
ar
X

iv
:2

21
0.

05
54

3v
1

 [
cs

.D
S]

 1
1

O
ct

 2
02

2

Parallel solutions for preemptive makespan scheduling

on two identical machines

Leah Epstein*

Abstract

We consider online preemptive scheduling of jobs arriving one by one, to be assigned to two

identical machines, with the goal of makespan minimization. We study the effect of selecting the

best solution out of two independent solutions constructed in parallel in an online fashion. Two

cases are analyzed, where one case is purely online, and in the other one jobs are presented sorted by

non-increasing sizes. We show that using two solutions rather than one improves the performance

significantly, but that an optimal solution cannot be obtained for any constant number of solutions

constructed in parallel. Our algorithms have the best possible competitive ratios out of algorithms

for each one of the classes.

1 Introduction

Online scheduling problems on multiprocessors, where jobs are scheduled one by one on m ≥ 2 ma-

chines, are defined as follows. A sequence of jobs is presented, where each job j has a size pj > 0,

and it should be assigned to run on the machines. An online algorithm creates a single solution, by

assigning one job at a time, without any knowledge of future jobs, and without a possibility to mod-

ify the assignment of previously presented jobs. The algorithm does not know when the input will

stop, and it is judged by the quality of its constructed solution after the input sequence is terminated.

Since real-life scheduling problems allow some flexibility, there are also relaxed models, where reas-

signment is sometimes possible (see for example [38, 12, 22, 3, 34]). Another relaxed approach is the

design of semi-online algorithms, where some prior knowledge on the input is available (see for example

[2, 30, 31]). In this work, we consider a variant where the online algorithm can construct not a single

solution, but a constant number of solutions, where the algorithm can choose one of its solutions as its

output when the input is stopped [32]. The solution is selected after the input ends as the current best

solution.

To specify the definition of an assignment of a job to machines, we distinguish several models. In

all models, for every solution and at each time in the schedule, every machine can run at most one job,

and any job can be run on at most one machine. In the non-preemptive variant, each job is assigned to

one of the machines. Every job j receives a time interval of the form [Sj, Cj), where Sj is the starting

time of j and Cj is the completion time of j. In this variant, it can be assumed that the time intervals on

each machine (for the different jobs assigned to this machine) will be consecutive. The completion time

or load of a machine is the supremum time that it is running a job, and the makespan is the maximum

load of any machine. When multiple solutions are considered, we sometimes use the term maximum

completion time for the makespan of a single solution (as opposed to the makespan which is the smallest

*Department of Mathematics, University of Haifa, Haifa, Israel. lea@math.haifa.ac.il.

1

http://arxiv.org/abs/2210.05543v1

maximum completion time over all solutions). For the machine model called identical machines, the

processing times of jobs are equal to their sizes, and the completion time or load of a machine is the

total size of jobs assigned to it. In particular it holds that Cj = Sj + pj for every job j. Uniformly

related machines have speeds, such that the speed of machine i is denoted by si ≥ 0, and Cj = Sj +
pj
si

for every job j assigned to machine i, that is, the processing time of job j on machine i is
pj
si

, and the

completion time of machine i is the total size of jobs assigned to it divided by its speed.

Here, we study the preemptive variant. In this problem, every job has to be assigned completely

to machines, possibly by splitting the job into parts, such that it is allocated to non-overlapping time

intervals, on one machine or on multiple machines. The makespan is again the supremum time that any

machine runs a job (i.e., the completion time or load of a machine is defined as the supremum time it

runs a job, and the makespan is defined as before). A complete assignment for identical machines means

that the total length of time intervals for every job j is pj . That is, the job is split into parts that are

scheduled independently but not in parallel. For uniformly related machines, letting tij ≥ 0 denote the

total length of time intervals of job j on machines i, it holds that
∑m

i=1 tij · si = pj . That is, the job can

still be split into parts assigned to disjoint time slots, and the time slot needed for each part is based on

the speed of the machine running it.

We analyze online (and semi-online) algorithms via the competitive ratio. This is the worst-case ratio

between the cost (makespan in our case) of the online algorithm and the optimal offline cost (for the same

input). In the model where parallel solutions are considered, the cost of the algorithm is the minimum

cost out of the costs of its solutions. All the stated problems have constant competitive algorithms,

which are algorithms whose competitive ratios are independent of the input. One can find results for

uniformly related machines and identical machines, in the non-preemptive case and the preemptive case,

for unsorted and sorted inputs, in a number of articles [11, 40, 23, 15, 16, 17, 27, 28, 39, 20, 21, 1, 24, 5,

7, 26, 29, 33], and here we specify the known results for identical machines and the preemptive variant,

which we study in this work.

For online algorithms and a single solution, the best possible competitive ratio for m machines is
mm

mm−(m−1)m < e
e−1 ≈ 1.5819767, if the input is unsorted [11, 40], so the best possible competitive ratio

for m = 2 is 4
3 . For inputs where jobs arrive sorted by non-increasing sizes, the tight result is known

for every m, its supremum value is approximately 1.36603, and its value for m = 2 is 1.2 [39]. This

last article by Seiden, Sgall, and Woeginger [39] deals with several variants of sorted inputs for identical

machines (see also [13]), while sorted inputs for uniformly related machines were studied in various

scenarios as well [20, 33].

The model with several solutions constructed in an online fashion is strongly related to online prob-

lems with advice. In such models, the algorithm has access to advice bits, which are hints telling the

algorithm how to proceed [8, 9, 10]. The two models (with advice and with multiple solutions) are es-

sentially equivalent. The last claim holds since the advice bits can be guessed or enumerated by parallel

solutions whose number is 2 to the power of advice bits. On the other hand, given an algorithm with par-

allel solutions, one can ask for the advice of the index of the solution that will be the best for the planned

input. However, work on online algorithms with advice is usually involved with algorithms where the

number of advice bits is fairly large, and the number of solutions is an integer power of 2, where this

large number of advice bits comes from an unknown source. For example, if the algorithm is told (by

the advice) which machine to use for every job, the problem becomes uninteresting. Even if the number

of advice bits is independent of the input size, still the number of bits can be a function of a parameter

ε, and this affects the performance of the algorithm, in the sense that it performs better for very small

values of ε. The resulting number of solutions for a desired value of ε is far from being sufficiently small

2

in practice, typically even for values of ε that are not very small (for example, for ε = 1
2). Here, we

focus on a slightly different line of research, where the capacity of advice is very small, and it consists

of just a few bits [25]. In our main results, the advice in fact consists of a single bit, that is, the number

of solutions is just two.

We believe that the first problem that was ever studied with respect to multiple solutions is non-

preemptive online scheduling of jobs arriving one by one to minimize makespan for the case m = 2

[32]. In that work, an algorithm of competitive ratio 4
3 is designed for the case of two solutions, and a

matching lower bound on the competitive ratio is provided. This can be compared to the best possible

ratio of 3
2 with a single solution [27, 24]. A different algorithm with a larger number of advice bits

was designed later [14]. Other algorithms, including ones for arbitrary numbers of machines, with a

constant (but large) number of advice bits, and with a non-constant numbers of advice bits (but very

small competitive ratios), were given [4, 36, 14, 10]. A notable result by Albers and Hellwig [4] is that

for obtaining a competitive ratio below 4
3 , the number of parallel solutions has to be at least linear in

the number of machines, m. In the same work, an algorithm with a constant (but very large) number

of parallel solutions, achieving an upper bound close to this threshold of 4
3 on the competitive ratio for

identical machines, was presented. Other models of scheduling [10, 8] were analyzed as well, with

respect to a large amount of advice.

There is no direct connection between the competitive ratios for the preemptive and non-preemptive

problem with the same input. For large numbers of machines, the best possible competitive ratio for the

variant with preemption is much smaller [11, 37]. This is also the case for two machines and arbitrary

inputs [11, 24], but not for sorted inputs. For inputs consisting of jobs presented sorted by non-increasing

sizes, the competitive ratio for preemptive algorithms is 1.2 [39], and it is 7
6 ≈ 1.166667 for non-

preemptive algorithms [39]. Moreover, for identical jobs (each of size 1), the non-preemptive case is

trivial (via a round robin assignment), while the preemptive case is harder. Note that for two machines

and two solutions, one can obtain an optimal solution for the preemptive case. Specifically, one solution

will be the non-preemptive optimal solution, while the other one assigns the first three jobs carefully

(the first job is assigned during the time [0, 1) on the first machine, the second job is assigned during

[1, 1.5) on the first machine and during [0, 0.5) on the second machine, and the third job is assigned

during [0.5, 1.5) on the second machine), and remaining jobs are assigned non-preemptively via round

robin. The first solution is optimal for the preemptive problem for inputs with even numbers of jobs

(and for an input with a single job), and the second solution is optimal for inputs with odd numbers of

jobs. Interestingly, for a single solution and two machines, the case of identical jobs is known to be the

hardest [39], while this does not hold for the case of two solutions, which is implied by our results.

Our results. In this work, we study the case of two identical machines with respect to preemptive online

solutions. We start with a brief discussion of constant number of solutions, where the constant may be

large. Specifically, we show that no algorithm with a fixed number of solutions can be optimal (in the

sense that its competitive ratio is 1), which holds even for a sorted input, but it is possible to obtain

a competitive ratio arbitrarily close to 1, by allowing relatively large (but fixed) numbers of solutions.

Our main results are algorithms whose competitive ratios are the best possible, both with two solutions.

The first one is for the case where job sizes are arbitrary, and the second one is for the case where

jobs are presented in a sorted order, such that they are sorted by non-increasing size. In both cases, the

competitive ratios are significantly smaller than those of the case with a single solution. Specifically,

for the general case, the competitive ratio is approximately 1.236068 while the best possible competitive

ratio with a single solution is 4
3 [11]. For non-increasing sizes, the competitive ratio is 1.10102051 while

the best possible competitive ratio with a single solution is 1.2 [39].

3

The approach for obtaining our algorithms is based on a careful design of each one of the two

solutions, such that their properties complement each other. This is combined with ideas used in previous

work. The algorithmic approach of [32] for the design of a non-preemptive algorithm is as follows. The

algorithm has two solutions, where one has a good performance, while the other one accumulates jobs

on one machine. Once a large job arrives, the two solutions swap roles. Thus, the method is that the

two solutions have different goals, where one is very balanced and one is very imbalanced, such that

it requires a very large job to become balanced. The algorithmic idea is to exchange the roles of the

two solutions under some condition on the input. Here, we cannot normally just assign all jobs to one

machine, yet one solution usually will have a larger makespan than the other one. The solutions are

constructed such that the ratio between machine completion times is fixed for each solution, unless there

was a large job. The solutions change roles upon the arrival of a large job, since the balance changes,

and the way each solution is balanced is swapped. This approach of an attempt to keep a fixed ratio

between machine completion times is a method that is often used for preemptive algorithms [11, 18].

The algorithm computes the optimal offline makespan and tries to reach a makespan of the competitive

ratio times this optimal offline makespan on its most loaded machine. Thus, it sets a threshold in each

step. In our algorithm, we use two different thresholds for the two solutions, such that swapping the

solutions also swaps the thresholds.

We summarize the most relevant previous work and our results in Table 1.

scheduling model single solution two solutions

m machines, unsorted 1.581977 [11] −
m machines, sorted 1.36603 [39] −

two machines, unsorted 1.333333 [11] 1.236068

two machines, sorted 1.2 [39] 1.101021

Table 1: A summary of known and new results for the competitive ratio of online preemptive scheudling

on identical machines. The stated values are approximate, but all results are tight. Results without a

citation are proved here in Sections 3,4. Empty entries mean that there is no improved result for this

case.

Given a set of solutions constructed by an online algorithm, we say that the makespan (for the

output of this algorithm) is the minimal maximum completion time, where the minimum is taken over

solutions, and the maximum is taken over machines. In the case of two solutions A1 and A2, where

the final machine loads are a1,1 and a1,2 for A1 and they are a2,1 and a2,2 for A2, the makespan is

mink=1,2{maxi=1,2 ak,i}. In the case where no idle time is introduced, we have a1,1 + a1,2 = a2,1 +

a2,2 = W for the total size of jobs, W .

2 Constant numbers of solutions

In this section, we provide observations regarding large numbers of solutions. The goal is to analyze the

status of the problem with respect to its “advice complexity” for a large number of advice bits. Note that

computing a large number of solutions is not practical, but the negative part of the result could be seen

as motivation for using a very small number of solutions or advice bits. The result of the current section

is shown for m = 2 identical machines, since two machines is the main topic of the article. Note that

4

for any number of identical machines, and even for any number of uniformly related machines, if the

optimal makespan is known, one can obtain an optimal offline solution in an online fashion [35, 19, 16].

For the case of identical machines, one can use the algorithm of McNaughton [35], which is very simple.

Given T = max{pmax, Wm }, where pmax is the maximum job size (and W is the total size of all jobs,

as defined earlier), it allocates the time interval [0, T) on every machine, and assigns jobs one by one to

consecutive time slots, moving to the next machine after the current machine is fully occupied during the

allocated time internal, as long as not all jobs are assigned, and possibly cutting a job into two parts in

the case that it was assigned partially to a machine before moving to the next machine. We will use this

property (that T is the optimal offline makespan) below. For non-preemptive scheduling, the knowledge

of the optimal offline cost does not allow an online algorithm to compute an optimal offline solution

even for two identical machines [6].

Proposition 1 For any fixed number of parallel solutions, M ≥ 2, any online algorithm has competitive

ratio 1 + Ω(1
M), even if input jobs arrive sorted by non-increasing sizes.

The proof is based on the next idea. The number of solutions is finite, but by considering an infinite

number of possibilities for the third job (which arrives after two identical jobs), the number of possible

offline costs (for balanced optimal solutions) is infinite, since the problem is preemptive. Ordering the

solutions by a feature of their action on the first two jobs, we find a gap in the solution set with respect

to the possible maximum completion time, and show that no solution will have a maximum completion

time that is sufficiently close to the optimal makespan.

Proof. We start with the unsorted case, and define an input based on the action of all M solutions. The

first two jobs have sizes of M + 1 each. For each solution out of the M solutions, consider the total

length of time intervals during which both machines are assigned to run a job or a part of a job (that is,

times when both machines are occupied simultaneously). Let these M values be b1, b2 . . . , bM , where

0 ≤ bi ≤ M + 1 for 1 ≤ i ≤ M , where bi corresponds to the ith solution. We use the notation b0 = 0

and bM+1 = M + 1, and assume without loss of generality that the values are sorted, i.e.,

0 = b0 ≤ b1 ≤ b2 ≤ · · · ≤ bM ≤ bM+1 = M + 1 .

By the pigeonhole principle, and since bM+1 − b0 = M +1, there is a value j′ where 0 ≤ j′ ≤ M such

that bj′+1 − bj′ ≥ 1. We use a parameter α, where 0 < α ≤ 1, and find the largest j ≤ M such that

bj+1 − bj ≥ α, which has to exist due to the previous claim.

Let p = 2M + 2 − 2 · bj+1 + α be the size of the third job, which is presented next. We have

bj+1 ≥ bj + α ≥ α and

2 · bj + α ≤ bj + bj+1 ≤ 2 · bj+1 − α .

Thus, by bj+1 ≤ M + 1, we get p ≥ 2M + 2− 2(M + 1) + α > 0 and

p ≤ 2(M + 1)− (bj + bj+1) ≤ 2(M + 1)− 2 · bj − α < 2(M + 1) .

The current total size of input jobs is 2(M + 1) + p, and thus the optimal offline makespan is

max{M + 1, p,M + 1 + p
2} = M + 1 + p

2 . For solution i, the maximum completion time is at least

max{bi + p, 2M + 2 − bi}, since the third job cannot be assigned during the time when two machines

are active, and since the total time when exactly one machine is running a job is 2M + 2− 2 · bi (since

the time that both machines are running jobs is bi). In fact, 2M + 2 − 2 · bi is a lower bound on the

maximum completion time for solution i even before the assignment of the job of size p. For i ≥ j + 1,

5

we have bi ≥ bj+1, and the maximum completion time for this solution is at least bi + p ≥ bj+1 + p =

2M +2− bj+1+α. For i ≤ j, we have bi ≤ bj , and 2M +2− bi ≥ 2M +2− bj ≥ 2M +2− bj+1+α

as well. Thus, the best solution out of the M solutions has at least this maximum completion time, and

this is a lower bound on the makespan.

The optimal offline cost is

M + 1 +
p

2
= M + 1 + (M + 1− bj+1 +

α

2
) .

The ratio between the costs is at least

2M + 2− bj+1 + α

2M + 2− bj+1 +
α
2

= 1 +
α/2

2M + 2− bj+1 + α/2
.

By using α = 1, and bj+1 ≥ α = 1, we get a ratio of at least 1 + 1
4M+3 .

We can slightly adapt the proof and show that a similar property holds even if jobs are presented

sorted in non-increasing order. The input still consists of two jobs of size M + 1 and a job of size p.

This time we use α = 1
2 for the proof, and we show that as a result it will hold that p < M + 1, and

the input is sorted. If bj+1 ≥ M+2
2 , we have 2 · bj+1 − α > M + 1, and thus p < M + 1, so the same

calculation is used, and the resulting ratio (which is found by substituting the new value of α and the

bound on bj+1) is at least 1 + 1
6M+5 .

To complete the proof, we show that bj+1 ≥ M+2
2 holds for any j ∈ {0, 1, . . . ,M}. For j = M ,

we have bj+1 = M + 1 > M+2
2 for any M ≥ 2, and therefore we consider the case 0 ≤ j ≤ M − 1.

Assume by contradiction that bj+1 <
M+2
2 . By the choice of j, we have bj′+1 − bj′ <

1
2 for j′ ≥ j +1.

Thus, by j < M , the next sum is non-empty, and the inequality is strict. Specifically, we have

M∑

j′=j+1

(bj′+1 − bj′) <
M − j

2
.

By rearranging the left hand side we get

M∑

j′=j+1

(bj′+1 − bj′) = bM+1 − bj+1 = M + 1− bj+1 > M + 1− M + 2

2
=

M

2
.

Thus, M
2 < M−j

2 , a contradiction since j ≥ 0.

We now design an algorithm of approximation ratio 1+δ for any 0 < δ ≤ 1 such that 1
δ

is an integer.

The idea is to keep a set of solutions with very different allowed maximum completion times, but such

that the set of their costs is dense. When a solution becomes too small in this sense compared to the

current optimal makespan, its allowed maximum completion time is increased by a large factor, keeping

the structure of the set of solutions. When the allowed cost is increased, a new schedule is started. Every

solution may have older schedules as well, but those old schedules contribute very little to the machine

completion times.

Let ε = δ

3 . The algorithm uses 1
ε2

= 9
δ2

solutions, where 1
ε
= 3

δ
is an integer as well. The algorithm

has an invariant that it always has at least one solution whose maximum completion time is at most 1+δ

times the makespan of an optimal offline solution, that is, at most 1 + δ times the maximum between

the current largest job and the current average machine load. Every solution has a length L associated

with it, and its maximum completion time will be at most (1 + ε) · L. More specifically, this solution

will be composed of a current sub-solution and possibly previous sub-solutions, where the previous

6

sub-solutions require time intervals of at most ε · L in total, and the current sub-solution requires a

time interval of at most L. The sub-solutions are concatenated, such that when a new sub-solution is

added, the schedule it is started at a certain time which is the end of the previous schedule, and there

is no overlap in time with previous sub-solutions. Every current sub-solution is found by applying the

algorithm of McNaughton [35], that is, jobs are assigned consecutively to the first machine in the time

interval of the sub-solution, and the schedule continues on the second machine during the same time

interval. This can be done in the case where the optimal makespan does not exceed L.

When the first job is presented, schedules with lengths p1 ·(1+ε)i are created for i = 0, 1, . . . , 1
ε2
−1.

At this time, the schedule of length p1 is optimal, since the optimal offline makespan at that time, OPT1,

is equal to p1. For any new job j, the following is done. First, the new optimal offline makespan OPTj

is computed. For every schedule whose current length L is smaller than OPTj , a new current length is

defined as L · (1+ ε)1/ε
2

. The set of lengths will always correspond to p1 multiplied by powers of 1+ ε,

such that these powers are consecutive integers. If at some time the powers are i1, i1+1, . . . , 1
ε2
+i1−1,

and p1(1+ε)i2−1 < OPTj while p1(1+ε)i2 ≥ OPTj (for some i2 > i1 such that i2 ≤ 1
ε2
+ i1−1), the

modification is applied, so that the powers become i2, i2+1, . . . , 1
ε2
+i2−1, since for the powers i1, i1+

1, . . . i2−1, the length of the current sub-solution increases by a multiplicative factor of (1+ε)1/ε
2

. The

other solution lengths are unchanged, and in particular, if OPTj ≤ p1(1+ε)i1 , all the lengths of current

solutions are unchanged. If all lengths are smaller than OPTj , all powers of 1 + ε are increased by an

additive term of 1
ε2

. Every time that a length of a solution is increased, a new sub-solution is started.

This process may be applied multiple times before job j is assigned (intuitively, if j is very large, this

will happen a large number of times), which may happen if p1(1+ε)
1

ε
2
+i1 < OPTj , and in the analysis

we allow empty subsets of jobs to be assigned to sub-solutions, if necessary.

For any solution, taking all sub-solutions into account, if its current length is L, its maximum com-

pletion time is at most

L · (1 + (1 + ε)−1/ε2 + (1 + ε)1/ε
4

+ . . .) <
L

1− (1 + ε)−1/ε2
≤ L · (1 + ε) ,

where the last inequality is explained next. For any positive integer k and ε > 0, we have (1 + ε)k >

1 + k · ε, and therefore (1 + ε)1/ε
2

> 1 + 1
ε

which implies 1− (1 + ε)−1/ε2 > 1− 1
1+1/ε = 1

1+ε
.

The property for the makespan (of the best solution) holds by induction as follows. Recall that

after the arrival of the first job, we have OPT1 = p1, and thus there is a solution of length p1, whose

maximum completion time is exactly p1. As long as the set of solutions is unchanged, this solution

is still optimal. Once there is a change, the solution with the smallest length Ls (in the new set of

solutions) satisfies Ls

1+ε
< OPTj1 for the job j1 that caused the modification. This holds since the

smaller power of 1 + ε was too small, and the first power that was not too small was kept. Consider a

job j2, where j2 ≥ j1, that arrived after the modification for j1 and before any other modification. We

have Ls

1+ε
< OPTj1 ≤ OPTj2 . The maximum completion time for this solution is at most Ls · (1 + ε),

while the optimal offline makespan is at least Ls

1+ε
. Thus, its approximation ratio is at most

(1 + ε)2 = (1 + δ/3)2 = 1 + 2 · δ
3
+

δ2

3
≤ 1 + δ .

We summarize with the next theorem, where the lower bound is based on Proposition 1, and the

upper bound follows from the last algorithm and its analysis.

Theorem 2 For any ε > 0, there is an algorithm of competitive ratio at most 1 + ε that uses O(1
ε2)

solutions. Any algorithm of competitive ratio at most 1 + ε requires Ω(1ε) solutions.

7

Note that this algorithm can be easily generalized for m identical machines by applying NcNaughton’s

algorithm [35] for multiple identical machines, and it can be generalized to the case of uniformly related

machines by using the algorithm of Ebenlendr and Sgall [16]. The only required property is the ex-

istence of an optimal semi-online algorithm (with competitive ratio 1) for the case where the optimal

offline makespan is given.

3 Two identical machines

In this section and the next section we provide our main results, which are algorithms for two machines

with two solutions, for the preemptive variants which are the case of general inputs and the case of

non-increasing sizes. We start with the case of inputs with arbitrary job sizes.

Let α be the positive solution of α2 + α− 1 = 0, that is, α =
√
5−1
2 ≈ 0.618, where α = ϕ− 1 for

ϕ =
√
5+1
2 ≈ 1.618. Let R = 2 · α =

√
5− 1 ≈ 1.236 (and R2 ≈ 1.527864), where R2 + 2R− 4 = 0

(so we have R + 2 = 4
R). By these definitions, we also have R = 2

ϕ = 2(ϕ − 1). We will use

some straightforward properties of ϕ in the calculations, and in particular the properties ϕ2 = ϕ + 1,

ϕ− 1 = 1
ϕ , and 2ϕ+ 1 = ϕ3.

We start with a lower bound on the competitive ratio.

Proposition 3 The competitive ratio of any algorithm for m = 2 identical machines is at least R.

Proof. Assume by contradiction that there is an algorithm whose competitive ratio is r < R. We will

use three inputs, where the second input extends the first one, and the third input extends the second one.

Obviously, the competitive ratio has to be satisfied for all three inputs.

The inputs start with very small jobs (sand) of total size 1. For this input, an optimal offline solution

assigns jobs of total size 1
2 to each machine, for a makespan of 1

2 . Consider two solutions, T and X,

constructed by an online algorithm, and let t1, t2, x1, and x2 denote the following total lengths of time

intervals for the two solutions. The values t1 and x1 are the total lengths of intervals where at least one

machine is active, that is, assigned to run a job, for T and X, respectively. We assume without loss of

generality that t1 ≤ x1. The values t2 and x2 are the total lengths of intervals where two machines are

active, for T and X, respectively. Thus, the times where exactly one machine is active are t1 − t2 and

x1 − x2, for T and X, respectively. The makespan is at least t1, since the maximum completion time

for T is at least t1, and for X, the maximum completion time is at least x1 ≥ t1. Since the total size of

jobs is 1, and the total size of jobs assigned to run is 2 · t2 + (t1 − t2) = t1 + t2 for the first solution,

and similarly, x1 + x2 for the second solution, we have t1 + t2 = x1 + x2 = 1.

Since the makespan of the algorithm for the first input, which is based on the first solution, is at least

t1, we have t1 ≤ r · 1
2 = r

2 . We find that t2 = 1 − t1 ≥ 1 − r
2 . The input continues with a job j1

of size α, which is possibly followed with a job j2 of size 1 + α = ϕ. The input with two jobs is the

second input, and the input with three jobs is the third input. The total size of jobs after the arrival of j1
is 1 + α = ϕ, and after the arrival of j2 the total size is 2ϕ. The optimal offline makespan after j1 is

presented (that is, for the second input) is 1+α
2 , since 1+α

2 > α, and the optimal offline makespan after

j2 is presented is 1 + α. For the first solution, the maximum completion time is at least t2 + α after

j1 is presented, and it is at least t2 + α + 1 after the second job j2 is presented, since there is a total

time interval of t2 where no additional job can be assigned after the sand jobs were assigned. We have

t2 + α ≥ 1 − r
2 + α > 1 − R

2 + α = 1 (by t2 ≥ 1 − r
2 and α = R

2), and by t2 + α > 1 we also have

t2 + α+ 1 > 2.

8

Assume first that the makespan is achieved for the first solution T for some input. In this case, the

competitive ratio for the two inputs above (for the sand together with one job, and for the sand together

with two jobs) exceeds
2

1 + α
=

2

1 + R
2

=
4

2 +R
= R > r ,

by the properties of R. Thus, since the competitive ratio may not exceed r, the makespan is achieved for

the other solution X for both inputs (the input ending with j1, and the input ending with j2). It is left to

consider X.

Let u1 and u2 be defined for solution X, analogously to the previous definitions, after j1 is presented

(so u1 + u2 = 1 + α). The makespan after j1 is presented is at least u1, and we get that u1 ≤ r · 1+α
2 .

The makespan for this solution after j2 is presented (that is, for the third input) is at least u2 + α + 1,

since both machines of X are already occupied during a total time of u2 before the assignment of j2,

and thus using the competitive ratio for the third input we have u2 + α + 1 ≤ r · (1 + α). Taking the

sum of the two inequalities gives u1 + u2 + α + 1 ≤ r · 3
2 · (1 + α). That is, by u1 + u2 = 1 + α, we

get 2(1 + α) ≤ r · 3
2 · (1 + α), which implies r ≥ 4

3 , a contradiction since r < R < 4
3 .

Next, we design an algorithm for two identical machines with two solutions. The algorithm does

not introduce any idle time, which we show in the proof. There are three cases. In the first case, the

new job is relatively small, so it is added to each one of the solutions and the properties are kept, and

the suitable balance of each solution (a fixed ratio between the two loads) is kept if the solution was

balanced according to the required ratio between the two machine loads, or it becomes more balanced.

In the second case, the job has intermediate size. It is assigned such that the solutions are swapped

and become balanced. In the third case, the job is so large that first a part of it is assigned as if it

has intermediate size, and then the residue is added, possibly making the machines of the solutions

imbalanced.

We use the following notation. The algorithm will have two solutions denoted by A and B, where A

will be seen as the better solution, and the maximum completion time of A will be analyzed towards the

competitive ratio, so we use the property that the makespan is at most the maximum completion time for

A. The loads for A after job j was assigned are denoted by aj1 and aj2, where aj2 ≤ aj1 will hold for the

two machines. For B, the loads are bj1 and bj2, where bj2 ≤ bj1 will hold. Specifically, the loads aj1 and

bj1 are always the loads for the first machine, and the loads aj2 and bj2 are always the loads of the second

machine. The makespan after job j is scheduled will be at most aj1 (this holds by definition regardless

of the value bj1, but we will enforce the property bj1 > aj1). The property of ordered loads of the two

machines in both solutions will be implied by the invariants, which will be proved via induction.

Next, we discuss the parameters. As we already mentioned several times, the algorithm tries to

maintain a certain ratio between machine loads for each of the two solutions. This is a ratio of ϕ for A

and of 2ϕ for B. If the input contains a very large job whose size is larger than all previous jobs in total,

the ratio may be larger. In the analysis, we will introduce invariants for A and B, so that we can ensure

that the two solutions always have the required properties.

When a new job that is relatively large is assigned, solutions A and B will be swapped, that is, A

will become B and B will become A after the assignment. This does not require any actual action, but

later assignments will be based on this swap. In other cases, when the new job is smaller, the roles of

A and B will not be swapped. We have a01 = a02 = b01 = b02. We also use the notation Wj for the total

size of the first j jobs (where W0 = 0). Since the algorithm will not introduce idle time, it will always

be the case that aj1 + aj2 = Wj and bj1 + bj2 = Wj . As we discussed earlier, the optimal offline cost (or

makespan) after j jobs have arrived is OPTj = max{Wj

2 , pjmax}, where pjmax = maxj′=1,2,...,j pj′ .

9

We will provide the analysis of each one of the cases after all cases are presented. In each case we

ensure not only that the properties hold after the assignment, but also that the assignment is valid.

The algorithm.

Case 1. In this case we assume that pj ≤ Wj · (2 − ϕ), where 2 − ϕ = 1
ϕ2 ≈ 0.381966. In this case

the solutions are not swapped. We describe the assignment for each one of the solutions. The algorithm

tries to assign the job such that the ratio between the machine completion times is kept, if the ratio held

precisely before the arrival of j. The ratio will never be closer to 1, but it may be larger than the required

ratio. If the ratio was violated due to an earlier large job, the algorithm tries to correct it completely or

partially, in terms of obtaining the ratio exactly, or obtaining a ratio that is closer to the required ratio.

The correction is partial, if the job is too small to perform a complete correction.

Case 1.1 for solution A. In this case we assume that we additionally have aj−1
2 + pj ≤ Wj

ϕ2 . Job j

is assigned to the second machine completely during [aj−1
2 , aj−1

2 + pj).

Case 1.2 for solution A. If case 1.1 was not applied, job j is assigned to the second machine during

[aj−1
2 ,

Wj

ϕ2), and to the first machine during [aj−1
1 ,

Wj

ϕ).

Case 1.1 for solution B. In this case we assume that we additionally have bj−1
2 + pj ≤ Wj

ϕ3 . Job j

is assigned to the second machine during [bj−1
2 , bj−1

2 + pj).

Case 1.2 for solution B. If case 1.1 was not applied, job j is assigned to the second machine during

[bj−1
2 ,

Wj

ϕ3), and to the first machine during [bj−1
1 ,

2Wj

ϕ2).

Case 2. In this case Wj · (2 − ϕ) < pj ≤ Wj

2 . The solutions will be swapped, and the ratio will be

attained precisely.

For solution A that will become solution B, job j is assigned to the second machine during [aj−1
2 ,

Wj

ϕ3),

and to the first machine during [aj−1
1 ,

2Wj

ϕ2). For solution B that will become solution A, job j is assigned

to the second machine during [bj−1
2 ,

Wj

ϕ2), and to the first machine during [bj−1
1 ,

Wj

ϕ).

Case 3. In this case pj >
Wj

2 (or equivalently pj > Wj−1, where the equivalence is shown in the

proof, that is, j is larger than all previously arrived jobs together). The solutions will be swapped in this

situation as well.

The assignment is done as follows. First, a fake job of size Wj−1 is assigned using case 2. The

assignment is just a partial assignment of j, and we will need to assign another part of size pj −Wj−1

of j, and this part is assigned to the first machine, during the time interval

[
2Wj−1

ϕ
,
2Wj−1

ϕ
+ pj −Wj−1)

for A and during the time interval

[
4Wj−1

ϕ2
,
4Wj−1

ϕ2
+ pj −Wj−1) for B.

This completes the definition of the algorithm. One can see that all possibilities for the size of the

new job were considered and the action was defined for all cases. Note that the first job is assigned by

the same assignment rules as other jobs. Specifically, it is assigned by case 3, where case 2 is invoked

in the empty sense since W0 = 0, and it is assigned during the time interval (0, pj] on the first machine

for each one of the solutions. This is obviously optimal and does not require a proof, though this case is

covered by the proof of case 3.

10

Analysis.

As mentioned above, we use a collection of properties. Those properties are defined as follows. For

solution A, we will require that
Wj

ϕ
≤ aj1 ≤ R · OPTj . (1)

Note that in the case where OPTj =
Wj

2 (that is, the case where Wj ≥ 2 · pjmax holds), we will have

R · OPTj = 2
ϕ · Wj

2 =
Wj

ϕ . Thus, in this case it will hold that aj1 =
Wj

ϕ . Given the invariants and the

lack of idle time, we will always have

aj2 = Wj − aj1 ≤ Wj −
Wj

ϕ
= Wj · (1−

1

ϕ
) =

Wj

ϕ2
,

and aj2 =
Wj

ϕ2 holds in the case where OPTj =
Wj

2 . Additionally, we will always have aj1 > aj2 for

j > 0 (that is, if Wj > 0), since for Wj > 0 it holds that aj1 ≥ Wj

ϕ >
Wj

ϕ2 ≥ aj2. Note that 1
ϕ ≈ 0.618

and 1
ϕ2 ≈ 0.382.

For solution B, we will require that

2Wj

ϕ2
≤ bj1 ≤ R2 · OPTj . (2)

In the case where OPTj =
Wj

2 , we will have R2 ·OPTj =
4
ϕ2 · Wj

2 = Wj · 2
ϕ2 . Thus, in this case it will

hold that bj1 =
2Wj

ϕ2 . We will also have

bj2 ≤ Wj −
2Wj

ϕ2
= Wj · (1−

2

ϕ2
) =

Wj

ϕ3
,

and bj2 =
Wj

ϕ3 holds in the case where OPTj =
Wj

2 . Additionally, we will always have bj1 > bj2 for

j > 0, since for Wj > 0 it holds that bj1 ≥
2Wj

ϕ2 >
Wj

ϕ3 ≥ bj2. Note that 2
ϕ2 ≈ 0.764 and 1

ϕ3 ≈ 0.236.

The two required properties, (1) and (2), obviously hold before any job is assigned (since all loads

are equal to zero and W0 = OPT0 = 0), and therefore we will prove them using induction, where the

base case is j = 0.

We will analyze the algorithm now, and start with case 1. Note that in case 1 we have

Wj−1 = Wj − pj ≥ Wj · (1− (2− ϕ)) = (ϕ− 1) ·Wj

and

Wj−1 = Wj − pj ≥ pj(1/(2 − ϕ)− 1) = ϕ · pj ,

or equivalently, we have Wj ≤ ϕ ·Wj−1 and pj ≤ Wj−1

ϕ .

Claim 4 The assignment of job j in case 1 is valid in the sense that a total size of pj is assigned,

and there is no overlap between the time slots allocated for pj on the two machines. No idle time is

introduced, and the invariants hold after job j is assigned.

Proof. For case 1.1 and both solutions, the assignment cannot be invalid since the job is not preempted.

No idle time is introduced since the machine that receives the job is the second machine, and the interval

allocated for the job starts at time aj−1
2 for the first solution and bj−1

2 for the second solution. The

length of the time interval is equal to the size of the assigned job. In fact, for case 1.2, while the job is

11

preempted and split into two parts, each part is assigned without introducing any idle time for each one

of the solutions.

In order to prove all properties excluding the invariants, it is left to analyze the validity of assignment

in the remaining cases, and to show that the job is fully assigned in these cases. We show that the two

parts of j do not overlap for both solutions, the parts have non-negative sizes, and their total size is equal

to j.

We start with the assignment for solution A. We show that in case 1.2 the intervals have positive

lengths. We have aj−1
2 ≤ Wj−1

ϕ2 <
Wj

ϕ2 , by the invariants for the previous time j − 1, since pj > 0.

Additionally, since case 1.1 not applied, it holds that aj−1
2 + pj >

Wj

ϕ2 , which implies

aj−1
1 = Wj − pj − aj−1

2 < Wj −
Wj

ϕ2
=

Wj

ϕ
,

and thus aj−1
1 ≤ Wj

ϕ holds. Moreover,

(
Wj

ϕ2
− aj−1

2) + (
Wj

ϕ
− aj−1

1) = Wj −Wj−1 = pj ,

and j is assigned completely. There is no overlap between the parts since
Wj

ϕ2 ≤ aj−1
1 holds, due to

Wj

ϕ2 ≤ Wj−1

ϕ ≤ aj−1
1 , by Wj ≤ ϕ ·Wj−1, and by the invariant for time j− 1 and the condition of case 1.

Consider now the assignment for solution B. For case 1.2, the intervals have positive lengths since

bj−1
2 ≤ Wj−1

ϕ3 <
Wj

ϕ3 , by the invariants for the previous time j − 1, and since pj > 0. Additionally,

bj−1
1 ≤ 2Wj

ϕ holds since case 1.1 not applied and thus bj−1
2 + pj >

Wj

ϕ3 , which implies

bj−1
1 = Wj − pj − bj−1

2 < Wj −
Wj

ϕ3
=

2Wj

ϕ2
.

Moreover,

(
Wj

ϕ3
− bj−1

2) + (
2Wj

ϕ2
− bj−1

1) = Wj −Wj−1 = pj .

There is no overlap between the parts since
Wj

ϕ3 ≤ bj−1
1 holds, due to

Wj

ϕ3
≤ Wj−1

ϕ2
< bj−1

1 ,

by the invariant for time j − 1 and the condition of case 1.

We now show that the invariants will hold in all cases after the assignment. For case 1.2, if it is

applied for solution A, the exact value of aj1 is
Wj

ϕ , where R ·OPTj ≥ Wj

ϕ . Similarly, if it is applied for

solution B, the exact value of bj1 is
2Wj

ϕ2 , where R2·OPTj ≥ 2Wj

ϕ2 . For case 1.1, if it is applied for solution

A, we have aj1 = aj−1
1 , and if it is applied for solution B, we have bj1 = bj−1

1 . By OPTj ≥ OPTj−1,

it remains to show the lower bounds on the completion times of the first machine for both solutions and

case 1.1. If case 1.1 is applied for solution A, we have

aj2 = aj−1
2 + pj ≤

Wj

ϕ2
,

and thus aj1 ≥ Wj − Wj

ϕ2 =
Wj

ϕ . If case 1.1 is applied for solution B, we have bj2 = bj−1
2 + pj ≤ Wj

ϕ3 ,

and thus bj1 ≥ Wj − Wj

ϕ3 =
2Wj

ϕ2 .

12

We continue with the next case.

Note that in this case we have

Wj

2
≤ Wj−1 ≤ (ϕ− 1) ·Wj ,

by

Wj = Wj−1 + pj ≤ Wj−1 +
Wj

2
and Wj−1 = Wj − pj < Wj · (1− (2 − ϕ)) .

We also have pj ≤ Wj−1 ≤ ϕ · pj (by ϕ−1
2−ϕ = ϕ), Wj ≥ ϕ ·Wj−1 and pj ≥ Wj−1

ϕ .

Claim 5 The assignment of job j in case 2 is valid in the sense that a total size of pj is assigned,

and there is no overlap between the time slots allocated for pj on the two machines. No idle time is

introduced, and the invariants hold after job j is assigned.

Proof. Similarly to case 1, the assignment does not introduce idle time. If indeed the assignment is

possible and valid, the invariants will hold. We will show similar properties to those proved in case 1,

taking into account the swap of the solutions.

We start with the assignments for solution A. To prove aj−1
2 ≤ Wj

ϕ3 (which implies that the intervals

have non-negative length), we use the properties aj−1
2 ≤ Wj−1

ϕ2 and Wj−1 ≤ (ϕ−1)Wj =
Wj

ϕ . To prove

aj−1
1 ≤ 2Wj

ϕ2 , we use aj−1
1 ≤ Wj−1 ≤ (ϕ−1) ·Wj and ϕ−1 < 2

ϕ2 . To prove
Wj

ϕ3 ≤ aj−1
1 (so that we can

see that there is no overlap between the intervals assigned to one job on the two machines) we use the

invariant aj−1
1 ≥ Wj−1

ϕ , and the properties Wj−1 ≥ Wj

2 and 2 · ϕ < ϕ3. The first two inequalities show

that non-negative length intervals are use for j, and the third inequality shows that there is no overlap

between the part of j. Since previously a total size of Wj−1 was assigned and after the assignment of j,

a total size of Wj is assigned, j was scheduled completely.

Consider now the assignments for solution B. The reasoning regarding the assignment is the same as

for A. To prove bj−1
2 ≤ Wj

ϕ2 , we use the property bj−1
2 ≤ Wj−1

ϕ3 and Wj−1 < Wj . To prove bj−1
1 ≤ Wj

ϕ ,

we use Wj−1 ≤ (ϕ − 1) ·Wj , and get bj−1
1 ≤ Wj−1 ≤ Wj

ϕ . To prove
Wj

ϕ2 ≤ bj−1
1 , we use the invariant

bj−1
1 ≥ 2Wj−1

ϕ2 and Wj−1 ≥ Wj

2 .

Finally, we analyze case 3. By the properties, the loads after the fake job is assigned are based on

the total size 2 ·Wj−1, which allows this assignment.

We have pj = Wj −Wj−1 < 2pj −Wj−1 and therefore pj > Wj−1 holds, that is, j is indeed larger

than all previously arrived jobs together.

Claim 6 The assignment of job j in case 3 is valid in the sense that a total size of pj is assigned,

and there is no overlap between the time slots allocated for pj on the two machines. No idle time is

introduced, and the invariants hold after job j is assigned.

Proof. The assignment of the part of j of size Wj−1 satisfies all requirements and the invariants hold,

since it is assigned by case 2. Moreover, the machine completion times are exactly
2Wj−1

ϕ for the first

machine and solution A,
2Wj−1

ϕ2 for the second machine and solution A,
4Wj−1

ϕ2 for the first machine and

solution B, and
2Wj−1

ϕ3 for the second machine and solution B. In particular, the load of the first machine

is larger than the load of the second machine, for each of the two solutions. Thus, the assignment of the

remaining part of j is not in parallel with any part of a job (including j), and no idle time is created. The

added part completes the assignment of a total size of pj for j in each one of the solutions.

13

Next, we prove the invariants. The left hand sizes of (1) and (2) hold since all the remaining size

was added to the first machine, while 1
ϕ < 1 and 2

ϕ2 < 1 hold. We have

aj1 =
2Wj−1

ϕ
+ pj −Wj−1 = Wj−1 · (

2

ϕ
− 1) + pj = (Wj − pj) · (R − 1) + pj

= (R− 1) ·Wj + (2−R) · pj ≤ 2(R − 1) · OPTj + (2−R) · OPTj = R · OPTj .

Finally,

bj1 =
4Wj−1

ϕ2
+ pj −Wj−1 = Wj−1 · (

4

ϕ2
− 1) + pj = (Wj − pj) · (R2 − 1) + pj

= (R2 − 1) ·Wj + (2−R2) · pj ≤ 2(R2 − 1) ·OPTj + (2−R2) ·OPTj = R2 · OPTj ,

as required.

Since all options for the size of j are covered by the three cases, se summarize the design and analysis

of our algorithm with the following theorem, where the lower bound follows from Proposition 3, and

the upper bound follows from the first invariant.

Theorem 7 The algorithm above has competitive ratio R ≈ 1.236068 for two machines and two solu-

tions, and this is the best possible competitive ratio for this problem.

4 Two identical machines, decreasing sizes

This section contains the algorithm for inputs with non-increasing sizes. In this case, we will assume

that p1 = 1, without loss of generality. Define α =
√
6 − 2 ≈ 0.4495, where α2 + 4α = 2. Let

R = 6− 2 ·
√
6 ≈ 1.10102, and

r =
3(2 −R)

2
= 3(

√
6− 2) ≈ 1.34847 .

We have R2 = 12(R − 1) and r = 3 · α, which implies r2 + 12r = 18. Let β = 1 −
√
6
3 ≈ 0.1835,

where β = α
2+α . We also have

R+ r − α = (6− 2 ·
√
6) + (3(

√
6− 2)) − (

√
6− 2) = 2 .

Here, we also start with a lower bound on the competitive ratio.

Proposition 8 The competitive ratio of any algorithm for m = 2 identical machines is at least R.

Proof. Assume by contradiction that there is an algorithm whose competitive ratio is ρ < R.

We will use two inputs, where the prefix of the first two jobs is identical for the two inputs, and the

third job is different. The algorithm obviously has to satisfy the definition of the competitive ratio for

all inputs, including these two inputs. Moreover, the prefix of the first two jobs is treated as an input as

well.

The inputs start with two jobs of size 1 each. For the input consisting of these two jobs, an optimal

offline solution assigns one job to each machine, without preemption or idle time. We use the same

notation as in Lemma 3, which is the other lower bound proof (the variables used for the solutions, after

the sand jobs were presented). Since the total size of the two jobs here is 2, we have t1+t2 = x1+x2 = 2.

We also assume again that t1 ≤ x1 holds.

14

Since the makespan of the algorithm for the input consisting of two jobs of size 1 each, based on the

first solution, is at least t1, we have t1 ≤ ρ by the definition of competitive ratio for this input. We find

that t2 = 2− t1 ≥ 2− ρ > 2−R. For the two other inputs, there is a third job for each input. Its size is

1 for the first input, and it is α for the second input. For the input where the size of the third job is 1, the

makespan is at least min{t2 + 1, x2 + 1} = x2 + 1. An optimal offline solution has makespan 3
2 , and

therefore x2 + 1 ≤ ρ · 1.5. Since x1 = 2− x2, we find that 3− x1 ≤ 1.5 · ρ. Thus, by ρ < R, we have

x1 ≥ 3− 1.5 · ρ > 3− 1.5(6 − 2
√
6) = 3

√
6− 6 = r .

For the input where the size of the second job is α, an optimal solution has cost 2+α
2 . The algorithm has

makespan of at least min{t2 + α, x1}. By t2 > 2 − R, we have t2 + α > 2 − R + α = r. We find

that min{t2 + α, x1} > r. The competitive ratio for this input is therefore above 2r
2+α = 6(

√
6−2)√
6

=

6− 2
√
6 = R, a contradiction to the assumption on the competitive ratio for the algorithm.

Next, we design an algorithm for inputs consisting of jobs arriving in a sorted order (sorted by non-

increasing sizes). The algorithm is designed for two identical machines and constructs two solutions.

We use the same notation as in the previous section. The assignment of the first job (of size 1) is

always during the time interval [0, 1) on the first machine for both solutions. Thus, a11 = b11 = 1, and

a02 = b02 = 0. Moreover, W1 = 1. These solutions are both optimal, and the analysis of the algorithm

will start after the assignment of the second job.

For this variant, we sometimes use only one solution starting with a specified input job. The meaning

is that we consider one specific solution towards the competitive ratio, and in the other solution the

assignment is arbitrary. We will define the time in which we will stop considering the second solution

precisely.

The algorithm uses one of two approaches for designing the solutions. If the second job is relatively

small, all future jobs are small as well due to the sorted order of the input. In this case only one solution

is used already starting with the second job. The algorithm assigns the first job to the first machine. Then,

it assigns jobs or parts of jobs to the second machine, until the second machine receives a sufficient total

size, and the required balance is satisfied. From that time on, jobs are assigned so as to keep a fixed load

ratio. In the second approach, both solutions are used. The main idea for each solution is as follows.

First, as long as the total size of jobs is relatively small (compared to the size of the first job, which is

assumed to be equal to 1), only one of the machines is used. However, since the load ratios are different,

the required load to be achieved is not the same for the two solutions. In this approach, the solutions

are swapped if the new job is not small, as in the previous algorithm. There are multiple cases since the

situation may be different with respect to the two solutions. However, due to the sorted order, we do not

have the situation with a large job, and the most significant assignments are those of the first few jobs.

In the second approach, there is also a case where the second job is small. In this case one can also

stop using the second solution after several jobs have arrived (and thus new jobs, which are not larger

than previous jobs, are relatively small compared to the total size of already existing jobs). Case 1 of

the second apporach deals, in particular, with assigning small jobs. Since job sizes are non-increasing

while the function Wj is monotonically increasing, once some job is assigned by case 1 due to its small

size, all further jobs will be assigned in the same way (they are assigned using case 1, and due to the

same reason of being small). However, case 1 is applied in another situation as well, and therefore we

will not take this into account, and we define and analyze both solutions for the first case of the second

approach.

The algorithm.

15

The first job is assigned into the time interval [0, 1) for both solutions. Next, for the assignment of

further jobs, the algorithm proceeds in one of two approaches, based on the size of the second job, p2.

The first approach is used if p2 ≤ 0.4, and otherwise the second approach is used.

The first approach. In this approach, only one solution will be used starting from the second job. The

assignment of job j (for j ≥ 2) is as follows. If

aj−1
2 + pj ≤ (1− R

2
) ·Wj ,

job j is assigned to the second machine completely during [aj−1
2 , aj−1

2 + pj), and this is the first case of

the first approach. Otherwise, job j is assigned to the second machine during [aj−1
2 , (1 − R

2) ·Wj), and

to the first machine during [aj−1
1 , R2 ·Wj), and this is the second case of the first approach.

The second approach. The second approach is for the case p2 > 0.4.

In this approach, we define the assignment of the second job separately. For solution A, the second

job is assigned during [1, R) on the first machine and during [0, p2+1−R) on the second machine. For

solution B, the second job is assigned during [1, r) on the first machine and during [0, p2 + 1 − r) on

the second machine.

The remaining cases are applied for any job j ≥ 3.

Case 1. In this case, we assume that at least one of the following two conditions hold: pj ≤ Wj ·(1−
√
6
3),

where 1−
√
6
3 ≈ 0.183503 and Wj ≤

√
6 = 6−R

2 ≈ 2.4494897 (it is possible that both conditions hold

simultaneously, but we apply this case even if just one of the two conditions holds). In this case the

solutions are not swapped, and we describe the assignment for each one of the solutions separately.

Case 1.1 for solution A. In this case we assume that we additionally have aj−1
2 + pj ≤ 2−R

2 ·Wj .

Job j is assigned to the second machine completely during [aj−1
2 , aj−1

2 + pj).

Case 1.2 for solution A. If case 1.1 was not applied, job j is assigned to the second machine during

[aj−1
2 ,Wj · 2−R

2), and to the first machine during [aj−1
1 ,Wj · R

2).

Case 1.1 for solution B. In this case we assume that we additionally have bj−1
2 + pj ≤ 2

5 ·Wj . Job

j is assigned to the second machine during [bj−1
2 , bj−1

2 + pj).

Case 1.2 for solution B. If case 1.1 was not applied, job j is assigned to the second machine during

[bj−1
2 , 25 ·Wj), and to the first machine during [bj−1

1 , 35 ·Wj).

Case 2. In this case, which is applied in any remaining situation, the solutions are swapped. We describe

the assignment for each one of the solutions.

For solution A (which becomes solution B), j is assigned as follows. Let

Γj = min{aj−1
2 + pj , a

j−1
1 , 0.4 ·Wj} .

Job j is assigned to the second machine during the time interval [aj−1
2 ,Γj), and it is assigned to the first

machine during the time interval [aj−1
1 ,Wj − Γj).

For solution B (which becomes solution A), j is assigned to the second machine, during the time

interval [bj−1
2 , 2−R

2 ·Wj), and to the first machine during the time interval [bj−1
1 , R2 ·Wj).

Analysis.

Next, we analyze the algorithm. The assignment of the first job is optimal since the load is equal to

p1 (for both solutions). Thus, we will deal with the case j > 1.

16

We start with proving the competitive ratio for the first approach. For solution A, we will require

that

max{1, R
2
·Wj} ≤ aj1 ≤ R · OPTj

will always hold. By this constraint which will be proved as an invariant, and by the lack of idle time,

we will have aj2 ≤ (1− R
2) ·Wj (which can also be seen directly from the assignment in both cases). In

particular, this means (by R > 1) that aj1 > aj2. For j = 1, we have aj1 = Wj = 1, OPTj = 1 and the

invariant holds by 1 < R < 2. We will always have a1j ≥ a11 = 1 (for any j ≥ 1), and therefore we will

prove that R
2 ·Wj ≤ aj1 ≤ R · OPTj holds after every additional job assignment (that is, for j ≥ 2). In

both cases of the first approach no idle time is introduced. We will consider the further details for each

case separately.

In the first case, the new job is assigned completely to one machine, and there cannot be an overlap.

Additionally, in this case we have aj1 = aj−1
1 ≤ R · OPTj−1 ≤ R · OPTj , a

j
2 ≤ (1 − R

2) · Wj , and

therefore, since aj1 + aj2 = Wj , we have aj1 ≥ R
2 ·Wj , so the invariant holds.

In the second case the job is assigned completely since after the assignment the total assigned size

is Wj . We show that there is no overlap between the two parts of the job, that is,

(1− R

2
) ·Wj ≤ aj−1

1 ,

If (1− R
2) ·Wj ≤ 1, we are done by aj−1

1 ≥ 1, and therefore are left with the case (1− R
2) ·Wj > 1, or

alternatively, Wj >
2

2−R . By aj−1
1 ≥ R

2 ·Wj−1, it is sufficient to prove that (1 − R
2) ·Wj ≤ R

2 ·Wj−1

holds. By Wj = Wj−1 + pj , this inequality is equivalent to

(1− R

2
) ·Wj ≤

R

2
·Wj −

R

2
· pj ,

or alternatively, R · pj ≤ 2(R − 1) · Wj . We have
2(R−1)

R · Wj > 2(R−1)
R · 2

2−R , and we are done by
2(R−1)

R · 2
2−R > 0.408 and pj ≤ 0.4. It is left to show that the intervals have non-negative lengths in the

second case, that is, aj−1
1 ≤ R

2 ·Wj and aj−1
2 ≤ (1− R

2) ·Wj . Since

Wj = aj−1
1 + aj−1

2 + pj and aj−1
2 + pj > (1− R

2
) ·Wj

hold, we have aj−1
1 < Wj − (1 − R

2) · Wj = R
2 · Wj . By the invariant aj−1

1 ≥ R
2 · Wj−1, we have

aj−1
2 ≤ 2−R

2 ·Wj−1 < 2−R
2 · Wj . The invariant will hold for the second case since aj1 = R

2 ·Wj , and

OPTj ≥ Wj

2 .

Next, we proceed with proving the analysis of the competitive ratio for second approach. Recall

that the case j = 2 was different. We prove this case separately. The interval on the second machine is

non-empty since R < r < 1.35 and

p2 + 1−R > p2 + 1− r > 0.4 + 1− 1.35 > 0 .

The second job is assigned without idle time, and without overlap since p2 + 1− r < p2 + 1 −R < 1

by p2 ≤ p1 = 1 and R > 1. Thus, a21 = R and b21 = r. Note that OPT2 = 1, which implies

a21 = R · OPT2 (so the competitive ratio is not violated) and b21 = r · OPT2. This allows us to define

the following invariants for j ≥ 2:

max{R,
R

2
·Wj} ≤ aj1 ≤ R · OPTj and max{r, 0.6 ·Wj} ≤ bj1 ≤ r · OPTj .

17

By these invariants and lack of idle time, we will always have aj2 ≤ 2−R
2 · Wj and bj2 ≤ 0.4 ·Wj (and

the competitive ratio will hold using solution A).

For j = 2, we have Wj = p1 + p2 ≤ 2 · p1 = 2, so R
2 · Wj ≤ R and 0.6 · Wj ≤ 1.2 < r. The

invariants hold for j = 2 since a21 = R = R · OPTj and a21 = r = r · OPTj . Since the loads cannot

decrease over time, and by the assignment of the second job, for j ≥ 2 it always holds that aj1 ≥ R and

bj1 ≥ r, and thus, it will be sufficient to prove R
2 ·Wj ≤ aj1 ≤ R ·OPTj and 0.6 ·Wj ≤ bj1 ≤ r ·OPTj

for j ≥ 3 (using induction and the assignment of each job). There are several cases for the assignment.

Since the cases j = 1, 2 were analyzed completely, in what follows, we always assume that j ≥ 3. Note

that for j ≥ 3, it holds that Wj ≥ p1 + p2 + pj ≥ 3 · pj , and therefore pj ≤ Wj

3 .

Claim 9 The assignment of job j in case 1 is valid in the sense that a total size of pj is assigned,

and there is no overlap between the time slots allocated for pj on the two machines. No idle time is

introduced, and the invariants hold after job j is assigned.

Proof. For case 1.1 and both solutions, the assignment cannot be invalid since the job is not preempted.

No idle time is introduced since the machine that receives the job is the second machine, and the interval

allocated for the job starts at time aj−1
2 for the first solution and bj−1

2 for the second solution, and its

length is equal to the size of the assigned job. In fact, for case 1.2, while the job is preempted and split

into two parts, each part is assigned without introducing any idle time.

In order to prove all properties excluding the invariants, it is left to analyze the validity of assignment

in the remaining cases and to show that the job is fully assigned in these cases. We show that the two

parts of j do not overlap for both solutions, the parts have non-negative sizes, and their total size is equal

to j.

We start with the assignments for solution A. We show that in case 1.2 the intervals have positive

lengths. We have

aj−1
2 ≤ 2−R

2
·Wj−1 <

2−R

2
·Wj ,

by the invariants for the previous time j − 1, and since pj > 0. Additionally, since case 1.1 not applied,

it holds that aj−1
2 + pj >

2−R
2 ·Wj , which implies that

aj−1
1 = Wj − pj − aj−1

2 < Wj −
2−R

2
·Wj =

R

2
·Wj ,

and thus aj−1
1 ≤ R

2 · Wj holds. We have proved that both lengths of the allocated intervals are indeed

positive. Moreover,

(
2−R

2
·Wj − aj−1

2) + (
R

2
·Wj − aj−1

1) = Wj −Wj−1 = pj ,

and j is assigned completely.

To show that there is no overlap between the parts, we prove that 2−R
2 · Wj ≤ aj−1

1 holds. We

start with the case pj ≤ Wj · (1 −
√
6
3). We have Wj − Wj−1 = pj ≤ Wj · (1 −

√
6
3), and therefore

Wj−1 ≥ Wj ·
√
6
3 (where

√
6
3 ≈ 0.81649658). Using the invariant for the loads, we have aj−1

1 ≥ R
2 ·Wj−1,

and we find that aj−1
1 ≥ R

2 · Wj ·
√
6
3 . It is left to see that R√

6
≥ 2−R

2 holds, which is equivalent to

R · (12 + 1√
6
) ≥ 1, and indeed

R · (1
2
+

1√
6
) = (6− 2 ·

√
6) · (3 +

√
6

6
) = 1 .

18

In the case Wj ≤ 6−R
2 , we find 2−R

2 ·Wj ≤ (2−R)·(6−R)
4 = R, and we are done by aj−1

1 ≥ R.

We continue with the assignments for solution B. We show that in case 1.2 the intervals have positive

lengths. We have bj−1
2 ≤ 0.4 ·Wj−1 < 0.4 ·Wj , by the invariants for the previous time j − 1, and since

pj > 0. Additionally, since case 1.1 not applied, it holds that

bj−1
2 + pj > 0.4 ·Wj ,

which implies

bj−1
1 = Wj − pj − bj−1

2 < Wj − 0.4 ·Wj = 0.6 ·Wj ,

and thus bj−1
1 ≤ 0.6·Wj holds. Moreover, (0.4·Wj−bj−1

2)+(0.6·Wj−bj−1
1) = Wj−Wj−1 = pj , and j

is assigned completely. To show that there is no overlap between the parts, we prove that 0.4·Wj ≤ bj−1
1

holds. We start with the case pj ≤ Wj · (1 −
√
6
3). Recall that we have Wj−1 ≥ Wj ·

√
6
3 . Using the

invariant for the loads, we have bj−1
1 ≥ 0.6 ·Wj−1, and we find that bj−1

1 ≥ 0.6 ·Wj ·
√
6
3 > 0.4 ·Wj ,

since 0.6 ·
√
6
3 ≈ 0.4898979485. In the case Wj ≤ 6−R

2 , by

0.4 ·Wj <
2−R

2
·Wj ≤

(2−R) · (6−R)

4
= R ,

we are done by bj−1
1 ≥ r > R.

We now show that the invariants will hold in all cases after the assignment. For case 1.2, if it is

applied for solution A, the exact value of aj1 is R · Wj

2 . Similarly, if it is applied for solution B, the

exact value of bj1 is 0.6 · Wj . This proves that the left hand side of the two constraints holds. Since

OPTj ≥ W2

2 , and r > 1.2, the right hand side of the constraints holds as well.

For case 1.1, if it is applied for solution A, we have aj1 = aj−1
1 , and if it is applied for solution B,

we have bj1 = bj−1
1 . By OPTj ≥ OPTj−1, it remains to show the lower bounds on the completion

times of the first machine for both solutions and case 1.1. If case 1.1 is applied for solution A, we have

aj2 = aj−1
2 +pj ≤ 2−R

2 ·Wj , and thus aj1 ≥ Wj − 2−R
2 ·Wj =

R
2 ·Wj . If case 1.1 is applied for solution

B, we have bj2 = bj−1
2 + pj ≤ 0.4 ·Wj , and thus bj1 ≥ Wj − 0.4 ·Wj = 0.6 ·Wj .

We completed the analysis for case 1, and continue with case 2. In this remaining case we have

pj > Wj · (1−
√
6
3), and Wj >

6−R
2 =

√
6. This yields

Wj −Wj−1 = pj > Wj · (1−
√
6

3
) and Wj−1 <

√
6

3
·Wj .

By Wj >
√
6 > 2, it holds that OPTj =

Wj

2 > 1. The required constraints of the invariants will

therefore be aj1 = R · Wj

2 (since the two bounds from above and from below are equal), and 0.6 ·Wj ≤
bj1 ≤ r

2 ·Wj . Note that

Γj = min{aj−1
2 + pj , a

j−1
1 , 0.4 ·Wj}

is strictly positive since j ≥ 3, and all three considered values are positive. However, none of the values

can exceed Wj , so this value is not larger than Wj .

Claim 10 The assignment of job j in case 2 is valid in the sense that a total size of pj is assigned,

and there is no overlap between the time slots allocated for pj on the two machines. No idle time is

introduced, and the invariants hold after job j is assigned.

Proof. By the assignment, no idle time is introduced. Thus, the solutions will not have idle time (since

they are valid, which is proved here). Moreover, if the solutions are valid, j is assigned completely. This

19

holds for the two solutions because there is no idle time and the total load after the assignment is Wj .

It is left to show that the lengths of the intervals are non-negative, there is no overlap between the parts,

and the invariants will hold after the assignment.

Now, we show that the lengths of the intervals are non-negative, and that there is no overlap between

the parts of the jobs. The six properties to be shown are bj−1
1 ≤ R

2 · Wj , a
j−1
1 ≤ Wj − Γj , b

j−1
2 ≤

2−R
2 ·Wj , aj−1

2 ≤ Γj , 2−R
2 ·Wj ≤ bj−1

1 and Γj ≤ aj−1
1 . The sixth condition holds directly by definition

of Γj . Similarly, the second condition also holds by this definition since

Γj ≤ aj−1
2 + pj = Wj − aj−1

1 .

For the fourth condition, we consider all possibilities for Γj . If Γj = aj−1
2 + pj , we are done since

pj > 0. If Γj = aj−1
1 , we are done by

aj−1
2 ≤ 2−R

2
·Wj−1 <

R

2
·Wj−1 ≤ aj−1

1 .

If Γj = 0.4 ·Wj , we are done by

aj−1
2 ≤ 2−R

2
·Wj−1 <

2−R

2
·
√
6

3
·Wj < 0.368 ·Wj < 0.4 ·Wj .

The properties bj−1
1 ≥ 0.6 · Wj−1 and bj−1

2 ≤ 0.4 · Wj−1 follow from the invariants for j − 1.

Moreover, by OPTj−1 = max{1, Wj−1

2 }, it holds that

bj−1
1 ≤ r ·max{1, Wj−1

2
} .

Now, we prove that bj−1
2 ≤ 2−R

2 ·Wj holds. We use bj−1
2 ≤ 0.4 ·Wj−1, and it is sufficient to prove

that 0.4 ·Wj−1 ≤ 2−R
2 ·Wj holds. By Wj−1 < Wj , it is sufficient to show that 0.4 ≤ 2−R

2 holds, which

is indeed the case as 2−R
2 > 0.449.

Next, we prove that bj−1
1 ≤ R

2 ·Wj holds. We use Wj >
√
6 for the situation bj−1

1 ≤ r, and we find

that R
2 ·Wj > R

2 ·
√
6 = r. Otherwise, bj−1

1 > r, and by the upper bound in the invariant for bj−1
1 we

get bj−1
1 ≤ r · Wj−1

2 and Wj−1 > 2. By Wj−1 <
√
6
3 ·Wj , we get

bj−1
1 ≤ r · (

√
6
3) ·Wj

2
=

R

2
·Wj .

Now, we prove that 2−R
2 ·Wj ≤ bj−1

1 holds. We use bj−1
1 ≥ 0.6 ·Wj−1, and it is sufficient to prove

that 0.6 ·Wj−1 ≥ 2−R
2 ·Wj . If j ≥ 4, we have Wj = Wj−1 + pj , where

Wj−1 ≥ (j − 1) · pj = (j − 1) · (Wj −Wj−1) ,

and therefore Wj ≤ j
j−1 ·Wj−1 ≤ 4

3 ·Wj−1. Thus, it is sufficient to prove that 2−R
2 · 4

3 ≤ 0.6. Indeed,

it holds that 2−R
2 · 4

3 < 0.59932. In the case j = 3, we have bj−1
1 = r, thus, it is required to prove

2−R
2 · Wj ≤ r. Since W3 ≤ 3, it is sufficient to prove 3 · 2−R

2 ≤ r. This holds with equality by the

definition of r.

Finally, we show that the constraints will hold. For solution A which was obtained from solution B,

we have aj1 = R
2 ·Wj , which proves that the invariants hold since OPTj =

Wj

2 . For solution B which

was obtained from solution A, we will prove 0.6 ·Wj ≤ bj1 ≤ r
2 ·Wj . Since Γj ≤ 0.4 ·Wj , we have

bj1 = Wj − Γj ≥ 0.6 ·Wj .

20

It remains to prove that Wj − Γj = bj1 ≤ r
2 · Wj holds. We consider the three cases for Γj .

If Γj = aj−1
2 + pj , we have bj1 = aj−1

1 ≤ R · OPTj−1. We have OPTj−1 = max{1, Wj−1

2 } ≤
max{1, Wj

2 } =
Wj

2 . Thus, bj1 ≤ R
2 ·Wj <

r
2 ·Wj .

Otherwise, if Γj = aj−1
1 , we have bj1 = Wj − aj−1

1 = aj−1
2 + pj , where aj−1

2 ≤ 2−R
2 ·Wj−1, and

therefore

bj1 ≤
2−R

2
·Wj−1 + pj =

2−R

2
·Wj +

R

2
· pj .

We have pj ≤ Wj

3 , since Wj ≥ p1 + p2 + pj ≥ 3 · pj . Thus,

bj1 ≤ Wj · (1−
R

2
+

R

6
) = (1− R

3
) ·Wj .

We are done since r
2 > 0.67 and 1− R

3 < 0.64.

In the last case, Γj = 0.4 ·Wj , we are done since Wj − Γj = 0.6 ·Wj ≤ r
2 ·Wj , since r > 1.2.

Our two approaches and the cases into which the algorithm was split cover all possible cases. Thus,

we summarize the design and analysis of our algorithm with the following theorem, where the lower

bound follows from Proposition 8, and the upper bound follows from the invariants.

Theorem 11 The algorithm above has competitive ratio R ≈ 1.10102051 for two machines and two

solutions, for inputs with non-increasing job sizes, and this is the best possible competitive ratio for this

problem.

5 Conclusion

One can study various online problems with respect to a small number of parallel solutions. The most

natural generalizations of the current work are as follows. For m > 2 multiple machines, one goal can

be to design an algorithm that uses two solutions, such that this algorithm has a smaller competitive

ratio compared to earlier work [11, 40]. That is, the goal is to design an algorithm with two solutions

for the problem that was studied here (with unsorted inputs) for a larger number of machines, whose

competitive ratio is smaller than e
e−1 for any m, or to design an algorithm whose competitive ratio is

smaller than mm

mm−(m−1)m for a fixed value of m (for example, an algorithm of competitive ratio below
27
19 ≈ 1.42105 for m = 3). Other generalizations can be an analysis for uniformly related machines, or a

study of all these problems for a different small number of solutions. Sorted inputs with m > 2 identical

or uniformly related machines and multiple solutions can be studied as well.

References

[1] S. Albers. Better bounds for online scheduling. SIAM Journal on Computing, 29(2):459–473,

1999.

[2] S. Albers and M. Hellwig. Semi-online scheduling revisited. Theoretical Computer Science,

443:1–9, 2012.

[3] S. Albers and M. Hellwig. On the value of job migration in online makespan minimization. Algo-

rithmica, 79(2):598–623, 2017.

[4] S. Albers and M. Hellwig. Online makespan minimization with parallel schedules. Algorithmica,

78(2):492–520, 2017.

21

[5] J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, and O. Waarts. On-line routing of virtual circuits with

applications to load balancing and machine scheduling. Journal of the ACM, 44(3):486–504, 1997.

[6] Y. Azar and O. Regev. On-line bin-stretching. Theoretical Computer Science, 268(1):17–41, 2001.

[7] P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related machines. Journal

of Algorithms, 35(1):108–121, 2000.

[8] H. Böckenhauer, D. Komm, R. Královic, R. Královic, and T. Mömke. Online algorithms with

advice: The tape model. Information and Computation, 254:59–83, 2017.

[9] J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen, and J. W. Mikkelsen. Online algorithms with

advice: A survey. ACM Computing Surveys, 50(2):19:1–19:34, 2017.

[10] J. Boyar, L. M. Favrholdt, C. Kudahl, and J. W. Mikkelsen. Weighted online problems with advice.

Theory of Computing Systems, 62(6):1443–1469, 2018.

[11] B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive on-line schedul-

ing. Operations Research Letters, 18(3):127–131, 1995.

[12] X. Chen, Y. Lan, A. Benko, Gy. Dósa, and X. Han. Optimal algorithms for online scheduling with

bounded rearrangement at the end. Theoretical Computer Science, 412(45):6269–6278, 2011.

[13] T. C. E. Cheng, H. Kellerer, and V. Kotov. Algorithms better than LPT for semi-online scheduling

with decreasing processing times. Operations Research Letters, 40(5):349–352, 2012.

[14] J. Dohrau. Online makespan scheduling with sublinear advice. In Proc. of the 41st International

Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM’15), pages

177–188, 2015.

[15] T. Ebenlendr, W. Jawor, and J. Sgall. Preemptive online scheduling: optimal algorithms for all

speeds. Algorithmica, 53(4):504–522, 2009.

[16] T. Ebenlendr and J. Sgall. Optimal and online preemptive scheduling on uniformly related ma-

chines. Journal of Scheduling, 12(5):517–527, 2009.

[17] T. Ebenlendr and J. Sgall. Semi-online preemptive scheduling: One algorithm for all variants.

Theory of Computing Systems, 48(3):577–613, 2011.

[18] L. Epstein. Optimal preemptive on-line scheduling on uniform processors with non-decreasing

speed ratios. Operations Research Letters, 29(2):93–98, 2001.

[19] L. Epstein. Bin stretching revisited. Acta Informatica, 39(2):97–117, 2003.

[20] L. Epstein and L. M. Favrholdt. Optimal preemptive semi-online scheduling to minimize makespan

on two related machines. Operetions Research Letters, 30(4):269–275, 2002.

[21] L. Epstein and L. M. Favrholdt. Optimal non-preemptive semi-online scheduling on two related

machines. Journal of Algorithms, 57(1):49–73, 2005.

[22] L. Epstein and A. Levin. Robust algorithms for preemptive scheduling. Algorithmica, 69(1):26–57,

2014.

22

[23] L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized online scheduling on

two uniform machines. Journal of Scheduling, 4(2):71–92, 2001.

[24] U. Faigle, W. Kern, and Gy. Turán. On the performance of online algorithms for partition problems.

Acta Cybernetica, 9(2):107–119, 1989.

[25] S. P. Fekete, J. Grosse-Holz, P. Keldenich, and A. Schmidt. Parallel online algorithms for the

bin packing problem. In Proc. of the 17th Workshop on Approximation and Online Algorithms

(WAOA’19), pages 106–119, 2019.

[26] R. Fleischer and M. Wahl. Online scheduling revisited. Journal of Scheduling, 3(6):343–353,

2000.

[27] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal,

45(9):1563–1581, 1966.

[28] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathemat-

ics, 17(2):416–429, 1969.

[29] Ł. Jeż, J. Schwartz, J. Sgall, and J. Békési. Lower bounds for online makespan minimization on a

small number of related machines. Journal of Scheduling, 16(5):539–547, 2013.

[30] H. Kellerer and V. Kotov. An efficient algorithm for bin stretching. Operations Research Letters,

41(4):343–346, 2013.

[31] H. Kellerer, V. Kotov, and M. Gabay. An efficient algorithm for semi-online multiprocessor

scheduling with given total processing time. Journal of Scheduling, 18(6):623–630, 2015.

[32] H. Kellerer, V. Kotov, M. G. Speranza, and Zs. Tuza. Semi on-line algorithms for the partition

problem. Operations Research Letters, 21(5):235–242, 1997.

[33] A. Kovács. New approximation bounds for LPT scheduling. Algorithmica, 57(2):413–433, 2010.

[34] A. Levin. Robust algorithms for preemptive scheduling on uniform machines of non-increasing

job sizes. Information Processing Letters, 174:Article 106211, 2022.

[35] R. McNaughton. Scheduling with deadlines and loss functions. Management Science, 6(1):1–12,

1959.

[36] M. P. Renault, A. Rosén, and R. van Stee. Online algorithms with advice for bin packing and

scheduling problems. Theoretical Computer Science, 600:155–170, 2015.

[37] J. F. Rudin III and R. Chandrasekaran. Improved bounds for the online scheduling problem. SIAM

Journal on Computing, 32(3):717–735, 2003.

[38] P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded migration. Mathemat-

ics of Operations Research, 34(2):481–498, 2009.

[39] S. S. Seiden, J. Sgall, and G. J. Woeginger. Semi-online scheduling with decreasing job sizes.

Operations Research Letters, 27(5):215–221, 2000.

[40] J. Sgall. A lower bound for randomized on-line multiprocessor scheduling. Information Processing

Letters, 63(1):51–55, 1997.

23

	1 Introduction
	2 Constant numbers of solutions
	3 Two identical machines
	4 Two identical machines, decreasing sizes
	5 Conclusion

