e'r1va ive of f with respect to variables z and Z .
is of exponential type on V'

Then it is easy to see that {Zp,(V)}y forms the sheaf 2, on Dg. The following easy
lemma is crucial in our theory:

Lemma 3.0.1. The sheaf 2, is fine.
Let Qﬁ’g denote the sheaf on Dg of (p, ¢)-forms with coefficients in 2y, and set
k b
QDE - @ Q]Ip))g
ptq=k
Now we define the de-Rham complex Q]B)E on Dy with coefficients in Zp,, by

0o _d 1 d d 2n
0— 2y, — 2y, — ... — 2y, —0,

and the Dolbeault complex Qﬁ’; on Dg by

d d d
0— 280 = 28! = . 28" — 0.

Let Op" (resp. ﬁgj’(p )} denote the sheaf of holomorphic functions (resp. p-forms) of
exponential type (at co) on Dg. The following proposition can be shown by the similar
arguments as those in the proof of the usual de-Rham and Dolbeault theorems with
bounds.

Proposition 3.0.2. Both the canonical morphisms of complexes below are quasi-isomorphic:
L] 7( ) 4
Cpp — 2, Op>" — 2p°.

We show, in [2], the Oka type vanishing theorem of holomorphic functions of expo-
nential type on a Stein domain. Hence the above proposition immediately concludes:

Corollary 3.0.3 ([2], Theorem 3.7). Assume that V' N E is Stein and that V' is 1-regular
at oo. Then we have the quasi-isomorphism

Oy (V) — DB (V).

Furthermore, the edge of the wedge type theorem of exponential type has been also
established in our previous papers:



Theorem 3.0.4 ([3], Theorem 3.12, Proposition 4.1). The complexes RI'p,, (0" )y and
RI'p,, (Zp,) are concentrated in degree n. Furthermore, S (Zp,) is 1som0rphlc to Zp,, -

In subsequent sections, we need to extend our de-Rham theorem to the one with a
parameter. Let T" be a real analytic manifold and set Y := T'xDg and Y, = T'x (Dg\ E).
We denote by pr : Y — T (resp. pp, : Y — Dg) the canonical projection to 7" (resp.
Dg).

Let W be an open subset in Y and f(¢, z) a measurable function on W\ Y. We say
that f(t,z) is of exponential type on W if, for any compact subset K in W, there exists
Hyg > 0 such that |exp(—Hxklz|) f(t, z)| is essentially bounded on K \ Y.

Now we introduce the set Z2y (W) consisting of a locally integrable function f(t, 2)
on W\Y,, satisfying the condition that any higher derivative (in the sense of distributions,
for example) of f(t, z) with respect to the variables z and Z is a locally integrable function
of exponential type on W. Then, in the same way as in Zp,,, the family {Z£2y(W)}w
forms the sheaf Z2y on Y which is fine. Let Z.2%. denotes the sheaf on Y of k-forms
with respect to the variables in F, and let us define the de-Rham complex .£25 by

0— 290 U8 pol D5 PR ggm

where dp,, is the differential on Dg.

Let £2y be the subsheaf of Z2y consisting of a C'°-function (with respect to all the
variables ¢, z and Z) whose any higher derivative also belongs to Z<2y. Then we have
also the de-Rham complex &25:

o dog 1 dDE dDE 2n
0 — &2y — £y L= E2Y — 0.

We denote by Z50 1 (resp. &r) the sheaf of Ljy -functions (resp. C*°-functions) on

T. Then the following proposition follows from the same arguments as those of a usual
de-Rham complex.

Proposition 3.0.5. We have the quasi-isomorphisms
p}liﬂlgzj — L5 and ppiEr — £
We also have

Proposition 3.0.6. Let .% be a sheaf of Z modules on T'. The complexes RFpﬁl (Dar) (p;lﬁ)
E
is concentrated in degree n, and we have the canonical isomorphism

Pr ®ZI’H§;(DM) OTpDT;(DM)/Y —H 71(]D)M)(pT ):

where pr : pﬁ; (Dps) =T x Dyy — T is the canonical projection.

Proof. Since Dy, has an open neighborhood U in Dg which is topologically isomorphic to
Dy x R™, we may replace Dg with U = Dy, x R”, and we have the commutative diagram
of topological spaces

pr

T Y =T x Dy x R ~— ppl(Day) =T x Dy

br id

pDE(DM) T x ]D)M



where i(t,z) = (t,z,0) and 7 (¢, z,y) = (¢,x). Then, for a sheaf .# on T, we have a chain
of isomorphisms

—1 1ol g “l5-1 g
RE, 10, (07 %) = 197 7 = i

d 1~ —
=inpy F @i ory/pH;;(DM)[—n]

— ]5;1 ® i_lOry/pH;;(DM)[—n].

The last isomorphism comes from the fact m o ¢ = id, which also implies

orp (DM)/Y ®i OTY/]ZF1 D) = ZPIDT; (Dar)-
This completes the proof. O

Corollary 3.0.7. Let IV be an open subset in Y and s € H} 51 (Oa) (W; p}l.ﬁﬁgzj), and
let A be a subset in W := W N pp, (Dar). Assume the condltlons below:

L. pr(W)\ pr(A) is a set of measure zero in T

n —1 oo .
2. For any ¢ € A, the stalk s, € HpH;;(DM)(pT L r)q of s is zero.

3. The set p pr(q) N W is connected for any ¢ € .
Then s is zero.

Proof. We have the commutative diagram, for any point ¢ € W,

s, Wi pr' Linr) = POV 5" 250) = Dor(W); £30)
N 1 . 1 !
Wi, Lin)e = 0GR = (LEnwe

Hence s can be regarded as an L{°-function on pr(W). Then, by the assumption, s is
zero on pr(A). Hence s is almost everywhere zero, and thus, s is zero as an L7 -function.
This completes the proof. O

We can also define the Dolbeault complex with a parameter in the same way as Q]Ip);];.
Let L2V and &2 be the sheaves of (p, ¢)-forms of z and z with coefficients in .£2y
and &2y, respectively. Then we define the Dolbeault complex -Z2P* with a parameter
on Y by

0— 200 25 popt O, 0, porn
and &2P°* on Y by
0— &22° 25 gont 25 % popr 0
Then by standard arguments we have
Proposition 3.0.8. Both the canonical morphisms of complexes below are quasi-isomorphic:
LOTP — LA EOTT — EDY°.

Here £07™" and &0 are the subsheaves of £2y and &2y consisting of sections
which are holomorphic with respect to the variables z, respectively.

[0}



4 Various expressions of Laplace hyperfunctions

Let M be an n-dimensional real vector space with the norm |e| and £ = M ®g C. Recall
that Dy (resp. Dj) denotes the radial compactification E L S2*~1 (resp. M U S™1)
of E (resp. M). Let U be an open subset in Dy, and V' an open subset in Dg with
VNDy =U.

Definition 4.0.1. The sheaf on D), of p-forms of Laplace hyperfunctions is defined by

(oW

eva(p) PR n
%]D)jw T % Dg ) ®Z]D>M OTD]W/DE’

Das
where orp,, /b, is the relative orientation sheaf over Dy, that is, it is given by J43 (Zp,).
It follows from Theorem B.0.4] that we have
By P (V) = Hp(V; 057" @y, 0) 07y (U).
The above cohomology groups have several equivalent expressions. We briefly recall

those definitions which will be used in this paper.

4.1 Cech-Dolbeault representation

We first give a representation of a Laplace hyperfunction by Cech-Dolbeault cohomology
groups. Set Vo =V \ Dy, Vi =V and Vy; = Vo N V; as usual. Then define the coverings

V]D)]w = {%7 ‘/1}7 VI/D)]W = {‘/0}

We denote by 25°(Vp,,, Vb,,') the Cech-Dolbeault complex C(Vp,,, Vb, )(25°) (see
Subsection 2.1] for the definition of the functor C'(Vp,,, V,,")(e))

9 9 I5] n
0— Qﬁ’g(VDM, V]]])M/) — Qﬁ’;(VDM, V]]])M/) —_— ... — Q]Ip);E(VDM’ V]]])M/) — 0,

where 9 is used to denote the differential of this complex. In the same way, we denote by
2p,. Vb, Vb,,') the complex C(Vp,,, Vi, ) (25, ):

0— 25 Vou, Vou') == 25 Vou, Vo) — ... 25 22 (Vo,,, Vi) — 0,

where D is used to denote the differential of this complex. The 25 (Vp,,, Vb,,’) is called
the Cech - de-Rham complex. Then we have

Theorem 4.1.1. There exist the canonical quasi-isomorphisms:

RFU(V; CDE) = "@IBJ (VDIVI7 VDM/)7 RFU(V; ﬁ]g;p,(p)> = "@]Ip)); (VDM7 VDM/)'

E

It follows from the theorem that we have
’%g;\i’(p)([]) = Hn("@]lp));(vlmwﬂ VDM/>> ®ZDM(U) OTDM/DE(U)' (4'1>

This implies that any Laplace hyperfunction v € %’g;‘;’(p )(U) is represented by a pair
(w1, wpr) of C°-forms which satisfies the following conditions 1. and 2.

10



1. w; € 2P"(V) and wy; € 20"V \ U)
2. 0wy, =w; on V \ U.

Remark 4.1.2. Let S = {S;};ea be an open covering of V', and let A’ C A. Assume &’ =
{S;}iear is an open covering of V' \ D,;. Then, as did in this subsection, Qﬁ’; (S, 8') (resp.
23 (S, 8')) denotes the Cech-Dolbeault complex C(S,8")(2py) (resp. C(S,8')(2p,))-
For these complexes, we also have the isomorphisms

RIy(V; Cp,) =~ 25 (S, S), Ry (V; ﬁﬂg’j@’) ~ 25°(S, S).

4.2 Representation by Cech cohomology groups

Next we give a representation of a Laplace hyperfunction by Cech cohomology groups. We
assume that, in this subsection, V' is 1-regular at co and VN E is a Stein open subset. Let
Mo, - - -, Mn—1 be linearly independent vectors in M* so that {no,...,n,_1} forms a positive
frame of M*. Set 0, := —(no + -+ + nn—1) € M* and

Spi="{e=a+V-1lye E;z€V, (y, m) >0} (k=0,1,---,n).

For convenience, we set S, = V. Let A = {0,1,2,...,n + 1} and set, for any a =
(Oéo, R ak) € Ak+1a
S 1= S0y NSy NN Sy,

We define a covering of the pairs (V, V' \ U) by
8:: {507517"'7511—1—1}7 Sl = {S(],...,Sn}.

Since S, N L' is an Stein open subset and S, is 1-regular at oo for any a € A, by the
theory of Cech cohomology, we have the isomorphism

Hy(V; 057 ") = H'(S, S o570 7).
Let A¥*1 be the subset in A¥*! consisting of o = (a, . .., o) with
ap <o << ap=n+4+1.

Then we obtain

n ﬁCXp,(])) Sa
H'(S, 85 o5 =~ Dacar T ()
Dsenz 0o, ()

Hence, any hyperfunction u has a representative @&  f, which is a formal sum of (n+1)-
aeAnt!

holomorphic functions defined on each S, (o € A™*1).
Note that the Cech representation and the Cech-Dolbeault representation of Laplace
hyperfunctions are linked by the following diagram whose morphisms are all quasi-isomorphisms.

C.(S, Sl; ﬁg;m(p)) ﬂ) "@ﬁ; (87 S,) ﬁ Qﬁ; (VDM7 VDM,>7 (4'2>

where the middle complex is the Cech-Dolbeault one associated with the covering (S, S"),

B is induced from the canonical morphism ﬁg’;p’(p N 2p° of complexes and [ follows
from the fact that S is a finer covering of Vp,,.

11



4.3 Generalization of Cech representations

Representation by Cech cohomology groups can be generalized to the much more conve-
nient one, that is “intuitive representation” of Laplace hyperfunctions introduced in [11].
Let us briefly recall this representation. Through this subsection, let U be an open subset
in M (not the one in Dy, as the previous sections).

Let T be an R -conic connected open subset in M. Then:

Definition 4.3.1 ([11] Definition 4.8). An open subset W C Dg is said to be an infinites-
imal wedge of type Ux+/—1I" if and only if for any R -conic open subset I" properly
contained in I' there exists an open neighborhood O C Dg of U such that

(Uxv/-1I"Y N O Cc W.
holds (see (1)) for the symbol x).

Remark 4.3.2. The definition of an infinitesimal wedge itself does not assume the inclu-

sion W C Ux+/—1T.

We denote by W(U x+/—1T") the set of all the infinitesimal wedges of type Ux+/—1T
which are additionally contained in Ux+/—1I". Furthermore, we set

W(U) == [ WU xV-1T),

where T" runs through all the R, -conic connected open subsets in M (in particular, I is
non-empty).
Define the quotient vector space

H'(05r W) = | D 5 W) | /R, (4.3)

wew(U)
where R is a C-vector space generated by elements

fo(=flw) €05, (W)@ Oy (W)

A

for any Wy C Wy in W(U) and any f € O " (Wh).

Theorem 4.3.3 ([I1] Theorem 4.9). Assume U is an open cone in M. Then there exists

a family by = {bw }yy ey of morphisms by : O (W) — 257 (U) (W € W(U)) which
satisfies

~

bW1(f) = bW2(f|W2) in %ED);S(U)
for any Wy € Wy in W(U) and any f € Op.r(W1). Furthermore the induced morphism

bw : (057 (WD) — 25 (U)

Das

becomes an isomorphism.

N

Remark 4.3.4. If W € W(U) is cohomologically trivial, that is, it satisfies the conditions
Al. and A2. given in Subsection [B.1] then by coincide with the boundary value map
constructed in the subsection.
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5 Boundary values in Dg

One of the important features in hyperfunction theory is a boundary value map, by which
we can regard a holomorphic function of exponential type on an wedge as a Laplace
hyperfunction. We construct, in this section, the boundary value map in the framework
of Cech-Dolbeault cohomology.

Let U be an open subset in D), and V' an open subset in Dg such that V Ny, = U.
Let  be an open subset in Dg.

5.1 Functorial construction

We first construct the boundary value map in a functorial way. For an open subset W in
Dg and a complex I of sheaves on W, we define its dual on W by

Dw(F) = RHomCW(F, Cw)

Note that, for a complex I of sheaves on Dg, we have Dp,(F)|w = Dw(F|w). We
assume:

Al. U cQ.

A2.  Q is cohomologically trivial in V', that is,
Dp,(Co)lv = Cqlv, Dy (Cq)lv = Calv.

Through this subsection, we always assume conditions Al. and A2. Following Schapira’s
construction (see Section 11.5 in [4]) of a boundary map morphism, we can construct
the corresponding one for a Laplace hyperfunction as follows: Let jy : V — Dg be the
canonical inclusion. By the assumption, we have the canonical morphism on V'

]\;1((:5 - jl;l(CDM'
It follows from the assumption that we have
DV(j\;lcﬁ) = j\;lcm DV(j\;lcmM) = j‘;l(CD]M ® OTD]%/DE)[_TL]'

Hence, applying the functor Dy (e) to the above morphism, we obtain the canonical mor-
phism

1 -—1

Jv (CDM ® OTDM/DE)[_TL] — Jv CQ

Now applying the functor RHomg,, (e, j;lﬁﬁ’;p) to the above morphism and taking the
0-th cohomology groups, we have obtained the boundary value map

bo : OS2(QANV) — B2 (U).

5.2 Cech-Dolbeault construction of a boundary value map

The construction of a boundary value map for Laplace hyperfunctions in the framework
of Cech-Dolbeault cohomology is the almost same as that for hyperfunctions done in the
paper [I]. First recall the coverings

VD]\/I = {‘/0’ ‘/1}a VDM/ = {‘/0}
13



of V.and V' \ U, where Vo =V \U, V; =V and Vi = VN V;. We now construct the
boundary value morphism

ba ﬁ]ﬁ));p(g) — HH(QI%J’;(VDNM VDM/>> ®ZDM(U) OTD]%/DE(U)

in the framework of Cech-Dolbeault cohomology.
Let us first recall the morphism of complexes p : 25 (Vp,,, Vb,,") = Q]%’;(VDM, Vo),
which is defined by the projection to the space of anti-holomorphic forms, that is,

25 (Vous Vou,) 2 > fradz'Adz e > fosdz’ € 255 (Vo Vo).

\1|=i, | |=j,i+j=k |1=k
Then we have

Lemma 5.2.1. The following diagram commutes:

RFU(V; (CIDJE)

RI'y(V; 0Fr)

° P 0,
‘QDE(VDNI7 VDM/> - Q]D)E(V]D]\/[a V]D)M/)
where the top horizontal arrow is the morphism associated with the canonical sheaf mor-
phism Cp, — Op".

Let us take a section 1 € Hp;(V; Zp,,) such that, for each = € U, the stalk 1, of 1 at
x generates Hy (Zp, ). as a Z module. Note that we have, in each connected component
of U, two choices of such a 1, i.e., either 1 or —1. Then the canonical sheaf morphism
Zy, — Cp, induces the injective morphism

Note that we still denote by 1 the image in Hf;(V; Cp,) of 1 by this morphism.

Now we assume the following conditions to §2.
B1l. The canonical inclusion (V' \ Q) \ Dy, — (V' \ ) gives a homotopical equivalence.
The following lemma can be proved in the same way as that in Lemma 7.10 in [IJ.

Lemma 5.2.2. Assume the conditions Al and Bl. Then there exists 7 = (7, 701) €
2. Vb, Vb,,') which satisfies the following conditions:

1. Dt =0and [7] =1 in H (2 (Vb,,, Vou'))-
2. suppy,, (701) C © and suppy, (11) C €2

Now we assume the conditions Al and B1, and let 7 = (71, 791) be the one given in
the above Lemma. Then we can define the morphism

ba ﬁ]S)};p(Q> — Hn("@]%;(le)Mv VDM,>> ®ZDM(U) OTD]W/DE(U)' (5'1>
by
bo(f) = [fo(r)] @1  (f € Oy (Q)). (5.2)

14



Lemma 5.2.3. The above bq is well-defined.
To avoid a higher jet as an €2, we also introduce the following condition

B2. For any point z € Dy, there exist an open neighborhood W C Dpg of x and a
non-empty open cone I' C M such that

(WNM)xv/=1I) N W C Q.

Note that the condition B2 implies A1. We also introduced the localized version of the
condition B1.

B1’. For any point = € Dy, there exist a family {V)} ea of fundamental open neighbor-
hoods of = in V, for which the canonical inclusion (Vy \ Q) \ Dy, — (Vi \ Q) gives
a homotopical equivalence.

The following theorem can be shown in the same way as that in Appendix A. in [I].

Theorem 5.2.4. Assume the conditions A2, B1, B1’ and B2. Then the boundary value
morphism constructed in the functorial way and the one in this subsection coincide.

Now we give a concrete construction of 7 in a specific case.

Example 5.2.5. Let M = R” and £ = C". Assume U = Dy, V = Dg and Q =
M x+/—1T with I' € M being an R, -conic non-empty open subset. Let 1y, ..., 1, be
unit vectors in M* which satisfy the following conditions:

1. m, ..., n, are linearly independent, and the sequence of vectors in this order give a
standard positive orientation of M™*.

2. HHNHyN---NH, CT, where H, = {y € M; (y, ni.) > 0}.

Set Npe1 = —(m + -+ - +n,) and define H,, .1 in the same way as Hy (k=1,...,n). Note
that we have
H,U---UH,UH,, =M\ {0}.

Then we choose (n + 1)-sections @1, ..., a1 in Z(Dg \ D)) which satisfies
1. supp(pr) C Mx+/—1H}, holds for k =1,...,n+ 1.

2. o1+ o+ + a1 =1o0nDg\ Dy

Now we define
1 = (=1)"(n — D! xp\f,., dp1 A= Adpy_, (5.3)

where Yz is the characteristic function of the set Z. We can see the following facts by the
same reasoning as that of Example 7.14 in [1].

1. 7:= (0, T01) belongs to 28 (Vb,,, Vb,,').

2. Dt =0and [7] = 1 in H"(2§,_(Vb,,, Vb,,')). Here we choose 1 so that it gives the
standard positive orientation of M.
3. SUpPp,,\p,, (To1) C 2.

Hence this 7 satisfies all the desired properties described in Lemma [£.2.21 Note that we
have

p(r) = (0, (=1)"(n = DIXp\H,., 01 A=+ AN Do) - (5.4)
15



6 Laplace transformation £ for hyperfunctions

6.1 Preparation

Let (z1 = x1 +v—1y1, -+, 2 = x, + vV —1y,) be a coordinate system of E. Hereafter,
0

we fix the orientation of M and F so that { —, —, ..., —
0x;’ O0x ox,

i i i i ive the one on £
du By 0ny On g .

Remark 6.1.1. The above orientation of F is different from the usual standard orienta-

} gives the positive

orientation on M, and {

tion of C", where is taken to be a positive frame.

We say that the boundary 0D of a subset D in Dg is (partially) smooth if 0D N E is
(partially) smooth. Note that, when the boundary 0D is smooth, the orientation of 9D
is determined so that the outward-pointing normal vector of 9D followed by a positive
frame of D determines the positive orientation of F.

Let h : EX, — {—00}UR be an upper semi-continuous function, and let W be an open
subset in Dg- and f a holomorphic function on W N E*.

Definition 6.1.2. We say that f is of infra-h-exponential type (at co) on W if, for any
compact set K C W and any € > 0, there exists C' > 0 such that

e O F(O) < Cedh (¢ e Kn(E\{0})),

where 7.+ E*\ {0} — (£*\ {0})/R; = EZ is the canonical projection, i.e., mg: (¢) =
¢/|¢|, and we set e~ = 0 for convenience. In particular, we say that f is simply called
of infra-exponential type if h = 0.

Define a sheaf on E7_ by, for an open subset €2 in EZ_,

O (Q) :=lim {f € O(W N E*); f is of infra-exponential type on W},
w

where W runs through open neighborhoods of 2 in Dg-. Then the family {ﬁgfo () }a

forms the sheaf ﬁgi on EZ . Similarly we define the sheaf ﬁgi_h on EZ by, for an open
subset 2 C B,

ﬁglgo_h(Q) =lim{f € O(WNE"); fis of infra-h-exponential type on W},
W

where W runs through open neighborhoods of 2 in Dg-.
We also introduces the sheaf 27" := ﬁf»);p}DM of real analytic functions of exponential

type and the one ”KD)CLP of real analytic volumes of exponential type. The latter sheaf is
defined by

exp __ exp,(n)
AVDM - ﬁDE

D ®ZDM OTDM )
M

where orp,, 1= (jar)« ory with jas : M < Dy being the canonical inclusion. Note that we
can also define the orientation sheaf orp, on Dg by (jg). org with the canonical inclusion
jg : E— Dg, for which we have the canonical isomorphism

0Dy, /DE ® Orp,, =~ OTDE|D]M‘ (61)
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Let K be a subset in Dg. Then we define the support function hg(¢) : EY —
{£oo} UR by

+00 if K N E is empty,
hi(C) = (6.2)
inf  Re(z, () otherwise,
zEKNE

where we identify ¢ € EZ with a unit vector in E*. Note that if K is properly contained
in a half space of Dy with direction (o € £, (which is equivalently saying (o € N .(K))
and if K N F is non-empty, then the subset

Kn{ze E;Re(z, ¢) =hx(G)}
is a compact set in E. The following lemma easily follows from the definition.

Lemma 6.1.3. Let K C Dp with N7 (K) # 0. Then Ny (K) is a connected open subset
in £% . The function hg(¢) is upper semi-continuous on E?_, in particular, it is continuous
on N7 (K) and hg(() > —oo there.

Remark 6.1.4. In the above lemma, if K C D), then we have
* _ -1 * *
Npc(K) = W (Npc(K) N Moo)

and hg(¢) is continuous on NJ (K) U +/—1MZ, (for the definition of @, see (2.3)).

6.2 Laplace transformation

Let K be a closed subset in Dy, such that N7 (K') is non-empty. Take & € N (K) N M,
and an open neighborhood V' of K in Dg. Set U :=IDy; NV and coverings

Vi ={Vo:=V\K, V; =V}, Vie = {Vu}. (6.3)
In what follow, we assume that U and V are connected for simplicity. Note that we have

X ex exp\ ~_ TIn n,e !
FK(U’ %D]\I; ®%§;\c; /y/DMp) ~H (QDE (VK’ Vk )) ZDI(S?(U) OTDI\/I/DE(U) ZD](?(U) OTD]\/I(U)'

Let
U=uUR a]D)M/]D)E &® ap,, S FK(U; %CXP ®‘Q{H§1§) af/CXp),

Das Das

where ap,, /p, @ ap,, € 0rp,m,(U) & orp, (U)andlet v = (11, vo1) € Qﬁg(VK, Vi)
Dy
be a representative of 4, i.e., 4 = [v].

Here we may assume that ap,,/n, and ap,, are generators in each orientation sheaf.
Hence, through the canonical isomorphism (6.1]), the section ap,,/n, ® ap,, determines
the orientation of E. We perform the subsequent integrations under this orientation.

Remark 6.2.1. If orp,,/p, gives the orientation so that {dyi,...,dy,} is a positive
frame and if ory, gives the orientation so that {dzi,...,dz,} is a positive one. Then
{dyi,...,dy,,dxy, ... ,dx,} becomes a positive frame under the orientation determined

by aDy /DE ® ap,, -

17



Definition 6.2.2. The Laplace transform of u with a Cech-Dolbeault representative
v = (1, vn) € 25" (Vk, Vi') is defined by

Lp(u)(C) == /DOE ey — /aDmE e 1y, (6.4)

where D is a contractible open subset in Dy with (partially) smooth boundary such that
K Cc D CDCV and it is properly contained in a half space of Dg with direction &.

Note that the orientation of D and 0D is taken in the usual way, that is, the orientation
of D is that of E, and the one of 9D is determined so that the outward pointing normal
vector of D and a positive frame of D form that of E.

Set 2 =+ +/—1y and ¢ = £ + v/—1n. We may assume & = (1,0,---,0), and we
write x = (x1,2) and & = (&;,&’). Then there exist b € R and x > 0 such that

D c{z=xz+V-1y [2'| + |y| < k(z1 — D)}

Furthermore, it follows from the definition of v that there exist H > 0 and C' > 0 suih
that |vg1| < Cef® on a neighborhood of D and |v;| < Cef’*t on a neighborhood of D.
Hence, if z € D, we have

‘6_Z<V1| < Cle—cétyntHa < Ce—ﬂclﬁl-i-l‘€(|§/|'|'\77|)(9ﬂl—b)‘i'Hml7

from which the integral / e *Svy converges if & is sufficiently large. We also have the
DNE

same conclusion for e V.
ODNE

Remark 6.2.3. In what follows, we write /

e *Svy instead of/ e *uy, ete., for
D

o DNE
simplicity.

Lemma 6.2.4. Lp(u) is holomorphic at points ( = R if R > 0 is sufficiently large.
Furthermore, £p(u) is independent of the choices of a representative v of u and D of the
integral. Here we identify &, with the corresponding unit vector in M*.

Proof. The convergence of the integration is already shown above. Let D be another open
subset in D which satisfies the conditions given in Definition 6.2.21 By replacing D with
DN D, we may assume D C D from the beginning. Then, since (D \ D) = 0D — dD
holds, by the Stokes formula, we get

Lp(u) = Lp(u) = / e vy — / ey = / e vy, — / e vy
D\D dD—-8D D\D dD—-8D

= / d(e * vp) —/ e vy = 0.
D\D dD—-dD

By the same reasoning, we also have £p(d7) = 0 for 7 € Qﬁg_l(]};{, Vi'). O

Due to the above lemma, in what follows, we write L£(e) instead of Lp(e). By taking

an appropriate representative of u, we can make (6.4]) much simpler form as follows: Let
v € 2(Dg) which satisfies

1. supp(¢) C D, where D is the chain of the integration (6.4)).
18



2. ¢ =1on W N E for an open neighborhood W of K in Dg,

and define )
v = (o1, 1) = (11 + O A vy, ovin) -

Since we have

V—ﬂ:ﬁ((l—gp)l/m,()),

representatives v and U give the same cohomology class. Furthermore, as the support of
U is contained in D, we have obtained

E(u) = / e_ZCﬂol = / e—ZC (QPVI —+ 5@ N V(]l) . (65)
E E

Then, by the integration by parts, we get:

Corollary 6.2.5. For u € I'x(U; &) @400 ¥57) and v € I'(U; #y)), we have the
M
formulas

0 v
a—ckﬁ(u) = L(—xpu), GL(vdr ® ap,,) =L <8—:)3kdx ® aDM) (k=1,2,---,n).

Note that, by the definition of w,, given in (2.3]), we have, for § € M,
wl(&) = {&+V—1In€ E;ne M*}/R, C EX.

Proposition 6.2.6. Assume K N M is non-empty. For any a € K N{x € M; (x, &) =
hi (&)}, any € > 0 and any compact subset L in (&), there exist C' > 0 and an open
neighborhood W C Dg« of L such that

e L)) < Cell (CeWnE).

Proof. Take a point (y = (&9++v/—1n0)/|&o+v—1no| € EX,. In what follows, we sometimes
identify a point in E* with a unit vector in £*. Denote by Bs((p) an open ball with radius
0 > 0 and center at (.

Since K is properly contained in a half space of D, with direction &, there exist §; > 0,
o1 > 0, a relatively compact open neighborhood O C M of KN{x € M; (z — a, &) =0}
and an R -conic proper closed cone G C Dy, such that

K C OU(a+int(G)),
Oc{zeM; [{z—a ) <e/2}  (£€ B (&) N M),

and
(,§) > o1lz]  (x €GN M, € Bs (&) N ML)

For d5 > 0, define open subsets Do in E and Dg in Dg by

€
Do=1{z2= —lyeE;ze0, Jyl <
o {z z+V—1y 0 T 1yl 2 max{1, 2|770|}}’

Deg="{z=2+V-1ly € E; z € a+int(G),|y| < ddist(z, M\ (a+ G))}.

By deforming D of the Laplace integral, we may assume D C Do U D¢. If we take 95 > 0
sufficiently small, there exists oo > 0 such that

Re (z — a,t() > o3t|z — (teRy, 2€ DeNE, (€ Bs, () NEL)
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holds. Note that we also have
|Re(z—a, tg>‘<€t (teR-l-? Z6D07 CEB&(CO)QEZO)

Then, for t € Ry and ¢ € By, ({) N EL, we get

C(u)(t¢) = /D ey, — /a ey

_ taC ( / e, / e—t(z—@cym)
D oD

The rightmost integration in the above equation is estimated as follows. Note that the
integration of v; is also estimated by the same arguments. We have

/ e—t(z—a)CV()l — / + / ’
oD T<€ Tze

T-.c=0D N Do, Tse=0D N D¢\ Do.
Then, for ( € Bys,(¢o) N E% and t € R, there exists a positive constant C; > 0 such that

/ 6—t(z—a)CV01
T<€

Furthermore, since there exist a constant Cy, H > 0 such that

where we set

S C16€t.

|vo1| < CoelFl (z € T5),

we get, for ¢ € By, (o) N EX and t € Ry,

/ e—t(z—a)CVO1
T,

where dS denotes a surface volume element of dD. Hence the last integral converges if ¢
is sufficiently large, which completes the proof. O

< 02/ e(—02t+H)|z—a| dS,
Ts.

Recall that Nj .(K) is an open subset in £ . Since hx(() is upper semi-continuous,
we have the following corollary as a consequence of the proposition:

Corollary 6.2.7. Assume K N M is non-empty. Then we have L(u) € ﬁg}i‘hl{ (N7.(K)).
Let G be an R, -conic proper closed subset in M and a € M. We denote by G° C E*
the dual open cone of G in E*, that is,
G°:={C( € E*; Re(¢,z) >0 for any = € G}.

Assume K = {a} + G C Dy Since NJ (K) = 7 (G°)NEZ, and hx(¢) = Re al on N} .(K)
hold (here we write a{ = (a, ()), the corollary immediately implies the following theorem.

Theorem 6.2.8. Under the above situation, ¢*L(u)(¢) belongs to O (7(G°) N EL).
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6.3 Several equivalent definitions of Laplace transform

We give, in this subsection, several equivalent definitions of Laplace transform previously
defined for various expressions of a Laplace hyperfunction. The following proposition is
quite important to obtain a good Cech representation of a Laplace hyperfunction with
compact support. Recall the definition of a regular closed subset given in Definition 2.2.4]
and the one of an infinitesimal wedge in Definition [£.3.1l Recall also that we use the word
“l-regular at 0o” to indicate the notion “regular at co” introduced in Definition 3.4 [2].

Proposition 6.3.1. Let K be a regular closed cone in Dy, and let n € MZ . Then we
can find an open subset S C Dy \ K such that

1. S is an infinitesimal wedge of type M x+/—1T", where I' = {y € M; (y,n) > 0}.
2. SN FE is a Stein open subset and S is 1-regular at oco.
3. S is an open neighborhood of Dy, \ K in Dg.

Proof. The proof is the almost same as that of Theorem 4.10 [II]. For reader’s conve-
nience, we briefly explain how to construct the desired S. We may assume that the vertex
of S is the origin and n = (1,0,---,0). Let o be a sufficiently small positive number and
set, for £ € M,

pe(2) = (21 = (G + V=1olED)* + (22 = &) 4+ (20 = &) + I
Note that
Repe(z) >0 <= (y1 —olé])* +uyp + - +yp < ol + |v — €.
Then, by the same reasoning as in the proof of Theorem 4.10 [I1], the set
O = Int (ﬂ{z € E; Repe(z) > O})
€eK

is an R -conic Stein open subset, and hence, O is 1-regular at co. Define S by modifying
O near the origin:

S = "Int ﬂ {z € E; Reye(z) > 0} ﬂ ﬂ {z € E; Rete(z) > 0} :

§EK|€1>1 feK €<

where

Ve(2) = (21 — (&L +V=10)) + (2 — &) + -+ (2, — &)P + 07

Since O and S coincide in an open neighborhood of E,, the S is still 1-regular at co and
SN E is a Stein open subset. We can easily confirm that S satisfies the rest of required
properties in the proposition. [
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6.3.1 Laplace transform for Cech representation

We give here several examples to compute the Laplace transform of a Cech representative
of a Laplace hyperfunction.

Example 6.3.2. Let K C D), be a closed cone which is regular and proper in D,,, and let
Mo, - - -, Mn—1 be linearly independent vectors in M* so that {no, ..., 7,1} forms a positive
frame of M*. Set 1, := —(no + -+ + Np—1) € M*.

Then, by applying Proposition to the vector ng, we obtain Sy satisfying the
conditions in the proposition with n = n; (k= 10,...,n). Since Sy U---U S, UDy, is an
open neighborhood of Dy, it follows from Theorem 4.10 [11] that we can take an open
neighborhood S C Dg of D, such that

1. SN FE is a Stein open subset and it is 1-regular at oc.
2. {SNS, 51N, ..., 8, NS} is a covering of the set S\ K.

For simplicity, we set S,11 := S. Let A = {0,1,2,...,n+ 1} and set, for any a =
(ag, ..., o) € AFFL
Sa =80y N Say NN Sy,

We already defined the covering (Vk, Vy) of (S, S\ K) in (6.3) with V = S. We also
define another covering of (S, S\ K) by

S = {SQ,Sl,...,Sn_H}, Sl = {SO,...,SH}.
Then, by the theories of Cech and Cech-Dolbeault cohomologies, we have
Hy (S5 05> ™) ~ HY(S, S5 05P™) = H(2p2(S, §') ~ H'(25° (V. Vi')).
Let A¥*1 be the subset in A**! consisting of a = (ay, . .., ) with
ap <o << ap=n+1.

We take a proper open convex cone U’ C M with K C /U\’, and set, for a sufficiently small
e >0,
p(z) == edist(x, M\ U") (x e M).

Then we define closed subsets in E by

Opi1 i= ﬂ {z=a+V-1lyeE;xecl, {y, n) <plx)} ﬂ E

0<k<n

and, for 0 < k < n,

op={z=ax+V-1yc E,zclU, (y, n) > p(x)} ﬂ E.
We may assume that, by taking € > 0 sufficiently small,
Ont1 NOE C S (k=0,1,--- ,;n+1) (6.6)
holds in Dg. For any a = (aq, ..., a;) € A¥1 we also define
Oq "= 0nqy N T MM T, .
Here we determine the orientation of o, in the following way:
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1. 0,41 has the same orientation as the one of E.

2. For k > 0 and a € A1 the vectors (—7u,), (=Nay), ***5 (—7a,_,) followed by
the the positive frame of o, form a positive frame of E. Note that ap = n + 1 as
a € AFL

Remark 6.3.3. The above 2. is equivalently saying that, for a point x in the smooth
part of o, and taking points x; € int(o,,;) (j = 0,1,---, k) sufficiently close to x, the
positive frame of o, at x is determined so that the vectors m, m, cee Tr_17h and
the positive frame of o, at x form that of E at x.

Then, for any o € A**! which contains the index n+ 1, we can define o, with orientation
by extending the above definition in the alternative way, that is, o, = 0 if the same index
appears twice in «, and otherwise

0o = sgn(a, &) o;

where & € Ak*! is obtained by a permutation of o and sgn(c, &) denotes the signature of
this permutation.

Now let us consider the Cech-Dolbeault complex Zpo(S, &) for the covering (S, S').
Then, for any

w = {Watocpen acrttt € D CHS, S8 257" = 257(S, §),

0<k<n

we define the Laplace transform of w by

BN

0<k<n aGAk+1
By our convention of orientation of o, and the fact

dimgpo,1N{z=2++vV—-1ly€ E; €U’} <n,

Z Olaj]

0<j<n+1

we have, for any a € AF*1,

where [« j] denotes a sequence in A2 whose last element is j.
Hence it follows from Stokes’s formula that we obtain

IPw)=0 (we25"Y(S,S)).
As a matter of fact, for w, € Q{;’g_k_l(Sa) with a € A¥1 we have
e Vwe = (—1)F0(e7* wy) + 8(e*wy) = (—1)Fd(e™* wy) + 6(e* wa),
and thus, by noticing o4 = (=1)" 04,
n+1

1@0) = (-1 [ dlea, +3 / 5

n+1

RPYAR

n+1

wa—l-Z/
9jal

[ 5]



Summing up, if w and ' in Zp"(S, §’)) give the same cohomology class, we have

Now let us consider the canonical quasi-isomorphisms of complexes
C*(S, 8 o) Ly (S, 8') L2 2 (Vie, Vi),
It is easy to see, for 1, € Zp (VK, Vi') with Jvy = 0,

E([Vﬂ) = ](ﬁ2(V2))-

Let v1 = {Viafaenrtt € CM(S, S ﬁe};p ) with vy = 0. If B1(v1) and Ba(1s) give the
same cohomology class in H"(Q";(S §’)), by the above reasoning, we get

I(B1(1)) = 1(Ba(12)) = L([12])-

It follows from the definition of I(e) that we have

I(B1(11)) Z / Vla

An+1

Furthermore, each integration can be rewritten to

/ e v = (—1)" sgn(det(ny,, - - - ,nanl))/ e VL0, (6.7)
where L, is a real n-chain in F
Lo={z=x+V—-1lyeE,2cUNM, y=pyz)} (6.8)
with a smooth function p, : U’ N M — M satisfying the conditions
1. pa(x) =0 for x € OU' N M,
2. L, C S, in Dg,

and its orientation is the same as the one of U’.
Summing up, for a Cech representation {v14},ecpn+1 of a Laplace hyperfunction u, its
Laplace transform is given by

L) = (=1 3 sen(det(lue, - - Ion 1)) / i, (6.9)

aeAnt!

Remark 6.3.4. In our settings, the last index of a covering is assigned to the one for
an open neighborhood S of Dy, i.e., 5,47 = S. In usual hyperfunction theory, however,
the first index 0 is assigned to it, i.e., Sp = S. This is the reason why the factor (—1)"
appeared in the above expression.
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Example 6.3.5. Now we consider another useful example. Set
F‘l’" :{y:(yl"" 7yTL) EM, yk>0 (k:1’27"' ,n)}

and K =T~ in D). Let S C Dy be an open neighborhood of Dy such that SN E is a
Stein open subset and S is 1-regular at co. Define, for k =0,1,--- ,n —1,

Sp="{2z= (21,22, ,2) € S; 241 € C\Rxo} C Dp.
Set S, = S. Then
S:{S(],Sl,...,sn}, S/:{S(],...,Sn_l}

are coverings of (5, S\ K).

Define the n x n matrix B := (1 +¢)l — eC for sufficiently small € > 0, where [ is the
identity matrix and C'is the n x n matrix with entries being all 1. We define the R-linear
transformation T on £ = M x /—1M by

r+v-1lye E— Brx++vV—-1ly € E.

Let v C C be the open subset defined by
vyi={z=0+V-1lyeC; |y <e(x—¢)}.

Then we introduce real 2n-dimensional chains in £ by

On =T(y X+ x7) m B,

and, for k=0,...,n—1,

gg\l)zzx---xc) N E.

Note that 7,, is a neighborhood of K in Dg. One should aware that, however, v X v X -+ X 7y
is not.
Set A = {0,1,...,n}, and A** is the subset of A**! consisting of an element (g, oy, - - -, o)
with
g <oy < - <O =n.

Then, for any o = (g, ...,ax) € A¥1 the orientation of g, = 04y N G0y, N+ N0y, is
determined in the following way:

1. o,, has the same orientation as the one of E.

2. the outward-pointing normal vector of o,,, that of o,,, ---, that of o,,_, followed
by the the positive frame of o, form a positive frame of F.

Note that, for any a € A**! which contains the index n, we can define o, with
orientation by extending the above definition in the alternative way as did in the previous
example.

For any o € A**1, we have

80(1 = Z U[aj],

0<j<n
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where [aj] is the sequence in A2 whose last element is j. Therefore the rest of ar-
gument goes in the same way as in Example [6.3.2] and we finally obtain, for u €
T (Dar; By ®%§Xj 7p.0) and its Cech representative v(oi2.n) € C™(S, S ﬁﬂg’;p’(")) —

oSS NS NN S,),

E
£(U) = / 6_2’C l/(()lg___n) (610)
L(OIZWTL)

with the real n-chain
Loi.ny =T(Qyx---x0y)CFE (6.11)

whose orientation is given so that each arc dy C C has anti-clockwise direction.

Example 6.3.6. Let us consider another kind of Cech covering: Let K C Dy, be a closed
cone which is regular and proper in Dy, and let nx’s (k = 0,...,n — 1) be a family of
linearly independent vectors in M*, for which the sequence 7y, n1, -+, n,_1 of vectors
forms a positive frame of M*. Set

M+ = M (k=0,...,n—1).

Then, we take open subsets S and Sy + (k=0,1,--- ,n— 1) in the same way as those in
Example [6.3.2] by using Proposition [6.3. 1] with n = n;, +. Set S,, = S and coverings

S :={So+, 14,5}, S ={So+,.-,Sn-1+}

Let A be the set consisting of “n” and pairs “(i,¢)” with i € {0,1,...,n — 1} and € €
{4, —}. We define the linear order < on A by:

a. a<nforany a € A\ {n}.

b. (i,e) < (j,e;)ifi <jorifi=jande =+ ande; = —.
Let A**! be the subset in A**! consisting of o = (ay, ..., o) with

g <oy < - <O =n.
Furthermore, let A*}! be the subset in A**! consisting of
o = ((ig, €0), -+, (ip_1, €r_1), n) € A*T?
with ig < i3 < --- < ip_1. For a € A**1 the subset S, is defined as usual, that is,
So = Sag Ne+-N Sy,

Note that, in this example, the open subset S, is not necessarily empty for a € A¥1\ AFF!
with & > n. -

We take a proper open convex cone U' C M with K C U’. For p(z) := edist(x, M\U’)
(x € M) with a sufficiently small € > 0, we define closed subsets in E by

Op = ﬂ {z=a+V-1lyeE;xclU, —p(x) <y, m) <px)} ﬂ E

0<k<n—1
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and, for 0 < k <n—1,

oy ={z=a+V-lye B,z €U, £(y, m) > plx)} [ E.

Note that &, NG, C S, holds for o € A if € is sufficiently small. Then, in the same way
as in the previous example, we can define o, for & € A*! and determine its orientation.
For any

n,n—k 0,1
w = {Watocpen aenttt € D CHS, S8 2577") = 257(S, §'),
0<k<n
we define the Laplace transform of w by

EPID VY [l

0<k<n eAk+1

for which one should aware that the sum ranges through indices only in A¥! c AR+,

We have, for any a = ((ig, €9), -+, (ig_1, €x_1), n) € AFF

doo = > Ol (j,e)]»

@{io, - ig_1,n}, e=k
where [a (7, €)] is a sequence in A**2 whose last element is (j, €). The important fact here
is that do, (o € A¥1) does not contain any cell o5 with 3 € A¥2\ A2 Hence, by
Stokes’s formula, we still obtain
IQw)=0 (we 2" (S, ).
As a matter of fact, if o € A1\ A¥+! then I(Yw,) = 0 for w, € o@]ﬁ,’;‘_k_l(Sa) because

*k )

Ow, (resp. dw,) does not contain a non-zero term with an index in A (resp. AFF2). If

a = ((ig,€0), -+, (ig_1, ex_1), n) € A¥F1 then we have for w, € Qﬁg‘_k_l(sa)
[(Jwa) = (—1)F / d(e™*wgy) + 3 /
o J¢lio, ig—1,n}, e=E ¥ LGl

= (—1)* / e we +
Ta ()]

/ X, = 0.
J¢ {0, ip— 17n} e=% J¢{d0, ip— 17n} e=+ " 9lG.e) o]

The rest of argument is the same as the one in the previous example: For u €
(U’ By, @ P ¥p.0) and its representative

= P vac (S, S O5P™) with v =0,

aeATT!
we obtain
Lu)=(-1)" Y sgn(a) / e V. (6.12)
aeA?! ¢
Here, for a = ((0,€),...,(n—1,6,_1), n) € A", we set sgn(a) = €gey -+ 6,1 and L, is
the real n-chain in £
Lo={s=z+V-lye E;zcUNM, y=p,(z)} (6.13)

with a smooth function p, : U’ N M — M satisfying the conditions
1. po(x) =0 for x € OU' N M,

2. L, C S, in Dg,

and its orientation is the same as the one of U’.
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6.3.2 Laplace transform whose chain is of product type

Let us consider the Laplace transformation of a Laplace hyperfunction u whose support
is contained in I'yn C Dy Here Tyn = {(zy,-+ ,2,) € M; 25 >0 (k=1,2,---,n)}. In
this case, one can expect the the path of the integration to be the product v; x - X 7,
of the one dimensional paths v,. However, we cannot take such a path unless the support
of u is contained in a cone strictly smaller than T';». In this subsection, we show that a
chain of product type can be taken as an integral path of the Laplace transformation if
the condition supp(u) \ {0} C I';» is satisfied.

Let K C Dy, be a regular closed cone satisfying
K\{0} c T . (6.14)

Let € > 0 and Let D;, C C be an open subset with smooth boundary satisfying R, C l/)\k
and

DyCc{z=2+V-1yeC; |yl <e(xr—¢)}.

Set
D=D, xDyx---xD, CFE.

One should aware that D is not an open neighborhood of ', in Dp. However, since D
becomes an open neighborhood of K in Dg because of (6.14]), we can compute its Laplace

transform by
L)) = [ e [ ey
D oD

for a Laplace hyperfunction u = [(v1,v01)] ((v1, vo) € 25" (Vk, Vk')) with support in
K.

Let ng+ = (0,---,%1,---,0) (k =0,...,n — 1) be a unit vector whose (k + 1)-th
element is +1. Recall the definitions of A¥™! and A¥!! given in Example £.3.6, and let us
introduce open subsets S, Sy + and the pair (S, 8’) of coverings of (5, S\ K) in the same
way as those in Example [6.3.6l Set 0, = DN E and, for k=0,--- ,n—1,

okt ={z2= (21, ,2n) € E; 241 € C\ Dyy1, £Im 24y > 0} ﬂ E.

Then, as we did in the example, we define the Laplace transform by

=3 Y

e w,
0<k<n qepkf1 7 oo

for w = {Wa}ogkgmaeA’:“ < @ogkgn CH(S, S Qﬁﬁ_k) = QS’S(S, S).

Note that we have, for a = ((ig, €0)," - , (ix_1, €x_1),n) € AFFL,
Joo = > Tlac(j,e)] + > Tlac(j, )]
j%{io,...,ik,h’n},ezzt je{io,...,ikfl,n},ti::l:
Define j : C* — C to be mj(z1,- - - , zn) = 2j41. Since wj(0; +No; _Noy,) (j=0,1,--- ,n—
1) consists of the one point, for j € {ig,...,ix_1} and € = =+, the restriction of the

holomorphic n-form dz to o, ;¢ becomes 0 and we get

/ e 7 =0
Tla (G, <]
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for an (n,n — k — 1)-form 7. Therefore we still have the same Stokes formula as the one

in Example [6.3.6]
/ By — 3 / e,
a la (4,0))

J¢{io,ip—1,n}, e==%

and hence, we obtain

IPw)=0 (we25"7Y(S, S)).

Summing up, for u € I'x (Dar; By @0 Y50 7) and its Cech representative
M

V= @ v, € C™"(S, S ﬁg;p’(")) with dv =0,

aeAnt!
we have
L(u) = (-1)" Z sgn(a)/ e vy, (6.15)
aeA:L:fl Yo
where, for a = ((0,€0), ..., (n— 1,6,_1), n) € A7, we set sgn(a) = gy ... €,_1,

%:(aDlangx---XaDn)ﬂF_m

(6.16)
IFon={z=(21,",2) €E;glmz, >0 (k=0,1,--- ,n—1)}

and the orientation of 7, is chosen to be the same as the one in M.

6.4 Reconstruction of a representative

By the same arguments as in the previous examples, we have a formula to reconstruct
the corresponding Cech representative from a Cech-Dolbeault representative of a Laplace
hyperfunction.

Recall the definition of A" and A" given in Example Set

Iy ={xe M, erry1 >0 (E=0,....,n—1)}

for any o = ((0,¢€0), (1,€1),--+,(n — 1,€,_1),n) € A, In particular, we denote by +"
the sequence ((0,+), (1,+),---,(n —1,+),n). Thus '\« denotes the first orthant in M.

Let K C Dy, be a regular closed cone such that K N M is convex, and V' C Dg an
open cone such that V is 1-regular at oo and V N E is a Stein open subset. Note that,
since V' is an open cone, the fact that V is l-regular at oo is equivalent to saying that
(VN E)=V. We also assume

K\{0} c T\ CcTm C V. (6.17)

Let U =V NMC M, and let I:In(ﬁ]gf;p(W(U ))) denote the intuitive representation of
Laplace hyperfunctions on U.

A

Remark 6.4.1. In this subsection, we assume that W(U) consists of an infinitesimal

wedge which satisfies the condition B1. in Section Bl For such a family W(U) of restricted
open subsets, still Theorem [4.3.3] holds.
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Then, we define b: H' (G52 (W(U))) — H"(25° (Vby,. Vb)) by
OgP(W) 3 f = by (f) € HY(2p (Vby,, Vo)) (W eW(D)),

where Vp,, = {V\ U, V}, Vo, =1V \ U} and by is the boundary value map (5.2).
Recall that the isomorphism byy : ﬂn(ﬁ&p(W(U ) = I(U; Hy.0) was given in The-
orem [£.3.3], for which we have the commutative diagram

L(U; 257 - Lk (U; 25%)

Das

12
12

byy

~mn b

H' (05 (D))

Hn(c’@]%; (VDM7 VDM,)) ~— Hn(g]%;(VKa VK/))

where Vi = {V \ K, V} and V. = {V \ K}, the morphisms ¢ are injective and all the
other morphisms are isomorphic. Set

Hi (G52 W(0))) = {u € H (G52 (W(D))); Supp(bw(w)) C K}.
Then the morphism b induces the isomorphism

b : Hy (G5 (WD) = H'(255 (Vic, Vi)

A

Now we give the inverse of by concretely. Let u € 'k (U; %’Eﬁ‘;) and 7 = (11,701) €
Q]%’Z(VK, Vk') be its representation. Define

1 71 (w)eF—w)e / o1 (w)eF—w)e )
ho(2) = dw— [ W g
(=) (2my/—1)" </D w—z v ap W — 2 v

1
denotes , the vector a and the domain D are as fol-

w—z (wy — z1) - (W, — 2p)

where

lows:

1. D is a contractible open subset in Dy with the (partially) smooth boundary 0D
which satisfies B
KcbhcDcV

and .
(DNE) | J{we E; jwp — 2| > 5}
k=1
for some 6 > 0. Furthermore, D is properly contained in an half space of Dg with
1
direction —(1,1,---,1).

NG

2. a=R(1,1,...,1), where R > 0 is sufficiently large so that the integrals converge.

Note that the orientation of D is the same as the one of F, and that of 0D is determined
so that the outward-pointing normal vector of dD followed by a positive frame of 9D
form a positive frame of F.
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Then it is easy to check that h,(z) remains unchanged when we take another D and
representative 7 of u if the integral converges for the same a. Hence, by deforming D
suitably (here keep D unchanged near K N E,, and hence, we do not need to change a
in this deformation), we find that h,(z) belongs to 07 (€2), where

="{z=0+V-1ly € E; y1y2---yn # 0}.

For a € A" set Q, := Mx+/—1I', C Dg. Note that we have

|| €.

acAH
Now we define the inverse b}{ of bx by
u=[r]— (=1)" > sen(a)hu(2)], €H (GE2W(D))), (6.18)
acA??
where sgn(a) = €gey -+ 6,1 for a = ((0,¢6), (1,€1),--,(n—1,6,_1),n) € AT

Lemma 6.4.2. bl is independent of the choices of a = R(1,...,1) if R > 0 is sufficiently
large.

Proof. Let o/ = (R',R,...,R) with R > R. It is enough to show that bl (u) gives the
same result for both the a and a’ because a general case is obtained by the repetition of
application of this result. Clearly we have

(e—w)a’ (e’
(/ T (w)e dw—/ To1(w)e dw) B
D w—z oD w —z
(/ Tl(w)e(z_w)adw / 7‘01(w)6(z_w)adw)
D oD
(z—w)(ta’+(1—t)a (z w)(ta’+(1—t)a)
~R) < / / nw , ' dtw — / / Tou(w)e T dtdw) ,
w' — z FY5) w' — z

where 2/ = (23,...,2,) and w' = (ws, ..., w,). Since the last integral denoted by h(z)
hereafter belongs to Oy " (') with

Qi="{z=a+V-1ly€E;ys---yn # 0},

we have Z sgn(a)h(z )‘ =0in ﬁn(ﬁé’;p(W(U))) This shows the result. O

Theorem 6.4.3. by and b}{ are inverse to each other.

Proof. We use the same notations as those in Subsection [6.3.2] where we take an open
subset V' as S. Hence, the pair (S,S8’) are coverings of (V,V \ K). Set

Qk,e:{y: (ylv"' 7yn> EM; €Yk+1 >L_1‘y‘} (1{320,1,-“ 7n_17€::|:)
for sufficiently large L > 0 and set

Tre = UXxV/—1Q4.
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Let T'C Dg be an open neighborhood of U such that T is l-regular at co and T'N E is a
Stein open subset. Furthermore, by shirking 7' if necessary, we may assume 7" C .S and

TpeNT C SkenS (k=0,1,--- ,n—1,e==).
Set also T,, = T and define the pair (7, 7") of coverings of (7,7 \ Dys) by
T = {T0,+7 TO,—) ) Tn—l,+7 Tn—l,—a Tn}7 T/ - {T();i-a TO,—) ) Tn—l,+7 Tn—l,—}'

Using these coverings, we have the commutative diagram of complexes, where the hori-
zontal arrows are all quasi-isomorphisms:

B2

C*(S, 8 05%) —2v 20%(S, 8 25" (Vi, Vi)

C.(T, T/§ ﬁ]f))?) . ,@%’;(T, T/) < "@]%’;(VDM? VDM/)

Then by taking n-th cohomology groups we get

n / eX B{l n [ ] / 63 n o
H™(S, S O5F) H"(25°(S, S) H"(2p° (V, Vi)

HY(T, T'; 65%) H" (29 (T, T')) ~—— H(25 Vo Vou")

where all the horizontal arrows are isomorphic and all the vertical arrows are injective.
We first note that the canonical isomorphism

HY(T, T'; 657) = 0 (G52 (W(D)))
is given by

D o

1
aeAyF

acA?!

Furthermore, it follows from the construction of boundary values morphisms that, for
9 =1{9a}aennrr € C(T, T'; Op), we have

Y sen(a)br,(ga) = ((a3) " eal)(lg]) i H'(258 Vo, Viu))).
aeAT!

Hence the morphism b coincides with (a3)~' o af as a morphism from H"(T, T'; O5F)
n 0,e
to H (‘QDE(VDNH VDM,>>’
The morphism ¢, is induced from the restriction of coverings, that is, for {fo},cpntt €
(S, §'; 0yY), we have

i ({fataenrn]) = Hfalta Yaearn] — in HY(T, 75 Op7).
Note that, for a € A"\ A we have always T, = () but S, is not necessarily empty.
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A~

Let u € I (U; A, ). Then we can find f = {fo},eantr € C"(S, S'; OpY) such that
u=[f]. Let 7 = (11, 701) € Q]%’Z(VK, Vi) with u = [1] = ((8%)7' o 87)([f]). Then, to
show the theorem (i.e., b}{ o bgx =1id), it suffices to prove

()" Y sen(@hu(z)|g, = Y sen(@)fuln, i H (G5PW(D)).

aeA! acAH!

Applying the result in Subsection [6.3.2], we have

B (=1) _— fa(z)e(z—ll))a " )
i) = G 3 s >/%(L(z))7w_z dw  (z€QnE)

aeAH
where, for a = ((0,¢€p), -+, (n—1,6,_1),n) € A%, the mapping ®,, : C* — C" is defined
by

Qo(z1+V—1y1, -, +V—1y,) = (z1 + oV —1y1, 2o+ €1V =1y, - , T + €41V —1Yyy)

and
L(z) = €1 (21) X €i(22) ¥ - -+ X Li(2n).

Here, for zy = x9 + v/ —1yo € C with yy # 0, the path ¢, (z9) C C is defined as follows:
Let v C D¢ be a domain with smooth boundary such that it contains the real half line

{z=2+V—1y € C;z > min{0, 220}, y = 0} C D¢ and two points xy £ /—1yp € C are
outside 7. Then we set

li(z0) =0yN{z € C; Imz > 0}.

Furthermore, the orientation of ¢, (z) is the same as that of the real axis.

In the same way, we define ¢_(zy) C C by taking the domain ~ as in the case of £, (2p).
However, in this case, we take v so that the two points x¢ & /=1y, are also contained in
7. For any = ((0,¢6),(1,€1),- - ,(n—1,6,.1),n) € AT we set

*% )

Lg(z) =Ly (21) X ley(22) X -+ - X le, (%)

and

1 fa(z)e(z—w)a
o = —— —dw.
g 75(’2) (27T /_l)n /{;Q(Lﬁ(z)) w— 2 w

It follows from the Cauchy integral formula that

Y sen(B)gas(z) = sgn(@)fal) (2 € To). (6.19)

ﬁeAn+1

For a = ((07 60)7 (17 61)7 ) (n - 17 En—l)v”) and B = ((07 770)7 (17 771)7 T (n - 17 nn—1>7n>
in A" we define

a-B=1((0,em), (L, eam), +,(n—1,6,1m,-1),n) € A

Remember that +" denotes ((0,+),(1,+),---,(n —1,+),n). If B € A% is different
from +", then g, g|7, and g4 4|7, , can analytically extend to some common infinitesimal
wedge in Dy and they coincide there. Hence we have, for any «, f € A%t

k% )

Gaslr. = Gaiolr,, i H (G52 WD),
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from which we have obtained in I:In(ﬁf;;p W(D)))

(1" D sen(@hu(2)]g. = > > sen(a)sen(B)gs, nlr,

acA! a€ATF geant

= Z Z SgIl gB oeB|T5

acAH gean !

— S sgalB) ol

BeAZ!

This completes the proof. O

7 Laplace inverse transformation 7L

Let S be a connected open subset in M and a € M. Note that a connected subset is, in
particular, non-empty. Recall the definition of the map w,, given in (2.3), for which we
have

T (S)={¢+V-1Ine B¢ €S ne M }/R. C(E"\{0})/Ry = EL.

Here we identify a point in M with a unit vector in M*.

Let h : MY — {—oo} UR be an upper semi-continuous function such that h(§) is
continuous on S and h(§) > —oo there. Now we extend h to the one on EY in the
following canonical way: Define h(¢) on EX by, for ¢ = £ ++/—1n € EX, ((€,n) € §21),

0 (¢ € vV-1M),
El(@s(C)) (€€ B\ V-1MY).

Note that & is also upper semi-continuous on E*. and continuous on w'(S) U/—1MZ,
Let f € ﬁmf_h(wool(S)). It follows from the definition of ﬁgf‘h that we can ﬁnd

continuous functions 1 : S x [0, 00) — Rso and ¢ : [0,00) = R>g satisfying the following
conditions:

1. For any compact subset L C S, the function sup ¢(£, A) is an infra-linear function
el
of the variable A and f is holomorphic on an open subset Wy, N E*, where

Wy :="{C=X+V-Ine E5ne M, £€8 A>9(E Inl)}. (7.1)
Note that we identify a point in M7 with a unit vector in M* here.

2. ¢(t) is a continuous infra-linear function on [0, c0) such that

F(O)] < e lMhmn (4 — lihmang @) (¢ — ¢ 4 /ZTn € Wy 1 E¥),
(7.2)
where mg. : E*\ {0} = (E*\ {0})/R4 = B (vesp. mape : M*\ {0} — MZ) is the
canonical projection.
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We also define an n-dimensional real chain in E* by

vi={(=¢+V-Ine EY ne M*\{0}, £ =g (In]) &} (7.3)

where £, € S and v, (\) is a continuous infra-linear function on [0, 00) with ¢ (A) >
(&0, A) (A € [0,00)) and 1, (N)/(¥(&, A) + 1) — 0o (A — 00). Note that the orientation
of v* is chosen to be the same as that of /—1M*.

Example 7.0.1. The following situation is the most important one considered in the
paper: Let K be a regular closed subset in D, such that N7 (K) N M, is connected (in
particular, non-empty). Then we set S = N7 (K)N M7 and

h(§) = hk(€) = inf (z,&).

zeKNM

In this case, we have

@ (S) =N (K), h(¢)= inf Re(x,().

© rEKNM

Furthermore, 2(C) is upper semi-continuous on E*, and continuous on N He(K) Uy —1M,.

Now we consider the de-Rham theorem with a parameter in Section Bl for which we
take T = S"! = {n€ M*; |n| =1} and Y = S"! x Dg. Define coverings

W= {Wo=Y\py,(Dn), W1 =Y}, W ={Ws}
with Wy, = Wy N Wi. Recall the isomorphisms given in Proposition
DT 2520) = T3 ) = W o, (V5 5 258) = (L2300, V),

Das)

and set
Q:="{(0,2) € S"' x E; (§,Imz) >0} CY.

Let 7 : Q < Y be the canonical open inclusion. Then we can take a specific w =
(w1, wo1) € L2E (W, W) satistying the following conditions:

D1. Dp,w = 0 and [w] is the image of a constant function 1 € I'(T; £ ;) through
the above isomorphisms.

D2.  We have suppy,, (w1) C €2 and suppy,, (wo1) C €.
The existence of the above w comes from the following lemma:
Lemma 7.0.2. The canonical morphisms
G LDy W) — L2y (W, W) and jijt ELy (W, W) — E25. (W, W)
are quasi-isomorphic.

Proof. Let 7 be a £33, p or &p, and let i : Y\ 2 — Y denote the closed embedding.
Then the above isomorphism is equivalent to the following isomorphism:

RT, 1, (Y5 55 'pp' F) — RE 1 (V5 01 F),

Dg IDE(DM)
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which comes from the fact

RT, 1, (Y5 i pp' F) = 0. (7.4)

pDE (DM

The fact itself can be shown by the following argument: Let us consider the distinguished
triangle

L1 — _ B
RFPHSI(DM)(Y; 141 1pT1,§) —RI'(Y \ & ple) -
E

RO((Y \ Q) \ ppl (Du); pr'#) 5

Under the commutative diagram below,

Y\ \ pp, (D) —— Y\ Q

T

the morphism ¢ gives a homotopical equivalence over T', and hence, it follows from Corol-
lary 2.7.7 (i) [KS] that the morphism f is isomorphic. This implies (.4]). The proof has
been completed. O

Note that we will give a concrete construction of such an w later. Recall the standard
coverings

Vo = 1Vo = Dp \ Dy, Vi = Dg}, Vo,, = {Vo},

and the morphism p = {p;} : L2y — XQ&' of complexes which is the projection to the
space of anti-holomorphic forms, that is, each p, : L2% — XQ&’“ is defined by

S fad AdE Y fol0.2)d7

Note that the following diagram commutes

o1 00 . ex
Rrpﬁ;(DM)(Y’ Dr "%oc,T) — Rrpmj};(DM)(Y, L0y Py

L2 (WW) LA W, W)

where vertical arrows are quasi-isomorphic.

Let us take an w = (wq,wp1) € L2y (W, W’') which satisfies the conditions D1. and
D2.

Definition 7.0.3. The Laplace inverse transform ZL is given by

Iﬁ(f) = ([Iﬁw(de)] ® aDM/DE) @ Upy,
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with

.00 = (52) [ oo
(Y ([ e L e 1@dc, [ prateon)( 2 e p(0dc)
2 i’ In| - Inl

Here ¢ = £ + v/—1n are the dual variables of z = x + /~1y, ap,, € orp,, (D), ap,, /D €
orp,, /o, (Dar) so that ap,,/p, ® ap,, has the same orientation as that of £ through the
isomorphism orp,, /p, ® orp,, ~ 0rp,|n,,, and the volume vp,, is defined by dz ® ap,, with
dz =dz; AN---Ndz, and d¢ = d¢ A -+ - A dG,.

Lemma 7.0.4. We have

1. The integration ZL,(fd() converges and it belongs to Q%’Z(VDM, Vb,,'). Further-
more, J(ZL,,(fd¢)) = 0 holds.

2. IL,(fd() does not depend on the choices of w.

Proof. Since the support of wp; (resp. wy) is a closed subset in Wy, (resp. W) and
Y, = 8" ! x E is compact, we have the followings:

1. There exist an open neighborhood O C Dg of Dy, and 6 > 0 such that
suppy, (w1) C (8" x (D )\ 0)) ﬂ “{(n,z) € 5" x E; (n,Imz) > §|Im=z|}.

2. For any open neighborhood O C Dg of Dy,, there exists § > 0 such that

suppyy,, (wor) N ("' x (Dg\0)) c ~ {(77, 2) € S" P x E; (n, Imz) > 6| Imz|} )

The fact ZL,(fd¢) € 25" (Vb,,, Vb,,/) and the claim 1. easily follows from these facts.
Now let us show the claim 2. Let w’ be another choice of w. Then, by the Lemma [.0.2]
we can find w" ! € 5ij7LL2% (W, W) such that

p(w) = p(w') = p(Dpyw"™") = Tpyp(w™ ).

Since w1 satisfies the same support conditions as those for w, the integration ZL,,»—1( fd()
which is defined by replacing w with w™! in the definition of ZL,(fd({) also converges.
Hence we have

L (fdC) — TLus () = TIL -+ (FdC).
This completes the proof. O

Lemma 7.0.5. The ZL(f) is independent of the choice of §, and )¢, which appear in the
definition of v*. As a consequence, we have

supp(ZL(f)) € () {x € M; (z,) > (&)} (7.5)

&oEeS
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Proof. We first assume n > 1. Let us consider the commutative diagram below:

DT Zy) =TV pr Zy) <D H o (Vs pr  42,) = HYN(L25 (W, W)

Pp,, (Dar)
T . T T
(T ér) =I(Y; ﬁ;léaT) — HZ;(DM)(Y; p;lé&T) = H"(27 (W, W),

where all the horizontal arrows are isomorphisms and every vertical arrow is injective.
Furthermore, the bottom horizontal arrows are morphisms of Zr modules. Hence we can
take w = (w1, wo1) € EZL (W, W') that is a representative of the image of 1 € I'(T'; &)
by the bottom horizontal arrows. It follows from Lemma that the w is assumed to
satisfy the following conditions:

L. suppy, (w1) C © and suppyy,, (wo1) C €2

2. For any vector fields v on T', we have v[w] = 0 since [w] is the image of 1 and the
bottom horizontal morphisms in the commutative diagram are Zr-linear.

Let (61, ,6,) be a homogeneous coordinate system of S"~! and let 7 : M*\ {0} —
S"=1 a smooth map defined by

m Tin )

(nlj...’nn),_)(_’ e
Inl" [n] i

which induces the morphism of vector bundles

7 T(M*\ {0}) — (M*\ {0}) S TS"

By restricting the base space of the above bundle map to S"~* C M*\ {0}, we get the

morphism of vector bundles
0 : TM*|gn1 — TS" 1, (7.6)

by which we define the vector fields v, on T'= S™ ! as

0

= o(— k=1,2---,n). 7.7
T ( ) (7.7)

V.

Then, since v[w] = 0 holds, it follows from Lemmal[7.0.2that there exists &y = (W1, Dr01) €
EQE W, W') with

suppyy, (Wk,1) € Q@ and  suppyy,, (@r01) C Q,

such that
VW = D]D)Ea)k,

from which we have (( =&+ v—17)

o
s

(o) 0/ I, 2)) = %p@kw)(wm,z) _ %pwmmn/w, )

=9 ot/ 2).

(7.8)
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Let us consider (&, 1¢,) and (&1, ¥, ), which generate the n-dimensional chains 3 and
75, respectively. Then, by taking a continuous path s(\) (A € [0,1]) in S with s(0) = &
and s(1) = &, we define an (n + 1)-dimensional chain 4* by

7=+ V-In € B €= (1= Mg (Inl) + M, (In)s(N), 0 <A <1, e M\ {0}}.

Here we may assume 7* C W,,. In fact, we first consider the pair of chains generated by
(&0, v¢,) and (&, g) where g is taken to be a sufficiently large infra-linear function. Then
consider the pair of chains generated by (&, g) and (&1, g) and finally that by (&, v, ) and

(é-lv g) : 1
By noticing that the function — on M* \ {0} is integrable near the origin if n > 1

|n]

and that each @, satisfies the same support condition as that for w, it follows from the
Stokes formula that we obtain

/f )8 (p(w) (/1] 2)) ¢ dC
/f’ W)/, 2) 5% d¢ /ff w)(n/Inl, 2) e dc.

It follows from ([Z.8]) that we have

/f ) B (p(w)(n/ Il = CMC‘/f S
_ﬁ/f

Hence the Laplace transform of f with the chain 7§ and the one with the chain ~; give
the same cohomology class.

( (w)(n/In], 2)) G, A dC

p(@r)(n/[nl, 2)dCy, A dC.

_F1ﬁ4

=1

Let us show (ZH) in the lemma. Fix & € S and take a sufficiently large ¢ > 0 so
that 1, () < ¢t + ¢ holds for ¢ € [0,00). Let us consider the n-dimensional chain ~ for
1>e>0

Ve = VI e B &= (el + 0, n € M*\ {0}}

and the (n + 1)-dimensional chain

&= ((1 =N (Inl) + Me il +0)) &
{§+F"€E 0<A<1, ne M\ {0} }

Note that 4 C W), holds for 1 > € > 0. Then, on {z € E; Re (&, 2) < h(&)}, we have
- F(Q0c(p(w)(n/Inl. =) e d¢
ye
= [ @ aminl e~ [ 1@ sminl )

where all the integrals converge. Hence, by letting ¢ — 0 + 0, we get

£(0) Be(p(w)(n/ I, 2)) €% d¢ = /f W)/l ) e d.

Xk
Yo+o0



Here the (n 4 1)-dimensional chain g is
Toro = AEF VI € B &= Ao, A2 g ([n]), € M7\ {0}}

and all the integrals still converge. This implies that, as the left hand side of the above
equation gives the zero cohomology class in “{z € FE; Re (&, z2) < h(&)}, and thus,
supp(ZL(f)) is contained in {x € M ; (&, x) > h(&y)}. Since we can take any vector in S
as &, we have concluded the second claim of this lemma when n > 1.

Now we consider the case n = 1. In this case, S"! consists of only two points
{+1,—1}. Hence it follows from the definition of w that 7 = w(1, 2) (resp. 7 = w(—1, 2))
satisfies the conditions in Lemma [B.22 with Q = QL (resp. Q = QL), where

QL ="{z€C;+Imz > 0} C De.

Hence we have obtained

v v

TC(AC) = by <7 ) e<2f<<>d<) —bm< - e42f<<>d<>
QY

YNl
for which we can easily see the claims of the lemma. This completes the proof. O
In particular, we get

Corollary 7.0.6. Let a € M and G C M be an R, -conic proper closed convex subset.
Set K =a+ G C Dy and let e“g(() € Opf (N3 (K)) = O (T(G°) N EL), where G° is
the open dual cone of G, that is, G° = {¢ € E*; Re ((, ) > 0 (Vx € G)}. Then we have

supp(ZL(g)) C K. (7.9)

In fact, the corollary follows from the lemma by taking S = N} (K)NMZ, and h(§) = a
and by noticing the facts w ' (S) = NJ(K) and K = Neges 17 € M; 6y > ao}-

7.1 Concrete construction of w

Now we give a method to construct w concretely. Let O be a subset in S~ ! = {¢£ €
M*; [€] =1}, and let 0, : O — S™' € M* (k=1,...,n) be continuous maps on O. Set,
for £ € O,

n

k(§) = ({z € R™ (z, 0()) > 0} C M.

k=1

We assume that there exists ¢ > 0 satisfying
Cl. S™ 1\ O is measure zero.
C2. k(&) C{ze M; (x,&) > o|x|} for any £ € O.
C3. Let A(¢) be an n x n-matrix (61(§),...,0,(§)). Then det(A(&)) > 0 for any £ € O.

Note that the condition C2 is equivalent to the following C2’:
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C2'. Set G(§) := ZR+9k(£). Then we have
k=1

In fact, C27 implies
-

dist(€, R"\ G(€) > 8 (£€0)
Z ¢

{7‘ e R";

7]
Then, by taking the dual of the above sets and by noticing G(£)° = k(£), we can obtain
C2.

sg}cma

Let p1(2), ..., @ns1(2) be in Zp, (Dg \ D) which are given in Example with

me=1(0,...,0, 1,0,....,00 (k=1,...,n).
Using these y’s, we define wgy; by

wor(§, 2) = (=1)"(n = D xpva, ((A§)2) 9:(p1("A(€)2)) A+ A O:(pn—1("A(€)2)),

where H, . is also given in Example (.25l Then, by the same reasoning as that of
Example 7.14 in [I] and Corollary 3.0.7] we have

Lemma 7.1.1. Thus constructed w = (0, wpy) satisfies the conditions D1. and D2. de-
scribed before Lemma [7.0.21

We give some examples of such a family 6y’s.

Example 7.1.2. Let x be a triangulation of S"7', and let {0, },ea be the set of (n —1)-
cells of x. For each A € A, we take linearly independent n-vectors vyi, -+, va, € M*
which satisfies

n
oy C E R—I-V)\,Im
k=1

and det Ay > 0 for the constant matrix Ay = (va1,Vr2,...,Vr,). Note that such a
family of constant vectors always exists if each o) is sufficiently small. Furthermore, we
may assume the frame vy 1,52, ..., Vs, determine the positive orientation in M™ for each
A, Then, we set O := Uyepoy and, for k =1,... n, define 6;(£) on O by

O(§) =var (£ €.

Clearly these O and 6}’s satisfy the conditions C1, C2 and C3.

Example 7.1.3. Assume M* has an inner product. Let p be a point in S" ! and set
O := S" 1\ {p}. Then O becomes contractible, and hence, there exists a continuous
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orthogonal frame 6 (€), ..., 6,(€) € M* on O. Here we may assume 6;(£) = €. Set, for
some 0 > 0,

01(€) == 02(6) + 361 ($),
0(€) := 05(€) + 66:(€),

I
>

On-1(§) : n(€)+59~1(§)a
On(§) = —(02 + - + 0,(£)) + 501(8).
Then these O and 6,’s satisfy the conditions C1, C2 and C3.

Let us compute ZL when w comes from Example [[L1.20 In this case, on each o),
wo1 (&, z) does not depend on the variables £. Hence we obtain

v—1\"
)= [( ) <0= LY f<<>e<Zd<> ®any/me @ Vo (7.10)
T AEA g
Here
Yi={C=E+V-1ne E*; n eRyon, £ =g (Inl) &0}

and

To1a(2) = (=1)"(n = D! xmya,, ((AN2) D@1 (PAxz)) A -+ A O(pn-1(*Axz)),
where the constant matrix A, is given by (va1, ...,V ,) and the orientation of the chain

75 is induced from the one of /—1M* through the canonical projection E* = M* x
V—1IM* — /=1M*. Then, as we see in Example 525 7, := (0,70;.,) satisfies the
conditions in Lemma [5.2.2 Hence, by the definition of the boundary value map explained
in Subsection (.2, we have

Iﬁ(f)zzbszk((%) /*f@)e&dc)@uDMeH%%;;(vDM,vDM/)), (7.1

A€A

where Q) := M x+/—1Ty with T'y := ",_,{y € M; (y, vrx) > 0}.

Let A = {+1, —1}. For a = (a1, -+ , ) € A", we define

Fa::{:p:(ﬂj17""xn>€M; O{kxk>0(k:1,"'7n>}7

7.12
Dt = (- i) € M agme > 0 (k= 1, m)}. (7.12)

We denote by +" € A" (resp. —" € A") the multi-index in A" whose entries are all +1
(resp. —1). Hence, I'yn (resp. I'%..) designates the first orthant of M (resp. M™).

Let G C M be an R, -conic proper closed convex subset and a € M. Set K =
a+G CDyandlet f € e Op (N} (K)) = e~ “Op! (T(G°)NE,). We also assume that
G\ {0} C I'yn. Then f is holomorphic on Wy, N E* given in (Z)) with S = Nj (K) N M,
and h(§) = a, and it satisfies (Z.2) there. It follows from the assumption G\ {0} C 'y«
that we can find a* = (af, -+ ,a)) € M* such that the open subset W, given in (1))
satisfies

@+, C W, (7.13)
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Because of this fact, we can take a specific real n-chain 4* C E* defined below which
enjoys some good properties:

A= {§:§+x/—_1neE*;nEM*\{O}i:“*JF@(‘”D <% %%)}

where () is a continuous infra-linear function on [0, 00) which satisfies ¥(0) = 0 and
v* C Wy. Note that the orientation of 4* is the same as that of v/ —1M"*. For a € A", we
also define

~ % * * * ) 7] n nn
= {o=er Ve Biners e =a + i (1 L B

We can replace the chain v* of ZL,, in Definition [(.0.3 with the above chain ¥*, which
is guaranteed by the same proof as that in Lemma [[.0.5l Therefore, we have obtained

Lemma 7.1.4. Under the above situation, we can take the chain 4* as the chain of the
Laplace inverse integral of f. In particular, we have

()= b, ((E) / ; f<<>e<Zd<) © vpyy € HY(ZE (Voo Voo, ), (7.14)

2T
aEeA™

where Q, := M x+\/—1T, C Dg.

Note that each integral

hal2) i= (g) / G (7.15)

belongs to 0" (€2,). We will now explain an advantage of this expression: Set
Q.= A((C\Rzo) X (C\Rzo) X X (C\Rzo)) C]D)E

Proposition 7.1.5. For any o € A", the sgn(a)ha(z) € Oy () analytically extends
to the same holomorphic function in OP(€2). Here we set sgn(a) = a1ag - - - ay,.

Proof. Let 8 be the subset in {1,...,n}, and set

Qop =0 [ {2 € E;Rez, <0 (k€ 8)}
="{z=2+V-1lye Bz, <0(kep), ajy; >0 (j=1,2,...,n)}
and -
Qup="{z=2+V-lye B2, <0 (k€ P), ajy; >0 (j & B)}.
Clearly we have

Qs C Qap, Q= U Qo s.

CVGA”,BC{172 7777 ’ﬂ}

Let us define the continuous function 7}, 5 : [0,1] x I';, — E* by

Yo gls,m):=&+V=1  (neTi, s€0,1]).
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E=a+ (<<1 Gaa ()bl + %(sﬂnb%, (= B + 6g,n<s>|n|>M)

7= ((1=381(8))m, -, (1= Gpu(s))m),
where d5x(s) = s if k € 8 and dgx(s) = 0 otherwise. Since 7}, 5(0, ') = 77 holds, we
have

Map([0,1], T3) = =74 + 70 5(1, T3) — 70,510, 1], 917).

Let z be a point in €, g. Then, as f is holomorphic, we have

0= / d(f(C)esd¢) = / O e,
5% 5(011,T5) 075 5 (10,11,T3)

which implies

/ F(O)eS%d¢ / F(Q)es%dC = / F(O)eS%dc.
52 5(1,T5) 5 52 5((0,11,0T)

A:.5([0,1], or) U (7% 5([0,1], OT%) N {¢G = a}})

Note that

holds. By noticing d¢j, = 0 on each real n-chain 7}, 5([0, 1], ;) N {¢k = aj}, we get

/ F(O)ed¢ =0,
55,5(00.11,0T%)

IRGES / SO

follows. It is easy to see that the last integral belongs to ﬁexp(ﬂa 3). Hence, by taking
arbitrary 5 C {1,...,n}, we see that sgn(a)h,(z) analytically extends to U Q;/ﬁ

from which

In particular, on &i;_/ﬁ with 8 ={1,...,n}, ie.,,

K/Z;TB:A{z:a:jL\/—lyEE; <0 (k=1,...,n)},
sgn(a)hy(z) coincides with the integration on the real domain

(g) / RGAS

+7L

which does not depend on the index o € A™. Therefore, all the analytic extensions
of sgn(a)h, coincide on this domain, and thus, they form the holomorphic function of
exponential type on the domain

Jus =0

a,B

This completes the proof.
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8 Laplace inversion formula

This section is devoted to proof for the Laplace inversion formula, that is, £ and ZL are
mutually inverse.

Theorem 8.0.1. Let G C M be an R -conic proper closed convex subset and a € M.
Set K = a+ G C Dy;. Then the Laplace transformation

L T(Das; BZD @ V50)) — € S OB (N3 (K)
and the inverse Laplace transformation

IL - 6_“Cﬁg1§o(N;C(K)) — T (D %]OD;S ®%?E> %D)OLP))
are inverse to each other.
Remark 8.0.2. For K and G in the above theorem, as GG is a cone,

N2 (K) = N3 (€) = ~(6) N B2 (8.1)
holds, where GG° is the dual open cone of G in E*, that is,
G°={C € E*; Re(C,z) >0 (Vz €@G)}.

Thanks to Corollary and Lemmas [7.0.5] and [8.0.4] the following corollary imme-
diately follows from Theorem B.0.1t

Corollary 8.0.3. Let K C Dy, be a regular closed subset satisfying that K N M is
convex and NJ (K) N M is connected (in particular, non-empty). Then the Laplace
transformation

ex ex inf—h *
L:Tr(Dar; By Qg Vp))) = Oz (N (K))
and the inverse Laplace transformation

1c ﬁgli_hK(N;c(K)) — Ik (Dar; Ly, D Vou))

Dar
are inverse to each other.

Lemma 8.0.4. Let K be a closed subset in D);. Assume that K is regular and K N M
is convex and that N7 (K) is non-empty. Then we have

K= () Tell{wg=h@r

EENT (K)NMx,

Proof. It is enough to show that, for any zo € M with zg ¢ K, there exists a hypersurface
L in M passing through xy such that K and L are disjoint in Dy,.
Since N7 .(K) is not empty, we can take {, € N} (K) N M3, and r € R such that

KcC ™ {zxeM; (x &) >r}.

Set
Ley :="{z e M; (z, &) =r}.
We may assume zy € {x € M; (x, &) > r} from the beginning.

Since K N M is convex, we can find a hypersurface L which separates xo and K
in M. The claim follows if L also separates them in IDy;. Hence we may assume that
LN KN M, is non-empty, from which we conclude that the both normal vectors of L are
not in N7 (K), and thus, we have dim(L N Lg,) = n — 2.

We can take the hypersurface L in M which passes 2o and L N L¢,. Then the hyper-
surface L has the required properties, which completes the proof. O

45



8.1 The proof for LoIL =

Let f € e O (N3 (K)) = e 0 (T(G°) N EX,). By a coordinate transformation, we
may assume that a = 0 and G C 'y« U {0} from the beginning (see (7.12)) for the set
['yn). Let A = {+1, =1}, and let h,(2) (o € A™) be a holomorphic function defined in

(TI5). Then, by Lemma [T.T.4] we have

Z an ® VD -

aeA”

Note that Supp(ZL(f)) € G C I'y» U {0} hold. It follows from Proposition that
we can compute the Laplace transform of ZL(f) by the formula given in Example [6.3.5
Hence we have

o P sgn(a z Yels™ 0z
(EoTNO) = oy S sw0le) [ = [ s

Here we take € > 0 sufficiently small and v, C E is given by
{z=b+(B.+V—-1leAy)z;x €T4n},

where the diagonal matrix

0 Qy,

b= —c(1,1,...,1) € I'_n with a sufficiently small ¢ > 0 and B is given in Example [6.3.5
The ) C E* is given by

{¢=a"+&(6I+V-1A,); e},

where [ is the identity matrix, e > 6 > 0 and ¢* = a(1,1,---,1) € I'}., for a sufficiently
large @ > 0. Note that the orientation of v, and 7} are determined by those of the
parameter spaces I'y» and I}, respectively.

Remark 8.1.1. The above integral does not depend on the choice of ¢ > 0 if it is
sufficiently small, and we make € tend to 0 later.

In what follows, we may assume that ¢ € E* is in a sufficiently small open neigh-
borhood of a* + I .. and that |(] is large enough. As a matter of fact, if we could show
(LoZL)(f)(C) = f(C) for such a (, the claims follows from the unique continuation

property of f.
When 2 € 7, and ¢ € 7}, we have

Re(¢ —()z = —Re(z + Re(z

= (@~ ed. b+ By + ¢S anry I )+ (e, 0 + (366, Bua) = et ) ).

k=1
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Note that, for x € I';» and £ € I'},., we have

(5(5, Bex) — €(€, x)) < —min{e — §,ed }|z||€| < 0.

Hence the above integration absolutely converges and, by the Fubini’s theorem, we obtain

o — sgn(a D2z,
(EoTNO) = ey D o) [ 1(61c [ e

Then, if ¢ is quite near a* and ¢ € E* belongs to a sufficiently small open neighborhood
of a* 4+ I, and if |(] is large enough, we get

. . ¢—C)b
/ 02, — det(Qa,e)/ o(C=O(b+Qac) g, — det(~Qa,e) e¢=0) |
Yo Fin (C - C)Qa,s

where

1 1
(6 - C)Qa,s - HZ:l ek(é - C)Qa,s .

Here ey, is the unit row vector whose k-th entry is 1 and

Qo = B + V—1€A,.

By uniqueness of the analytic continuation, the above formula holds at any point  in a
neighborhood of the chain ~}, and hence, we have

1 F(Q) ele=O®
—_— sen(a) det(Qy..
ary Ty 2 )@ | e

Now if we could show that there exist s > ¢ and a complex open neighborhood T' C C
of (0, s) such that the denominator of the integrand in the above integral does not vanish
when ¢ € 7} and € € T ( and other constants are fixed, where we do not keep the
condition € > ¢ anymore), then the above integral becomes an analytic function of e
(e > 0), and thus, it turns out to be a constant function of € due to Remark BT.Tl Hence,
by letting € to 0, we have obtained

(5015)(f)(5):(m) 3 s /f o0

(LoIL)(f)() = I d(.

27
which is clearly equal to f(¢) by the Cauchy integral formula.

Let g(C,n) be the first element of the vector (Q.. — 7, and let us show ¢((,n) # 0
for any ¢ € 4% and for any 7 contained in a sufficiently small neighborhood of the point
R(1,1,- -+ ,1)Qq. with a sufficiently large R > 0. Set € = ¢/ ++/—1¢” for a sufficiently small
¢ > 0and €’ € R with |¢’| < d¢//2. The real part of g((,n) is, for = a*+&(JE++/—1A,)
with € € I'yn,

(6= ¢ — €)1 — (8¢ — ase’)o + -+ + (8¢ — ane’)én) + (1 = (n — 1)¢ — are’)a— Re my

and its imaginary part is
a1 (1+€ —ae)é + (€ — (n—1)ar€”)a) — ((age + 0" )y + - -+ (an€’ + 5€")E,) — Tm 1.
A7



If Reg(¢,n) =0, then we have
(0’ — ape")a 4+ 4 (0 — ane”)n = (0 — € —ane”)§ — (Rem — (1 — (n — 1)’ — are”)a),
which gives the estimate
O = ["N(E+ -+ &) < (0 = (¢ = [€"]))& — (Rem — a),

that is, we have obtained

(€ =07 NG+ 4+ &) < (L =07 = [e"])é& — 07 (Rem — a).
Hence, when Re g(¢,n) = 0, we get

[Img(¢.n)| > (L+€ —[€"])§1 = (¢ + 8"} (& + -+ + &) — [Tm]

> U, e€NE + 671 ( € + 0l€" ) (Reny —a) — |Tmn,

6/ _ 5_1‘6//‘

where
6, _'_ 6|€//‘

r_ 5—1|€//‘) (1 -0 (6/ - ‘6//|>) .

€

6(6/’€/l> — (1 + E/ _ |€//|> _ (

Note that, for each ¢ > 0, we have £(¢, €”) > 0 if |¢”| is sufficiently small. In what follows,
we consider the case for such an € = € + v/—1¢”. When 7 is contained in a sufficiently
small neighborhood of the point R(1,1,---,1)Qq., we have

Ren ~ R—((n—1)¢ + a1€")R, Im 1y ~ (1€ — (n —1)€")R.

Hence, if R is sufficiently large, Im ¢g(¢, 1) never becomes zero. This completes the proof.

8.2 The proof for 7L o £ =id.

Let G be an R -conic proper closed convex subset in M anda € M. Set K =a+ G C Dy,.
Then we take an open convex cone V' C Dg containing K. Let u € T'g(Dyy; ﬁﬁf;p ® ﬁ;p)
with a representative v = (v, vo1) € 257" (Vk, Vi'). We will show (ZL o £)(u) = u. By
a coordinate transformation, we may assume a = 0 and

G\{0}) cT\nCcTm CV

from the beginning. Then, it follows from Lemma [.T.4] that we get
v=1\" -
(ZL o L) (u) = (7 > b, ; L(u)es%dC ) .

Set

It follows from Proposition that g, extends to a holomorphic function on € of
exponential type. Here

Q:A((C\Rzo)x(C\Rzo)X"'X(C\Rzo)) C]DE
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We first consider g,(2) at a point in I'_n x /—1T',. Let us take Z in I"_» x /—1I", and
fix it. Then, at this 2z, we can deform the n-chain ¥} to

{C=£+VC376E&mF””W(k:L“””%}

E=a"+¢€n, neli,

with a* € I, and € > 0. Here the orientation of the modified chain ¥} is the same as
the original one and we assume |a*| to be sufficiently large.
Now, since ¢ runs in 77, the real 2n-chain D of the integration

£Q) = [ e = [ )

can be
D={z=z+V-1ly;z € b+ 1T |y| <edist(x, M\ (b+1"))},

where b = —€(1,...,1) and [ C M is an R, -conic open convex cone such that
G\{0} c " c "\ {0} c Tn.
Note that, if ( =+ vV —1n €7} and z =z + /-1y € D, we have
Re(Z —2)( = (ReZ —z)a” — Z ag(Im Z,)ny, + (e’(ReZ —z)n+ Z akyknk).
k=1 k=1
If € > 0 is sufficiently small and Re Z € b 4+ I'_», by noticing
lyl <e(bl+z])  (z=2+v-lyeD),

we can easily see that, for any z =x ++—lye€ D and ( =&+ —1n € 7%,

€(ReZ—x)n+ Z QRYKMe = <e’(Re2 — )+ (ay1, . . ,anyn)>77 <0
k=1

holds. Hence, the double integral in g, absolutely converges and we can apply Fubini’s
theorem to g,, from which we get

0@ = [ ) [ e [ o) [ e
Ta A4

@

Yo
sufficiently small, then we can deform the n-chain to the one in M* as was done in the

proof of Proposition [T.1.5, we have

Now let us consider the integral / e If Re(2 — 2) € T_» and |Im(3 — 2)| is

(2—2)a*

/ eCm28q¢ = sgn(a)/ G2 e = sgn(a)6 —,
A “ z2—Z

5 *+F:n —

where sgn(a) = ajas - - - v, Note that, by the unique continuation property,

(2—2)a*

/ e(g_'z)gal(’:sgn(a)6 p.
z2—Z

Y4
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holds at a point where the integral is defined. Summing up, we have obtained

9a(2) = sgn(a) (/D %_V;(Z) - /aD %)

if Z € I'_n x /—1I',. By deforming D appropriately, we see that the integrals in the
right-hand side converge on M x /—1I',, and hence, the above equation also holds there.
It follows from Theorem [6.4.3] that we have

*

aEA”

This completes the proof.

9 Application to PDE with constant coefficients

Let R be the polynomial ring C[(y,- - , (] on E* and ® the ring C[0,,, - - - , 0y, ] of linear
differential operators on M with constant coefficients. We denote by o the principal
symbol map from ® to R, that is,

D3P0)=) cad” —=oP)C)= Y clER
|a|=ord(P)
For an ® module M = © /T with the ideal T C ®, we define the closed subset in £
Charg: (M) ={C € EL; o(P)(()=0 (VP e€T)}.

Here we identify a point in £ with a unit vector in E*.
Recall that {f1, -, fe} (fr € M) is said to be a regular sequence over fR if and only
if the conditions below are satisfied:

L (fi,o fo) # R
2. For any k =1,2,--- ¢, the f; is not a zero divisor on R/(f1, -+, fr_1)-

The following theorem is fundamental in the theory of operational calculus: Let Py (0),
, P,(0) be in ®, and define the ® module

M=2/("(9), -, Pi(I)).

Theorem 9.0.1. Let K be a regular closed subset in ;. Assume that K N M is convex
and NJ (K) N M, is connected, and that P;(¢), - -+, P(¢) form a regular sequence over
AR. Then the condition
N7.(K) N Chargy (9N) = 0
implies
Exth (M, DDy, Z57)) =0 (k=0,1).

Proof. Let F be a sheaf of Z modules or a Z module itself and s; : F — F (i =1,--- ,{)
a morphism such that s; o s; = s; 0s; holds for 1 < 7,5 < ¢. Then we denote by
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K(s1,+-, 80 F) the Koszul complex associated to (si,---,s,) with coefficients in F.
That is,

0-th degree

05 Fo (M) S Fo(A) S FoAr) S % Fo (AL -0

where A is a free Z module of rank ¢ with basis eq, ey, -+, €, and
d(f ®ei, Ney N---Nej,) = Zs] fl@ejNey Neig A--- Nej,.

Since Py ((), - -+, Py(C) form a regular sequence, the complex K (P;(0),--- , P,(9); D)[{] is
a free resolution of 2 and we get

RHomg (M, D(Dar; BE°)) = K(P(), -+, Pi(D); Tie(Dar: BEPY).

D M ]DI\/I

Hence it follows from Corollary B.0.3] that we have
RHom@(im, FK(DM7 %oxp)) =~ K(P1(<)> e >P€(C)ﬂ P(N;C(K)ﬂ ﬁglgo_hK))‘ (91)

Das
The lemma below is a key for the theorem:

Lemma 9.0.2. Let ¢* ¢ Charg: (9). Then the Koszul complex
K(PUC). -+, Pel€): (O ee) (92)
1s exact.

Proof. By the definition of Charg: (9), we can find h(¢) and a;(¢) (j =1,2,---,¢) in R
such that

£
() #0, Q) =D a;(QPB(Q)

In particular, as o(h)(¢*) # 0 holds, h is also invertible in the germ (ﬁg‘i_hK)C* of
the sheaf ﬁg}fo—hl’{ at ¢*. Set A = {1,2,---,¢} and let s = {sx} be a homotopy from
K(Py,---, Py (ﬁgi—hK)C*) to itself, where
skt KF(Py - Py (OR5T) ) = KR(Pr, o Py (O ™))
is given by
( Z fa(g>€a Z ZCLJ fjﬁ 657
aEAk+1 BeAk j=1

where e, = €4, A -+ - Aeqg,,, and jf is a sequence such that 8 follows j. Then, by the
simple computation, we can easily get the equality

sod—dos=h.

Here h @ K(Py,--+ Py (O ")¢r) = K(Py,-+, Py (Ogs ")¢+) is the morphism of
complexes defined by

K*(Py-+ Py (O ) ) S uvs hu € K*(Py -+ Py (OF1) ),

which is an isomorphism because h(() is invertible on (ﬁggo_hK )c+. Therefore the isomor-
phism A is homotopic to zero, from which we conclude that the complex K (Py, -+, P; (ﬁgg:hf{ )er)

is quasi-isomorphic to zero. This completes the proof of the lemma.
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It follows from the lemma that the Koszul complex
K(P(Q). PilC): O ™) (9:3)
of sheaves is exact on N7 (K') because of the condition N7 .(K)NCharg (9%) = (). Applying
the left exact functor I'(N} (K); e) to the complex (0.3]), we get a short exact sequence
0 = DN (K); OF") = DN (K): O3E) © (M) = DN (K): G5 © (D)
Then, by noticing (@.1]), the claim follows from the above short exact sequence. O

Corollary 9.0.3. Let P(0) € ©, and let K be a regular closed subset in D), satisfying
that K N M is convex and N7 (K) N M7, is connected. Then the morphism

Lo, L'k (D, By?)

Dy

becomes isomorphic if o(P)(¢) # 0 holds for any ¢ € N7 (K).
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