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Abstract. Strong variational sufficiency is a newly proposed property, which turns out to
be of great use in the convergence analysis of multiplier methods. However, what this property
implies for non-polyhedral problems remains a puzzle. In this paper, we prove the equivalence
between the strong variational sufficiency and the strong second order sufficient condition (SOSC)
for nonlinear semidefinite programming (NLSDP), without requiring the uniqueness of multiplier or
any other constraint qualifications. Based on this characterization, the local convergence property
of the augmented Lagrangian method (ALM) for NLSDP can be established under strong SOSC
in the absence of constraint qualifications. Moreover, under the strong SOSC, we can apply the
semi-smooth Newton method to solve the ALM subproblems of NLSDP as the positive definiteness
of the generalized Hessian of augmented Lagrangian function is satisfied.
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1. Introduction. The local optimality of the general optimization problem is a
crucial topic for its theoretical importance and wide application. Traditionally, it is
studied through the growth condition, e.g., the well-known first or second order op-
timality condition (cf. e.g., [6]). Recently, Rockafellar [34] proposed a new property
named strong variational sufficiency to deal with this topic geometrically. The key idea
of this abstract definition originates from a so-called (strong) variational convexity,
which indicates that the values and subgradients of a function are locally indistin-
guishable from those of a convex function. These two approaches seem to originate
from different angles to understand the local optimality, but whether they possess
deep connections is an essential issue as it provides not only a better comprehension
of optimization theory, but also a solid theoretical foundation in algorithm design.
Thus an explicit characterization of strong variational sufficiency is demanding.

The definition of (strong) variational sufficient condition (Definition 2.3) is offi-
cially given in [37] for the following general composite optimization problem

(1.1) min
x∈X

f(x) + θ(G(x)),

where X and Y are two given Euclidean spaces, f : X → R and G : X → Y are twice
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continuously differentiable, and θ : Y → (−∞,∞] is a closed proper convex function.
The strong variational sufficient condition is firstly introduced to deal with the local
convexity of primal augmented Lagrangian function and the augmented tilt stability.
It has gained more and more attention for its mathematical elegance and wide appli-
cations in the convergence analysis of multiplier methods. Several characterizations
of this abstract property are also given in [37]. For instance, it is equivalent to the
positive definiteness of the Hessian bundle of the augmented Lagrangian function [37,
Theorem 3] or the criterion [37, Theorem 5] involving quadratic bundle (Definition
2.6).

In terms of the connection with traditional optimality conditions, Rockafellar [37,
Theorem 4] shows that the strong variational sufficiency is equivalent to the well-
known strong second order sufficient condition (SOSC), which is expressed entirely
via the program data, when the function θ in (1.1) is polyhedral convex (i.e., the
epigraph epi θ of θ is a polyhedral convex set). For non-polyhedral problems, the
equivalence is still valid if θ in (1.1) is the indicator function of the second order
cone with G(x̄) ̸= 0, where x̄ is a local optimal solution (see [37, Example 3] for
details). However, an explicit and verifiable characterization of strong variational
sufficient condition for general non-polyhedral problems remains unknown. In this
paper, without loss of generality, we mainly focus on the characterization of strong
variational sufficiency for the following nonlinear semidefinite programming (NLSDP):

(1.2)
min
x∈X

f(x)

s.t. G(x) ∈ Sn+,

where Sn is the linear space of all n × n real symmetric matrices equipped with the
usual Frobenius inner product and its induced norm, Sn+ (Sn−) is the closed convex cone
of all n× n positive (negative) semidefinite matrices in Sn. One of our contributions
lies in uncovering the equivalence between strong variational sufficient condition and
strong SOSC (see Definition 2.2 for details) for NLSDP problems without requiring
any other constraint qualifications.

An important application of the strong variational sufficiency of NLSDP is the
local convergence analysis of the augmented Lagrangian method (ALM). The ALM,
which was firstly proposed by Hestenes and Powell in 1969, and it has attained fruitful
achievements during the past fifty years. Especially, [33] uncovers the equivalence be-
tween the proximal point algorithm (PPA) and ALM for convex problems. This work
is of great importance in establishing the Q-linear convergence rate of the dual se-
quence for ALM. The conditions for the local linear convergence are further weakened
(see e.g., [24, 13]). For nonconvex case, the properties built up under the convexity
assumption have become inadequate. Many efforts have been made to explore the
convergence properties of ALM for nonconvex problems. See [4, 9, 10, 20, 17, 18]
for more details. It is worth noting that in [4], the author revealed a kind of lo-
cal duality based on sufficient conditions for local optimality, which turns out to be
the key to understanding the convergence of ALM for nonconvex nonlinear program-
ming. It follows that there may be a local reduction from nonconvex optimization
to convex optimization. This gives a hint on extending this local duality approach
to broader nonconvex problems. Recently, the newly published work [38] opens new
doors for the convergence rate analysis of ALM for nonconvex problems by using the
aforementioned characterization of strong variational sufficient condition without any
constraint qualifications.
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For NLSDP (1.2), the Lagrangian function is defined by

(1.3) L(x, Y ) := f(x) + ⟨Y,G(x)⟩, (x, Y ) ∈ X× Sn.

For any Y ∈ Sn, denote the first-order and second-order derivatives of L(·, Y ) at x ∈ X
by L′

x(x, Y ) and L′′
xx(x, Y ), respectively. Given ρ > 0, the augmented Lagrangian

function of (1.2) takes the following form (cf. [39, Section 11.K] and [40])

(1.4) Lρ(x, Y ) := f(x) +
ρ

2
dist2(G(x) +

Y

ρ
,Sn+)−

∥Y ∥2

2ρ
,

where dist(z,Sn+) is the distance from point z to Sn+. For a given initial point (x0, Y 0) ∈
X × Sn and a constant ρ0 > 0, the (k + 1)-th iteration of (extended) augmented
Lagrangian method (ALM) for NLSDP (1.2) proposed by [38] takes the following
form

(1.5)

{
xk+1 ≈ argmin{Lρk(x, Y k)},
Y k+1 = Y k + ρ̃k

[
G(xk+1)−ΠSn+(G(x

k+1) + Y k

ρk )
]
,

where ρk, ρ̃k > 0 and ΠSn+(·) is the metric projection onto Sn+. The (extended) ALM

(1.5) reduces to the traditional ALM when ρ̃k = ρk. To see how ALM (1.5) works for
nonconvex problems without constraint qualifications, consider the following simple
example:

(1.6)

min
1

2
x3

s.t. −x2

 0 0 0
0 0 0
0 0 1

 ∈ S3
+.

The optimal solution of (1.6) is x̄ = 0 with the corresponding multiplier set M(x̄) :=
{Y | Y ∈ S3−}. Due to the unboundedness of M(x̄), we know from [50, Theorem 4.1]
that the Robinson constraint qualification [30] does not hold at x̄. Pick a particular
multiplier

Y =

 0 0 0
0 −1 0
0 0 −2

 ∈ M(x̄).

It is clear that L′′
xx(x̄, Y ) = 4 > 0, which implies strong SOSC (Definition 2.2) holds

at (x̄, Y ). We directly apply the ALM (Algorithm 4.1) to problem (1.6), and we find
that the corresponding ALM subproblem in (1.5) can be solved exactly. Then, it
can be observed from Figure 1 that for fixed ρk and ρ̃k, dist(Y k,M(x̄)), the distance
between the k-th iteration Y k and M(x̄), converges to zero linearly.

In this paper, combing [37] with our equivalence result, we obtain the Q-linear
convergence of dual variables and the R-linear convergence of primal ones of ALM for
NLSDP under merely strong SOSC, without requiring the uniqueness of multiplier or
any other constraint qualifications. It is worth noting that [44] and [21] obtained the
ALM local convergence result under (strong) SOSC and nondegeneracy [41, Definition
3.2] or strict Robinson constraint qualification (SRCQ) (see e.g., [15, (11)] for its def-
inition) respectively, both of which imply the uniqueness of multiplier. Although [48,
Theorem 2] relaxed the uniqueness assumption of multiplier, additional assumptions
[48, Assumption 1] with respect to multipliers are still needed.
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Fig. 1. ALM for solving (1.6) with different penalty parameters ρk = ρ.

Another important and practical issue in applying ALM is how to solve the ALM
subproblem (1.5). For convex problems, the successes of SDPNAL [49], SDPNAL+
[45, 47] and QSDPNAL [23] have proved the efficiency of the semi-smooth Newton-CG
method. Its efficiency relies critically on the positive definiteness of certain generalized
Hessian of the augmented Lagrangian function. And we are able to show the positive
definiteness of the generalized Hessian under strong SOSC, as a direct application of
[37, Theorem 3] and our equivalence result.

The remaining parts of this paper are organized as follows. In the next section,
we introduce some preliminary knowledge in semidefinite cone and strong variational
sufficiency. In Section 3, we propose our main equivalence result for both nonlinear
second order cone programming (NLSOC) and NLSDP. Section 4, as a direct appli-
cation, copes with the convergence properties of ALM for NLSDP. Moreover, how to
solve the subproblems and the corresponding convergence analysis are discussed. In
Section 5, the numerical experiment of an example is given to show the validity of
the aforementioned results. We conclude our paper and make some comments in the
final section.

2. Preliminaries. For a given Euclidean space X, let C be any subset in X,
aff C is the affine hull of C [32, page 6]. The Bouligand tangent/contingent cone of
C at x is a closed cone defined by

TC(x) :=
{
d ∈ X | ∃ tk ↓ 0 and dk → d with x+ tkdk ∈ C for all k

}
.

When C is convex, the normal cone in the sense of convex analysis [32] is defined as

NC(x) = {d ∈ X | ⟨d, x′ − x⟩ ≤ 0 ∀x′ ∈ C} .

For any x ∈ C, the critical cone associated with y ∈ NC(x) of C is defined in [16,
Page 98], i.e., CC(x, y) = TC(x) ∩ (y)⊥.

For a set-valued mapping F : X ⇒ X, its lim sup means

lim sup
x→x̄

F(x) := {d ∈ X | ∃ xk → x̄, yk → d such that yk ∈ F(xk) ∀ k} .

The following definitions of proximal and (general/Mordukhovich limiting) subdiffer-
entials of functions are adopted from [39, Definition 8.45 and 8.3].
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Definition 2.1. Consider a function f : X → (−∞,+∞] and a point x̄ with
f(x̄) finite. The proximal subdifferential of f at x̄ is defined as

∂πf(x̄) := {d | ∃ l > 0, r > 0 such that f(x) ≥ f(x̄)+⟨d, x−x̄⟩−l∥x−x̄∥2 ∀x ∈ Br(x̄)},

where Br(x̄) is the ball centered at x̄ with radius r. The (general/Mordukhovich limit-

ing) subdifferential of f at x̄ is ∂f(x̄) := lim sup

x
f→x̄

∂πf(x), where x
f→ x̄ signifies x→ x̄

with f(x) → f(x̄).

Note that in an Euclidean space, the (general) subdifferential also can be constructed

via the regular/Fréchet subdifferentials of functions ∂̂f [39, Definition 8.3]. It is well-
known that these two definitions are equivalent (see e.g., [39, page 345] or [26, Theorem
1.89] for details). In particular, when f is convex and finite at the corresponding
point, the proximal and (general) subdifferentials coincide with the subdifferential in
the sense of convex analysis [32].

2.1. Variational analysis of NLSDP. Let A ∈ Sn be given. We use λ1(A) ≥
λ2(A) ≥ . . . ≥ λn(A) to denote the eigenvalues of A (all real and counting multi-
plicity) arranging in nonincreasing order and use λ(A) to denote the vector of the
ordered eigenvalues of A. Let Λ(A) := Diag(λ(A)). Also, we use v1(A) > · · · > vd(A)
to denote the different eigenvalues and ζl := {i | λi(A) = vl(A)}. Consider the eigen-
value decomposition of A, i.e., A = PΛ(A)PT , where P ∈ On(A) is a corresponding
orthogonal matrix of the orthonormal eigenvectors. By considering the index sets of
positive, zero, and negative eigenvalues of A, we are able to write A in the following
form

(2.1) A =
[
Pα Pβ Pγ

]  Λ(A)αα 0 0

0 0 0

0 0 Λ(A)γγ


 PT

α

PT
β

PT
γ

 ,
where α := {i : λi(A) > 0}, β := {i : λi(A) = 0} and γ := {i : λi(A) < 0}.

The critical cone of Sn+ at Y ∈ NSn+(X) with A = X + Y is given by (cf. [8,

equations (11) and (12)])

(2.2) CSn+(X,Y ) = {H ∈ Sn | PT
β HPβ ∈ S|β|+ , PT

β HPγ = 0, PT
γ HPγ = 0}

and the affine hull of CSn+(X,Y ) is

(2.3) aff CSn+(X,Y ) = {H ∈ Sn | PT
β HPγ = 0, PT

γ HPγ = 0}.

The NLSDP (1.2) can be written in the following form

min f(x) + δSn+(G(x)),(2.4)

where δSn+ : Sn → (−∞,∞] is the indicator function of positive semidefinite cone

Sn+. Denote SKKT (a, b) the solution set of the KKT optimality condition for problem
(2.4), i.e.,

(2.5) SKKT (a, b) =

{
(x, Y ) ∈ X× Sn

∣∣∣∣∣ L′
x(x, Y )− a = 0,

Sn+ ∋ (G(x)− b) ⊥ Y ∈ Sn−.

}
.

For any KKT pair (x̄, Y ) that satisfies the KKT condition with (a, b) = (0, 0), we call
x̄ a stationary point. Suppose x̄ is a stationary point. Define M(x̄) as the set of all
multipliers Y ∈ Sn satisfying the KKT condition (2.5), i.e.,

(2.6) M(x̄) = {Y ∈ Sn | (x̄, Y ) ∈ SKKT (0, 0)}.
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The definition of strong SOSC for NLSDP, which demands the supremum of (2.7)
over Y ∈ M(x̄) holds, is originally given by [41] as an analogue for Robinson [31] for
the nonlinear programming (NLP). However, the strong SOSC mentioned here is
slightly different in only requiring the validity of (2.7) at Y . It is worth to note when
M(x̄) is a singleton, both of them are the same.

Definition 2.2. [41, Definition 3.2] Let x̄ be a stationary point of NLSDP (2.4)
and Y ∈ M(x̄). We say the strong second order sufficient condition (SOSC) holds at
(x̄, Y ) if

(2.7) ⟨L′′
xx(x̄, Y )d, d⟩ − ΥG(x̄)

(
Y ,G′(x̄)d

)
> 0 ∀ 0 ̸= G′(x̄)d ∈ aff CSn+(G(x̄), Y ).

where ΥG(x̄)

(
Y ,G′(x̄)d

)
= 2⟨Y , (G′(x̄)d)G(x̄)†(G′(x̄)d)⟩ is the σ-term and G(x̄)† is

the generalized inverse matrix of G(x̄).

Suppose A = G(x̄)+Y possesses the decomposition (2.1). From [8, page 386], we
know the σ-term takes the explicit form of

(2.8) ΥG(x̄)

(
Y ,H

)
= 2

∑
i∈α,j∈γ

λj(A)

λi(A)
(H̃ij)

2,

where H̃ = PTHP .
Next, we introduce some essential notation for our main result. The (second

order) generalized differentiability of the augmented Lagrangian function Lρ defined
by (1.4) for NLSDP (2.4) has been explicitly established in [44]. In fact, it is well-
known that Lρ is continuously differentiable with

(2.9) (Lρ)
′
x(x, Y ) = f ′(x) + ρG′(x)∗ΠSn−(G(x) + ρ−1Y ),

where ΠSn−(·) is the metric projection over Sn− and G′(x)∗ denotes the adjoint of the

corresponding linear mapping. Moreover, since (Lρ)
′
x is Lipschitz continuous, by using

Rademacher’s theorem, the B(ouligand)-subdifferential of (Lρ)
′
x at (x, Y ) is given by

(2.10)
∂B

(
(Lρ)

′
x

)
(x, Y ) := { lim

k→∞
((Lρ)

′
x)

′(xk, Y k) | (xk, Y k) ∈ U , (xk, Y k) → (x, Y )},

where U is the set of Fréchet-differentiable points of (Lρ)
′
x. It follows from [44, (18)]

(using [44, Lemma 2 and 3]) that

πx∂B
(
(Lρ)

′
x

)
(x, Y )(∆x)

= L′′
xx(x, ρΠSn−(G(x) + ρ−1Y ))(∆x) + ρG′(x)∗∂BΠSn−(G(x) + ρ−1Y )G′(x)(∆x),

where πx∂B
(
(Lρ)

′
x

)
(x, Y ) is the projection of ∂B

(
(Lρ)

′
x

)
(x, Y ) onto the space X and

∂BΠSn−(G(x) + ρ−1Y ) is the B-subdifferential of ΠSn−(·) at G(x) + ρ−1Y . Actually,

the set πx∂B
(
(Lρ)

′
x

)
(x, Y ) is recently defined as the x part of the Hessian bundle [37,

(3.1)] for the augmented Lagrangian function Lρ at (x, Y ) (see [37, (3.6)] for detail).
Let x̄ be the stationary point of (2.4). For each Y ∈ M(x̄) andW ∈ ∂BΠSn−(G(x̄)+

ρ−1Y ), define the following mapping

(2.11) Aρ(Y ,W ) := L′′
xx(x̄, Y ) + ρG′(x̄)∗WG′(x̄).

Let Z = G(x̄) + Y possesses decomposition (2.1) with P ∈ On(Z). It follows from
[44, Lemma 5] that W ∈ ∂BΠSn−(Z) if and only if there exists W0 ∈ ∂BΠS|β|

−
(0) such
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that for all H ∈ Sn

W (H) = P

 0 0 Σαγ ◦ PT
αHP γ

0 W0(P
T
βHPβ) P

T
βHP γ

Σγα ◦ PT
γHPα P

T
γHPβ P

T
γHP γ

PT
,

where {
Σij = 1− max{λi,0}+max{λj ,0}

|λi|+|λj | , (i, j) /∈ β × β

Σij ∈ [0, 1] (i, j) ∈ β × β

with λi := λi(Z) for short. Let Qn denote the set of n-dimensional orthogonal matrix.
Also, W0 ∈ ∂BΠS|β|

−
(0) if and only if there exist Q ∈ Q|β| and Ω ∈ S|β| with entries

Ωij ∈ [0, 1] such that for all H ∈ S|β|,

W0(H) = Q(Ω ◦ (QTHQ))QT .

By [44, Lemma 9], we have

⟨d,Aρ(Y ,W )d⟩ =⟨d, L′′
xx(x̄, Y )d⟩+ ρ

∑
i,j∈γ

(P
T
(G′(x̄)d)P )2ij + 2ρ

∑
i∈β,j∈γ

(P
T
(G′(x̄)d)P )2ij

(2.12)

+ 2ρ
∑

i∈α,j∈γ

−λj

ρλi − λj
(P

T
(G′(x̄)d)P )2ij + ρ

∑
i,j∈β

(Ωρ)ij(P
T (G′(x̄)d)P )2ij ,

where Ωρ ∈ S|β| with entries (Ωρ)ij ∈ [0, 1], P = [Pα P βQ P γ ] with Q ∈ Q|β|.

2.2. Strong variational sufficiency. The definition of (strong) variational suf-
ficient condition is given in [37] for general composite optimization problem (1.1). We
can recast (1.1) in the form

(2.13) min ϕ(x, u) subject to u = 0, where ϕ(x, u) = f(x) + θ(G(x) + u).

The first order local optimality condition for (1.1) of x̄ is the existence of Y such that

L′
x(x̄, Y ) = 0 with Y ∈ ∂ θ(G(x̄)).

Define

(2.14) ϕr := ϕ(x, u) +
r

2
|u|2.

The variational (strong) convexity, which is firstly proposed in [34], refers to the
existence of open convex neighborhoods W of (x̄, 0) and Z of (0, Y ) such that there
exists a proper closed (strongly) convex function ψ ≤ ϕr2 on W such that

(W ×Z) ∩ gph ∂ψ = (W ×Z) ∩ gph ∂ϕr

and for (x, u; v, y) belonging to this common set, ψ(x, u) = ϕr(x, u).

Definition 2.3. [37] The (strong) variational sufficient condition for local opti-
mality in (2.13) holds with respect to x̄ and Y satisfying the first order condition if
there exists r > 0 such that ϕr(x, u) is variationally (strongly) convex with respect to
the pair

(
(x̄, 0), (0, Y )

)
in gph ∂ϕr.
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To characterize the above property, the tools of the second subderivative and
generalized quadratic form are needed.

Definition 2.4. [39, Definition 13.6] Let x̄ be a point where the function f :
X → [−∞,+∞] is finite. f is twice epi-differentiable at x̄ for v if the functions

∆2
tf(x̄ | v)(u) = f(x̄+ tu)− f(x̄)− t⟨v, u⟩

1
2 t

2

epi-converge to d2f(x̄ | v) as t ↓ 0, where d2f(x̄ | v) is the second subderivative of f
at x̄ for v defined as

d2f(x̄ | v)(w) = lim inf
t↓0,u→w

∆2
tf(x̄ | v)(u)

We know from [25, Theorem 3.6] that δSn+ is twice epi-differentiable at X for Y with

Y ∈ NSn+(X).

Definition 2.5. [37] A generalized linear mapping R from X to Y, is a set-valued
mapping for which gphR is a subspace of X×Y. This means that domR is a subspace
Z of X, R(0) is a subspace Z′ of Y, and there is an ordinary linear mapping R0 : Z →
Y such that R(x) = R0(x)+Z′ for x ∈ Z. We call a function q : X → (−∞,+∞] is a
generalized quadratic form on X if q(0) = 0 and the subgradient mapping ∂q : X ⇒ X
is generalized linear. A function g on X will be called generalized twice differentiable
at x for a subgradient y if it is twice epi-differentiable at x for y with the second-order
subderivative d2g(x | y) being a generalized quadratic form.

The following definition of the quadratic bundle is taken from [37], which is es-
sential in characterizing the strong variational sufficiency.

Definition 2.6. For general optimization problem (1.1), suppose (x̄, Y ) is a KKT
pair. The quadratic bundle of θ is defined as

quad θ(G(x̄) | Y ) =


the collection of generalized quadratic forms q for which
∃(Xk, Y k) → (G(x̄), Y ) with θ generalized twice differentiable
at Xk for Y k and such that the generalized quadratic
forms qk = 1

2d
2θ(Xk | Y k) converge epigraphically to q.

As mentioned in [37], the variational sufficient condition guarantees the local opti-
mality for (2.13). The following result is taken from [37, Theorem 5], which is useful
for the subsequent analysis.

Proposition 2.7. For general optimization problem (1.1), strong variational suf-
ficient condition for local optimality with respect to (x̄, Y ) is equivalent to that every
q ∈ quad θ(G(x̄) | Y ) has

(2.15)
1

2
⟨L′′

xx(x̄, Y )d, d⟩+ q(G′(x̄)d) > 0 when d ̸= 0,

where quad θ(G(x̄) | Y ) is the quadratic bundle of θ.

3. The characterization of strong variational sufficient condition for
NLSDP. In this section, we will study the relationship between strong variational
sufficient condition and the well-known strong SOSC (2.7) for NLSDP by combining
(2.15) and [25, Theorem 3.3] together. Firstly, we use nonlinear second order cone



9

programming (NLSOC) as an example to illustrate our approach. The general NLSOC
can be written as

(3.1)
min
x∈X

f(x)

s.t. g(x) ∈ K,

where f, g are both twice continuously differentiable, K is the second order cone
defined as K = {(u1, . . . , um) ∈ Rm | u1 ≥ ∥(u2, . . . , um)∥} = {u | h(u) ≤ 0} with
h(u) = −u1 + ∥(u2, . . . , um)∥. The ordinary Lagrangian function of problem (3.1) is
defined by

(3.2) L(x, y) := f(x) + ⟨y, g(x)⟩, (x, y) ∈ X× Rm.

Given a stationary point x̄. Let

Msoc(x̄) :=

{
y ∈ Rm

∣∣∣∣∣ L′
x(x̄, y) = 0,

K ∋ g(x̄) ⊥ y ∈ K◦

}
.

be the set of all multipliers y ∈ Rm satisfying the KKT condition for (3.1), where K◦

is the polar cone of K defined in [32, Section 14]. The strong SOSC at (x̄, ȳ) is defined
as

(3.3) ⟨L′′
xx(x̄, ȳ)d, d⟩ − Υg(x̄)

(
ȳ, g′(x̄)d

)
> 0 ∀ 0 ̸= g′(x̄)d ∈ aff CK(g(x̄), ȳ),

where the explicit form of Υg(x̄)
(
ȳ, g′(x̄)d

)
is given in [5, Theorem 29].

As illustrated in [37, Example 3], the explicit form of the quadratic bundle
quad δK(g(x̄) | ȳ) for certain reference KKT point (x̄, ȳ) can be obtained by using
corresponding results for polyhedral problems. For example, if g(x̄) ∈ intK, we have
ȳ = 0. It can be checked directly by using [25, Theorem 3.3] and [5, (36),(43)] that
the quadratic bundle quad δK(g(x̄) | ȳ) consists of solely q ≡ 0. If g(x̄) ∈ bdK\{0},
for any nonzero ȳ ∈ NK(g(x̄)), the quadratic bundle quad δK(g(x̄) | ȳ) consists of the
generalized quadratic form

(3.4) q =
1

2
d2δK(g(x̄) | ȳ) with q(w) =

{
1
2w · h′′(g(x̄))w if h′(g(x̄))w = 0,

∞ otherwise.

If g(x̄) = 0 and ȳ ∈ int(−K), the quadratic bundle consists of q = δ{0}. If g(x̄) = 0
and ȳ ∈ bd(−K)\{0}, both δ{0} and (3.4) constitute the quadratic bundle. It can be
checked directly that for NLSOC, strong variational sufficient condition is equivalent
to strong SOSC when the reference point (x̄, ȳ) lies in one of the above circumstances.

Thus, only two circumstances for NLSOC remain to be discussed. The first one
is g(x̄) = 0 and ȳ = 0. Since K is C2−cone reducible, we know from [25, Theorem
3.3], [5, Theorem 29] that for any (gk, yk) → (g(x̄), ȳ) and w ∈ Rm,

(3.5) d2δK(g
k | yk)(w) = wTH(gk, yk)w + δCK(gk,yk)(w) ≥ 0,

where H(gk, yk) =
yk
1

gk
1
(gk)′T (1 0T ; 0 − Im−1)(g

k)′ if gk ∈ bdK\{0} and H(gk, yk) = 0

otherwise. If we pick gk ∈ intK → g(x̄) and yk = 0 for all k, it is easy to see from [5,
Theorem 29, (35), (36)] that

d2δK(g
k | yk)(w) = 0 + δCK(gk,yk)(w),
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where CK(gk, yk) = Rm. Thus we have proved 0 ∈ quad δK(g(x̄) | ȳ). Combining this
with (3.5), it follows that in this case, (2.15) is equivalent to strong SOSC.

The second case is g(x̄) ∈ bdK\{0} and ȳ = 0. Let gk ∈ intK → g(x̄) and yk = 0
for each k. We know that

d2δK(g
k | yk)(w) = 0 + δCK(gk,yk)(w),

where CK(gk, yk) = Rm. As k → ∞, we know that limk→∞ d2δK(g
k | yk)(w) = 0.

Using [5, (35), (36), (43)] again, we also have (2.15) is equivalent to strong SOSC.
Thus, we immediately obtain the following characterization of strong variational

sufficiency for NLSOC, which is a supplement for [37, Example 3].

Proposition 3.1. Let x̄ ∈ X be a stationary point to the NLSOC (3.1) and
ȳ ∈ M(x̄). The strong variational sufficient condition (2.15) with respect to (x̄, ȳ)
holds if and only if the strong SOSC (3.3) holds at (x̄, ȳ).

It is worth noting that the above proposition is not surprising. If g(x̄) ̸= 0, we
can obtain this result by regarding the NLSOC problem as a polyhedral problem as
shown in [37, Example 3]. If g(x̄) = 0, the σ−term happens to be 0, which makes the
calculation of the quadratic bundle much simpler. When it comes to NLSDP problem
(2.4), things are not so easy as we can neither regard SDP as a polyhedral problem
nor have a simplification for its σ−term (2.8). However, the success of this approach
to NLSOC gives us a hint that this approach may also work for NLSDP. Before we put
forward our main result, we need the following proposition on the quadratic bundle
defined by Definition 2.6 for δSn+ .

Proposition 3.2. Let x̄ ∈ X be a stationary point to NLSDP (2.4) and Y ∈
M(x̄), where M(x̄) is given in (2.6). Let A = G(x̄) + Y , which possesses the decom-
position (2.1). Then, there exists q ∈ quad δSn+(G(x̄) | Y ) such that for all H ∈ Sn,

q(H) = −1

2
ΥG(x̄)

(
Y ,H

)
+ δaff CSn

+
(G(x̄),Y )(H)

=
∑

i∈α,j∈γ

−λj(A)
λi(A)

(H̃ij)
2 + δaff CSn

+
(G(x̄),Y )(H),(3.6)

where H̃ = PTHP .

Proof. For each k, choose

Xk = P

 Λ(A)αα 0 0
0 (zk)β 0
0 0 0

PT and Y k = Y ,

where zk ↓ 0 (this notation means for each k, zk > 0 and zk → 0 as k → ∞) with
each (zk)i non-increasing on k. Let Ak = Xk + Y k for each k. Since Sn+ is C2−cone
reducible [6, Example 3.140], we know from [25, Theorem 3.3], (2.2) and (2.8) that
for any H ∈ Sn,

1

2
d2δSn+(X

k | Y k)(H) =
∑

i∈α∪β,j∈γ

−λj(Ak)

λi(Ak)

(
H̃ij

)2
+ δCSn

+
(Xk,Y k)(H)

=
∑

i∈α,j∈γ

−λj(A)
λi(A)

(
H̃ij

)2
+

∑
i∈β,j∈γ

−λj(A)
λi(Xk)

(
H̃ij

)2
+ δCSn

+
(Xk,Y k)(H),
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where CSn+(X
k, Y k) = {H ∈ Sn | H̃γγ = 0}. It is worth to note that d2δSn+(X

k |
Y k)(H) is a generalized quadratic form by using Definition 2.5, as d2δSn+(X

k | Y k)(0) =

0 and ∂d2δSn+(X
k | Y k)(H) = R(H) +NCSn

+
(Xk,Y k)(H) with NCSn

+
(Xk,Y k)(H) being a

subspace and

R(H)(∆H) = −4
∑

i∈α,j∈γ

λj(A)

λi(A)
(H̃)ij ·(PT∆HP )ij−4

∑
i∈β,j∈γ

λj(A)

λi(A)
(H̃)ij ·(PT∆HP )ij

being linear on H. This also implies that δSn+ is generalized twice differentiable at Xk

for Y k.
Let fk1 (H) =

∑
i∈α,j∈γ

−λj(A)
λi(A)

(
H̃ij

)2
, fk2 (H) = δCSn

+
(Xk,Y k)(H) and fk3 (H) =∑

i∈β,j∈γ
−λj(A)
λi(Xk)

(
H̃ij

)2
. By the definition of continuous convergence mentioned in

[39, page 250], we know that fk1 converges continuously to f1 with

f1(H) =
∑

i∈α,j∈γ

−λj(A)
λi(A)

(
H̃ij

)2
.

It follows from [39, Theorem 7.11] that fk1 epi-converges to f1. It can be checked
easily that fk1 also pointwise converges [39, page 239] to f1. Since CSn+(X

k, Y k) is

a constant closed set, we know that fk2 pointwise converges and epi-converges [39,
Proposition 4.4] to f2 with f2(H) = δCSn

+
(Xk,Y k)(H). It follows from [39, Theorem

7.46(a)] that fk1 +fk2 epi-convergences to f1+f2. Also, it can be checked directly that
fk1 + fk2 pointwise convergences to f1 + f2. By the construction of zk, the sequence
of {fk3 } is nondecreasing (fk3 ≤ fk+1

3 ). We know from [39, Proposition 7.4] that fk3
epi-converges to supk{clfk3 }, where clfk3 is the closure of fk3 . It is easy to see that

supk{clfk3 } = supk{fk3 } = δV with V = {H ∈ Sn | H̃βγ = 0} and fk3 pointwise
converges to δV . Since fk1 + fk2 pointwise and epi-converges to f1 + f2, by using [39,
Theorem 7.46(a)] again, we obtain that fk1 + fk2 + fk3 epi-converges to f1 + f2 + f3.

Combining the above discussion with (2.3), the generalized quadratic form 1
2d

2δSn+(X
k |

Y k)(H) converges epigraphically to generalized quadratic form∑
i∈α,j∈γ

−λj(A)
λi(A)

(H̃ij)
2 + δaff CSn

+
(G(x̄),Y )(H).

Thus we have verified this proposition.

The following result is on the explicit characterization of the strong variational
sufficiency of local optimality for NLSDP, which is the main result of this paper.

Theorem 3.3. Let x̄ ∈ X be a stationary point to the NLSDP (2.4) and Y ∈
M(x̄). Then the following three conditions are equivalent

(i) the strong variational sufficient condition with respect to (x̄, Y ) holds;
(ii) the strong second order sufficient condition (SOSC) (2.7) holds at (x̄, Y );
(iii) there exist ρ0 > 0 and η > 0 such that for any ρ ≥ ρ0 and any W ∈

∂BΠSn−(G(x̄) + ρ−1Y ),

⟨d,Aρ(Y ,W )d⟩ ≥ η∥d∥2 ∀d ∈ X,

where Aρ(Y ,W ) is defined by (2.11).
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Proof. “(i) =⇒ (ii)”: This direction can be obtained directly from Proposition
3.2 and Proposition 2.7 as we only need to substitute (3.6) into (2.15).

“(ii) =⇒ (iii)”: This proof sketch is similar to [44, Proposition 4] although
they require the validity of nondegeneracy, which is superfluous here. It follows from
Definition 2.7 that there exists η0 > 0 such that

⟨L′′
xx(x̄, Y )d, d⟩ − ΥG(x̄)

(
Y ,G′(x̄)d

)
≥ η0∥d∥2 ∀ G′(x̄)d ∈ aff CSn+(G(x̄), Y ).

By using [44, Lemma 7], there exist two positive numbers ρ1 and η ∈ (0, η0/2] such
that for any ρ′ ≥ ρ1,

⟨L′′
xx(x̄, Y )d, d⟩ − ΥG(x̄)

(
Y ,G′(x̄)d

)
+ ρ′∥PT

γ (G
′(x̄)d)P γ∥2 + ρ′∥PT

β (G
′(x̄)d)P γ∥2 ≥ 2η∥d∥2 ∀d ∈ X.

Suppose a sufficient large ρ0 ≥ ρ1. For any ρ ≥ ρ0 and d ∈ X , we have

− ΥG(x̄)

(
Y ,G′(x̄)d

)
− 2ρ

∑
i∈α,j∈γ

−λj

ρλi − λj
(P

T
(G′(x̄)d)P )2ij

= 2
∑

i∈α, j∈γ

−λj

λi
(P

T
(G′(x̄)d)P )2ij − 2ρ

∑
i∈α,j∈γ

−λj

ρλi − λj
(P

T
(G′(x̄)d)P )2ij

= 2
∑

i∈α, j∈γ

λ2
j

λi(ρλi − λj)
(P

T
(G′(x̄)d)P )2ij ≤ η∥d∥2,

where the last inequality can be obtained by sufficiently large ρ. Combining the
above two relations together, we have for any ρ ≥ ρ0, ρ

′ ≥ ρ0 ≥ ρ1,

⟨L′′
xx(x̄, Y )d, d⟩+ 2ρ

∑
i∈α,j∈γ

−λj
ρλi − λj

(P
T
(G′(x̄)d)P )2ij

+ ρ′∥PT

γ (G
′(x̄)d)P γ∥2 + ρ′∥PT

β (G
′(x̄)d)P γ∥2 ≥ η∥d∥2.

Then it can be checked directly that for all d ∈ X and ρ ≥ ρ0, ⟨d,Aρ(Y ,W )d⟩ ≥ η∥d∥2.
“(iii) =⇒ (i)”: It follows directly from [37, Theorem 3] as Aρ(Y ,W ) coincides

with [37, (3.6)].

Remark 3.4. Next, we will discuss the relationship between tilt stability and vari-
ationally strong convexity/strong variational sufficient condition. As shown in [35],
for general optimization problem, the variationally strong convexity implies the tilt
stability [35, Definition 3] of local minimizer. However, it is worth to note that tilt
stability usually does not imply variationally strong convexity as explained in [22, Re-
mark 2.8] and [35]. For NLSDP, the general objective function of problem (1.2) is
amenable under the Robinson constraint qualification (RCQ) [30]. It follows from [22,
Proposition 2.9] that variationally strong convexity is equivalent to tilt stability un-
der RCQ for NLSDP. For more information on the characterization of variationally
strong convexity, the readers may refer to [37, 38, 22].

As an application of the tilt stability to the minimization of ϕρ (2.14), Rockafellar
defines the so-called augmented tilt stability [37, (2.18)]. In [37, Theorem 2], Rockafel-
lar also shows augmented tilt stability is equivalent to the strong variational sufficient
condition, i.e., the variationally strong convexity of ϕρ, without constraint qualifica-
tions. By using Theorem 3.3, the strong SOSC is also equivalent to the augmented
tilt stability.
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Recently, Khanh et al. [22, Theorem 6.5] also provide a sufficient condition for
(strong) variational sufficiency of strongly amenable problem in the form of (1.1).
However, the strong variational sufficiency mentioned in [22] is different from the one
used here. In [22], strong variational sufficiency is defined as the variationally strong
convexity of the function x→ f(x) + θ(G(x)), while this paper focuses on that of the
perturbed function (x, u) → f(x)+ θ(G(x)+ u)+ r

2∥u∥
2. In their result, they require

a condition named second order qualification condition [27, (3.15)] at x̄, i.e.,

(3.7) kerG′(x̄)∗ ∩ ∂2θ(G(x̄), Y )(0) = {0},

where ∂2θ(G(x̄), Y ) is defined in [27, Definition 2.1]. It follows from [14, Theorem
3.1] that (3.7) is equivalent to the nondegeneracy [41, Definition 3.3] for NLSDP. By
combining [22, Theorem 6.2], Theorem 3.3 and [7, Theorem 5.6, Lemma 6.3] together,
we know that under the nondegenerate condition, the two strong variational sufficien-
cies are the same for NLSDP. However, their relationship without the nondegeneracy
condition remains unclear.

Moreover, by using [46, Example 2.2], it can be proved in a similar manner to
[37, Theorem 3] that the variational sufficiency of local optimality for NLSDP (2.4)
is equivalent to the existence of ρ0 > 0 and a convex open neighborhood V of (x̄, Y )
such that for any ρ ≥ ρ0, (x, Y ) ∈ V and any W ∈ ∂BΠSn−(G(x) + ρ−1Y ),

⟨d,Aρ(Y,W )d⟩ ≥ 0 ∀d ∈ X.

However, whether the variational sufficiency of local optimality is equivalent to certain
second order optimality condition without any constraint qualification for NLSDP
(2.4) is still a future work that we are working on.

4. Semi-smooth Newton-CG based ALM for nonconvex NLSDP. In this
section, we apply the main result Theorem 3.3 to study the local convergence rate of
the (extended) ALM (1.5) for solving NLSDP. The detail algorithm is stated in Algo-
rithm 4.1. By [38, Theorems 1.1 and 1.2], the strong variational sufficient condition
with respect to (x̄, Y ) for local optimality holds if and only if there exist ρ̄ > 0 and
a closed convex neighborhood X × Y of (x̄, Y ) such that for all ρ ≥ ρ̄, Lρ(x, Y ) is
strongly convex in x ∈ X with modulus s > 0 1 for all Y ∈ Y and concave in Y ∈ Y
for all x ∈ X .

In the above algorithm, subproblem (4.1) is solved inexactly. Three increasing
tightness stopping criteria for the updating of xk+1 are illustrated in [38, equation
(1.15)]:
(4.2)

(
2ρ̃k[Lρk(xk+1, Y k)− inf

X
Lρk(·, Y k)]

)1/2 ≤


(a) ϵk,

(b) ϵk min{1, ∥ρ̃k(Lρk)′Y (x
k+1, Y k)∥},

(c) ϵk min{1, ∥ρ̃k(Lρk)′Y (x
k+1, Y k)∥2}

with ϵk ∈ (0, 1)

∞∑
k=0

ϵk = σ <∞ and ρk → ρ∞ ≤ ∞.

It is worth to note that (c) is first introduced in [36] to support linear convergence in
partnership with strong variational sufficiency. It follows from [38, Theorem 3.1] that

1A function ψ : X → R is said to be strongly convex with modulus s > 0 if ψ− s
2
∥ · ∥2 is convex.
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Algorithm 4.1 Augmented Lagrangian method for solving (2.4)

Require: Let (x0, Y 0) ∈ X× Sn, ρ0 > ρ̄. Set k := 0.
1: If (xk, Y k) satisfies a suitable termination criterion: STOP.
2: Compute xk+1 such that

(4.1) xk+1 ≈ x̄k+1 = argmin
x∈X
Lρk (x, Y

k).

3: Update the vector of multipliers to

Y k+1 := Y k + ρ̃k
[
G(xk+1)−ΠSn+(G(xk+1) + Y k/ρk)

]
,

where ρ̃k = ρk − ρ̄.
4: Update nondecreasing positive sequence ρk+1 according to certain rules.
5: Set k ← k + 1 and go to 1.

(4.2) can be replaced by

(4.3)
√
ρ̃k∥(Lρk)′x(x

k+1, Y k)∥ ≤


(a) ϵ′k,

(b) ϵ′k min{1, ∥ρ̃k(Lρk)′Y (x
k+1, Y k)∥},

(c) ϵ′k min{1, ∥ρ̃k(Lρk)′Y (x
k+1, Y k)∥2},

where ϵ′k = ϵk
√
s, as the strong convexity of Lρk(·, Y k) with modulus s guarantees

Lρk(xk+1, Y k)− infX Lρk(·, Y k) ≤ 1
2s∥(Lρk)′x(x

k+1, Y k)∥2.
By applying the local duality, which comes from the strong variational sufficient

condition through [37, Theorem 1], we suppose SKKT (0, 0)∩X ×Y ≠ ∅, where X ×Y
is the neighborhood mentioned at the beginning of this section. As mentioned in [38,
page 9-10], we can define the associated local primal and dual problems to X × Y in
the following sense. The associated local primal problem is

(4.4) min f̂(x) := sup
Y ∈Y

Lρ̄(x, Y ) over x ∈ X .

The associated local dual problem is

(4.5) max ĥ(Y ) := inf
x∈X

Lρ̄(x, Y ) over Y ∈ Y.

In [38, Theorem 2.1], the author reveals the connection between problems (2.4), (4.4)
and (4.5), which is of great use in the following discussion.

4.1. Convergence analysis of ALM. By taking advantage of Theorem 3.3
and the genius work [38], we can view the convergence analysis of ALM for NLSDP
as a direct extension. To explore this topic, we need the definition of bounded lin-
ear regularity of a collection of closed convex sets, which can be found in, e.g., [2,
Definition 5.6].

Definition 4.1. Let D1, D2, . . . , Dm ⊆ X be closed convex sets for some positive
integer m. Suppose that D := D1 ∩ D2 ∩ . . . ∩ Dm is non-empty. The collection
{D1, D2, . . . , Dm} is said to be boundedly linearly regular if for every bounded set
B ⊆ X, there exists a constant κ > 0 such that

dist(x,D) ⩽ κmax {dist (x,D1) , . . . ,dist (x,Dm)} ∀x ∈ B.
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A sufficient condition to guarantee the property of bounded linear regularity is estab-
lished in [3, Corollary 3]. Denote
(4.6)
G1(x̄) = {Y ∈ Sn | f ′(x̄) +G′(x̄)∗Y = 0} and G2(x̄) = {Y ∈ Sn | Y ∈ NSn+(G(x̄))}.

It is easy to see that G1(x̄) is a polyhedron and G2(x̄) is convex.
For a stationary point x̄ of NLSDP (2.4), define

(4.7) ξ(G′(x̄)) = min{∥G′(x̄)∗η∥ : η ∈ G1(x̄)
⊥, ∥η∥ = 1}.

The following condition is adopted from [38] as it is essential in verifying the conver-
gence rate.

Condition 4.2. There exist b > 0 and ε > 0 such that the local dual problem (4.5)

satisfies ĥ(Y ) ≤ maxY ĥ − bdist2(Y,H) when ∥Y − Y ∥ < ε, where Y is the closed

convex neighborhood of Y given at the beginning of Section 4, H := argmaxY ĥ.

The following result, which is originally proposed in [38, Theorem 4.2] for polyhe-
dral case, provides the sufficiency of Condition 4.2. By applying the boundedly linear
regularity [3], one can obtain the results in similar approach as that of [38, Theorem
4.2], directly. We omit it here for simplicity. Moreover, it follows from [38, page 34]
that Condition 4.2 trivially holds if G′(x̄) = 0.

Proposition 4.3. Let x̄ ∈ X be a stationary point to the NLSDP (2.4) and
Y ∈ M(x̄), where M(x̄) is given in (2.6). Suppose G′(x̄) ̸= 0. If strong SOSC
with respect to (x̄, Y ) holds and the collection {G1(x̄),G2(x̄)} is boundedly linearly
regular, where G1(x̄) and G2(x̄) are given in (4.6), then we have ξ(G′(x̄)) > 0, where
ξ(G′(x̄)) is defined by (4.7) and Condition 4.2 holds for

(4.8) b =
κ

a2 + a1
with a2 = b−1

0 + 2ρ̄ and a1 =
2∥L′′

xx(x̄, Y ) + ρ̂I∥
ξ(G′(x̄))2

,

where ρ̂ = λmax(ρ̄G
′(x̄)∗G′(x̄))+ε′, ε′ is some positive constant and b0 is the quadratic

parameter κ given in [12, Proposition 2.1].

Remark 4.4. It follows from [12, Proposition 3.2] (see also [11, Proposition 17])
that the bounded linear regularity of the collection {G1(x̄),G2(x̄)} holds under one of
the following two conditions:

(i) G2(x̄) is a polyhedron, i.e., |γ| ≥ n − 1, where γ is the negative eigenvalue
index set of matrix G(x̄) + Y ;

(ii) there exists a strict complementarity KKT pair (x̄, Ỹ ) (Ỹ does not have to be

Y ), i.e., rank(G(x̄)) + rank(Ỹ ) = n.

Next, we shall present the local convergence result of ALM for NLSDP. We say

a sequence zk > 0 converges Q-linearly to 0 at a rate c if lim sup
k→∞

zk+1

zk
≤ c < ∞.

When c = 0, we say zk converges Q-superlinearly to 0. Moreover, a sequence yk > 0
converges R-linearly to 0 at a rate c if yk ≤ zk with zk > 0 converges Q-linearly
to 0 at that rate. The following closedness condition relative to the closed convex
set M(x̄) is taken from [38, Theorem 2.2]. Recall that X , Y are the closed convex
neighborhood of x̄, Y mentioned in the beginning of Section 4.

Condition 4.5. We say the initial point Y 0 and σ > 0 in (4.2) satisfies the
following closedness condition relative to the closed convex set M(x̄) (2.6) if there
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exists η > dist(Y 0,M(x̄)) + σ such that{
Y | ∥Y − Y 0∥ ≤ 3η

}
⊂ Y.

It is easy to see that this condition indicates Y 0 to be sufficiently close to M(x̄) and
Y . Also, the computations of subproblems at each iteration need to be sufficiently
accurate. If subproblems are solved exactly, a sufficient condition for the above one
is that there exists η > 0 such that Bη(Y

0) ⊆ intY and dist(Y 0,M(x̄)) ≤ η/3.
By using Theorem 3.3 and [38, Theorem 2.2, 2.3, 3.1, 3.2], we immediately get

the following local convergence result of ALM for solving NLSDP.

Theorem 4.6. Let x̄ ∈ X be a stationary point to the NLSDP (2.4) and Y ∈
M(x̄). Suppose the strong SOSC (2.7) holds at (x̄, Y ). Let the initial point Y 0 and
σ in (4.2) satisfy Condition 4.5. Suppose the set {x | −(Lρ̄)

′
x(x, Y ) ∈ NX (x)} is

nonempty and bounded when Y ∈ intY.
(i) Under stopping criterion (4.3 a), we have the sequence {Y k} converges within

intY to a particular Ŷ ∈ intY. Moreover, both xk and x̄k converge to x̄.
(ii) Stopping criterion in (i) is strengthened into (4.3 b) and suppose {G1(x̄),G2(x̄)}

is also boundedly linearly regular, where G1(x̄) and G2(x̄) are given in (4.6).
Then we have dist(Y k,M(x̄)) → 0 with

dist(Y k+1,M(x̄)) ≤ 1√
1 + b2(ρ∞)2

dist(Y k,M(x̄))

and x̄k → x̄ with

∥x̄k − x̄∥ ≤ 1

s
dist(Y k,M(x̄)),

where x̄k is the exact solution of subproblems in (4.1), b is given in Condition
4.2 and s is the strong convexity modulus of Lρ(x, Y ) on x with ρ ≥ ρ̄.

(iii) If stopping criterion in (ii) is strengthened into (4.3 c), we have Y k → Ŷ with

∥Y k+1 − Ŷ ∥ ≤ 1√
1 + b2(ρ∞)2

∥Y k − Ŷ ∥.

Moreover, if the stopping criterion is further supplemented by

∥(Lρk)′x(x
k+1, Y k)∥ ≤ c∥Y k+1 − Y k∥ for some fixed c,

we have xk → x̄ with
∥xk − x̄∥ ≤ p∥Y k − Ŷ ∥

for some p > 0.

As illustrated in [38, Theorem 2.3], the condition “set {x | −(Lρ̄)
′
x(x, Y ) ∈

NX (x)} is nonempty and bounded when Y ∈ intY” can be reduced to “the existence
of Y ∈ intY such that {x | −(Lρ̄)

′
x(x, Y ) ∈ NX (x)} being nonempty and bounded”.

This condition is trivially satisfied as X is a neighborhood of x̄ and (x̄, Y ) belongs
to the set. It is worth to note that as illustrated in [38, Theorem 2.3], the result in
Theorem 4.6 (i) only requires variational sufficiency. Under variational sufficiency, the
convergence of xk to x̄ can not be obtained. Meanwhile, under the stopping criterion
(4.3 b), we may not be able to obtain from Theorem 4.6 (ii) the convergence of the
primal iteration sequence {xk}, since the exact solution x̄k of subproblems in (4.1)
x̄k is unknown in practice. Next, we shall show that the KKT residual of NLSDP
(2.4) also converges R-linearly, which means that the KKT residual can be used as a
verifiable stopping criterion for ALM. Its proof sketch is inspired by [13, Theorem 2].
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Proposition 4.7. Suppose the conditions in Theorem 4.6 (ii) hold. Define the
following residual function

(4.9) R(x, Y ) := ∥L′
x(x, Y )∥+ ∥G(x)−ΠSn+(G(x) + Y )∥.

Then, for k sufficiently large, if
√
ρ̃kϵk < 1, we have there exists a > 0 such that

R(xk+1, Y k+1) ≤ ckdist(Y k,M(x̄))

with ck = (ϵ′k
√
ρ̃k + (1 + ρ̄+ aρ̄)(ρ̃k)−1)(1−

√
ρ̃kϵk)

−1.

Proof. Let Ŷ k+1 = Y k + ρk(G(xk+1) − ΠSn+(G(x
k+1) + (ρk)−1Y k)) and zk+1 =

ΠSn+(G(x
k+1)+(ρk)−1Y k). We have G(xk+1)−zk+1 = (ρ̃k)−1(Y k+1−Y k). It follows

directly from (4.3 b) that for each k,

∥L′
x(x

k+1, Ŷ k+1)∥ = ∥(Lρk)′x(x
k+1, Y k)∥ ≤ ϵ′k

√
ρ̃k∥Y k+1 − Y k∥.

Then, there exists a > 0 such that

∥L′
x(x

k+1, Y k+1)∥ = ∥L′
x(x

k+1, Ŷ k+1) +G′(xk+1)∗(Y k+1 − Ŷ k+1)∥

≤ ∥L′
x(x

k+1, Ŷ k+1)∥+ ∥G′(xk+1)∗(Y k+1 − Ŷ k+1)∥ ≤ ∥L′
x(x

k+1, Ŷ k+1)∥+ a∥Y k+1 − Ŷ k+1∥

= ∥L′
x(x

k+1, Ŷ k+1)∥+ aρ̄∥G(xk+1)−ΠSn+ (G(xk+1) + (ρk)−1Y k)∥

= ∥L′
x(x

k+1, Ŷ k+1)∥+ aρ̄(ρ̃k)−1∥Y k+1 − Y k∥ ≤ (ϵ′k
√
ρ̃k + aρ̄(ρ̃k)−1)∥Y k+1 − Y k∥,

(4.10)

where the second inequality follows from the twice differentiable continuity and the
boundedness of xk obtained from Theorem 4.6(a). It can be verified directly from [39,

Theorem 2.26] that Ŷ k+1 ∈ ∂δSn+(z
k+1) and

∥G(xk+1)−ΠSn+(G(x
k+1) + Ŷ k+1)∥

= ∥G(xk+1)−ΠSn+(G(x
k+1) + Ŷ k+1)∥ − ∥zk+1 −ΠSn+(Ŷ

k+1 + zk+1)∥

≤ ∥G(xk+1)−ΠSn+(G(x
k+1) + Ŷ k+1)− (zk+1 −ΠSn+(Ŷ

k+1 + zk+1))∥

≤ ∥G(xk+1)− zk+1∥ = (ρ̃k)−1∥Y k+1 − Y k∥.

It then follows that

∥G(xk+1)−ΠSn+(G(x
k+1) + Y k+1)∥

≤ ∥G(xk+1)−ΠSn+(G(x
k+1) + Ŷ k+1)∥+ ∥ΠSn+(G(x

k+1) + Ŷ k+1)−ΠSn+(G(x
k+1) + Y k+1)∥

≤ (ρ̃k)−1∥Y k+1 − Y k∥+ ∥Ŷ k+1 − Y k+1∥
= (ρ̃k)−1∥Y k+1 − Y k∥+ ρ̄∥G(xk+1)−ΠSn+(G(x

k+1) + (ρk)−1Y k)∥

= (ρ̃k)−1∥Y k+1 − Y k∥+ ρ̄(ρ̃k)−1∥Y k+1 − Y k∥ = (1 + ρ̄)(ρ̃k)−1∥Y k+1 − Y k∥.
(4.11)

Combining (4.10) and (4.11) together, we obtain

(4.12) R(xk+1, Y k+1) ≤ (ϵ′k
√
ρ̃k + (1 + ρ̄+ aρ̄)(ρ̃k)−1)∥Y k+1 − Y k∥.
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Then we will prove ∥Y k+1 − Y k∥ ≤ dist(Y k,M(x̄)). Let Pk(Y
k) = argmax{ĥ(Y ) −

1
2ρ̃k ∥Y − Y k∥2}. Then, we have

∥Y k+1 − Y k∥ ≤ ∥Y k+1 − Pk(Y
k)∥+ ∥Pk(Y

k)− Y k∥
≤ (2ρ̃k(Lρk(xk+1, Y k)− inf

X
Lρk(·, Y k)))1/2 + ∥Pk(Y

k)− Y k∥

≤
√
ρ̃kϵk∥Y k+1 − Y k∥+ ∥Pk(Y

k)− Y k∥,(4.13)

where the second inequality follows from [38, (2.19)] and the last one follows from
(4.3 b) and the paragraph under (4.3). By using [13, Proposition 1(b), the proof of
Lemma 3] and [38, Theorem 2.1], we have

(4.14) ∥Pk(Y
k)− Y k∥ ≤ dist(Y k,MD),

where MD denotes the solution set of (4.5). It follows from [38, Theorem 2.1] that
dist(Y k,MD) = dist(Y k,M(x̄) ∩ Y) = dist(Y k,M(x̄)) since for k sufficiently large,
Y k ∈ intY. Based on (4.12)-(4.14), we obtain that for k sufficiently large,

R(xk+1, Y k+1) ≤ (ϵ′k
√
ρ̃k + (1 + ρ̄+ aρ̄)(ρ̃k)−1)(1−

√
ρ̃kϵk)

−1dist(Y k,M(x̄)).

This completes the proof.

Remark 4.8. We compare our results with existing ALM convergence results for
nonconvex non-polyhedral problems. [21] justified the primal-dual linear convergence
of ALM under SOSC and strong Robinson constraint qualification (SRCQ) for C2-cone
reducible constrained problems, which include NLSDP and NLSOC. [44] proved the
convergence rate of NLSDP under strong SOSC together with nondegeneracy. [48]
does provide the linear rate under SOSC and semi-isolated calmness of the KKT
pair without requiring the multiplier to be unique. But some other assumptions are
also needed. In this paper, to obtain the Q-linear convergence for multiplier and
R-linear convergence for primal variable, we assume strong SOSC (Definition 2.2),
which is much stronger than the aforementioned SOSC. However, we do not assume
any restriction on the dual variable.

In [38, Example 5.3], the author also studied the ALM convergence for second
order cone programming when G(x̄) ̸= 0. Moreover, [19] gives the primal-dual linear
convergence for NLSOC when the multiplier is unique while they only require SOSC
instead of strong SOSC. By using Proposition 3.1, without any constraint qualification,
the local convergence results of ALM for NLSOC can be obtained immediately.

4.2. Solving ALM subproblem: semi-smooth Newton-CG method. Al-
though the convergence properties of ALM have been established, it is equally impor-
tant to study how to solve the subproblem (4.1). To guarantee the convergence rate of
ALM, we need to employ the stopping criterion (4.3 b or c). To meet the requirement
of this stopping criterion, we consider using the semi-smooth Newton-CG method to
solve the subproblem as it possesses the quadratic convergence rate under suitable
conditions.

It follows from the proposed characterization of strong variational sufficiency
(Theorem 3.3) that for NLSDP (2.4) if the strong SOSC (2.7) holds then there exists
a neighborhood Br(x̄, Y ) of (x̄, Y ) such that for all (x, Y ) ∈ Br(x̄, Y ), every elements
in πx∂B

(
(Lρ)

′
x

)
(x, Y ) is positive definite. Thus, the validity of semi-smooth Newton-

CG method to solve the subproblems (4.1) is ensured. The algorithm to solve the
(k + 1)-th subproblem is stated below (see Algorithm 4.2). The convergence analysis
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Algorithm 4.2 Semi-smooth Newton-CG method for solving (4.1)

Require: Set the initial point x0 = xk, where xk is obtained from the k-th iteration of
Algorithm 4.1. Let µ ∈ (0, 1/2), τ ∈ (0, 1], τ1, τ2, ν̄ ∈ (0, 1) and θ ∈ (0, 1). Set j := 0.

1: Given a maximum number of CG iterations tj > 0 and compute

νj = min{ν̄, ∥(Lρk )
′
x(xj , Y

k)∥1+τ}.

2: Choose Wj ∈ ∂ΠSn−(G(xj) + (ρk)−1Y k). Let Vj = L′′
xx(xj ,ΠSn−(G(xj) + (ρk)−1Y k) +

ρkG′(xj)
∗WjG

′(xj) and εj = τ1 min{τ2, ∥∇xLρk (xj , Y
k)∥}. Apply the CG algorithm

(CG(νj , tj)) mentioned in [49, Algorithm 1] to find an approximate solution dj ∈ X to

(Vj + εjI)dj = −(Lρk )
′
x(xj , Y

k)

such that
∥(Vj + εjI)dj + (Lρk )

′
x(xj , Y

k)∥ ≤ νj .

3: Set ζj = θmj , where mj is the first non-negative number such that

Lρk (xj + θmjdj , Y
k) ≤ Lρk (xj , Y

k) + µθmj ⟨(Lρk )
′
x(xj , Y

k), dj⟩.

4: Set xj+1 = xj + ζjdj and j = j + 1.

framework for Algorithm 4.2 is well-known [29, Theorem 3.2] (see also [49, Theorem
3.4, 3.5]). We omit the detailed proof here for simplicity.

Proposition 4.9. Suppose the strong SOSC (2.7) holds at (x̄, Y ) ∈ SKKT (0, 0).
Then, Algorithm 4.2 is well-defined and any accumulation point x̂ of {xj} generated by
Algorithm 4.2 is the optimal solution to the subproblem (4.1). Furthermore, suppose
that at each step j when CG terminates, i.e.,

∥(Vj + εjI)dj + (Lρk)′x(xj , Y
k)∥ ≤ νj .

Then the whole sequence {xj} converges to x̂ and

∥xj+1 − x̂∥ = O(∥xj − x̂∥1+τ ).

Remark 4.10. It is worth noting that for convex NLSDP, the convergence result
of ALM can be established under weaker conditions such that the optimal x̄ can be
non-unique (see [11, Theorem 20]). This implies that when the problem is reduced to
convex case, Theorem 4.6 is much weaker than [11, Theorem 20] as it requires strong
SOSC, which implies the local uniqueness of x̄. However, the semi-smooth Newton
algorithm may fail to solve the subproblem in the absence of strong SOSC since it is
equivalent to the positive definiteness of the generalized Hessian of Newton equation of
the subproblem (4.1) (Theorem 3.3). Thus strong SOSC seems to be not only sufficient
to the local fast linear convergence rate of ALM, but also necessary for the invertibility
of generalized Hessian of augmented Lagrangian function for NLSDP, which is crucial
for the semi-smooth Newton CG method for solving the ALM subproblem (4.1).

5. Numerical experiments. Consider the following optimization problem

(5.1)

min
X∈Sn

1
2 ⟨X,Q ◦X⟩

s.t. X ∈ Sn+
B ◦X = 0,
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where “◦” denotes the Hadamard product of matrices, i.e., for any U and V ∈ Rp×q,
(U ◦ V )ij = UijVij ,

B =


0 · · · 0 1
...

. . .
...

...
0 · · · 0 1
1 · · · 1 1

 and Q =


q 1 · · · 1 0
1 q · · · 1 0
...

...
. . .

...
...

1 1 · · · q 0
0 0 · · · 0 −1


with a given q ≥ n− 1. The Lagrangian function of (5.1) is given by

L(X,Y, Z) =
1

2
⟨X,Q ◦X⟩+ ⟨X,Y ⟩+ ⟨B ◦X,Z⟩.

It can be checked directly that X = 0 is a local optimal solution with the multi-
plier Y = Diag(0, . . . , 0,−1) and Z = Diag(0, . . . , 0, 1). In fact, the corresponding
multiplier set of X is given by

M(X) = {(Y, Z) ∈ Sn × Sn | Y +B ◦ Z = 0, Y ∈ Sn−}.

As the problem (1.6) mentioned in Introduction, it follows from [50, Theorem 4.1] that
the Robinson constraint qualification [30] does not hold at X, due to the unbound-
edness of M(x̄). It is clear that L′′

XX(X,Y , Z) = Q, which is positive definite over
d ∈ {d ∈ Sn | B ◦ d = 0, d ∈ aff CSn+(X,Y )}, implies the validity of strong SOSC (2.7).

Also, boundedly linear regularity is satisfied at (X,Y , Z) since (Y, Z) ∈ G1(X)∩G2(X)
with Y = Diag(−1, . . . ,−1), Z = Diag(0, . . . , 0, 1).

Next, we shall apply Algorithm 4.1 to solve problem (5.1) with different dimen-
sions. The subproblem (4.1) is solved by Algorithm 4.2 where the exactness in (4.3) is
chosen as ϵ′k = 0.01× (1/1.05)k−1 and the stopping criterion (4.3 b) is employed. The
algorithm is stopped when the KKT residual R(xk, Y k) defined in (4.9) is less than
1e-5. The codes are implemented in Matlab (R2018a), and the numerical experiments
are run under a 64-bit MacOS on an Intel Cores i5 2.3GHz CPU with 8GB memory.
The following table (Table 1) shows the numerical results of different dimensions of
(5.1). Noting that the distance from (Y k, Zk) to M(X) is difficult to compute, we

n q iteration KKT residual cpu(s)

3 2 8 8.27e-06 0.22
100 200 11 8.98e-06 3.11
1000 1500 21 9.57e-06 1083.34

Table 1
Numerical results of semi-smooth Newton-CG based ALM for problem (5.1).

use the following alternative dist((Y k, Zk),M(X)) = O(∥Y k +B ◦Zk∥+∥ΠSn+(Y
k)∥)

as boundedly linear regularity is satisfied. The detail iterative performance of ALM
for solving problem (5.1) with n = 1000 and q = 1500 is also reported in Figure 2.
It can be seen from Figure 2 (a) that although the problem is nonconvex and the
multiplier set is not a singleton, ALM also possesses a linear rate of convergence of
dist((Y,Z),M(X)) for the validity of strong variational sufficiency. Meanwhile, the
right one shows that the KKT residual also converges to 0 as the algorithm pro-
ceeds. Moreover, by strong variational sufficiency, we know from Theorem 3.3 that
the Hessian matrix Vj in Algorithm 4.2 Step 2 is always positive definite when k is



21

(a) (b)

Fig. 2. Semi-smooth Newton-CG based ALM for problem (5.1) with n = 1000 and q = 1500.

sufficiently large. Indeed, the minimum eigenvalue of the Hessian matrix Vj is posi-
tive (e.g., λmin(Vj) ≈ 1.01 for the case n = 3 and q = 2; λmin(Vj) ≈ 1.26 for the case
n = 100 and q = 200). It is also worth to note that the distance from (Y k, Zk) to

(Y , Z) does not converge to 0, which meets our theory as the limit point (Ŷ , Ẑ) in
Theorem 4.6 may be different from the reference point (Y ,Z).

It is well-known that the condition number of Vj in Algorithm 4.2 Step 2 is
proportional to ρk. In fact, the estimation of the condition number of Vj can be
obtained in a similar manner of [44, Lemma 10] as the smallest eigenvalue lies in a
constant interval while the largest one lies in an interval which is propositional to ρk.
Thus, in practice, we usually set an upper bound for ρk, although ρk can be infinity
in theory.

It can be seen from Theorem 4.6 that the convergence analysis of Algorithm 4.1
requires a good starting point of the multiplier while no restriction to the initial
primal variable x0 is needed. To verify the convergence theory (Theorem 4.6), in
the numerical experiments of (5.1) presented in Table 1, we choose X0 randomly.
(Y 0, Z0) is chosen to be (Y , Z) + η(P1, P2), where P1, P2 are symmetry matrices that
are uniform randomly generated. Typically, η is chosen to be small, e.g., 0.1.

Next, we will discuss how to generate the initial point more practically. Condition
4.5 indicates that (Y 0, Z0) should be sufficiently close to (Y , Z), at which strong SOSC
is satisfied. How to find (Y 0, Z0) satisfying Condition 4.5 for nonconvex optimization
problem is very challenging. A natural idea is to apply first order methods as a warm
start to find a satisfactory initial point. Moreover, we know from Theorem 3.3 that a
good starting point may be the one at which the positive definiteness of generalized
Hessian is satisfied. In practice, when the generalized Hessian is not positive definite,
we may apply APG instead of the semismooth Newton to solve the ALM subproblem.

6. Conclusion. In this paper, we derive the equivalence between the strong vari-
ational sufficiency and the strong SOSC for NLSDP and NLSOC without requiring
the uniqueness of multiplier or any other constraint qualification. By using the equiv-
alence result, the local convergence property of ALM for NLSDP can be established
under merely strong SOSC instead of plus it with any constraint qualification. As
a direct application, we are able to show that the positive definiteness of the gen-
eralized Hessian of augmented Lagrangian function, which is critical in the use of
semi-smooth Newton method for NLSDP, is satisfied under strong SOSC. However,
there are still many issues that deserve to be explored further. For example, we still
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do not have a satisfactory characterization for variational sufficiency. Moreover, for
the implementation of ALM for solving nonconvex cases, it is still very challenging
for finding a good starting point, e.g., the one close enough to a KKT pair of a local
optimal solution which satisfies the strong SOSC condition.
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