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Abstract: This paper investigates an infinite-horizon linear quadratic stochastic (LQS) optimal control problem for a class
of continuous-time stochastic systems. By employing the technique of adaptive dynamic programming (ADP), we propose
a novel model-free policy iteration (PI) algorithm. Without needing all information of the system coefficient matrices, the
proposed PI algorithm iterates by using the data of the input and system state collected on a fixed time interval. Finally, a
numerical example is presented to demonstrate the feasibility of the obtained algorithm.
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1 INTRODUCTION

The linear quadratic stochastic (LQS) optimal control
problem, initiated by Wonham [15] has been broadly applied
in a lot of fields such as engineering. As is known to all, the
continuous-time LQS problem in infinite horizon is closely
related to the stochastic algebraic Riccati equation (SARE),
which is difficult to solve due to its nonlinear structure.
With the in-depth study of the LQS optimal control problem,
researchers developed some approximation methods to
obtain the solution of the SARE. For instance, Ni and Fang
[18] proposed a PI algorithm to solve the SARE iteratively.
With the help of the positive operators, a Newton’s method
was proposed by Damm and Hinrichsen [12] to solve the
SARE. However, the above methods need all knowledge
of the system, i.e., all parameters of the system have to be
known beforehand. In fact, the system matrices are difficult
to obtain directly in applications such as engineering and
finance. The methods mentioned above will become invalid
if the system coefficient matrices are unknown. Thus, it
is of great importance to propose a model-free strategy to
solve LQS optimal control problems, without using the
information of system matrices.

For the past decade, adaptive dynamic programming (ADP)
(Werbos [7]) and reinforcement learning (RL) (Sutton and
Barto [9]) theories have been broadly used to solve optimal
control problems with partially model-free or model-free
system dynamics. About the development of deterministic
system case, see, e.g., Shi and Wang [20], Pang et al. [2],
Kiumarsi et al. [1], Vamvoudakis et al. [4], Bian and Jiang
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[11], Palanisamy et al. [6], Vrabie et al. [3], Wei et al. [8],
Jiang and Jiang [16], Mukherjee et al. [10] and the references
therein.

Regarding to stochastic optimal control problems, Ge et al.
[19] proposed a model-free methodology to get the optimal
policy for a kind of mean-field discrete-time stochastic
systems by the method of Q-learning. By the technique of
ADP, Wang et al. [13] solved a class of discrete-time LQS
optimal control problems. Wang et al. [14] developed a
model-free Q-learning algorithm to get the optimal control
for discrete-time LQS problems. By applying RL techniques,
Jiang and Jiang [17] developed an ADP strategy to solve
continuous-time optimal control problems where the systems
subject to control-dependent noise.

However, to the author’s best knowledge, there is no
model-free results for continuous-time LQS optimal control
problems where drift and diffusion terms contain both
control and state variables. The main contribution of this
paper is that we propose a model-free algorithm to solve this
class of continuous-time LQS problems.

To be specific, we propose a novel data-driven model-free
PI algorithm to get the maximal solution to the SARE by
using the data of the input and state collected on some time
interval. The convergence proof of our model-free strategy is
also been provided.

The rest of the paper is organized as follows. In Section 2,
the formulation of our problem and some preliminaries are
presented. Section 3 develops our data-driven model-free PI
algorithm. In Section 4, we provide a simulation example
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to illustrate the applicability of the proposed algorithm. In
Section 5, some conclusions are presented.

Notation. We denote the collections of non-negative inte-
gers, positive integers and real numbers by Z, Z+ and R.
Rn×m represents the collection of all n×m real matrices. Rn

is the n-dimensional Euclidean space and | · | denotes its Eu-
clidean norm for vector or matrix of proper size. Zero matrix
(or vector) with appropriate dimension is denoted by O. We
use diag{v} to denote a square diagonal matrix whose main
diagonal is the elements of vector v. The sets of all symmetric
matrices, positive definite matrices and semipositive definite
matrices in Rn×n are represented by Sn, Sn

++ and Sn
+, respec-

tively. w(·) is a one-dimensional standard Brownian motion
defined on a filtered probability space (Ω,F , {Ft}t>0,P) that
satisfies usual conditions. Moreover, we use ⊗ to denote the
Kronecker product and for any matrix B ∈ Rm×n, vec(B)
denotes a vectorization map from the matrix B into a column
vector of proper size, which stacks the columns of B on top
of one another, that is, vec(B) = [bT1 , b

T
2 , · · · , bTn ]T , where

bj ∈ Rn, j = 1, 2, 3, · · · , n, are the columns of B. For any
ξ ∈ Rn and F ∈ Sn, we define two operators as follows:

vecs : ξ ∈ Rl → vecs(ξ) ∈ R
n(n+1)

2 ,

and vech : F ∈ Sl → vech(F ) ∈ R
n(n+1)

2 ,

where

vecs(ξ) = [ξ21 , ξ1ξ2, · · · , ξ1ξn, x22, x2x3, · · · , ξn−1ξn, ξ
2
n]

T ,

vech(F ) = [f11, 2f12, · · · , 2f1n, f22, 2f23, · · · , 2fn−1,n, fnn]
T ,

and ξj , j = 1, 2, · · · , n, is the jth element of ξ and fji,
j, i = 1, 2, · · · , n, is the (j, i)th element of matrix F . For
simplity, we denote vecs(ξ) by ξ in this paper.

2 PROBLEM FORMULATION

This section presents the formulation of our LQS optimal
control problems.

Consider a continuous-time time-invariant stochastic linear
system as follows

dx(s) = [Ax(s) +Bu(s)]ds

+ [Cx(s) +Du(s)]dw(s),

x(0) = x0,

(1)

where x0 ∈ Rn is the initial state. The cost functional is
defined as

J(u(·)) = E
∫ ∞
0

[x(s)TQx(s) + u(s)TRu(s)]ds, (2)

where R > 0, Q ≥ 0 and [A,C|Q] is exactly detectable.
Now we give the definition of mean-square stabilizability.

Definition 1. System (1) is called mean-square stabilizable
for any initial state x0, if there exists a matrix K ∈ Rm×n

such that the solution of
dx(s) = (A+BK)x(s)ds

+ (C +DK)x(s)dw(s),

x(0) = x0

(3)

satisfies lims→∞ E[x(s)Tx(s)] = 0. In this case, the
feedback control u(·) = Kx(·) is called stabilizing and the
constant matrix K is called a stabilizer of system (1).

Assumption 1. System (1) is mean-square stabilizable.

Under Assumption 1, we define the sets of admissible control
as

Uad = {u(·) ∈ L2
F (Rm)|u(·) is stabilizing}. (4)

Our continuous-time LQS optimal control problems are
given as follows:

Problem (LQS). For any initial state x0 ∈ Rn, we want to
find an optimal control u∗(·) ∈ Uad such that

J(u∗(·)) = inf
u(·)∈Uad

J(u(·)). (5)

Ni and Fang [18] shows that the optimal control of Problem
(LQS) can be obtained by solving the following stochastic
algebraic Riccati equation (SARE)

PA+ATP + CTPC +Q− (PB + CTPD)

× (R+DTPD)−1(BTP +DTPC) = 0.
(6)

Due to the nonlinear structure of SARE (6), the analytical
solution of (6) is difficult to obtain. To our best knowledge,
there are some iterative algorithms to get the approximation
solution of (6), one of which is the PI method developed
in Ni and Fang [18]. We summarize the method as the
following lemma.

Lemma 1. Assume [A,C|Q] is exactly detectable. For a
given stabilizer K0, let Pi ∈ Sn

+ be the solution of

Pi(A+BKi) + (A+BKi)
TPi +Q

+ (C +DKi)
TPi(C +DKi) +KT

i RKi = 0,
(7)

where Ki is updated by

Ki+1 = −(R+DTPiD)−1(BTPi +DTPiC). (8)

Then Pi and Ki, i = 0, 1, 2, 3, · · · can be uniquely deter-
mined at each iteration step, and the following conclusions
hold:
(i) Ki, i = 0, 1, 2, · · · , are stabilizers.
(ii) limi→∞ Pi = P ∗, limi→∞Ki = K∗, where P ∗

is a nonnegative definite solution to SARE (6) and



K∗ = −(R + DTP ∗D)−1(BTP ∗ + DTP ∗C). In
this case, u∗(·) = K∗x∗(·) is an optimal control of Problem
(LQS).

Note that the above method needs all knowledge of the
system matrices, which are difficult to obtain in the real
world. Thus we want to develop a model-free algorithm
to solve Pi and Ki without using the information of the
coefficient matrices A, B, C, D in system (1).

3 MODEL-FREE PI ALGORITHM

In this section, we present our data-driven PI algorithm that
does not rely on all knowledge of the coefficient matrices in
system (1).

To this end, we first rewrite (7) as

ATPi + PiA+ CTPiC

=− PiBKi −KT
i B

TPi −Q−KT
i D

TPiC

− CTPiDKi −KT
i D

TPiDKi −KT
i RKi.

(9)

Then, by Ito’s formula, we know

d
(
x(s)TPix(s)

)
=

{
x(s)T

(
ATPi + PiA+ CTPiC

)
x(s)

+ 2u(s)T
(
BTPi +DTPiC

)
x(s)

+ u(s)TDTPiDu(s)

}
ds+

{
· · ·
}
dw(s).

(10)

Combining it with (9), we have

d
(
x(s)TPix(s)

)
=

{
− x(s)T

(
Q+KT

i RKi

)
x(s)

+ 2
(
u(s)−Kix(s)

)T (
BTPi +DTPiC

)
x(s)

+ u(s)TDTPiDu(s)

− x(s)TKT
i D

TPiDKix(s)

}
ds+

{
· · ·
}
dw(s).

(11)

Integrating (11) from t to t+4t and taking expection E, we
get

E
[
x(t+4t)TPix(t+4t)− x(t)TPix(t)

]
− 2E

∫ t+4t

t

(
u(s)−Kix(s)

)T
Mix(s)ds

− E
∫ t+4t

t

u(s)THiu(s)ds

+ E
∫ t+4t

t

x(s)TKT
i HiKix(s)ds

=− E
∫ t+4t

t

x(s)T
(
Q+KT

i RKi

)
x(s)ds,

(12)

where Mi = BTPi + DTPiC, Hi = DTPiD, t ≥ 0, 4t is
any positive real number and x(·) is governed by system (1)
with any control u(·).

Next, we give some symbols to develop our data-driven
model-free PI algorithm. We define matrices ηx ∈
Rq×n(n+1)

2 , ηu ∈ Rq×m(m+1)
2 , ηKix

∈ Rq×m(m+1)
2 , i =

0, 1, 2, · · · , ηxu ∈ Rq×mn and ηxx ∈ Rq×n2

, as follows

ηx = E
[
x(t1)− x(t0), · · · , x(tq)− x(tq−1)

]T
,

ηu = E
[ ∫ t1

t0

u(s)ds, · · · ,
∫ tq

tq−1

u(s)ds

]T
,

ηKix
= E

[ ∫ t1

t0

Kix(s)ds, · · · ,
∫ tq

tq−1

Kix(s)ds

]T
,

ηxx = E
[ ∫ t1

t0

x(s)⊗ x(s)ds, · · · ,
∫ tq

tq−1

x(s)⊗ x(s)ds

]T
,

ηxu = E
[ ∫ t1

t0

x(s)⊗ u(s)ds, · · · ,
∫ tq

tq−1

x(s)⊗ u(s)ds

]T
,

where q ∈ Z+ is any positive integer and 0 ≤ t0 < t1 <
t2 < · · · < tq .

For any given Ki, (12) implies

Ψi

vech(Pi)
vec(Mi)
vech(Hi)

 = Θi, (13)

where Ψi ∈ Rq×(n(n+1)
2 +mn+

m(m+1)
2 ) and Θi ∈ Rq are de-

fined as

Θi =
[
− ηxxvec(Q+KT

i RKi)
]
,

Ψi =
[
ηx, 2ηxx(In ⊗KT

i )− 2ηxu, ηKix
− ηu

]
.

If Ψi has full column rank for any i ∈ Z, (13) can be directly
transformed tovech(Pi)

vec(Mi)
vech(Hi)

 = (ΨT
i Ψi)

−1ΨT
i Θi. (14)



Next, we show that, under condition (15) in the following
lemma, Ψi, i = 0, 1, · · · , has full column rank.

Lemma 3. If there exists a q0 ∈ Z+, such that, for all q ≥ q0,

rank([ηxx, ηxu, ηu]) =
n(n+ 1)

2
+mn+

m(m+ 1)

2
,

(15)
then, Ψi, i = 0, 1, · · · , has full column rank.

Proof. It is enough to prove that

ΨiV = O, ∀i ∈ Z, (16)

has the unique solution V = O, where O is a zero
matrix (or vector) with appropriate dimension and
V ∈ Rmn+

n(n+1)
2 +

m(m+1)
2 .

To achieve it, we now prove it by contradiction. We
assume V = [vech(N)T , vec(F )T , vech(G)T ]T ∈
Rmn+

n(n+1)
2 +

m(m+1)
2 is a nonzero column vector,

where vech(N) ∈ R
n(n+1)

2 , vec(F ) ∈ Rmn and
vech(G) ∈ R

m(m+1)
2 . Then, by the definitions of vech(·)

and vec(·), two symmetric matrices N ∈ Sn, G ∈ Sm and a
matrix F ∈ Rm×n can be uniquely determined by vech(N),
vech(G) and vec(F ), respectively.

Applying Ito’s formula to x(s)TNx(s), we derive

E
[
x(t+4t)TNx(t+4t)−X(t)TNX(t)

]
= E

∫ t+4t

t

x(s)T
(
ATN +NA+ CTNC

)
x(s)ds

+ 2E
∫ t+4t

t

u(s)TBTNx(s)ds

+ 2E
∫ t+4t

t

u(s)TDTNCx(s)ds

+ E
∫ t+4t

t

u(s)TDTNDu(s)
)
ds,

(17)

where x(·) is governed by system (1) with the same input
u(·) as in (12).

Using (12), (17) and the definition of Ψi, we have

ΨiV = ηxxvec(T ) + ηxuvec(J ) + ηuvech(L), (18)

where

T =ATN +NA+ CTNC +KT
i GKi

+KT
i F + FTKi

(19)

J = 2BTN + 2DTNC − 2F, (20)

L = DTND −G. (21)

Since T is a symmetric matrix, we get

ηxxvec(T ) = Ixvech(T ), (22)

where Ix ∈ Rq×n(n+1)
2 and

Ix = E
[ ∫ t1

t0

x(s)ds, · · · ,
∫ tq

tq−1

x(s)ds

]T
. (23)

Then, (16) and (18) imply

[Ix, ηxu, ηu]

vech(T )
vec(J )
vech(L)

 = O. (24)

It is easy to see that [Ix, ηxu, ηu] has full column rank under
condition (15). Then, the solution to (24) is vech(T ) = O,
vec(J ) = O and vech(L) = O, and thus T = O,J = O
and L = O.

Next, since Ki is a stabilizer, by Definition 1, we know the
trajectory of

dx(s) =
[
(A+BKi)x(s)

]
ds

+
[
(C +DKi)x(s)

]
dw(s),

x(0) = x0 ∈ Rn

(25)

satisfies lims→+∞ E
[
x(s)Tx(s)

]
= 0.

For any t > 0, applying Ito’s formula to d
(
x(s)TNx(s)

)
, we

get

E
[
xT (t)Nx(t)

]
− xT0Nx0

= E
∫ t

0

xT (s)
(
(A+BKi)

TN +N(A+BKi)

+ (C +DKi)
TN(C +DKi)

)
x(s)ds,

(26)

where x(·) is governed by (25).

Then, by (19), (20), (21), T = 0, J = 0
and L = 0, we can easily see from (26) that
E
[
xT (t)Nx(t)

]
− xT0Nx0 = 0. Letting t → +∞, we

have xT0Nx0 = limt→+∞ E
[
xT (t)Nx(t)

]
= 0. Notice that

x0 can be any element in Rn and N ∈ Sn, we have N = 0.
Then it follows from (19), (20), (21), T = 0, J = 0 and
L = 0 that G = 0 and F = 0, which contradicts with V 6= 0.
The proof is completed. �

Using above notations, our model-free algorithm is given in
Algorithm 1.

Finally, we show the convergence of our algorithm.



Algorithm 1
1: Initial i = 0 and select K0 as a stabilizer for system (1). Take
u(·) = K0x(·)+e(·) as the input to system (1) on time interval
[t0, tq], where e(·) is the exploration noise. Calculate ηx, ηu,
ηxu and ηxx.

2: repeat
3: Compute ηKix

and solve Pi, Mi and Hi from (14).
4: Ki+1 = −(R+Hi)

−1Mi.
5: i← i+ 1.
6: Until |Pi+1 − Pi| < ε.

Theorem 1. Under rank condition (15), starting from a
stabilizer K0, the sequences {Pi}∞i=0 and {Ki}∞i=1 ob-
tained from Algorithm 1 satisfy limi→∞ Pi = P ∗ and
limi→∞Ki = K∗.

Proof. Given a stabilizer Ki, if Pi ∈ Sn×n is the solu-
tion of (7), Mi and Hi can be uniquely determined by
Mi = BTPi + DTPiC and Hi = DTPiD, respectively.
Thus, (12) implies that Pi, Mi and Hi must satisfy (14).

Moreover, if (15) holds, (14) has the unique solution
(Pi,Mi, Hi). Otherwise, (14) has two different solutions
and thus contradicts with rank condition (15).

Therefore, under condition (15), Pi and Ki, i = 0, 1, 2, · · · ,
obtained from Algorithm 1 are equivalent to the solution of
(7) and (8). Then the convergence of the proposed algorithm
can be guaranteed by Lemma 1. �

4 NUMERICAL EXAMPLE

This section will present a simulation example to illustrate
the feasibility of Algorithm 1.

We consider system (1) with n = 2 and m = 1,

A =

[
0 −0.6

0.6 −0.3

]
, B =

[
0.05
0.01

]
,

C =

[
−0.02 0.03
−0.05 0.02

]
, D =

[
0.001
0.03

]
,

and x0 = [0.5,−0.1]T . The weighting matrices in
the cost functional are choosed as R = 1 > 0 and
Q = diag(1, 0.5) ≥ 0.

By implementing Algorithm 1, we can obtain

P̃ ∗ =

[
2.9072352 −0.8296538
−0.8296538 2.4975686

]
,

K̃∗ =
[
−0.0669434 0.0064058

]
.

Moreover, to check the error of the proposed algorithm,
we denote the left sides of (6) and (7) as R1(P ) and

R2(P,K). Then we have |R1(P̃ ∗)| = 2.0820041 × 10−3

and |R2(P̃ ∗, K̃∗)| = 2.0833488× 10−3.

5 CONCLUSION

This paper has developed a model-free PI algorithm to solve
infinite-horizon LQS problems, i.e., Problem (LQS). By
applying ADP techniques, the solution of Problem (LQS) can
be learned from the collected data. Moreover, an example is
given to show the applicability of the obtained algorithm.
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