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Abstract

Stochastic optimization algorithms using expo-
nential moving averages of the past gradients,
such as ADAM, RMSProp and AdaGrad, have
been having great successes in many applica-
tions, especially in training deep neural networks.
ADAM in particular stands out as efficient and
robust. Despite of its outstanding performance,
ADAM has been proved to be divergent for
some specific problems. We revisit the divergent
question and provide divergent examples under
stronger conditions such as in expectation or high
probability. Under a variance reduction assump-
tion, we show that an ADAM-type algorithm con-
verges, which means that it is the variance of
gradients that causes the divergence of original
ADAM. To this end, we propose a variance re-
duced version of ADAM and provide a convergent
analysis of the algorithm. Numerical experiments
show that the proposed algorithm has as good per-
formance as ADAM. Our work suggests a new
direction for fixing the convergence issues.

1 Introduction

Stochastic optimization based on mini-batch is a com-
mon training procedure in machine learning. Suppose we
have finitely many differentiable objectives {fn(w)}Nn=1

defined on Rd with N being the size of the training set.
In each iteration, a random index set Bt is selected from
{1, . . . , N} and the update is made based on the mini-batch
loss FBt(w) = 1

b

∑
n∈Bt

fn(w), where b = |Bt| is the
batch size. The goal is to minimize the empirical risk
minw∈Rd F (w) := 1

N

∑N
n=1 fn(w).

First order methods, which make updates based on the infor-
mation of the gradient of mini-batch loss functions, prevail
in practice, [Goodfellow et al., 2016]. A simple method is
stochastic gradient descent (SGD), where the model pa-
rameters are updated at the negative direction of the mini-
batch loss gradient in each iteration. Although SGD is
straightforward and is proved to be convergent, the steps
of SGD near the minima are very noisy and take longer to

converge. Several adaptive variants of SGD, such as Ada-
Grad [Duchi et al., 2011], RMSProp [Hinton et al., 2012]
and ADAM [Kingma and Ba, 2015], are proved to converge
faster than SGD in practice. These methods take the histori-
cal gradients into account. Specifically, instead of using a
predefined learning rate schema, they adjust the step size
automatically based on the information from the past mini-
batch losses. AdaGrad is the earliest algorithm in the adap-
tive method family and performs better than SGD when gra-
dients are sparse. Although AdaGrad has great theoretical
properties for convex loss, it does not work well practically
in training. RMSProp replaces the sum of square scaling
in AdaGrad with exponential moving average and fixes the
rapid decay of the learning rate in AdaGrad. ADAM-type
algorithms combine the exponential moving average of both
first and second order moments. The original ADAM enjoys
the advantages of AdaGrad in sparse problems and RM-
SProp in non-stationary problems and became one of the
most popular optimization methods in practice.

Yet, ADAM may fail to solve some problems. Reddi et al.
[Reddi et al., 2018] found a flaw in the proof of convergence
in [Kingma and Ba, 2015] and proposed a divergent exam-
ple for online ADAM. Based on the divergent example, they
pointed out that when some large, informative but rare gra-
dients occur, the exponential moving average would make
them decay quickly and hence would lead to the failure of
convergence. To this end, Reddi et al. proposed two variants
of ADAM to fix this problem. The first proposal, known
as AMSGrad, suggests taking the historical maximum of
the ADAM state vt in order to obtain ‘long-term memories’
and prevent the large and informative gradients from being
forgotten. Although this helps keeping the information of
large gradients, it hurts the adaptability of ADAM. If the
algorithm is exposed to a large gradient at early iterations,
the vt parameter will stay constant, hence the algorithm will
not automatically adapt the step size, and it will degenerate
to a momentum method. Another intuitive criticism is that
keeping vt increasing is against what one expects, since
if the algorithm converges, the norm of gradients should
decrease and vt+1 − vt = (1− β2)(g2t − vt) is more likely
to be negative, where gt is the stochastic gradient in step t
and β2 is a hyper parameter.

Several other proposals tried to fix the divergent problem of
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ADAM. The second variant proposed in [Reddi et al., 2018],
called ADAMNC, requires the second order moment hyper-
parameter β2 to increase and to satisfy several conditions.
However the conditions are hard to check. Although they
claim that β2,t = 1 − 1/t satisfies the conditions, this
case is actually AdaGrad, which is already well-known
for its convergence. Zhou et al. [Zhou et al., 2019] an-
alyzed the divergent example in [Reddi et al., 2018], and
pointed out that the correlation of vt and gt causes di-
vergence of ADAM, and proposed a decorrelated variant
of ADAM. The theoretical analysis in [Zhou et al., 2019]
is based on complex assumptions and they do not pro-
vide a convergence analysis of their algorithm. Sev-
eral other works, such as [Guo et al., 2021, Shi et al., 2020,
Wang et al., 2019, Zou et al., 2019] suggested properly tun-
ing the hyper-parameters of ADAM-type algorithms had
helped with convergence in practice.

It is empirically well-known that larger batch size reduces
the variance of the loss of a stochastic optimization algo-
rithm. [Qian and Klabjan, 2020] gave a theoretical proof
that the variance of the stochastic gradient is proportional
to 1/b. Although several works connected the convergence
of ADAM with the mini-batch size, the direct connection
between convergence and variance is wanted. For the full-
batch case (i.e., where there is no variance), [De et al., 2018]
showed that ADAM converges under some specific schedul-
ing of learning rates. [Shi et al., 2020] showed the con-
vergence of full gradient ADAM and RMSProp with the
learning rate schedule αt = α/

√
t and constants β1 and

β2 satisifying β1 <
√
β2. For the stochastic setting with a

fixed batch size, Zaheer et al. [Zaheer et al., 2018] proved
that the expected norm of the gradient can be bounded into a
neighborhood of 0, whose size is proportional to 1/b. They
suggested to increase the batch size with the number of itera-
tions in order to establish convergence. One question is that
whether there exists a threshold of batch size b∗ < N , such
that any batch size larger than b∗ guarantees convergence.
We show that even when b = N − 1, there still exist diver-
gent examples of ADAM. This means that although large
batch size helps tighten the optimality gap, the convergence
issue is not solved as long as the variance exists. Another
possible convergent result is to analyze the convergence in
expectation or high probability under a stochastic starting
point. However our divergent result holds for any initial
point, which rules out this possibility.

Without relying on the mini-batch size, we make a direct
analysis of variance and the convergence of ADAM. We
first show a motivating result which points out that the con-
vergence of an ADAM-type algorithm can be implied by
reducing the variance. Motivated by this, we propose a
variance reduced version of ADAM, called VRADAM, and
show that VRADAM converges. We provide two options
regarding to resetting of ADAM states during the full gra-
dient steps, and recommend the resetting option based on a

theoretical analysis herein and computational experiments.
Finally, we conduct several computational experiments, and
show that our algorithm performs as well as the original
version of ADAM.

In Section 3, we show a divergent example. Using con-
tradiction by assuming the algorithm converges, we show
that the expected update of iterates is larger than a positive
constant, which means that it is impossible for the algorithm
to converge to an optimal solution, which contradicts with
the assumption. In Section 5, we prove the convergence of
VRADAM. The main proof technique applied is to properly
bound the difference between the estimated gradients and
the true value of gradients. By bounding the update of the
objective function in each iterate, we can further employ the
strong convexity assumption and conclude convergence.

Our contributions are as follows.

1. We provide an unconstrained and strongly convex
stochastic optimization problem on which the origi-
nal ADAM diverges. We show that the divergence
holds for any initial point, which rules out all of the
possible weaker convergent results under stochastic
starting point.

2. We construct a divergent mini-batch problem with
b = N − 1, and conclude that there does not exist
a convergent threshold for the mini-batch size.

3. We propose a variance reduced version of ADAM. We
provide convergence results of the variance reduced
version for strongly convex objectives to optimality or
non-convex objectives. We show by experiments that
the variance reduction does not harm the numerical
performance of ADAM.

In Section 2, we review the literature on the topics of the
convergence/divergence issue of ADAM and variance re-
duction optimization methods. In Section 3 we provide
divergent examples for stochastic ADAM. We show that the
example is divergent for large batch sizes, which disproves
the existence of a convergence threshold of mini-batch size.
In Section 4 we start from a reducing variance condition and
prove the convergence of an ADAM-type algorithm under
this condition. In Section 5 we propose a variance reduced
version of ADAM. We show that resetting the states in the
algorithm helps with the performance. We also provide a
convergence result of our variance reduced ADAM. In Sec-
tion 6 we conduct several numerical experiments and show
the convergence and sensitivity of the proposed algorithm.

2 Literature Review

Convergence of ADAM: Reddi et al. [Reddi et al., 2018]
firstly pointed out the convergence issue of ADAM and
proposed two convergent variants: (a) AMSGrad takes the
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historical maximum value of vt to keep the step size de-
creasing and (b) ADAMNC requires the hyper-parameters
to satisfy specific conditions. Both of the approaches re-
quire that β1 varies with time, which is inconsistent with
practice. Fang and Klabjan [Fang and Klabjan, 2019] gave
a convergence proof for AMSGrad with constant β1 and
[Alacaoglu et al., 2020] provided a tighter bound. Enlarg-
ing the mini-batch size is another direction. [De et al., 2018]
and [Shi et al., 2020] proved the convergence of ADAM
for full batch gradients and [Zaheer et al., 2018] showed
the convergence of ADAM as long as the batch size is
of the same order as the maximum number of iterations,
but one criticism is that such a setting for the batch size
is very inefficient in practice since the calculation of a
large batch gradient is expensive. Several works, such as
[Guo et al., 2021, Zou et al., 2019, Wang et al., 2019] pro-
posed guidelines on setting hyper-parameters in order to
obtain convergent results. [Guo et al., 2021] showed that as
long as β1 is close enough to 1, in particular, 1 − β1,t ∝
1/
√
t, ADAM establishes a convergent rate of O(1/

√
T ).

However, since [Reddi et al., 2018] proposed the divergent
example for any fixed β1 and β2 such that β1 <

√
β2,

there is no hope to extend the results of [Guo et al., 2021] to
constant momentum parameters. [Zou et al., 2019] also pro-
vided a series of conditions under which ADAM could con-
verge. Specifically, they require the quantity αt/

√
1− β2,t

to be ‘almost’ non-increasing. [Wang et al., 2019] proposed
to set the denominator hyper-parameter ε to be 1/t, and
showed the convergence of ADAM for strongly convex ob-
jectives. The aforementioned works focus on setting the
hyper-parameters in ADAM. On contrary, our work pro-
poses a new algorithm that only requires basic and com-
mon conditions. We show a O(T−p) convergence rate for
0 < p < 1 where p is dependent on hyper-parameters.

Variance reduction: The computational efficiency issues
of full gradient descent methods get more severe with a
large data size, but employing stochastic gradient descent
may cause divergence because of the issue of variance. One
classic method for variance reduction is to use mini-batch
losses with a larger batch size, which however does not
guarantee the variance to converge to zero. As an estima-
tion of the full gradient, the stochastic average gradient
(SAG) method [Le Roux et al., 2012] uses an average of
∇fi(xki), where ki is the most recent step index when sam-
ple i is picked. Although the convergence analysis of SAG
provided in [Schmidt et al., 2017] showed its remarkable
linear convergence, the estimator of the descent direction
is biased and the analysis of SAG is complicated. SAGA
[Defazio et al., 2014], an unbiased variant to SAG intro-
duced a concept called ‘covariates’ and guarantees linear
convergence as well. Both SAG and SAGA require the mem-
ory ofO(Nd), which is expensive when the data set is large.
SVRG [Johnson and Zhang, 2013] constructs two layers of
iterations and calculates the full gradient as an auxiliary
vector for variance reduction before starting each inner loop.

It only requires a memory of O(d). Most of the literature
on variance reduction focus on the convergence rate and
memory requirement on the plain SGD algorithm. Recently,
[Dubois-Taine et al., 2021] combined AdaGrad with SVRG
for robustness in the learning rate. Our work introduces the
idea of variance reduction to the convergence analysis of
ADAM. It initiates the idea of the dynamic learning rate to
SVRG.

3 Divergent examples for stochastic ADAM
with large batch size

Several recent works [Shi et al., 2020, Zaheer et al., 2018,
De et al., 2018] have suggested increasing the mini-batch
size may help with convergence of ADAM. In particular,
vanilla ADAM is convergent if the mini-batch size b is equal
to the size of the training set, or it increases in the same
order as training iterates. An interesting question is whether
there exists a threshold of the batch size b∗ = b(N), which
is smaller than N , such that b > b∗ implies convergence of
ADAM. If such a threshold exists, the convergence can be
guaranteed by a sufficiently large, but neither increasing nor
as large as the training set size, batch size. Unfortunately,
such a threshold does not exist. In fact, we show in this
section that as long as the algorithm is not full batch, one
can find a divergent example of ADAM.

Another aspect of interest is if ADAM converges on aver-
age or with high probability. Our example establishes non-
convergence for any initial data point (even starting with an
optimal one). We conclude that a probabilistic statement is
impossible if stochasticity comes from either sampling or
the initial point.

Reddi et al. firstly proposed a divergent example for ADAM
in [Reddi et al., 2018]. The example, which is under the
population loss minimization framework, consists of two
linear functions defined on a finite interval. One drawback of
this example is that the optimization problem is constrained,
yet training in machine learning is usually an unconstrained
problem. Under the unconstrained framework, the example
proposed in [Reddi et al., 2018] does not have a minimum
solution, hence it does not satisfy the basic requirements.
We firstly propose an unconstrained problem under the pop-
ulation loss minimization framework.

Let a random variable ξ take discrete value from the set
{1, 2}, and set P(ξ = 1) = 1+δ

1+δ4 for some δ > 1. Further-
more, we define the estimation of gradients by

G(w; 1) =
w

δ
+ δ4 and G(w; 2) =

w

δ
− 1,

which implies the stochastic optimization problem with the
loss functions

f1(w) =
w2

2δ
+ δ4w and f2(w) =

w2

2δ
− w
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with the corresponded probability distribution with respect
to ξ. The population loss is given as F (w) = Eξ [fξ(w)].
We call this stochastic optimization problem the Original
Problem(δ), or OP(δ) for short. We should note that OP(δ)
is defined on R, thus it is unconstrained. In addition, it is a
strongly convex problem. As a divergent property of OP(δ),
we show the following result.

Theorem 1 There exists a δ∗ > 2 such that for any δ > δ∗

and any initial point w1, ADAM diverges in expectation on
OP(δ), i.e., E[F (wt)] 6→ F ∗ where F ∗ is the optimal value
of F (w).

The proof of Theorem1 is given in the appendix, where we
show that for large enough δ, the expectation of the ADAM
update between two consequential iterates is always positive.
As a consequence, the iterates keep drifting from the optimal
solution. The divergent example also tells us that strong
convexity and the relaxation of constraints cannot help with
the convergence of ADAM.

Based on the construction of OP(δ), we can give the diver-
gent examples for any fixed mini-batch size.

Theorem 2 For any fixed b, there exists an N∗b , such that
for any N > N∗b , there exists a mini-batch problem with
sample size N and batch size b where ADAM diverges for
any initial point.

Even if the batch size is unreasonably large, say b = N − 1,
we can still construct the divergent example based on OP(δ)
as stated next.

Theorem 3 There exists an N∗ such that for any N > N∗,
there exists a mini-batch problem with sample size N and
batch size b = N − 1 where ADAM diverges for any initial
point.

In conclusion, Theorem 2 and Theorem 3 extinguish the
hope of finding a large enough batch size for stochastic
ADAM to converge. Among the related works regarding
the convergence of ADAM and batch size, larger batch size
is always suggested, but the results in this section have
enlightened the limitations of such approaches.

4 Motivation

In this section, we stick with the general ADAM algorithm
described in Algorithm 1. To analyze, we make several
assumptions on the gradient estimator and objective.

Assumption 1 The gradient estimator G : Rd × Ω → Rd
and objective F : Rd → R satisfy the following:

1. G is unbiased, i.e., for any w ∈ Rd, Eξ [G(w; ξ)] =
∇F (w).

Algorithm 1 General ADAM

Require: Gradient estimation G(·; ·), seed generation rule
Pξ , initial pointw1, mini-batch size b, learning rate αt, ex-
ponential decay rates β1, β2 ∈ [0, 1), denominator hyper-
parameter ε > 0.
m0 ← 0, v0 ← 0
for t ∈ 1, . . . T do

Sample ξt ∼ Pξ
gt ← G(wt; ξt)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)gt � gt
Vt ← diag(vt) + εId
wt+1 ← wt − αtV −1/2t mt

end for

2. There exists a constant 0 < L < +∞, such that
for any ξ ∈ Ω and w, w̄ ∈ Rd, we have ‖G(w; ξ) −
G(w̄; ξ)‖2 ≤ L‖w−w̄‖2 and ‖∇F (w)−∇F (w̄)‖2 ≤
L‖w − w̄‖2.

3. There exists a constant 0 < G < +∞, such that for
any ξ ∈ Ω and w ∈ Rd, we have ‖G(w; ξ)‖2 ≤ G and
‖F (w)‖2 ≤ G.

As this point convexity is not needed. We mainly focus on
the variance of the gradient estimator. The common assump-
tions in the literature are that the variance is bounded by
a constant, [Zaheer et al., 2018], or a linear function of the
square of the norm of the objective Var(Gi(w; ξ)) ≤ C1 +
C2‖∇F (w)‖22, [Bottou et al., 2018]. Another assumption
made in [Shi et al., 2020, Vaswani et al., 2019] is called the
‘strongly growth condition’ which is

∑N
n=1 ‖∇fn(w)‖22 ≤

C‖∇F (w)‖22 for some C > 0. Note that for vanilla ADAM
where G(w; ξ) = ∇FB(w) the strongly growth condition
implies that ∇FB(w∗) = 0 if and only if ∇F (w∗) = 0.
As a result the strongly growth condition implies that
Var(G(w; ξ)) ≤ 2LE[‖w − w∗‖22], given Lipshitz smooth
gradients for full-batch and mini-batch losses. For those
iterates close to a saddle point, the variance is automati-
cally reduced, because ‖w − w∗‖22 is small. However, the
strongly growth condition is so strong that the majority of
practical problems do not satisfy it. In fact, one observation
of OP(δ) is that the variance is a constant, which also breaks
the strongly growth condition.

In this section, as a motivative result, let us assume the
variance of the gradient estimator is reduced a priori. Let us
denote a series of positive constants {λt}Tt=1 such that for
any t = 1, . . . , T , we have Var(G(wt; ξt)) ≤ λt. For the
objective with a finite lower bound, we have the following
result.

Theorem 4 Let Assumption 1 be satisfied, and assume that
F (w) is lower bounded by Finf > −∞. Then for any initial
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point w1, ADAM satisfies

min
1≤t≤T

E
[
‖∇F (wt)‖22

]
≤ O

(∑T
t=1 α

2
t∑T

t=1 αt
+

∑T
t=1 αtλt∑T
t=1 αt

)
.

The proof is in the appendix. Let us assume that the two
common conditions

∑∞
t=1 αt = ∞ and

∑∞
t=1 α

2
t < ∞

are satisfied. Theorem 4 shows that ADAM converges if∑∞
t=1 αtλt < +∞. In fact, λt → 0 as t→∞ implies that∑T
t=1 αtλt/

∑T
t=1 αt → 0, and hence it leads to conver-

gence of the algorithm.

We emphasize that since the assumption on variance is made
on the algorithmic iterates {wt}Tt=1, it is very difficult to be
checked for a specific problem in advance. However, we
showed that if the variance is convergent, an ADAM-type
algorithm converges. We show next that the algorithm we
propose has convergent variance and furthermore is conver-
gent.

5 Variance Reduced ADAM

Algorithm 2 Variance Reduced ADAM

Require: Loss functions {fn(w)}Nn=1, initial point w̃1,
learning rate αt, exponential decay rates β1, β2 ∈ [0, 1),
denominator hyper-parameter ε > 0, inner iteration size
m. Initialize m(0)

m ← 0, v(0)m ← 0.
for t = 1, . . . , T do

Compute full-batch gradient∇F (w̃t)

w
(t)
1 ← w̃t

Option A: (Resetting) m(t)
0 ← 0, v(t)0 ← 0

Option B: (No Resetting) m(t)
0 ← m

(t−1)
m and

v
(t)
0 ← vt−1m

for k = 1, . . . ,m do
Sample B(t)k from {1, . . . , N} with

∣∣∣B(t)k ∣∣∣ = b.

g
(t)
k ← ∇FB

(t)
k

(
w

(t)
k

)
−∇FB

(t)
k (w̃t)+∇F (w̃t)

m
(t)
k ← β1m

(t)
k−1 + (1− β1)g

(t)
k

v
(t)
k ← β2v

(t)
k−1 + (1− β2)g

(t)
k � g

(t)
k

Option A: m̃(t)
k ←

m
(t)
k

1−βk
1

, ṽ(t)k ←
v
(t)
k

1−βk
2

Option B: m̃
(t)
k ← m

(t)
k

1−βk+(t−1)m
1

, ṽ
(t)
k ←

v
(t)
k

1−βk+(t−1)m
2

V
(t)
k ← diag

(
ṽ
(t)
k + ε

)
w

(t)
k+1 ← w

(t)
k − αt

(
V

(t)
k

)−1/2
m̃

(t)
k

end for
w̃t+1 ← w

(t)
m+1

end for

Variance reduction for random variables is a common topic
in many fields. In general, an unbiased variance reduction

of a random variable X is X̃ = X − Y + EY , which
establishes the variance Var(X̃) = Var(X) + Var(Y ) −
2Cov(X,Y ) < Var(X) given Cov(X,Y ) > Var(Y )/2,
i.e., X and Y are positively correlated at a sufficient
level. In the context of stochastic gradient descent, the
random variable for variance reduction is G(wt; ξt), the gra-
dient of mini-batch loss ∇FBt(wt). Johnson and Zhang
[Johnson and Zhang, 2013] proposed a solution for SGD.
They suggested the associate random variable to be the
gradient of the same mini-batch loss at a previous iter-
ate w̃. Since the expectation of a mini-batch gradient
is the full-batch gradient, the descent direction becomes
gt = ∇FBt(wt)−∇FBt(w̃)+∇F (w̃). Vector w̃ is known
as the snapshot model. Since calculation of the full batch
gradient at w̃ is required, [Johnson and Zhang, 2013] pro-
posed to save the snapshot model every m iterations, which
is known as the SVRG algorithm. Inspired by SVRG and
motivated by the result in Section 4, we propose the com-
bination of the variance reduce method and ADAM, called
VRADAM (Algorithm 2).

An intuitive analysis of variance of the update direction

Var
(
g
(t)
k,i

)
= Var

(
∇iFB

(t)
k

(
w

(t)
k

)
−∇iFB

(t)
k (w̃t)

)
≤ E

[(
∇iFB

(t)
k

(
w

(t)
k

)
−∇iFB

(t)
k (w̃t)

)2]
≤ L2E

[∥∥∥w(t)
k − w̃t

∥∥∥2
2

]
.

is that as the iterates become close to the optimal point, the
variance is reduced simultaneously, which guarantees a sim-
ilar condition of variance as the strongly growth condition.

5.1 Resetting/No resetting options

We provide two options with regard to the update of ADAM
states. In one option, we reinitialize the ADAM states at
the beginning of each outer iteration, while the other option
keeps the state through the whole training process. Although
for the original ADAM, resetting the states harms the perfor-
mance of the algorithm, we computationally found that the
resetting option works better in VRADAM. Intuitively, this
is because in each inner loop, the first step g(t)1 is always
the full gradient direction, which makes a more efficient
update than the direction adapted by previous ADAM states.
In order to support our argument, we provide a theoretical
analysis of an example. If we fix the initial point w1 ∈ R
and the mini-batch losses FB

(1)
1 , FB

(1)
2 , . . . , FB

(1)
m , the iter-

ates are identical between the two options through the t = 1
iteration. We consider the objective values after the first
update in the second outer iteration, i.e. F

(
w

(2)
2

)
. At the

end of t = 1 iteration, we obtain w(1)
m+1 = w

(2)
1 = w̃2 and

the ADAM states m(1)
m+1 and v(1)m+1. Then while t = 2, the
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algorithm makes the first update as follows.

Option A:

m
(2)
1 = (1− β1)g

(2)
1

m̃
(2)
1 = g

(2)
1

v
(2)
1 = (1− β2)

(
g
(2)
1

)2
ṽ
(2)
1 =

(
g
(2)
1

)2
w

(2)
2 = w

(2)
1 − α2

m̃
(2)
1√

ṽ
(2)
1 + ε

Option B:

m̂
(2)
1 = β1m

(1)
m+1 + (1− β1)g

(2)
1

ˆ̃m
(2)

1 = m̂
(2)
1 /(1− βm+1

1 )

v̂
(2)
1 = β2v

(1)
m+1 + (1− β2)

(
g
(2)
1

)2
ˆ̃v
(2)

1 = v̂
(2)
1 /(1− βm+1

2 )

ŵ
(2)
2 = w

(2)
1 − α2

ˆ̃m
(2)

1√
ˆ̃v
(2)

1 + ε

We make the following assumptions.

Assumption 2 The framework described in this section sat-
isfies:

1. F (w) is c−strongly convex, and its gradient is L −
smooth. Each one of

∣∣∣g(1)1

∣∣∣ , . . . , ∣∣∣g(1)m ∣∣∣ and
∣∣∣g(2)1

∣∣∣ is
bounded above by G > 0.

2. The algorithm makes progress in the t = 1 iteration,
specifically,

∣∣∣m(1)
m+1

∣∣∣ ≥ ∣∣∣F ′ (w(2)
1

)∣∣∣.
3. The hyper-parameters satisfy

Lα2 ≥ 2
√
G2 + ε and

L

c
≤ 2β1 − 1

1− βm+1
1

√
ε

G2 + ε
.

Notice that the second assumption assumes that the expo-
nential moving average of the steps in the first loop is larger
than the full gradient at the beginning of the second loop,
which reflects that the algorithm makes progress in the first
iteration. The third assumption can be satisfied by β1 that
is close enough to 1 and appropriately selected α2. Our
concern is to compare the objective values F

(
w

(2)
2

)
and

F
(
ŵ

(2)
2

)
of the two options. The following theorem shows

that option A, i.e., the option where the states of ADAM are
reset at the beginning of each outer iteration, makes more
efficient descent, hence works better.

Theorem 5 Given Assumption 2, we have F
(
ŵ

(2)
2

)
≥

F
(
w

(2)
2

)
.

While Theorem 5 allows the preference of option A within
the two outer iterations, the computational experiments con-
firm this choice in general.

5.2 Convergence results for VRADAM with resetting

In the previous section we show the advantage of resetting
of the ADAM states every outer iteration over not doing

so by comparing the values of the objectives in the two
options. In this section, we provide a convergence proof of
the resetting option of VRADAM. Similar to Assumption 1
we make under the general ADAM framework, we make the
following specific assumptions for the convergence proof of
VRADAM.

Assumption 3 The loss functions f1(w), . . . , fN (w) sat-
isfy the following conditions.

1. There exists a constant 0 < L < +∞, such that for any
n = 1, . . . , N and w, w̄ ∈ Rd, we have ‖∇fn(w) −
∇fn(w̄)‖2 ≤ L‖w − w̄‖2.

2. There exists a constant 0 < G < +∞, such that
for any n = 1, . . . , N and w ∈ Rd, we have
‖∇fn(w)‖2 ≤ G.

We show the convergence result of VRADAM for strongly
convex functions first.

Theorem 6 Let Assumption 3 be satisfied and assume that
F (w) is strongly convex with parameter c, and let F ∗ be
the unique minimum of F . Let αt = α/t and we require
C2 = 2c(1−β1)/

√
9G2 + ε < 1/αm. Then for any initial

point w1, Algorithm 2 with Option A satisfies F (w̃T ) −
F ∗ ≤ O

(
T−C2mα

)
almost surely.

We remark that the requirement C2mα < 1 can be satisfied
by properly selected α and β1. Specifically, when β1 is
close to 1 and α is small, the assumption is more likely to
be satisfied. The proof starts by bounding the update of
the objective function in one iterate and then applies strong
convexity.

As for objectives that are not necessarily convex, we exhibit
the following result.

Theorem 7 Let Assumption 3 be satisfied and assume
that F (w) is lower bounded by Finf > −∞. We re-
quire

∑∞
t=1 α

2
t < +∞ and

∑∞
t=1 αt = +∞. Then for

any initial point w1, Algorithm 2 with Option A satisfies
lim inft→∞ ‖∇F (w̃t)‖2 = 0 almost surely.

Under the general objective setting, as a corollary of Theo-
rem 7, we can bound the variance of the norm of the gradi-
ent.

Corollary 1 Given the same conditions as in Theorem 7 ,
we have lim inft→∞Var (‖∇F (w̃t)‖2) = 0.

The proof of the corollary simply comes from

lim inf
t→∞

Var(‖∇F (w̃t)‖2) ≤ lim inf
t→∞

E(‖∇F (w̃t)‖22)

where the right hand side is 0 because almost sure conver-
gence implies L2 convergence.
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Figure 1: The numerical experiments of OP(δ)

6 Numerical Experiments

6.1 Divergent example

In Section 3, we provide an unconstrained stochastic opti-
mization problem where ADAM diverges for any initial
point. The goal of this section is to numerically show
that ADAM diverges on this problem. Since the construc-
tion of the mini-batch problem can be equivalently trans-
formed into a stochastic optimization problem with popu-
lation loss, we stick to the experiments of OP(δ) defined in
Section 3. Letting δ = 10, the optimal solution of OP(δ)
is w∗ = −δ2 = −100. We consider two cases: when the
algorithms start from the optimal solution , i.e., w0 = −100
and when they start from somewhere far from the optimal
solution, in the experiments we set w0 = −80. We simulate
1,000 trials for each case and plot the expected L2 error
E[(wt − w∗)2] of w. We notice from Figure1 that even
starting from the optimal point, ADAM still diverges, while
VRADAM converges well. When w0 = −80, VRADAM
eventually converges to the optimal solution while ADAM
diverges. This result rules out all of the possible temptations
of solving the divergence problem of ADAM by using a
stochastic initial point.

6.2 Experiments on machine learning problems

6.2.1 Datasets and implementation

In this section, we compare the numerical performances of
VRADAM and ADAM on several real-world classification
tasks. The experiments are conducted on the following data
sets.

• Coverage Type [Blackard et al., 1998]: A dataset pre-
dicting forest cover type from 54 cartographic variables.
The dataset contains 581,012 data points and assigns
them into 7 different categories.

• MNIST [Deng, 2012]: A handwritten digit dataset
containing 60,000 grey level images with size 28×28
pixels.

• NSL-KDD [Tavallaee et al., 2009]: A selected subset
of the KDD CUP 99 dataset, which is a public dataset
used to train a network intrusion detection system. The
subset eliminates repeated data samples and avoids
several shortcomings in the original dataset.

• Embedded CIFAR-10: CIFAR-10
[Krizhevsky and Hinton, 2009] consists of 60,000
color images in 10 classes. We feed each sample to a
pretrained ResNet model [He et al., 2016] and obtain
a 1,000 dimensional embedding vector for each image.

We use logistic regression on the four previously mentioned
data sets and non-convex deep neural networks on MNIST
and Coverage Type datasets. The structures of the deep
neural networks used in this section are explained in the
appendix. Cross entropy is the underlying loss. While
training these models, we fix the batch size |Bt| = 64
and the ADAM hyper-parameters β1 = 0.9, β2 = 0.999,
which are commonly recommended values in the liter-
ature and fine tune the learning rate schedules among
αt = α0, αt = α0/t and αt = α0γ

t, i.e., the constant
learning rate, inverse-proportional learning rate and the
exponentially decaying learning rate. We perform a grid
search among α0 ∈ {0.0005, 0.001, 0.005, 0.01, 0.05} and
γ ∈ {0.6, 0.8, 0.95}.

In order to eliminate luck from randomness, we ran each
experiment setting with 3 different random seeds. We re-
port the average loss of each experiment. We train each
setting for 15 epochs for VRADAM and 50 epochs for
ADAM. While comparing the performances, we display the
loss functions up to convergence. The experiments were
conducted in PyTorch 1.12.1 on the Google Colab cloud
service.

6.2.2 Main results

As for VRADAM, the number of inner loop iterations m in
Algorithm 2 is also a hyper parameter to decide. If m is too
large, the variance reduce procedure does not make a real dif-
ference, while an improperly small m would lead to a very
frequent computation of the full gradients, which is compu-
tationally expensive. We recommend that the length of the
inner loop should be about the size of an epoch. In other
word, m ≈ N/b, whereN is the number of samples and b is
the mini-batch size. In our experiments, we test the perfor-
mance of VRADAM with m ∈ {N/2b,N/b, 2N/b, 4N/b}.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Top: Relative differences of loss function of VRADAM over ADAM on classification tasks of (a) CovType dataset
with a feedforward network and (b) CovType with logistic regression (c) MNIST with logistic regression (d) NSL-KDD
with logistic regression. Bottom left: Relative differences of loss function of VRADAM without reset over VRADAM with
reset on classification tasks of CovType dataset with (e) a feedforward network and (f) logistic regression. Bottom right:
Deviation of loss. The shaded areas mark the maximal and minimal losses among the three seeds.

It is unfair to compare the convergence of the training
loss with regard to the number of epochs, since the time
VRADAM spends on training one epoch is longer than
ADAM. Instead, we compare the convergence rate with
regard to the computational time.

Figures 2a, 2b, 2c and 2d show the relative difference of
the loss of VRADAM with regard to ADAM. It shows that
our approach of variance reduction has as good convergence
rate as ADAM. Although VRADAM converges slower than
ADAM in a few starting iterations, due to the first full gradi-
ent computation, the variance reduction approach can catch
up and reach a similar convergence rate as ADAM. Specif-
ically, we observe that VRADAM works better on large
datasets, such as CovType and NSL-KDD. We also find that
VRADAM works better on convex problems by comparing
Figures 2a and 2b.

As we mentioned in Section 5, we recommend resetting
the optimizer states every inner loop. Figures 2e and 2f
display the performance of the resetting option in a few
experiments and show that the resetting option helps with
the convergence of VRADAM. Additional experiments are
shown in the appendix.

In conclusion, we observe that VRADAM outperforms
ADAM on large datasets, such as CovType. Such datasets
may contain extreme values, which may harm the conver-
gence of ADAM. We find that the computational cost when
calculating the full gradients can be compensated by the
benefits of quick convergence of VRADAM. We recom-
mend VRADAM over ADAM for tasks with large datasets,
in particular if loss is convex.

6.2.3 Sensitivity

We consider the CovType classification task with the FFN
model as an example to analyze the sensitivity of our al-
gorithm. As we stated previously, our algorithm fixes the
convergence issue of ADAM by reducing the variance. Our
experiments take three different seeds and the deviation of
the results reflects the variance of the algorithm. Figure 2g
shows that VRADAM reduces the noise comparing with
ADAM. We also studied the sensitivity of VRADAM over
the different initial points, which is shown in Figure 2h.

7 Conclusions

We started from an analysis of the divergence of the original
ADAM algorithm and concluded that even strong convex-
ity can not help with the convergence of ADAM. We then
gave a convergence analysis under a high-level variance
reduction assumption, and concluded that an ADAM-type
algorithm converges if its variance is reduced. Inspired by
this motivating result and the idea of SVRG, we proposed a
variance reduced approach which fixes the original conver-
gence issue of ADAM. We finally showed with numerical
experiments that even though our approach requires more
gradient computation than ADAM, VRADAM converges as
quickly as ADAM after several initial iterations. The moti-
vating results we provided can also lead to other variance
reduction approaches, which are possible future research
directions on the convergence issue of ADAM.
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Divergence Results and Convergence of a Variance Reduced Version of ADAM:
Supplementary Materials

A Proofs

A.1 Technical Lemmas

Lemma 1 In a probability space (Ω,F ,P), let there be an F-measurable random variable X(w) and an event A ∈ F
such that P{A} > 0. For a convex function φ(x), we have

E [φ(X)1{A}]
P{A}

≥ φ
(
E [X1{A}]

P{A}

)
.

Proof: Let

x0 =
E [X1{A}]

P{A}
=

1

P{A}

∫
A

X(w)dP(w).

Since φ is convex, there exists a sub-gradient of φ at x0, i.e., there exists an a such that

φ(x) ≥ φ(x0) + a(x− x0)

for any x ∈ R. Then we have

E [φ(X)1{A}]
P{A}

=
1

P{A}

∫
A

φ(X(w))dP(w)

≥ 1

P{A}

∫
A

a(X(w)− x0) + φ(x0)dP(w)

=
a

P{A}

∫
A

X(w)dP(w) +
φ(x0)− ax0

P{A}

∫
A

1dP(w)

= ax0 + φ(x0)− ax0
= φ(x0),

which finishes the proof.

Lemma 2 For any x, y > 0,
(x+ y)3 ≤ 4(x3 + y3).

Proof: For t ≥ 0, let

h(t) :=
(1 + t)3

1 + t3
= 1 + 3

t+ t2

1 + t3
.

The derivative of h(t) reads

h′(t) = 3
(1 + 2t)(1 + t3)− 3t2(t+ t2)

(1 + t3)2
= −3

(t− 1)(t+ 1)3

(t3 + 1)2
.

Apparently h(t) achieves the maximum at t = 1, thus h(x/y) ≤ h(1) = 4, and we have

(x+ y)3

x3 + y3
≤ 4.
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Lemma 3 Given αt = α/t and β1 ∈ [0, 1), there exists a constant C̄ > 0, such that for any t ≥ 2 we have

t−1∑
j=1

αjβ
t−j
1 ≤ C̄αt.

Proof: Letting t∗ =
⌊
t−1
2

⌋
, we have

t−1∑
j=1

αjβ
t−j
1 =

t∗∑
j=1

αjβ
t−j
1 +

t−1∑
j=t∗+1

αjβ
t−j
1

≤ α

t∗∑
j=1

βt−j1 +
α

t∗ + 1

t−1∑
j=t∗+1

βt−j1

≤ αβt−t
∗

1

1− β1
+

α

t∗ + 1

β1
1− β1

≤ αβ
(t+1)/2
1

1− β1
+

2αβ1
(1− β1)

1

t− 1
= O(t−1).

Thus there exists a positive constant C̄ such that for any t ≥ 2,

t−1∑
j=1

αjβ
t−j
1 ≤ C̄αt.

Lemma 4 Consider 0 < A < 1 and T ≥ 2, and let

λT−1 =

T−1∏
t=1

(
1− A

t

)
,

νT−1 =

T−1∑
t=1

1

t2

T−1∏
j=t+1

(
1− A

t

)
.

Then we have

λT−1 ≤ O(T−A)

and

νT−1 ≤ O(T−A).

Proof: Notice that

log λT−1 =

T−1∑
t=1

log

(
1− A

t

)
≤ −A

T−1∑
t=1

1

t
≤ −A log T,

where the first inequality comes from log(1− x) ≤ −x for x ≥ 0 and the second inequality uses the integral approximation

T−1∑
t=1

1

t
≥
T−1∑
t=1

∫ t+1

t

1

s
ds =

∫ T

1

1

s
ds = log T.

Thus λT−1 ≤ T−A. Similarly, we have

log
λT−1
λt

=

T−1∑
k=t+1

log

(
1− A

t

)
≤ −A log

T

t+ 1
,
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and then,

νT−1 ≤
T−1∑
t=1

1

t2

(
T

t+ 1

)−A
≤ T−A

T−1∑
t=1

(t+ 1)A

t2
≤ 2AT−A

T−1∑
t=1

t−2+A.

Again, applying the integral approximation yields

T−1∑
t=1

t−2+A ≤ 1 +

T−1∑
t=2

∫ t

t−1
s−2+A ds = 1 +

∫ T−1

1

s−2+A ds ≤ 1 +
1

1−A
=

2−A
1−A

<∞.

Then we have νT−1 ≤ O(T−A).

A.2 Proof of Theorem 1

Let p = P(ξ = 1). In each step, the update value is

∆t = − αgt√
β2vt−1 + (1− β2)g2t

=

−
α(wt/δ+δ

4)√
β2vt−1+(1−β2)(wt/δ+δ4)2

with probability p

α(1−wt/δ)√
β2vt−1+(1−β2)(1−wt/δ)2

with probability 1− p.

Apparently,

F (w) =
w2

2δ
+ δw,

and
w∗ = −δ2.

We use contradiction to prove the theorem. Assume that E[F (wt)− F (w∗)]→ 0. Notice that

F (wt)− F (w∗) =
1

2δ
(wt − w∗)2,

which means that E[F (wt)−F (w∗)]→ 0 is equivalent to E
[
(wt − w∗)2

]
→ 0. Let us select 0 < ε < 1/2, and we choose

Tε such that t > Tε implies E
[
(wt − w∗)2

]
< ε. The following discussion is based on wt such that t > Tε.

We have

|∆t| =
α|gt|√

β2vt−1 + (1− β2)g2t
≤ α|gt|√

(1− β2)g2t
=

α√
1− β2

, (1)

where the inequality is due to vk being non-negative for any k.

Let Ft be the filtration including all the information obtained until the update of wt, including wt. We define the following
event

E :=
{
|wt − w∗| < δ2

}
which is known given Ft. We have

P{Ec} = P
{
|wt − w∗| ≥ δ2

}
≤

E
[
(wt − w∗)2

]
δ4

<
ε

δ4
.

Given Ec, we simply bound the step size with the lower bound

E [∆t1{Ec}] ≥ −
α√

1− β2
E [1{Ec}] ≥ − ε

δ4
α√

1− β2
.
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For the samples in E, we have

E [∆t1{E}] = E [E [∆t1{E} |Ft ]] = E [E [∆t |Ft ]1{E}]

= E

[
1{E}

{
(1− p) α(1− wt/δ)√

β2vt−1 + (1− β2)(1− wt/δ)2

}]

−E

[{
p

α(wt/δ + δ4)√
β2vt−1 + (1− β2)(wt/δ + δ4)2

}]

≥ E

[
1{E}(1− p) α√

β2vt−1 + (1− β2)(1 + 2δ)2

]
−p α√

1− β2
P{E}. (2)

In the inequality, the first term is bounded because −2δ < wt/δ < 0 by the definition of E and the second term is bounded
by the bound of the step length in (1).

By applying Lemma 1 to (2), we have

E[∆t1{E}] ≥ (1− p)P(E)
α√

β2E[vt−11{E}]/P{E}+ (1− β2)(1 + 2δ)2
− pP(E)

α√
1− β2

.

We next focus on the conditional expectation

E [vt−11{E}] = (1− β2)

t−1∑
k=1

βt−1−k2 E
[
1{E}g2k

]
.

We claim that for any trajectory in E and for any k < t, we have

|wt − wk| =

∣∣∣∣∣∣
t−1∑
j=k

∆j

∣∣∣∣∣∣ ≤
t−1∑
j=k

|∆j | ≤
α(t− k)√

1− β2
.

The last inequality comes from the bound of the step length in (1). Then we have

wt −
α(t− k)√

1− β2
≤ wk ≤ wt +

α(t− k)√
1− β2

.

Let us recall that given E, we have −2δ2 < wk < 0, and hence

−2δ2 − α(t− k)√
1− β2

≤ wk ≤
α(t− k)√

1− β2
. (3)

Then for each k = 1, . . . , t− 1, we obtain

E
[
g2k1{E}

]
= E

[
E[g2k1{E} |Fk ]

]
≤ E

[(
E
[
g
2(1+µ)
k |Fk

])1/(1+µ)
(E [1{E}])µ/(1+µ)

]
≤ E

[(
E
[
g
2(1+µ)
k |Fk

])1/(1+µ)]
where the inequality holds for any µ according to the Holder inequality. Let 0 < µ < 1/2. According to the bound given
previously in (3) and δ ≥ 2, we have (wk

δ
+ δ4

)2
≤

(
α(t− k)

δ
√

1− β2
+ 2δ + δ4

)2

(
1− wk

δ

)2
≤

(
α(t− k)

δ
√

1− β2
+ 2δ + 1

)2

.
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Then we derive,

E
[
g
2(1+µ)
k |Fk

]
= p

(wk
δ

+ δ4
)2(1+µ)

+ (1− p)
(wk
δ
− 1
)2(1+µ)

≤ 1 + δ

δ4

(
α(t− k)

δ
√

1− β2
+ 2δ + δ4

)2(1+µ)

+

(
α(t− k)

δ
√

1− β2
+ 2δ + 1

)2(1+µ)

= (1 + δ)

(
α(t− k)

δ5
√

1− β2
+

2

δ3
+ 1

)2(1+µ)

δ4+8µ +

(
α(t− k)

δ
√

1− β2
+ 2δ + 1

)2(1+µ)

≤ 2δ ·
(

α(t− k)

δ5
√

1− β2
+

2

δ3
+ 1

)3

· δ4+8µ +

(
α(t− k)

δ
√

1− β2
+ 2δ + 1

)3

≤ 2

(
α(t− k)√

1− β2
+ 2

)3

δ5+8µ +

(
α(t− k)√

1− β2
+ 3δ

)3

≤
(

8α3(t− k)3

(1− β2)3/2
+ 64

)
δ5+8µ +

4α3(t− k)3

(1− β2)3/2
+ 108δ3.

We have used δ > 2 and 0 < µ < 1/2. The last inequality holds because of Lemma 2. Then we obtain

(
E
[
g
2(1+µ)
k |Fk

])1/(1+µ)
≤

[(
8α3(t− k)3

(1− β2)3/2
+ 64

)
δ5+8µ +

4α3(t− k)3

(1− β2)3/2
+ 108δ3

]1/(1+µ)
=

(
8α3(t− k)3

(1− β2)3/2
+ 64 +

4α3(t− k)3

(1− β2)3/2
δ−5−8µ + 108δ−2−8µ

)1/(1+µ)

δ(5+8µ)/(1+µ)

≤
(

12α3(t− k)3

(1− β2)3/2
+ 172

)1/(1+µ)

δ(5+8µ)/(1+µ)

≤
(

12α3(t− k)3

(1− β2)3/2
+ 172

)
δ(5+8µ)/(1+µ).

The third inequality uses δ > 1 and thus

E[vt−11{E}] ≤ (1− β2)

t−1∑
k=1

βt−1−k2

(
12α3(t− k)3

(1− β2)3/2
+ 172

)
δ(5+8µ)/(1+µ)

≤ δ(5+8µ)/(1+µ)

{
12α3

√
1− β2

∞∑
k=1

βk−12 k3 + 172

}

≤ δ(5+8µ)/(1+µ)

{
72α3

(1− β2)9/2
+ 172

}
:= M1δ

(5+8µ)/(1+µ)

where the last inequality is because
∑∞
k=1 β

k−1
2 k3 = (1 + 4β2 + β2

2)/(1− β2)4 < 6/(1− β2)4. Thus, we have

E [∆t1{E}] ≥ P{E}

{(
1− 1 + δ

1 + δ4

)
α√

β2M1δ(5+8µ)/(1+µ)/P{E}+ (1− β2)(1 + 2δ)2

− 1 + δ

1 + δ4
α√

1− β2

}
≥ 1

2

{(
1− 1 + δ

1 + δ4

)
α√

2β2M1δ(5+8µ)/(1+µ) + (1− β2)(1 + 2δ)2

− 1 + δ

1 + δ4
α√

1− β2

}
,

where the second inequality follows from

P{E} > 1− ε

δ4
> 1− ε > 1

2
.
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Then the full expectation of ∆t is

E [∆t] ≥
1

2


(

1− 1 + δ

1 + δ4

)
α√

2β2M1δ(5+8µ)/(1+µ) + (1− β2)(1 + 2δ)2︸ ︷︷ ︸
T1

− 1 + δ

1 + δ4
α√

1− β2︸ ︷︷ ︸
T2

−
1

2δ4
α√

1− β2︸ ︷︷ ︸
T3

.

Notice that T1 = Ω(δ−(5+8µ)/(2+2µ)), T2 = O(δ−3) and T3 = O(δ−4). As long as we set µ < 1/2, we have (5+8µ)/(2+
2µ) < 3 < 4, thus the right hand side can be positive for sufficiently large δ, only dependent on α and β2. We conclude that
we can assume E[∆t] > c0 > 0. This means wt keeps drifting in the positive direction. Then for any k ≥ 1 and t > Tε, we
have

E
[
(wt+k − w∗)2

]
= E

[
(wt+k − wt)2

]
+ 2E [(wt+k − wt)(wt − w∗)] + E

[
(wt − w∗)2

]
≥ E

[
(wt+k − wt)2

]
− 2
√

E [(wt+k − wt)2]E [(wt − w∗)2] + E
[
(wt − w∗)2

]
=

(√
E [(wt+k − wt)2]−

√
E [(wt − w∗)2]

)2
, (4)

where the inequality is the Cauchy-Schwartz inequality for random variables. If we select k large enough such that
k > 3

√
ε/c0, which implies kc0 −

√
ε > 2

√
ε, then E[(wt+k − wt)2] ≥ (E[wt+k − wt])2 ≥ k2c20, and thus from (4) we

have
E
[
(wt+k − w∗)2

]
≥ (kc0 −

√
ε)2 ≥ 4ε > ε,

which contradicts the convergence assumption. Thus, ADAM diverges for this unconstrained stochastic optimization
problem. This completes the proof of Theorem 1.

A.3 Proof of Theorem 2

Consider function π(δ) = (1 + δ)/(1 + δ4). We notice that π(1) = 1, π(δ) ≤ 1 for δ ≥ 1, and π(+∞) = 0. Since π has
only a finite number of stationary points, there exists a δ̄ such that π is decreasing on [δ̄,∞). Thus for any b, there exists an
N∗b such that for any N ≥ N∗b , N > b there exists a δN,b > max(δ∗, δ̄) > δ∗ with

b

N
= π(δN,b).

Let us consider the following mini-batch problem with sample size N > N∗b .

fn(w) =
w2

2δN,b
− w for n = 1, . . . , N − 1,

fN (w) =
w2

2δN,b
+ (bδ4N,b + b− 1)w.

Apparently, the selection of mini-batch Bt satisfies

P{N ∈ Bt} =

(
N−1
b−1
)(

N
b

) =
b

N
=

1 + δN,b
1 + δ4N,b

:= p.

If M ∈ Bt, we have

FBt(w) =
1

b
(fN (w) + (b− 1)f1(w)) =

w2

2δN,b
+ δbN,bw.

Otherwise, it is clear that

FBt(w) = f1(w) =
w2

2δN,b
− w.
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To summarize, the mini-batch loss reads

FBt(w) =

{
w2

2δN,b
+ δ4N,bw with probability p

w2

2δN,b
− w with probability 1− p

which is an OP(δN,b), since δN,b > δ∗. By Theorem 1, ADAM diverges on this problem.

A.4 Proof of Theorem 3

Similarly to the proof of Theorem 2, there exists N∗ such that for each N > N∗, there exists a δN > δ∗ such that

1

N
=

1 + δN
1 + δ4N

.

We let

fn(w) =
w2

2δN
+ δ4Nw for n = 1, . . . , N − 1

fN (w) =
w2

2δN
− ((N − 1) + (N − 2)δ4N )w.

The selection of mini-batch Bt satisfies

P{N 6∈ Bt} =
1

N
.

If N 6∈ Bt, we have

FBt(w) = f1(w) =
w2

2δN
+ δ4Nw,

and otherwise

FBt(w) =
N − 2

N − 1
f1(w) +

1

N − 1
fN (w) =

w2

2δN
− w.

This is an OP(δN ), which is divergent according to Theorem 1.

A.5 Proof of Theorem 4

We first introduce the following lemma.

Lemma 5 Given Assumption 1 is satisfied, there exist positive constants Q1 and Q2 such that for any t,

E[F (wt+1)]− E[F (wt)] ≤ −
αt

4
√
G2 + ε

E
[
‖∇F (wt)‖22

]
+Q1αtλt +Q2αt

t−1∑
k=1

βt−k1 λk +Q3α
2
t .



Divergence Results and Convergence of a Variance Reduced Version of ADAM

Proof: Let us start from the application of L-smoothness of gradient of F (w) as follows.

F (wt+1) ≤ F (wt) +∇F (wt)
>(wt+1 − wt) +

L

2
‖wt+1 − wt‖22

= F (wt)−
αt

1− βt1
∇F (wt)

>V
−1/2
t mt +

α2
tL

2(1− βt1)2

∥∥∥V −1/2t mt

∥∥∥2
2

= F (wt)−
αt(1− β1)

1− βt1
∇F (wt)

>V
−1/2
t

t∑
k=1

βt−k1 gk +
α2
tL

2(1− βt1)2

∥∥∥V −1/2t mt

∥∥∥2
2

= F (wt)− αt∇F (wt)
>V
−1/2
t gt −

αt(1− β1)

1− βt1

t−1∑
k=1

βt−k1 ∇F (wt)
>V
−1/2
t (gk − gt)

+
α2
tL

2(1− βt1)2

∥∥∥V −1/2t mt

∥∥∥2
2

= F (wt)− αt∇F (wt)
>V
−1/2
t G(wt; ξt)︸ ︷︷ ︸
T1

−αt(1− β1)

1− βt1

t−1∑
k=1

βt−k1 ∇F (wt)
>V
−1/2
t (G(wk; ξk)− G(wk; ξt))︸ ︷︷ ︸

T2

−αt(1− β1)

1− βt1

t−1∑
k=1

βt−k1 ∇F (wt)
>V
−1/2
t (G(wk; ξt)− G(wt; ξt))︸ ︷︷ ︸

T3

+
α2
tL

2(1− βt1)2

∥∥∥V −1/2t mt

∥∥∥2
2︸ ︷︷ ︸

T4

.

Bounding T1: We start from

E[T1] = E
[∥∥∥V −1/4t ∇F (wt)

∥∥∥2
2

]
+ E

[
∇F (wt)

>V
−1/2
t (G(wt; ξt)−∇F (wt))

]
≥ 1

2
E
[∥∥∥V −1/4t ∇F (wt)

∥∥∥2
2

]
− 1

2
E
[∥∥∥V −1/4t (G(wt; ξt)−∇F (wt))

∥∥∥2
2

]
≥ 1

2
√
G2 + ε

E
[
‖∇F (wt)‖22

]
− 1

2
√
ε
E
[
‖G(wt; ξt)−∇F (wt)‖22

]
,

where the first inequality applies the Cauchy-Schwartz inequality and the second inequality is due to∥∥∥V −1/4t ∇F (wt)
∥∥∥2
2

=

d∑
i=1

(∇iF (wt))
2√

ṽt,i + ε
≥ 1√

G2 + ε

d∑
i=1

(∇iF (wt))
2

=
1√

G2 + ε
‖∇F (wt)‖22

and ∥∥∥V −1/4t (G(wt; ξt)−∇F (wt))
∥∥∥2
2

=

d∑
i=1

(∇iF (wt)− Gi(wt; ξt))2√
ṽt,i + ε

≤ 1√
ε

d∑
i=1

(∇iF (wt)− Gi(wt; ξt))2

=
1√
ε
‖G(wt; ξt)−∇F (wt)‖22 .

According to the unbiased assumption, we have

E
[
‖G(wt; ξt)−∇F (wt)‖22

]
=

d∑
i=1

E
[
(Gi(wt; ξt)−∇iF (wt))

2
]

=

d∑
i=1

Var(Gi(wt; ξt)) ≤ dλt. (5)
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Then we can lower bound the expectation of T1 as

E[T1] ≥ 1

2
√
G2 + ε

E
[
‖∇F (wt)‖22

]
− d

2
√
ε
λt. (6)

Bounding T2: Notice that for two random vectors X and Y , and a constant a we have

∥∥∥∥aX +
1

a
Y

∥∥∥∥2
2

= a2‖X‖22 +
1

a2
‖Y ‖22 + 2Y >X,

and thus

E
[
Y >X

]
≥ −a

2

2
E[‖X‖22]− 1

2a2
E[‖Y ‖22].

If Fk = {ξ1, . . . , ξk−1}, then wk is known given Fk. We then have

E [T2] =

t−1∑
k=1

βt−k1 E
[
∇F (wt)

>V
−1/2
t (G(wk; ξk)− G(wk; ξt))

]
=

t−1∑
k=1

βt−k1 E
[
E
[
∇F (wt)

>V
−1/2
t (G(wk; ξk)− G(wk; ξt)) |Fk

]]
≥ −1

2

t−1∑
k=1

βt−k1 E
[
a2E

[
‖V −1/2t ∇F (wt)‖22 |Fk

]
+

1

a2
E
[
‖G(wk; ξk)− G(wk; ξt)‖22 |Fk

]]

≥ −1

2

t−1∑
k=1

βt−k1

{
a2

ε
E
[
‖∇F (wt)‖22

]
+

1

a2
E
[
E
[
‖G(wk; ξk)− G(wk; ξt)‖22 |Fk

]]}

= −1

2

t−1∑
k=1

βt−k1

{
a2

ε
E
[
‖∇F (wt)‖22

]
+

2

a2
E
[
E
[
‖∇G(wk; ξk)−∇F (wk)‖22 |Fk

]]}

≥ −a
2

2ε

1

1− β1
E
[
‖∇F (wt)‖22

]
− 1

a2

t−1∑
k=1

βt−k1 E
[
‖∇G(wk; ξk)−∇F (wk)‖22

]
≥ −a

2

2ε

1

1− β1
E
[
‖∇F (wt)‖22

]
− d

a2

t−1∑
k=1

βt−k1 λk

for any positive constant a, where the third equality holds because G(wk; ξk) and G(wk; ξt) are i.i.d. given Fk, and thus

E
[
‖G(wk; ξk)− G(wk; ξt)‖22 |Fk

]
= E

[
‖G(wk; ξk)−∇F (wk)‖22 |Fk

]
+ E

[
‖G(wk; ξt)−∇F (wk)‖22 |Fk

]
−2E [(G(wk; ξk)−∇F (wk)) |Fk ]

> E [(G(wk; ξt)−∇F (wk)) |Fk ]

= 2E
[
‖G(wk; ξk)−∇F (wk)‖22 |Fk

]
.

The last inequality applies (5).

If a =
√
ε(1− β1)/2

√
G2 + ε, then we have

E[T2] ≥ − 1

4
√
G2 + ε

E
[
‖∇F (wt)‖22

]
− 2d

√
G2 + ε

ε(1− β1)

t−1∑
k=1

βt−k1 λk. (7)
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Bounding T3: We derive

T3 =

t−1∑
k=1

βt−k1 ∇F (wt)V
−1/2
t (G(wk; ξt)− G(wt; ξt))

≥ −
t−1∑
k=1

βt−k1

∥∥∥∇F (wt)V
−1/2
t

∥∥∥
2
‖G(wk; ξt)− G(wt; ξt)‖2

≥ −LG√
ε

t−1∑
k=1

βt−k1 ‖wt − wk‖

= −LG√
ε

t−1∑
k=1

βt−k1

∥∥∥∥∥∥
t−1∑
j=k

αjV
−1/2
j m̃j

∥∥∥∥∥∥
2

≥ −LG√
ε

t−1∑
k=1

βt−k1

t−1∑
j=k

αj

∥∥∥V −1/2j m̃j

∥∥∥
2

≥ − LG2

ε
√

1− β1

t−1∑
k=1

t−1∑
j=k

βt−k1 αj

= − LG2

ε
√

1− β1

t−1∑
j=1

αj

j∑
k=1

βt−k1

≥ − LG2

ε(1− β1)3/2

t−1∑
j=1

αjβ
t−j
1

≥ − LG2C̄

ε(1− β1)3/2
αt, (8)

where the first inequality is the Cauchy-Schwartz inequality, the second inequality applies L smoothness of G(·; ξ) for any
ξ, the forth inequality holds because

∥∥∥V −1/2j m̃j

∥∥∥
2

=

√√√√ 1

1− βj1

d∑
i=1

m2
j,i

vj,i + ε
≤ G√

ε(1− β1)

and the last inequality comes from Lemma 3.

Bounding T4: It is easy to show that

T4 =

d∑
i=1

m2
t,i

vt,i + ε
≤ G2

ε
. (9)

According to the bounds in (6), (7), (8) and (9),we get

E[F (wt+1)]− E[F (wt)] ≤ −αt
{

1

2
√
G2 + ε

E
[
‖∇F (wt)‖22

]
− d

2
√
ε
λt

}
−αt(1− β1)

1− βt1

{
− 1

4
√
G2 + ε

E
[
‖∇F (wt)‖22

]
− 2d

√
G2 + ε

ε(1− β1)

t−1∑
k=1

βt−k1 λk

}

+
LG2C̄

ε
√

1− β1(1− βt1)
α2
t +

LG2

2ε(1− βt1)2
α2
t

≤ −αt
1

4
√
G2 + ε

E
[
‖∇F (wt)‖22

]
+

d

2
√
ε
αtλt +

2d
√
G2 + ε

ε(1− β1)
αt

t−1∑
k=1

βt−k1 λk

+

{
LG2C̄

ε(1− β1)3/2
+

LG2

2ε(1− β1)2

}
α2
t .
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Letting

Q1 =
d

2
√
ε

Q2 =
2d
√
G2 + ε

ε(1− β1)

Q3 =
LG2C̄

ε(1− β1)3/2
+

LG2

2ε(1− β1)2

completes the proof.

Proof of Theorem 4: According to Lemma 5, we have

Finf − F (w1) ≤ E[F (wT+1)]− F (w1)

=

T∑
t=1

E[F (wt+1)]− E[F (wt)]

≤ − 1

4
√
G2 + ε

T∑
i=1

αtE
[
‖∇F (wt)‖22

]
+Q1

T∑
i=1

αtλt +Q2

T∑
i=1

αt

t−1∑
k=1

βt−k1 λk

+Q3

T∑
i=1

α2
t .

Then we obtain

1

4
√
G2 + ε

T∑
t=1

αtE
[
‖∇F (wt)‖22

]
≤ F (w1)− Finf +Q1

T∑
t=1

αtλt

+Q2

T∑
t=1

αt

t−1∑
k=1

βt−k1 λk +Q3

T∑
t=1

α2
t

≤ F (w1)− Finf +Q1

T∑
t=1

αtλt

+Q2

T∑
k=1

λk

T∑
t=k

βt−k1 αt +Q3

T∑
t=1

α2
t

≤ F (w1)− Finf +Q1

T∑
t=1

αtλt

+
Q2

1− β1

T∑
k=1

λkαk +Q3

T∑
t=1

α2
t .

Noticing that the left-hand side can be bounded as

T∑
t=1

αtE
[
‖∇F (wt)‖22

]
≥

T∑
t=1

αt min
1≤t≤T

E
[
‖∇F (wt)‖22

]
,

we obtain

min
1≤t≤T

E
[
‖∇F (wt)‖22

]
≤ 4

√
G2 + ε∑T
t=1 αt

+ 4
√
G2 + ε

(
Q1 +

Q2

1− β2

) ∑T
t=1 λtαt∑T
t=1 αt

+4
√
G2 + εQ3

∑T
t=1 α

2
t∑T

t=1 αt
.
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A.6 Proof of Theorem 5

Applying L-smoothness of gradients of F and strong convexity of F , we have

F
(
ŵ

(2)
2

)
≥ F

(
w

(2)
1

)
+ F ′

(
w

(2)
1

)(
ŵ

(2)
2 − w

(2)
1

)
+
c

2

(
ŵ

(2)
2 − w

(2)
1

)2
F
(
w

(2)
2

)
≤ F

(
w

(2)
1

)
+ F ′

(
w

(2)
1

)(
w

(2)
2 − w

(2)
1

)
+
L

2

(
w

(2)
2 − w

(2)
1

)2
.

By definition, we have

F
(
ŵ

(2)
2

)
− F

(
w

(2)
2

)
≥ F ′

(
w

(2)
1

)(
ŵ

(2)
2 − w

(2)
2

)
+
c

2

(
ŵ

(2)
2 − w

(2)
1

)2
− L

2
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)2
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1

)α2
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(2)
1√

ṽ
(2)
1 + ε
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ˆ̃m
(2)

1√
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1 + ε
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cα2

2

2
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(2)

1
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(2)

1 + ε
− Lα2

2

2

m̃
(2)
1

ṽ
(2)
1 + ε

= α2F
′
(
w

(2)
1

)F ′
(
w

(2)
1

)
√
Q3

− γ
(1− β1)F ′

(
w

(2)
1

)
+ β1m

(1)
m+1

√
Q4


+
cα2

2γ
2

2

(
(1− β1)F ′

(
w

(2)
1

)
+ β1m

(1)
2

)2
Q4

− Lα2
2

2

(
F ′
(
w

(2)
1

))2
Q3

where

Q3 = ṽ
(2)
1 + ε

Q4 = ˆ̃v
(2)

1 + ε

γ =
1

1− βm+1
1

.

Thus we have

F
(
ŵ

(2)
2

)
− F

(
w

(2)
2

)
≥

(
F ′
(
w

(2)
1

))2
q

 m
(1)
m+1

F ′
(
w

(2)
1

)


where q(x) = Q5x
2 +Q6x+Q7 is a function with parameters

Q5 =
cα2

2γ
2β2

1

2Q4

Q6 =
cα2

2γ
2β1(1− β1)

Q4
− α2γβ1√

Q2

Q7 =
α2√
Q3
− α2γ(1− β1)√

Q4
+
cα2

2γ
2(1− β1)2

2Q4
− Lα2

2

2Q3
.

Apparently, from

ṽ
(2)
1 =

(
g
(2)
1

)2
≤ G2

ˆ̃v
(2)

1 =
1− β1

1− βm+1
2

(
m∑
k=1

βm+1−k
2

(
g
(1)
k

)2
+
(
g
(2)
1

)2)
≤ 1− β1

1− βm+1
2

(
m∑
k=1

βm+1−k
2 + 1

)
G2 = G2,

we have

ε ≤ Q3 ≤ ε+G2

ε ≤ Q4 ≤ ε+G2.
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Noticing that

∆ = Q2
6 − 4Q5Q7

=
α2
2γ

2β2
1

Q4

(
1− 2cα2√

Q3
+
cLα2

2

Q3

)
>

α2
2γ

2β2
1

Q4

(
1− 2cα2√

Q3
+
c2α2

2

Q3

)
=

α2
2γ

2β2
1

Q4

(
1− cα2√

Q3

)2

≥ 0,

where the first inequality uses the property of the strong convexity parameter and the L-smoothness gradient parameter
c < L, we have that there exists

x1 =
−Q6 +

√
∆

2Q5

x2 =
−Q6 −

√
∆

2Q5

such that q(x1) = q(x2) = 0. We claim that |x1| ≤ 1 and |x2| ≤ 1, which is implied by
√

∆ ≤ min{2Q5 +Q6, 2Q5 −Q6}. (10)

We notice that

2Q5 +Q6 =
α2γβ1√
Q4

(
cα2γ√
Q4
− 1

)
2Q5 −Q6 =

α2γβ1√
Q4

(
cα2γ(2β1 − 1)√

Q4
+ 1

)
and

∆ ≤ α2
2γ

2β2
1

Q4

(
1− 2Lα2√

Q3
+
L2α2

2

Q3

)
=

α2
2γ

2β2
1

Q4

(
1− Lα2√

Q3

)2

where the inequality holds according to Assumption 2 Lα2 ≥ 2
√
G2 + ε ≥ 2

√
Q3. Thus we have

√
∆ ≤ α2γβ1√

Q4

(
Lα2√
Q3
− 1

)
≤ α2γβ1√

Q4

(
cα2γ(2β1 − 1)√

Q4
− 1

)
≤ min{2Q5 +Q6, 2Q5 −Q6},

where the second inequality holds according to Assumption 2, Lc ≤
2β1−1

1−βm+1
1

√
ε

G+ε ≤
2β1−1

1−βm+1
1

√
Q3

Q4
.

Hence we obtain (10), which implies that q(x) ≥ 0 where |x| ≥ 1. As we assume∣∣∣m(1)
m+1

∣∣∣ ≥ ∣∣∣F ′ (w(2)
1

)∣∣∣ ,
we have

F
(
ŵ

(2)
2

)
− F

(
w

(2)
2

)
≥ 0,

which finishes the proof.

A.7 Proof of Theorem 6 and Theorem 7

We start proving the following lemmas.
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Lemma 6 Given Assumption 3, we have that for any 1 ≤ k ≤ m and 1 ≤ t ≤ T , the ADAM states in Algorithm 2 with
option A satisfy ∥∥∥m(t)

k

∥∥∥
2
≤ 3G,∥∥∥v(t)k ∥∥∥

2
≤ 9G2.

Proof: By definition, we have

m
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j .

Applying the Cauchy-Schwartz inequality, we obtain∥∥∥m(t)
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∥∥∥
2
≤ (1− β1)

k∑
j=1

βk−j1
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Lemma 7 Given Assumption 3, there exist positive constants Q8 and Q9 such that Algorithm 2 with option A satisfies that
for any t,

F (w̃t+1)− F (w̃t) ≤ −Q8αtm ‖∇F (w̃t)‖22 +Q9α
2
t

holds almost surely.

Proof: We start from the application of L-smoothness of gradient of F (w) as follows

F (w̃t+1) ≤ F (w̃t) +∇F (w̃t)
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∥∥∥∥∥
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2
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.
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By definition and the resetting option, we have

m̃
(t)
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)−1/2 k∑
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and thus
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Bounding T1: We have
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The first thing to notice is that∥∥∥∥∥∥
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where the second inequality employs the assumption that the gradients of F are bounded. Secondly, according to L-
smoothness of gradients of every loss function, we derive∥∥∥∇FB(t)

j
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where the first inequality applies the Cauchy-Schwartz inequality and the last one applies Lemma 6. By plugging equations
(12) and (13) into equation (11), we obtain

T1 ≥ −
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Bounding T2: We have
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Bounding T3: We obtain
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In summary, we get

F (w̃t+1) ≤ F (w̃t)− αt
m(1− β1)√

9G2 + ε
‖∇F (w̃t)‖22 +

3G2Lm(m− 1)/(1− β1)2 + 9G2Lm2

2ε
α2
t

= F (w̃t)−Q8αtm ‖∇F (w̃t)‖22 +Q9α
2
t ,

where

Q8 =
1− β1√
9G2 + ε

Q9 =
3G2Lm(m− 1)/(1− β1)2 + 9G2Lm2

2ε
.

Proof of Theorem 6: If F (w) is c-strongly convex, we have

‖∇F (w)‖22 ≥ 2c (F (w)− F ∗) ,

and thus according to Lemma 7, we have

F (w̃t+1) ≤ F (w̃t)− 2cQ8αtm (F (wt)− F ∗) +Q9α
2
t ,

which is equivalent to

F (w̃t+1)− F ∗ ≤
(

1− C2mα

t

)
(F (w̃t)− F ∗) +Q9α

2
t .

We obtain recursively
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t=1

(
1− C2mα

t

)
(F (w̃1)− F ∗) +
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j

)
.

By definition, we have C2mα < 1, and thus we can use Lemma 4 to obtain

F (w̃T )− F ∗ ≤ O
(
T−C2mα

)
.

Proof of Theorem 7: Let us consider the set of indices A = {t ∈ N : ‖∇F (w̃t)‖ = 0}. If the set is infinite, there exists a
sequence {tk}+∞k=1 such that ‖∇F (w̃tk)‖ = 0 for all k. Then we have

lim inf
t→∞

‖∇F (w̃t)‖2 = 0.

Otherwise, A is finite, and thus its maximum exists. For all t > τ := maxA, we have ‖∇F (w̃t)‖2 > 0. Applying Lemma
7, we have

F (w̃t+1)− F (w̃t) ≤ −αtQ8m ‖∇F (w̃t)‖22 +Q9α
2
t .

Then it follows

Finf − F (w̃τ+1) ≤ F (w̃T+1)− F (w̃τ+1)

≤
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t=τ+1
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T∑
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α2
t ,

and thus

min
τ+1≤t≤T

‖∇F (w̃t)‖22
T∑

t=τ+1

αt ≤
T∑

t=τ+1

αt ‖∇F (w̃t)‖22 ≤
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+
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T∑
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t .
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Then, we have

min
τ+1≤t≤T

‖∇F (w̃t)‖22 ≤
1∑T

t=τ+1 αt

{
F (w̃τ+1)− Finf

Q8m
+

Q9

Q8m

T∑
t=τ+1

α2
t

}
,

which yields

lim
T→+∞

min
τ+1≤t≤T

‖∇F (w̃t)‖22 = 0. (17)

For all r > τ , there must exists an s > r such that

‖∇F (w̃s)‖2 < ‖∇F (w̃r)‖2 .

Otherwise, if there exists an r0 > τ , such that for all s > r0 we have

‖∇F (w̃s)‖2 ≥ ‖∇F (w̃r0)‖2 ,

then for all T ≥ r0, we have

min
τ+1≤t≤T

‖∇F (w̃t)‖22 = min
τ+1≤t≤r0

‖∇F (w̃t)‖22 = A > 0,

which contradicts (17), since A is a positive constant.

Let t1 = τ + 1 and for all k ∈ N, let tk+1 = inf
{
s > tk : ‖∇F (w̃s)‖2 < ‖∇F (w̃tk)‖2

}
. This implies a sub-sequence{

‖∇F (w̃tk)‖2
}
k

of sequence {‖∇F (w̃t)‖2}t. Since

‖∇F (w̃tk)‖2 = min
τ+1≤t≤tk

‖∇F (w̃t)‖2 ,

by employing (17), we have

lim
k→∞

‖∇F (w̃tk)‖2 = 0,

which implies that

lim inf
t→∞

‖∇F (w̃t)‖ = 0.

This completes the proof.

B Experiments

B.1 Network Structure

Dataset Input dimension Hidden dimension Output Dimension
CovType 98 100 7
MNIST 784 100 10

Table 1: Feedforward network structure

The feedforward networks used in the experiments have two fully connected layers with the dimensions described in Table 1.

The structure of the CNN used in the experiments is described as follows. The CNN is mainly composed of two convolution
layers, two max pooling layers and one fully connected layer. The kernel size of the convolution layers is 4 and the kernel
size of the pooling layers is 2. The numbers of channels of the two convolution layers are 16 and 32, respectively, and the
dimensions of the fully connected layer are 32 for input and 10 for output.

B.2 Additional Results
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Figure 3: Relative difference of VRADAM in classifying Embedded CIFAR10 with Logistic regression

Figure 4: Relative difference of VRADAM in classifying MNIST with CNN

Figure 5: Relative difference of VRADAM in classifying MNIST with FFN

Figure 6: Deviation of VRADAM and ADAM for MNIST with CNN
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Figure 7: Deviation of VRADAM and ADAM for MNIST with FFN

Figure 8: Deviation of VRADAM and ADAM for CovType with logistic regression

Figure 9: Deviation of VRADAM and ADAM for Embedded CIFAR-10 with logistic regression

Figure 10: Deviation of VRADAM and ADAM for MNIST with logistic regression
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Figure 11: Deviation of VRADAM and ADAM for NSL-KDD with logistic regression

Figure 12: Sensitivity on initial point for MNIST with CNN

Figure 13: Sensitivity on initial point for MNIST with FFN

Figure 14: Sensitivity on initial point for Embedded CIFAR-10 with logistic regression
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Figure 15: Sensitivity on initial point for CovType with logistic regression

Figure 16: Sensitivity on initial point for MNIST with logistic regression

Figure 17: Sensitivity on initial point for NSL-KDD with logistic regression


