
ar
X

iv
:2

21
0.

06
05

3v
1 

 [
m

at
h.

O
C

] 
 1

2 
O

ct
 2

02
2

Noname manuscript No.
(will be inserted by the editor)

Sensitivity Analysis of Value Functional of Fractional

Optimal Control Problem with Application to

Construction of Optimal Feedback Control

Mikhail Gomoyunov

Received: date / Accepted: date

Abstract We consider an optimal control problem for a dynamical system
described by a Caputo fractional differential equation and a terminal cost
functional. We prove that, under certain assumptions, the (non-smooth, in
general) value functional of this problem has a property of directional dif-
ferentiability of order α. As an application of this result, we propose a new
method for constructing an optimal positional (feedback) control strategy.
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1 Introduction

In this paper, we deal with a finite-horizon optimal control problem involving a
dynamical system described by a non-linear differential equation with Caputo
fractional derivative of order α ∈ (0, 1) and a terminal cost functional to be
minimized. We focus on the question related to the construction of optimal
positional control strategies, which allow us to generate ε-optimal controls for
any predetermined accuracy ε > 0 by using the corresponding time-discrete
recursive feedback control procedures (the terminology is borrowed from the
theory of positional differential games, see, e.g., [19,18] and also, e.g., [23,
20,22] for the case of time-delay systems). We follow the approach that goes
back to the dynamic programming principle and relies on the consideration of
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the value functional (the functional of optimal result) and the analysis of its
properties. Let us recall and briefly discuss the previous results obtained in
this direction, which are the background of the present paper.

In [5] (see also [11]), it was proposed to associate the optimal control
problem under consideration with a Cauchy problem for the corresponding
Hamilton–Jacobi–Bellman equation with so-called fractional coinvariant deriva-
tives (ci-derivatives for short) of order α and the natural right-end boundary
condition (the use of the terminology of ci-derivatives goes back to [17,20],
see also the discussion in [14, Section 5.2]). In particular, it was shown that,
if the value functional is ci-smooth of order α (i.e., if it is continuous and
has continuous ci-derivatives of order α), then it can be characterized as a
unique (classical) solution of the associated Cauchy problem and, moreover,
an optimal positional control strategy can be constructed by extremal aiming
in the direction of the ci-gradient of order α of this functional [5, Theorems
10.1 and 11.1]. However, by analogy with the case of optimal control prob-
lems for dynamical systems described by ordinary differential equations (i.e.,
when α = 1), the value functional usually does not have the required smooth-
ness properties. Furthermore, it is not clear how these properties of the value
functional can be ensured by imposing assumptions on the input data of the
problem (i.e., on the function from the right-hand side of the dynamic equation
and on the function determining the terminal cost functional).

On the other hand, in a fairly general non-smooth case, it was established
in [13, Theorem 1] (see also [11, Theorem 2]) that the value functional of the
optimal control problem coincides with a unique generalized (in the minimax
sense) solution of the associated Cauchy problem (for details on the theory of
minimax solutions of Hamilton–Jacobi equations with partial derivatives and
with ci-derivatives of first order (i.e., when α = 1), the reader is referred to,
e.g., [26] and [14], respectively). In particular, a pair of differential inequalities
was obtained that characterizes the (non-smooth, in general) value functional
in terms of so-called lower and upper derivatives of order α in (single-valued)
directions [13, Theorem 2 and formula (8.8)]. In addition, in [6, Section 6] and
[11, Section 9], two general methods for constructing optimal positional control
strategies based on the (non-smooth, in general) value functional were given.
Nevertheless, let us emphasize that, even if the value functional has already
been found, both of these methods require solving rather complex infinite-
dimensional constrained optimization problems to select the desired extremal
directions, which makes them difficult to apply even in relatively simple exam-
ples. For completeness, let us also mention two other possible approaches to
constructing optimal positional control strategies: the approximation schemes
from [9] and, in the case of linear dynamics, the technique from [8] based on
reducing the optimal control problem to an auxiliary optimal control problem
for a dynamical system described by an ordinary differential equation.

In the present paper, we propose a new method for constructing an optimal
positional control strategy, which devoid of the indicated disadvantages of the
results of [6,5,11]. More precisely, in contrast to [5], we deal with the case
when the value functional of the optimal control problem under consideration
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can be non-smooth and formulate all the necessary assumptions in terms of
the input data of the problem. At the same time, compared to [6,11], the new
method is simpler and more efficient, since it requires only the calculation of
directional derivatives of order α of the value functional.

The proposed method can be considered as a modification of the method
developed for the case of dynamical systems described by ordinary differential
equations in, e.g., [29, Theorem II.15]. In this connection, the reader is also
referred to, e.g., [1,4,24]. The basis of the method is the characterization of
the value functional obtained in [13, Theorem 2 and formula (8.8)] and a
property of directional differentiability of order α of the value functional. The
proof of this property, which is also of independent interest, is the main part
of the present paper. Despite the fact that it is carried out mainly according
to the scheme from, e.g., [27] and [28, Theorem 1] (see also [29, Theorem
II.6]), it fully takes into account the features associated with the fact that the
dynamical system is described by the Caputo fractional differential equation.
Let us briefly outline the main steps of the proof. At the first step, we pass
to the use of relaxed controls (also sometimes called generalized controls).
Since the right-hand side of the dynamic equation has the same form as in
the case of ordinary differential equations, we borrow the notion of a relaxed
control and the corresponding technique from the optimal control theory for
the ordinary case (see, e.g., [30, Chapter IV], [3, Part 3], and also [19, Section
6.1]). At the second step, we make a change of the time variable in order to
obtain the unified control interval [0, 1] for all possible initial times, and, thus,
we move to some auxiliary (weakly-singular) Volterra integral equation. The
third step is to analyze the dependence of a solution of the auxiliary integral
equation on the parameters, which are the initial data and the relaxed control.
In particular, we study directional differentiability of order α of the endpoint
of the solution with respect to initial data. Note that these three steps are
essentially based on the results of [12], which, however, need to be further
developed since now we are dealing with the differential equation containing
the control and some uniform estimates are required. At the final step, we
prove a theorem on directional differentiability of order α of a lower envelope
of a family of uniformly directionally differentiable of order α functionals and
apply it to our setting. This theorem is an analog of, e.g., [21, Proposition 3],
where a close result was obtained for the case of first-order ci-derivatives.

The rest of the paper is organized as follows. In Section 2, we formulate
the optimal control problem, which is the subject of the present study. After
some preliminaries, we describe the dynamical system and the cost functional,
introduce the value functional, and give a definition of an optimal positional
control strategy. In Section 3, we consider the associated Cauchy problem for
the Hamilton–Jacobi–Bellman equation with ci-derivatives of order α and the
right-end boundary condition and briefly describe some of the results obtained
in [5,13]. In particular, we recall the notions of lower and upper directional
derivatives of order α of functionals. Sections 4–9 are devoted to the detailed
proof of the property of directional differentiability of order α of the value
functional (see Theorem 9.1). In Section 10, we describe the new method for
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constructing an optimal positional control strategy (see Theorem 10.1). The
paper concludes with an illustrative example, given in Section 11.

2 Optimal Control Problem

2.1 Preliminaries

Let α ∈ (0, 1), n ∈ N, and T > 0 be fixed throughout the paper. Let Rn be the
Euclidean space of n-dimensional vectors with the inner product 〈·, ·〉 and the
norm ‖ ·‖, and let Rn×n be the space of (n×n)-dimensional matrices endowed
with the corresponding induced norm, also denoted by ‖ · ‖.

For every t ∈ [0, T ], let us introduce the space ACα([0, t],Rn) of all func-
tions x : [0, t] → R

n each of which can be represented in the following form for
some (Lebesgue) measurable and essentially bounded function f : [0, t] → R

n

(see, e.g., [25, Definition 2.3]):

x(τ) = x(0) +
1

Γ(α)

∫ τ

0

f(ξ)

(τ − ξ)1−α
dξ ∀τ ∈ [0, t]. (1)

Note that, in the right-hand side of the equality from (1), the second term is
the Riemann–Liouville fractional integral of order α of the function f(·) (see,
e.g., [25, Definition 2.1]) and Γ is the gamma-function. In accordance with,
e.g., [25, Remark 3.3], we consider the space ACα([0, t],Rn) as a subset of the
space C([0, t],Rn) of all continuous functions from [0, t] to R

n endowed with
the uniform (supremum) norm:

‖x(·)‖[0,t] := max
τ∈[0,t]

‖x(τ)‖ ∀x(·) ∈ C([0, t],Rn).

In addition, due to, e.g., [25, Theorem 2.4], every function x(·) ∈ ACα([0, t],Rn)
has at almost every (a.e.) τ ∈ [0, t] a Caputo fractional derivative of order α,
which is defined by (see, e.g., [16, Section 2.4] and [2, Chapter 3])

(CDαx)(τ) :=
1

Γ(1− α)

d

dτ

∫ τ

0

x(ξ)− x(0)

(τ − ξ)α
dξ. (2)

Moreover, if representation (1) is valid for some measurable and essentially
bounded function f(·), then (CDαx)(τ) = f(τ) for a.e. τ ∈ [0, t].

2.2 Dynamic Equation

Let us consider a dynamical system described by the differential equation

(CDαx)(τ) = f(τ, x(τ), u(τ)). (3)

Here, τ ∈ [0, T ] is time, x(τ) ∈ R
n is the current value of the state vector,

(CDαx)(τ) is the Caputo fractional derivative of order α (see (2)), u(τ) ∈ P is
the current value of the control vector, and P ⊂ R

nu is a compact set, nu ∈ N.
Let us assume that the following conditions hold:
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(f.1) The function f : [0, T ]× R
n × P → R

n is continuous.
(f.2) For any R ≥ 0, there exists λf ≥ 0 such that, for any τ ∈ [0, T ], any x,

x′ ∈ B(R), and any u ∈ P ,

‖f(τ, x, u)− f(τ, x′, u)‖ ≤ λf‖x− x′‖,

where we denote B(R) := {x ∈ R
n : ‖x‖ ≤ R}.

(f.3) There exists cf ≥ 0 such that

‖f(τ, x, u)‖ ≤ cf (1 + ‖x‖) ∀τ ∈ [0, T ] ∀x ∈ R
n ∀u ∈ P.

2.3 Space of Positions

In accordance with, e.g., [5], by a position of system (3), we mean a pair
(t, w(·)) consisting of a time t ∈ [0, T ] and a function w(·) ∈ ACα([0, t],Rn),
which is treated as a history of a motion of system (3) on the time interval
[0, t]. Let us denote the set of all such positions (t, w(·)) by G, i.e.,

G :=
⋃

t∈[0,T ]

({t} ×ACα([0, t],Rn)),

and also introduce the set G0 := {(t, w(·)) ∈ G : t < T }. Let us endow the set
G (and, respectively, its subset G0) with the metric

dist
(

(t, w(·)), (t′, w′(·))
)

:= |t−t′|+ max
τ∈[0,T ]

‖w(min{τ, t})−w′(min{τ, t′})‖ (4)

for all (t, w(·)), (t′, w′(·)) ∈ G. Let us note that the mapping

[0, T ]×ACα([0, T ],Rn) ∋ (t, x(·)) 7→ (t, xt(·)) ∈ G (5)

is continuous, where xt(·) ∈ ACα([0, t],Rn) stands for the restriction of the
function x(·) to the interval [0, t], i.e.,

xt(τ) := x(τ) ∀τ ∈ [0, t]. (6)

Remark 2.1 In [5,10,13], the set of positions G was considered with a different
metric. However, despite the fact that this metric and the metric dist from (4)
are not strongly equivalent, they induce the same topology on G (see, e.g., [14,
Section 5.1] for details). This allows us to apply the results from [5,10,13] in
the present paper.
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2.4 Open-Loop Controls and Motions of the System

Let an initial position (t, w(·)) ∈ G0 be given. Let us consider the set

X(t, w(·)) :=
{

x(·) ∈ ACα([0, T ],Rn) : xt(·) = w(·)
}

. (7)

In addition, let us introduce the function

a(τ | t, w(·)) :=







w(τ), if τ ∈ [0, t],

w(0) +
1

Γ(α)

∫ t

0

(CDαw)(ξ)

(τ − ξ)1−α
dξ, if τ ∈ (t, T ].

(8)

Let us note that a(· | t, w(·)) ∈ X(t, w(·)) and (CDαa(· | t, w(·)))(τ) = 0 for
all τ ∈ (t, T ). It is also convenient to formally put a(· | T,w(·)) := w(·) for all
w(·) ∈ ACα([0, T ],Rn).

By an admissible (open-loop) control on the time interval [t, T ], we mean
any measurable function u : [t, T ] → P . Let U(t, T ) be the set of all such
controls. A motion of system (3) generated from the initial position (t, w(·))
by a control u(·) ∈ U(t, T ) is defined as a function x(·) ∈ X(t, w(·)) that
together with the function u(·) satisfies the differential equation (3) for a.e.
τ ∈ [t, T ]. According to, e.g., [9, Proposition 2], such a motion x(·) exists and
is unique, and we denote it by x(·) := x(· | t, w(·), u(·)). Moreover, this motion
x(·) is a unique function from C([0, T ],Rn) that satisfies the initial condition
xt(·) = w(·) (see (6)) and the Volterra integral equation

x(τ) = a(τ | t, w(·)) +
1

Γ(α)

∫ τ

t

f(ξ, x(ξ), u(ξ))

(τ − ξ)1−α
dξ ∀τ ∈ [t, T ].

2.5 Cost Functional

Let us consider the terminal cost functional

J(t, w(·), u(·)) := σ
(

x(T | t, w(·), u(·))
)

∀(t, w(·)) ∈ G0 ∀u(·) ∈ U(t, T ). (9)

For a given initial position (t, w(·)) ∈ G0, the problem is to find a control
u(·) ∈ U(t, T ) that minimizes the value of this functional. Let us assume that
the function σ : Rn → R satisfies the following condition:

(σ.1) For any R ≥ 0, there exists λσ ≥ 0 such that

|σ(x) − σ(x′)| ≤ λσ‖x− x′‖ ∀x, x′ ∈ B(R).

Thus, we deal with the optimal control problem for the dynamical system
(3) and the cost functional (9) under assumptions (f.1)–(f.3) and (σ.1). Let us
note that the main results of the paper will be obtained under more restrictive
assumptions on the functions f and σ, which will be formulated when they
are needed for the first time.
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2.6 Value Functional and ε-Optimal Open-Loop Controls

Let us introduce the value functional ρ : G→ R of the optimal control problem
(3), (9) by

ρ(t, w(·)) := inf
u(·)∈U(t,T )

J(t, w(·), u(·))

= inf
u(·)∈U(t,T )

σ
(

x(T | t, w(·), u(·))
)

∀(t, w(·)) ∈ G0 (10)

and, formally,

ρ(T,w(·)) := σ(w(T )) ∀w(·) ∈ ACα([0, T ],Rn). (11)

Given an initial position (t, w(·)) ∈ G0 and a number ε > 0, we call a control
u(·) ∈ U(t, T ) ε-optimal if

J(t, w(·), u(·)) = σ
(

x(T | t, w(·), u(·))
)

≤ ρ(t, w(·)) + ε.

2.7 Positional Control Strategies

In accordance with, e.g., [5, Section 11], by a positional control strategy in the
optimal control problem (3), (9), we mean any mapping U : G0 → P .

Let an initial position (t, w(·)) ∈ G0 be given, and let ∆ be a partition of
the time interval [t, T ], i.e.,

∆ := {τj}j∈1,k+1, τ1 = t, τj+1 > τj ∀j ∈ 1, k, τk+1 = T,

where k ∈ N and the notation 1, k + 1 := {j ∈ N : j ≤ k + 1} is used. Then, a
positional control strategy U forms a piecewise constant control u(·) ∈ U(t, T )
and the corresponding motion x(·) := x(· | t, w(·), u(·)) of system (3) by the
following recursive feedback control procedure:

u(τ) := U(τj , xτj (·)) ∀τ ∈ [τj , τj+1) ∀j ∈ 1, k,

where xτj (·) is the history of the motion x(·) on the time interval [0, τj ] (see
(6)). Formally putting u(T ) := ũ for some fixed ũ ∈ P , we conclude that the
described control procedure determines u(·) and x(·) uniquely. Let us denote
the obtained (open-loop) control by u(·) := u(· | t, w(·), U,∆).

A positional control strategy U is called optimal if the following holds: for
any (t, w(·)) ∈ G0 and any ε > 0, there exists δ > 0 such that, for any partition
∆ := {τj}j∈1,k+1 with the diameter diam(∆) := maxj∈1,k(τj+1 − τj) ≤ δ, the
control u(· | t, w(·), U,∆) is ε-optimal, i.e.,

σ
(

x(T | t, w(·), u(· | t, w(·), U,∆))
)

≤ ρ(t, w(·)) + ε.
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3 Hamilton–Jacobi–Bellman Equation

3.1 Smooth Case

Following, e.g., [5, Section 9], we say that a functional ϕ : G → R is ci-differ-
entiable of order α at a point (t, w(·)) ∈ G0 if there are ∂αt ϕ(t, w(·)) ∈ R and
∇αϕ(t, w(·)) ∈ R

n such that, for any function x(·) ∈ X(t, w(·)) (see (7)),
∣

∣

∣

∣

ϕ(t+ δ, xt+δ(·))− ϕ(t, w(·))

δ

− ∂αt ϕ(t, w(·)) −

〈

∇αϕ(t, w(·)),
1

δ

∫ t+δ

t

(CDαx)(ξ) dξ

〉∣

∣

∣

∣

→ 0 as δ → 0+,

where xt+δ(·) is the restriction of the function x(·) to the interval [0, t + δ]
(see (6)) and (CDαx)(ξ) is the Caputo fractional derivative of order α of the
function x(·) (see (2)). In this case, the values ∂αt ϕ(t, w(·)) and ∇αϕ(t, w(·))
are called respectively the ci-derivative in t of order α and the ci-gradient
of order α of the functional ϕ at the point (t, w(·)). Moreover, we say that a
functional ϕ : G→ R is ci-smooth of order α if it is continuous, ci-differentiable
of order α at every point (t, w(·)) ∈ G0, and the mappings ∂αt ϕ : G

0 → R and
∇αϕ : G0 → R

n are continuous.
With the optimal control problem (3), (9), let us associate the Hamiltonian

H(τ, x, s) := min
u∈P

〈s, f(τ, x, u)〉 ∀τ ∈ [0, T ] ∀x, s ∈ R
n (12)

and the Cauchy problem for the Hamilton–Jacobi–Bellman equation

∂αt ϕ(t, w(·)) +H
(

t, w(t),∇αϕ(t, w(·))
)

= 0 ∀(t, w(·)) ∈ G0 (13)

under the right-end boundary condition

ϕ(T,w(·)) = σ(w(T )) ∀w(·) ∈ ACα([0, T ],Rn), (14)

where a functional ϕ : G→ R is the unknown.
By [5, Theorems 10.1 and 11.1], we have the following two results. The

first one is a criteria for a ci-smooth of order α functional to be the value
functional. The second one proposes a method for constructing an optimal
positional control strategy in such a smooth case.

Theorem 3.1 Under assumptions (f.1)–(f.3) and (σ.1), a ci-smooth of order

α functional ϕ : G→ R is the value functional of the optimal control problem

(3), (9) if and only if ϕ satisfies the Hamilton–Jacobi–Bellman equation (13)
and the boundary condition (14).

Theorem 3.2 Suppose that assumptions (f.1)–(f.3) and (σ.1) hold and that

the value functional ρ of the optimal control problem (3), (9) is ci-smooth of

order α. Then, a positional control strategy U◦ satisfying the condition

U◦(t, w(·)) ∈ argmin
u∈P

〈∇αρ(t, w(·)), f(t, w(t), u)〉 ∀(t, w(·)) ∈ G0 (15)

is optimal in this problem.
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However, the value functional ρ is usually not ci-smooth of order α, which
narrows the applicability of Theorems 3.1 and 3.2. Moreover, the ci-gradient of
order α of the value functional ρ may fail to exist at some points (t, w(·)) ∈ G0,
and, therefore, relation (15) cannot be directly used to construct an optimal
positional control strategy. The method for constructing an optimal positional
control strategy proposed in the present paper can be considered as a modifi-
cation of relation (15) that allows us to handle such situations.

3.2 Non-Smooth Case: Inequalities for Directional Derivatives of Order α

For any (t, w(·)) ∈ G0 and any f ∈ R
n, let us introduce the function

x(f)(τ | t, w(·)) :=







w(τ), if τ ∈ [0, t],

a(τ | t, w(·)) +
(τ − t)αf

Γ(α+ 1)
, if τ ∈ (t, T ],

(16)

where the function a(· | t, w(·)) is given by (8). Let us note that the inclusion
x(f)(· | t, w(·)) ∈ X(t, w(·)) holds (see (7)) and, for any τ ∈ (t, T ), the equality
(CDαx(f)(· | t, w(·)))(τ) = f is valid.

According to, e.g., [13, Section 7], the lower and upper (right) derivatives

of order α of a functional ϕ : G → R at a point (t, w(·)) ∈ G0 in a direction

f ∈ R
n are defined as follows:

∂α−{ϕ(t, w(·)) | f} := lim inf
δ→0+

ϕ(t+ δ, x
(f)
t+δ(· | t, w(·))) − ϕ(t, w(·))

δ
,

∂α+{ϕ(t, w(·)) | f} := lim sup
δ→0+

ϕ(t+ δ, x
(f)
t+δ(· | t, w(·))) − ϕ(t, w(·))

δ
, (17)

where x
(f)
t+δ(· | t, w(·)) is the restriction of x(f)(· | t, w(·)) to [0, t+ δ] (see (6)).

For a functional ϕ : G → R, let us consider the following local Lipschitz

continuity property:

(L) For every compact set K ⊂ G, there exists λϕ ≥ 0 such that

|ϕ(t, w(·)) − ϕ(t, w′(·))| ≤ λϕ

(

‖a(T )− a′(T )‖+

∫ T

t

‖a(ξ)− a′(ξ)‖

(T − ξ)1−α
dξ

)

for all (t, w(·)), (t, w′(·)) ∈ K, where the functions a(·) := a(· | t, w(·)) and
a′(·) := a(· | t, w′(·)) are given by (8).

Formally embedding the optimal control problem (3), (9) into the corre-
sponding zero-sum differential game with a fictitious second player (see, e.g.,
[29, Section 5.1] for details) and then applying [13, Theorem 2], which should
be slightly modified in view of the form of the cost functional (9), we obtain
(see also [13, formula (8.8)])
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Theorem 3.3 Let assumptions (f.1)–(f.3) and (σ.1) hold. Then, a functional

ϕ : G→ R is the value functional of the optimal control problem (3), (9) if and
only if ϕ is continuous, possesses property (L), meets the boundary condition

(14), and satisfies the pair of differential inequalities

min
f∈co f(t,w(t),P )

∂α−{ϕ(t, w(·)) | f} ≤ 0 ≤ min
u∈P

∂α+{ϕ(t, w(·)) | f(t, w(t), u)}

for all (t, w(·)) ∈ G0, where co f(t, w(t), P ) denotes the convex hull of the set

f(t, w(t), P ) :=
{

f(t, w(t), u) ∈ R
n : u ∈ P

}

. (18)

For constructing an optimal positional control strategy in the problem (3),
(9) under assumptions (f.1)–(f.3) and (σ.1), the methods from [6, Section 6]
and [11, Section 9] can be applied. Each of these methods gives a formula for
the optimal positional control strategy that has the same form as (15) but
with ∇αρ(t, w(·)) replaced by some extremal direction s◦(t, w(·)). To deter-
mine the direction s◦(t, w(·)), it is necessary to find a minimum point of the
value functional ρ as in [6, Section 6] or of the value functional ρ perturbed
by a certain Lyapunov–Krasovskii functional as in [11, Section 9] over some
specific compact set Θ(t, w(·)) ⊂ ACα([0, t],Rn). The method for constructing
an optimal positional control strategy proposed in the present paper does not
require solving any optimization problems to select the desired extremal di-
rections. The basis of the method is Theorem 3.3 and a property of directional
differentiability of order α of the value functional ρ.

We say that a functional ϕ : G → R is differentiable of order α at a point
(t, w(·)) ∈ G0 in a direction f ∈ R

n if the lower ∂α−{ϕ(t, w(·)) | f} and upper
∂α+{ϕ(t, w(·)) | f} directional derivatives of order α are finite and coincide
with each other. In this case, the derivative of order α of the functional ϕ at
the point (t, w(·)) in the direction f is given by

∂α{ϕ(t, w(·)) | f} := lim
δ→0+

ϕ(t+ δ, x
(f)
t+δ(· | t, w(·))) − ϕ(t, w(·))

δ
.

Let us note that, if the functional ϕ is ci-differentiable of order α at the point
(t, w(·)), then it is differentiable of order α at this point in every direction
f ∈ R

n and the equality below holds:

∂α{ϕ(t, w(·)) | f} = ∂αt ϕ(t, w(·)) + 〈∇αϕ(t, w(·)), f〉. (19)

In addition, we say that a functional ϕ : G → R is directionally differentiable

of order α if it is differentiable of order α at every point (t, w(·)) ∈ G0 and in
every direction f ∈ R

n.
Thus, our first goal is to prove that, under some additional assumptions on

the functions f and σ, the value functional ρ of the optimal control problem
(3), (9) is directionally differentiable of order α. The scheme of the proof is
borrowed from, e.g., [27] and [28, Theorem 1] (see also [29, Theorem II.6])
and is briefly outlined in Section 1 above. It seems convenient to begin with a
general result on directional differentiability of order α of a lower envelope of
a family of uniformly directionally differentiable of order α functionals, which
will be applied at the final step of the proof.
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4 Directional Differentiability of Order α of Envelope of Family of
Functionals

Let us consider a compact metric space L (the space of parameters) and a
continuous functional ψ : G0 × L → R. Let us assume that the functional ψ
possesses the following property of uniform directional differentiability of order

α: for any (t, w(·)) ∈ G0 and any ℓ ∈ L, there exist ∂αt ψ(t, w(·), ℓ) ∈ R and
∇αψ(t, w(·), ℓ) ∈ R

n such that, for every direction f ∈ R
n,

∣

∣

∣

∣

ψ(t+ δ, x
(f)
t+δ(· | t, w(·)), ℓ)− ψ(t, w(·), ℓ)

δ

− ∂αt ψ(t, w(·), ℓ) − 〈∇αψ(t, w(·), ℓ), f〉

∣

∣

∣

∣

→ 0 as δ → 0+ (20)

uniformly in the parameter ℓ ∈ L, where x
(f)
t+δ(· | t, w(·)) is the restriction of

the function x(f)(· | t, w(·)) (see (16)) to the interval [0, t+ δ] (see (6)). Let us
assume also that, for every (t, w(·)) ∈ G0, the mappings below are continuous:

L ∋ ℓ 7→ ∂αt ψ(t, w(·), ℓ) ∈ R, L ∋ ℓ 7→ ∇αψ(t, w(·), ℓ) ∈ R
n. (21)

Now, let us suppose that a functional ϕ : G→ R is given such that

ϕ(t, w(·)) = min
ℓ∈L

ψ(t, w(·), ℓ) ∀(t, w(·)) ∈ G0, (22)

i.e., the functional ϕ (more precisely, its restriction to G0) is the lower envelope
of the family of functionals G0 ∋ (t, w(·)) 7→ ψ(t, w(·), ℓ) ∈ R parameterized
by ℓ ∈ L. Let us note that, due to compactness of the space L and continuity
of the functional ψ, for every (t, w(·)) ∈ G0, the set

L◦(t, w(·)) :=
{

ℓ ∈ L : ψ(t, w(·), ℓ) = ϕ(t, w(·))
}

is non-empty and compact. Moreover, the multivalued mapping

G0 ∋ (t, w(·)) 7→ L◦(t, w(·)) ⊂ L (23)

is upper semicontinuous, i.e., if (ti, wi(·)) ∈ G0 and ℓi ∈ L◦(ti, wi(·)) for all
i ∈ N are such that (ti, wi(·)) → (t0, w0(·)) ∈ G0 and ℓi → ℓ0 ∈ L as i → ∞,
then ℓ0 ∈ L◦(t0, w0(·)).

Theorem 4.1 Under the assumptions made above in this section, the func-

tional ϕ is directionally differentiable of order α. In addition, for every point

(t, w(·)) ∈ G0 and every direction f ∈ R
n, the following equality is valid:

∂α{ϕ(t, w(·)) | f} = min
ℓ∈L◦(t,w(·))

(

∂αt ψ(t, w(·), ℓ) + 〈∇αψ(t, w(·), ℓ), f〉
)

. (24)
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Proof We follow the scheme of the proof of [21, Proposition 3].
Let (t, w(·)) ∈ G0 and f ∈ R

n be fixed. Let us note that the minimum in
(24) is attained owing to compactness of the set L◦(t, w(·)) and continuity of
mappings (21).

In accordance with definition (17) of the lower derivative of order α of the
functional ϕ at the point (t, w(·)) in the direction f , let us choose a sequence
{δi}i∈N ⊂ (0, T − t) such that δi → 0 and

ϕ(t+ δi, wi(·))− ϕ(t, w(·))

δi
→ ∂α−{ϕ(t, w(·)) | f} as i→ ∞,

where we denote wi(·) := x
(f)
t+δi

(· | t, w(·)) for all i ∈ N. For every i ∈ N, let us
take an arbitrary ℓi ∈ L◦(t+δi, wi(·)). Since the metric space L is compact, we
can assume that there exists ℓ0 ∈ L such that ℓi → ℓ0 as i→ ∞. In addition,
continuity of mapping (5) and the convergence δi → 0 as i → ∞ imply that
(t+ δi, wi(·)) → (t, w(·)) as i→ ∞. Hence, due to upper semicontinuity of the
multivalued mapping (23), we obtain that ℓ0 ∈ L◦(t, w(·)). Further, in view of
(22), for any i ∈ N, we derive

ϕ(t+ δi, wi(·))− ϕ(t, w(·))

δi
≥
ψ(t+ δi, wi(·), ℓi)− ψ(t, w(·), ℓi)

δi
≥ ∂αt ψ(t, w(·), ℓi) + 〈∇αψ(t, w(·), ℓi), f〉

−

∣

∣

∣

∣

ψ(t+ δi, wi(·), ℓi)− ψ(t, w(·), ℓi)

δi
− ∂αt ψ(t, w(·), ℓi)− 〈∇αψ(t, w(·), ℓi), f〉

∣

∣

∣

∣

.

Passing to the limit as i→ ∞, owing to continuity of derivatives (21) and the
property of uniform directional differentiability of order α (see (20)), we get

∂α−{ϕ(t, x(·)) | f} ≥ ∂αt ψ(t, w(·), ℓ0) + 〈∇αψ(t, w(·), ℓ0), f〉

≥ min
ℓ∈L◦(t,w(·))

(

∂αt ψ(t, w(·), ℓ) + 〈∇αψ(t, w(·), ℓ), f〉
)

. (25)

On the other hand, using definition (17) of the upper derivative of order α
of ϕ at (t, w(·)) in the direction f , let us choose a sequence {δi}i∈N ⊂ (0, T − t)
such that δi → 0 and

ϕ(t+ δi, wi(·)) − ϕ(t, w(·))

δi
→ ∂α+{ϕ(t, w(·)) | f} as i→ ∞,

where we denote again wi(·) := x
(f)
t+δi

(· | t, w(·)) for all i ∈ N. Then, based on
(20) and (22), we derive

∂α+{ϕ(t, w(·)) | f} ≤ lim
i→∞

ψ(t+ δi, wi(·), ℓ)− ψ(t, w(·), ℓ)

δi

= ∂αt ψ(t, w(·), ℓ) + 〈∇αψ(t, w(·), ℓ), f〉

for all ℓ ∈ L◦(t, w(·)). Hence, we have

∂α+{ϕ(t, w(·)) | f} ≤ min
ℓ∈L◦(t,w(·))

(

∂αt ψ(t, w(·), ℓ) + 〈∇αψ(t, w(·), ℓ), f〉
)

. (26)
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Since ∂α+{ϕ(t, w(·)) | f} ≥ ∂α−{ϕ(t, w(·)) | f} due to (17), inequalities (25)
and (26) imply that ∂α+{ϕ(t, w(·)) | f} = ∂α−{ϕ(t, w(·)) | f} and that formula
(24) takes place. The theorem is proved. ⊓⊔

In order to apply Theorem 4.1 to our setting, we need to represent the value
functional ρ of the optimal control problem (3), (9) in form (22) for some space
of parameters L and functional ψ with the required properties. The desired
representation is based directly on definition (10) of ρ. Accordingly, one of the
difficulties that arise here is related to the appropriate compactness property
of the set of controls U(t, T ) and the corresponding continuous dependence
property of a motion x(· | t, w(·), u(·)) ∈ ACα([0, T ],Rn) of system (3) with
respect to a control u(·) ∈ U(t, T ). We overcome this difficulty by passing to
the use of relaxed controls.

5 Relaxed Controls

Since the right-hand side of the dynamic equation (3) is the same as in the case
of ordinary differential equations (i.e., when α = 1), we borrow the notion of a
relaxed control from the optimal control theory for the ordinary case without
any difference. The details can be found in, e.g., [30, Chapter IV] and [3, Part
3] (see also [19, Section 6.1]).

Let rpm(P ) be the set of all regular probability Borel measures on P (recall
that P is a compact subset of Rnu that describes the geometric constraints on
the control in system (3)). The set rpm(P ) is endowed with a metric such that,
given a sequence of measures {µi}i∈N ⊂ rpm(P ) and a measure µ0 ∈ rpm(P ),
the convergence µi → µ0 as i→ ∞ means that

∫

P

a(u)µi(du) →

∫

P

a(u)µ0(du) as i→ ∞ (27)

for all continuous functions a : P → R. The metric space rpm(P ) is compact.

Let us fix t ∈ [0, T ). A function b : [t, T ]× P → R is called a Carathéodory

function if it satisfies the following conditions: (i) for every τ ∈ [t, T ], the
function P ∋ u 7→ b(τ, u) ∈ R is continuous; (ii) for every u ∈ P , the function
[t, T ] ∋ τ 7→ b(τ, u) ∈ R is measurable; (iii) there is an integrable function
θ : [t, T ] → R such that |b(τ, u)| ≤ θ(τ) for all τ ∈ [t, T ] and all u ∈ P .
Let us denote by M(t, T ) the set of all (equivalence classes of) measurable
functions µ : [t, T ] → rpm(P ). Let us note that, for any Carathéodory function
b : [t, T ]× P → R and any function µ(·) ∈ M(t, T ), the function

c(τ) :=

∫

P

b(τ, u)µ(τ, du) for a.e. τ ∈ [t, T ]

is integrable. Here and below, we write µ(τ, du) instead of µ(τ)(du) for conve-
nience. The set M(t, T ) is endowed with a metric such that, given a sequence
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of functions {µi(·)}i∈N ⊂ M(t, T ) and a function µ0(·) ∈ M(t, T ), the conver-
gence µi(·) → µ0(·) as i→ ∞ means that

∫ T

t

∫

P

b(τ, u)µi(τ, du) dτ →

∫ T

t

∫

P

b(τ, u)µ0(τ, du) dτ as i→ ∞. (28)

for all Carathéodory functions b : [t, T ]×P → R. The metric space M(t, T ) is
compact.

Any function µ(·) ∈ M(t, T ) is considered as a relaxed control on the time
interval [t, T ]. In order to embed the set U(t, T ) of (usual) controls into the
space M(t, T ), every function u(·) ∈ U(t, T ) is associated with the function
µu(·)(·) ∈ M(t, T ) such that

µu(·)(τ) := δu(τ) for a.e. τ ∈ [t, T ], (29)

where δu(τ) ∈ rpm(P ) is the Dirac measure at the point u(τ) ∈ P . The set

M∗(t, T ) :=
{

µu(·)(·) ∈ M(t, T ) : u(·) ∈ U(t, T )
}

(30)

is dense in M(t, T ).
By the function f from the right-hand side of the dynamic equation (3),

let us define the function f∗ : [0, T ]× R
n × rpm(P ) → R

n as follows:

f∗(τ, x, µ) :=

∫

P

f(τ, x, u)µ(du) ∀τ ∈ [0, T ] ∀x ∈ R
n ∀µ ∈ rpm(P ). (31)

Then, due to assumptions (f.1)–(f.3) on the function f and definition (27) of
convergence in the space rpm(P ), the function f∗ is well-defined and has the
properties listed below:

(f∗.1) The function f∗ is continuous.
(f∗.2) For any R ≥ 0, there exists λf ≥ 0 such that

‖f∗(τ, x, µ)− f∗(τ, x′, µ)‖ ≤ λf‖x− x′‖

for all τ ∈ [0, T ], all x, x′ ∈ B(R), and all µ ∈ rpm(P ).
(f∗.3) There exists cf ≥ 0 such that

‖f∗(τ, x, µ)‖ ≤ cf(1 + ‖x‖) ∀τ ∈ [0, T ] ∀x ∈ R
n ∀µ ∈ rpm(P ).

Let us note that we keep the notation for the numbers λf and cf in properties
(f∗.2) and (f∗.3) since these numbers can be taken the same as in conditions
(f.2) and (f.3).

A motion of system (3) generated from an initial position (t, w(·)) ∈ G0 by
a relaxed control µ(·) ∈ M(t, T ) is defined as a function x(·) ∈ X(t, w(·)) (see
(7)) such that (CDαx)(τ) = f∗(τ, x(τ), µ(τ)) for a.e. τ ∈ [t, T ]. As in the case
of (usual) controls u(·) ∈ U(t, T ) (see Section 2.4), it can be verified that such
a motion x(·) := x(· | t, w(·), µ(·)) exists and is unique. Moreover, this motion
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x(·) is a unique function from C([0, T ],Rn) that satisfies the initial condition
xt(·) = w(·) and the Volterra integral equation

x(τ) = a(τ | t, w(·)) +
1

Γ(α)

∫ τ

t

f∗(ξ, x(ξ), µ(ξ))

(τ − ξ)1−α
dξ ∀τ ∈ [t, T ]. (32)

For any (t, w(·)) ∈ G0 and any u(·) ∈ U(t, T ), taking into account that
f(τ, x, u(τ)) = f∗(τ, x, µu(·)(τ)) for a.e. τ ∈ [t, T ] and every x ∈ R

n according
to (29) and (31), we have x(· | t, w(·), u(·)) = x(· | t, w(·), µu(·)(·)). Therefore,
by definition (10) of the value functional ρ of the optimal control problem (3),
(9), and recalling definition (30) of the set M∗(t, T ), we get

ρ(t, w(·)) = inf
µ(·)∈M∗(t,T )

σ
(

x(T | t, w(·), µ(·))
)

∀(t, w(·)) ∈ G0. (33)

Let us prove that the dependence of a motion x(· | t, w(·), µ(·)) of system
(3) on the relaxed control µ(·) ∈ M(t, T ) is continuous.

Proposition 5.1 Under assumptions (f.1)–(f.3), the following mapping is

continuous for every (t, w(·)) ∈ G0:

M(t, T ) ∋ µ(·) 7→ x(· | t, w(·), µ(·)) ∈ ACα([0, T ],Rn).

Proof Let {µi(·)}i∈N0
⊂ M(t, T ) be such that µi(·) → µ0(·) as i → ∞. Here

and below, we denote N0 := N ∪ {0}. For every i ∈ N0, let us consider the
motion xi(·) := x(· | t, w(·), µi(·)) of system (3). It is required to show that
xi(·) → x0(·) as i→ ∞.

By the sublinear growth property (f∗.3), there exists R ≥ 0 such that
‖xi(·)‖[0,T ] ≤ R for all i ∈ N0 (see, e.g., [5, Proposition 7.1, item (i)]). Using
the local Lipschitz continuity property (f∗.2), let us take the corresponding
number λf ≥ 0. Based on (32), for any i ∈ N and any τ ∈ [t, T ], we derive

‖xi(τ) − x0(τ)‖ ≤
λf
Γ(α)

∫ τ

t

‖xi(ξ) − x0(ξ)‖

(τ − ξ)1−α
dξ

+

∥

∥

∥

∥

1

Γ(α)

∫ τ

t

f∗(ξ, x0(ξ), µi(ξ))

(τ − ξ)1−α
dξ −

1

Γ(α)

∫ τ

t

f∗(ξ, x0(ξ), µ0(ξ))

(τ − ξ)1−α
dξ

∥

∥

∥

∥

. (34)

For every i ∈ N0, let us define the function hi : [t, T ] → R
n by (see (31))

hi(τ) :=
1

Γ(α)

∫ τ

t

f∗(ξ, x0(ξ), µi(ξ))

(τ − ξ)1−α
dξ

=

∫ τ

t

∫

P

f(ξ, x0(ξ), u)

Γ(α)(τ − ξ)1−α
µi(ξ, du) dξ ∀τ ∈ [t, T ]. (35)

Let us fix τ ∈ (t, T ] and introduce the function b
[τ ] : [t, T ]×P → R

n as follows:

b
[τ ](ξ, u) :=







f(ξ, x0(ξ), u)

Γ(α)(τ − ξ)1−α
, if ξ ∈ [t, τ),

0, if ξ ∈ [τ, T ],



16 Mikhail Gomoyunov

for all u ∈ P . Note that the function b
[τ ] (more precisely, every correspond-

ing coordinate function) is a Carathéodory function in view of the continuity
assumption (f.1). Hence, recalling definition (28) of convergence in the space
M(t, T ), we get

hi(τ) =

∫ T

t

∫

P

b
[τ ](ξ, u)µi(ξ, du) dξ →

∫ T

t

∫

P

b
[τ ](ξ, u)µ0(τ, du) dξ = h0(τ)

as i → ∞. Consequently, and since hi(t) = 0 for all i ∈ N0, we conclude that
hi(τ) → h0(τ) as i → ∞ for all τ ∈ [t, T ]. In addition, for every i ∈ N0, we
derive ‖f∗(ξ, x0(ξ), µi(ξ))‖ ≤ cf (1 +R) for a.e. ξ ∈ [t, T ], where cf ≥ 0 is the
number from (f∗.3), and, therefore, the estimate below is valid (see, e.g., [7,
Proposition 2.1]):

‖hi(τ)− hi(τ
′)‖ ≤

2cf(1 +R)

Γ(α+ 1)
|τ − τ ′|α ∀τ, τ ′ ∈ [t, T ].

Thus, the functions hi(·) for all i ∈ N0 are equicontinuous, which together with
the pointwise convergence established above implies that {hi(·)}i∈N converges
to h0(·) as i→ ∞ uniformly on [t, T ] (see, e.g., [30, Theorem I.5.3]).

Now, let ε > 0 be given. Let us choose ε∗ > 0 such that ε∗Eα(λfT
α) ≤ ε,

where Eα is the Mittag-Leffler function (see, e.g., [15, Chapter 3]). Then, there
exists i∗ ∈ N such that ‖hi(τ) − h0(τ)‖ ≤ ε∗ for all i ∈ N with i ≥ i∗ and all
τ ∈ [t, T ]. Let i ∈ N with i ≥ i∗ be fixed. By virtue of (34) and (35), we have

‖xi(τ)− x0(τ)‖ ≤
λf
Γ(α)

∫ τ

t

‖xi(ξ)− x0(ξ)‖

(τ − ξ)1−α
dξ + ε∗ ∀τ ∈ [t, T ],

wherefrom, applying a Gronwall type inequality (see, e.g., [2, Lemma 6.19]),
we derive

‖xi(τ) − x0(τ)‖ ≤ ε∗Eα(λf (τ − t)α) ≤ ε ∀τ ∈ [t, T ].

Hence, taking into account that xi(τ) = w(τ) = x0(τ) for all τ ∈ [0, t], we
arrive at the estimate ‖xi(·) − x0(·)‖[0,T ] ≤ ε. Thus, xi(·) → x0(·) as i → ∞,
and the proof is complete. ⊓⊔

In particular, due to Proposition 5.1, continuity of the function σ (see as-
sumption (σ.1)), compactness of the spaceM(t, T ), and the fact that M∗(t, T )
is dense in M(t, T ), we have

inf
µ(·)∈M∗(t,T )

σ
(

x(T | t, w(·), µ(·))
)

= min
µ(·)∈M(t,T )

σ
(

x(T | t, w(·), µ(·))
)

for all (t, w(·)) ∈ G0. As a result (see (33)), we get the following representation
of the value functional ρ of the optimal control problem (3), (9):

ρ(t, w(·)) = min
µ(·)∈M(t,T )

σ
(

x(T | t, w(·), µ(·))
)

∀(t, w(·)) ∈ G0. (36)

Another difficulty that arises in applying Theorem 4.1 to our setting is
related to the fact that the space M(t, T ), over which the minimum is taken
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in (36), depends on the time variable t, while the space of parameters L in
(22) does not. We overcome this difficulty by making for every fixed initial
position (t, w(·)) ∈ G0 a change of the time variable in the dynamic equation
(3) that allows us to obtain the unified control interval [0, 1] instead of [t, T ].

6 Change of Time Variable

Let (t, w(·)) ∈ G0 be fixed. Let us denoteN := M(0, 1), where the metric space
M(0, 1) is defined in a similar way as M(t, T ) in Section 5. Let us introduce
the mapping π : M(t, T ) → N that assigns to each function µ(·) ∈ M(t, T )
the function ν(·) ∈ N such that

ν(ϑ) := µ(t+ ϑ(T − t)) for a.e. ϑ ∈ [0, 1]. (37)

Note that the mapping π is well-defined and one-to-one and its inverse π−1

assigns to each function ν(·) ∈ N the function µ(·) ∈ M(t, T ) such that
µ(τ) := ν((τ − t)/(T − t)) for a.e. τ ∈ [t, T ]. In addition, it follows directly
from the definition of convergence in the spaces M(t, T ) and N (see (28)) that
the mappings π and π−1 are continuous.

For every ν(·) ∈ N , let us consider the auxiliary Volterra integral equation

y(ϑ) = a(t+ ϑ(T − t) | t, w(·))

+
(T − t)α

Γ(α)

∫ ϑ

0

f∗(t+ ζ(T − t), y(ζ), ν(ζ))

(ϑ− ζ)1−α
dζ ∀ϑ ∈ [0, 1], (38)

where the function a(· | t, w(·)) is defined according to (8) and the function
f∗ is given by (31). By a solution of the integral equation (38), we mean a
function y(·) ∈ C([0, 1],Rn) that satisfies this equation.

Similarly to the proof of [12, Lemma 4.1], making the change of variables
ϑ := (τ − t)/(T − t) in the (original) integral equation (32), we obtain

Proposition 6.1 Under assumptions (f.1)–(f.3), for any (t, w(·)) ∈ G0 and

any ν(·) ∈ N , there exists a unique solution y(·) := y(· | t, w(·), ν(·)) of the

integral equation (38). Moreover, the equality

y(ϑ) = x(t+ ϑ(T − t)) ∀ϑ ∈ [0, 1]

holds, where x(·) := x(· | t, w(·), µ(·)) is the motion of system (3) generated

from the initial position (t, w(·)) by the relaxed control µ(·) := π−1(ν(·)).

Based on relation (36) and Proposition 6.1, we derive the following repre-
sentation of the value functional ρ of the optimal control problem (3), (9):

ρ(t, w(·)) = min
ν(·)∈N

σ
(

y(1 | t, w(·), ν(·))
)

∀(t, w(·)) ∈ G0. (39)

We see that this representation is of the form (22) with L := N and

ψ(t, w(·), ν(·)) := σ
(

y(1 | t, w(·), ν(·))
)

∀(t, w(·)) ∈ G0 ∀ν(·) ∈ N . (40)
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Thus, in order to apply Theorem 4.1, we need to establish the required con-
tinuity and directional differentiability properties of this functional ψ, which
mainly reduces to studying the corresponding properties of the mapping

G0 ×N ∋ ((t, w(·)), ν(·)) 7→ y(1 | t, w(·), ν(·)) ∈ R
n.

7 Continuity Properties

The goal of this section is to prove

Lemma 7.1 Let assumptions (f.1)–(f.3) hold. Then, the following mapping

is continuous:

G0 ×N ∋ ((t, w(·)), ν(·)) 7→ y(· | t, w(·), ν(·)) ∈ C([0, 1],Rn), (41)

where y(· | t, w(·), ν(·)) is the solution of the integral equation (38).

Proof 1. We first note that, for every fixed (t, w(·)) ∈ G0, the mapping

N ∋ ν(·) 7→ y(· | t, w(·), ν(·)) ∈ C([0, 1],Rn)

is continuous. Indeed, let {νi(·)}i∈N0
⊂ N be such that νi(·) → ν0(·) as i→ ∞.

For every i ∈ N0, let us consider the solution yi(·) := y(· | t, w(·), νi(·)) of the
integral equation (38) and the motion xi(·) := x(· | t, w(·), µi(·)) of system
(3) generated by the relaxed control µi(·) := π−1(νi(·)) (see (37)). Since the
mapping π−1 is continuous, we have µi(·) → µ0(·) as i → ∞, and, therefore,
xi(·) → x0(·) as i→ ∞ by Proposition 5.1. Consequently, taking into account
that yi(ϑ) = xi(t+ϑ(T − t)) for all ϑ ∈ [0, 1] and all i ∈ N0 due to Proposition
6.1, we conclude that yi(·) → y0(·) as i→ ∞.

2. Let us take an arbitrary compact set K ⊂ G0 and prove that, for every
ε > 0, there exists δ > 0 such that, for any (t, w(·)), (t′, w′(·)) ∈ K satisfying
the condition dist((t, w(·)), (t′, w′(·))) ≤ δ (see (4)) and any ν(·) ∈ N ,

‖y(· | t, w(·), ν(·)) − y(· | t′, w′(·), ν(·))‖[0,1] ≤ ε.

In view of property (f∗.3), there exists R ≥ 0 such that the inequality
‖x(· | t, w(·), µ(·))‖[0,T ] ≤ R is valid for all (t, w(·)) ∈ K and all µ(·) ∈ M(t, T )
(see, e.g., [5, Proposition 7.1, item (i)]). In particular, by Proposition 6.1, we
obtain ‖y(· | t, w(·), ν(·))‖[0,1] ≤ R for all (t, w(·)) ∈ K and all ν(·) ∈ N . Using
property (f∗.2), let us take the number λf ≥ 0 that corresponds to R.

Let ε > 0 be given. Let us choose ε∗ > 0 such that 4ε∗Eα(T
αλf ) ≤ ε,

where Eα denotes again the Mittag-Leffler function. Due to property (f∗.1),
there exists δ1 > 0 such that, for any τ , τ ′ ∈ [0, T ] with |τ − τ ′| ≤ δ1, any
x ∈ B(R), and any µ ∈ rpm(P ),

Tα‖f∗(τ, x, µ)− f∗(τ ′, x, µ)‖

Γ(α+ 1)
≤ ε∗.



Title Suppressed Due to Excessive Length 19

Further, according to [10, Lemma 3], the mapping

G0 ∋ (t, w(·)) 7→ a(· | t, w(·)) ∈ ACα([0, T ],Rn) (42)

is continuous, where the function a(· | t, w(·)) is defined by (8). Hence, owing
to compactness of the set K, we conclude that there exists δ2 > 0 such that

‖a(· | t, w(·)) − a(· | t′, w′(·))‖[0,T ] ≤ ε∗

for all (t, w(·)), (t′, w′(·)) ∈ K with dist((t, w(·)), (t′, w′(·))) ≤ δ2. In addition,
we obtain that the set {a(· | t, w(·)) ∈ ACα([0, T ],Rn) : (t, w(·)) ∈ K} is
compact, which implies that the functions a(· | t, w(·)) with (t, w(·)) ∈ K are
equicontinuous. Then, there exists δ3 > 0 such that, for any (t, w(·)) ∈ K and
any τ , τ ′ ∈ [0, T ] with |τ − τ ′| ≤ δ3,

‖a(τ | t, w(·)) − a(τ ′ | t, w(·))‖ ≤ ε∗.

Finally, let us take δ4 > 0 satisfying the condition

δα4 cf (1 +R)

Γ(α+ 1)
≤ ε∗,

where cf ≥ 0 is the number from property (f∗.3). Let us verify that the claim
holds for δ := mini∈1,4 δi > 0.

Let (t, w(·)), (t′, w′(·)) ∈ K with dist((t, w(·)), (t′, w′(·))) ≤ δ and ν(·) ∈ N
be fixed. Let us denote y(·) := y(· | t, w(·), ν(·)) and y′(·) := y(· | t′, w′(·), ν(·)).
According to (38), for any ϑ ∈ [0, 1], we have

‖y(ϑ)− y′(ϑ)‖ ≤ ‖a(t+ ϑ(T − t) | t, w(·)) − a(t′ + ϑ(T − t′) | t′, w′(·))‖

+
|(T − t)α − (T − t′)α|

Γ(α)

∫ ϑ

0

‖f∗(t+ ζ(T − t), y(ζ), ν(ζ))‖

(ϑ− ζ)1−α
dζ

+
(T − t′)α

Γ(α)

∫ ϑ

0

∥

∥

∥

∥

f∗(t+ ζ(T − t), y(ζ), ν(ζ))

(ϑ− ζ)1−α

−
f∗(t′ + ζ(T − t′), y′(ζ), ν(ζ))

(ϑ− ζ)1−α

∥

∥

∥

∥

dζ.

Let us estimate each of the terms from the right-hand side of this inequality
separately. For the first term, denoted by r(1), we derive

r(1) ≤ ‖a(t+ ϑ(T − t) | t, w(·)) − a(t′ + ϑ(T − t′) | t, w(·))‖

+ ‖a(t′ + ϑ(T − t′) | t, w(·)) − a(t′ + ϑ(T − t′) | t′, w′(·))‖

≤ 2ε∗.

For the second term, denoted by r(2), we obtain

r(2) ≤
|t− t′|αcf (1 +R)

Γ(α)

∫ ϑ

0

dζ

(ϑ− ζ)1−α
≤
δαcf (1 +R)

Γ(α+ 1)
≤ ε∗.
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For the third term, denoted by r(3), we get

r(3) ≤
Tαλf
Γ(α)

∫ ϑ

0

‖y(ζ)− y′(ζ)‖

(ϑ− ζ)1−α
dζ

+
Tα

Γ(α)

∫ ϑ

0

‖f∗(t+ ζ(T − t), y(ζ), ν(ζ)) − f∗(t′ + ζ(T − t′), y(ζ), ν(ζ))‖

(ϑ− ζ)1−α
dζ

≤
Tαλf
Γ(α)

∫ ϑ

0

‖y(ζ)− y′(ζ)‖

(ϑ− ζ)1−α
dζ + ε∗.

As a result, we arrive at the estimate

‖y(ϑ)− y′(ϑ)‖ ≤ 4ε∗ +
Tαλf
Γ(α)

∫ ϑ

0

‖y(ζ)− y′(ζ)‖

(ϑ− ζ)1−α
dζ ∀ϑ ∈ [0, 1].

Then, applying a Gronwall type inequality (see, e.g., [2, Lemma 6.19]), we
conclude that

‖y(ϑ)− y′(ϑ)‖ ≤ 4ε∗Eα(T
αλfϑ

α) ≤ ε ∀ϑ ∈ [0, 1],

which completes the proof of the claim.
3. At the final step, let us show that mapping (41) is continuous. Let

{((ti, wi(·)), νi(·))}i∈N0
⊂ G0 × N and ((ti, wi(·)), νi(·)) → ((t0, w0(·)), ν0(·))

as i→ ∞. Then, we have ‖y(· | t0, w0(·), νi(·)) − y(· | t0, w0(·), ν0(·))‖[0,1] → 0
as i → ∞ by the first part of the proof. Due to the second part of the proof,
considering the compact set K := {(ti, wi(·)) ∈ G0 : i ∈ N0}, we obtain that
‖y(· | ti, wi(·), νi(·)) − y(· | t0, w0(·), νi(·))‖[0,1] → 0 as i → ∞. Hence, we get
the desired convergence ‖y(· | ti, wi(·), νi(·))− y(· | t0, w0(·), ν0(·))‖[0,1] → 0 as
i→ ∞. The lemma is proved. ⊓⊔

Lemma 7.1 immediately implies

Corollary 7.1 Let assumptions (f.1)–(f.3) and (σ.1) hold. Then, the func-

tional ψ from (40) is continuous.

8 Directional Differentiability Properties

8.1 Auxiliary Notation

Let N ≥ cf be given, where cf ≥ 0 is the number from property (f∗.3). Let
us denote by XN the set of all functions x(·) ∈ ACα([0, T ],Rn) such that
‖x(0)‖ ≤ N and ‖(CDαx)(τ)‖ ≤ N(1+ ‖x(τ)‖) for a.e. τ ∈ [0, T ]. The set XN

is non-empty and compact (see, e.g., [10, Theorems 1 and 2]). In particular,
there exists RN ≥ 0 such that, for any x(·) ∈ XN ,

‖x(·)‖[0,T ] ≤ RN , ‖(CDαx)(τ)‖ ≤ RN for a.e. τ ∈ [0, T ]. (43)

Further, let us consider the set GN of all points (t, w(·)) ∈ G for each of
which there exists x(·) ∈ XN such that w(·) = xt(·) (see (6)). The set GN
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is non-empty and compact (see, e.g., the proof of [5, Proposition 10.2, item
(iv)]). Let us note that, due to property (f∗.3), for any (t, w(·)) ∈ GN ∩ G0

and any µ(·) ∈ M(t, T ), the motion x(·) := x(· | t, w(·), µ(·)) of system (3)
satisfies the inclusion x(·) ∈ XN (see, e.g., [10, Theorem 3]), and, consequently,
(τ, xτ (·)) ∈ GN for all τ ∈ [0, T ]. In addition, for any (t, w(·)) ∈ GN ∩G0, any
M ≥ 0, and any f ∈ B(M), the function x(f)(·) := x(f)(· | t, w(·)) defined by

(16) satisfies the inclusions x(f)(·) ∈ XN+M and (τ, x
(f)
τ (·)) ∈ GN+M for all

τ ∈ [0, T ]. Finally, for every η ∈ (0, T ), let us introduce the non-empty and
compact set

Gη
N

:=
{

(t, w(·)) ∈ GN : t ≤ T − η
}

.

It is clear that the union of XN for all N ≥ cf gives ACα([0, T ],Rn), and,
therefore, the union of Gη

N for all N ≥ cf and all η ∈ (0, T ) coincides with G0.
In particular, from Proposition 6.1 and Lemma 7.1, we derive

Corollary 8.1 Let assumptions (f.1)–(f.3) hold, and let N ≥ cf , M ≥ 0,
and η ∈ (0, T ). Then, for any (t, w(·)) ∈ Gη

N , any f ∈ B(M), any ν(·) ∈ N ,

and any δ ∈ [0, η/2], the inequality below is valid:

‖y(· | t+ δ, x
(f)
t+δ(· | t, w(·)), ν(·))‖[0,1] ≤ RN+M , (44)

where y(· | t + δ, x
(f)
t+δ(· | t, w(·)), ν(·)) is the solution of the integral equation

(38). In addition,

‖y(· | t+ δ, x
(f)
t+δ(· | t, w(·)), ν(·)) − y(· | t, w(·), ν(·))‖[0,1] → 0 (45)

as δ → 0+ uniformly in (t, w(·)) ∈ Gη
N , f ∈ B(M), and ν(·) ∈ N .

Proof 1. Let (t, w(·)) ∈ Gη
N , f ∈ B(M), ν(·) ∈ N , and δ ∈ [0, η/2] be fixed.

Let us put µ(·) := π−1(ν(·)) (see (37)) and consider the corresponding motion

x(·) := x(· | t+ δ, x
(f)
t+δ(· | t, w(·)), µ(·)) of system (3). Taking into account that

(t + δ, x
(f)
t+δ(· | t, w(·))) ∈ GN+M ∩ G0, we obtain x(·) ∈ XN+M , and, hence,

‖x(·)‖[0,T ] ≤ RN+M . Then, applying Proposition 6.1, for any ϑ ∈ [0, 1], we get

‖y(ϑ | t+ δ, x
(f)
t+δ(· | t, w(·)), ν(·))‖ = ‖x(t+ δ + ϑ(T − t− δ))‖ ≤ RN+M .

2. Due to continuity of mapping (42) and definition (16) of the function
x(f)(· | t, w(·)), the mapping

Gη
N ×B(M) ∋ ((t, w(·)), f) 7→ x(f)(· | t, w(·)) ∈ ACα([0, T ],Rn)

is continuous. Therefore, by continuity of mapping (5), the mapping

[0, η/2]×Gη
N × B(M) ∋ (δ, (t, w(·)), f) 7→ (t+ δ, x

(f)
t+δ(· | t, w(·))) ∈ G

is continuous. Consequently, it follows from Lemma 7.1 that the mapping

[0, η/2]×Gη
N ×B(M)×N ∋ (δ, (t, w(·)), f, ν(·))

7→ y(· | t+ δ, x
(f)
t+δ(· | t, w(·)), ν(·)) ∈ C([0, 1],Rn)
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is continuous. Then, for any (t, w(·)) ∈ Gη
N , any f ∈ B(M), and any ν(·) ∈ N ,

since x
(f)
t (· | t, w(·)) = w(·) by (16), we conclude that convergence (45) takes

place. Moreover, recalling that the sets Gη
N , B(M), and N are compact, we

obtain that this convergence is uniform (see, e.g., [30, Theorem I.2.15]). ⊓⊔

8.2 Directional Differentiability of Solutions of Auxiliary Integral Equation

From now on, let us assume that the function f from the right-hand side of
the dynamic equation (3) satisfies the following additional condition:

(f.4) The partial derivatives

∂f

∂τ
: [0, T ]× R

n × P → R
n,

∂f

∂x
: [0, T ]× R

n × P → R
n×n

exist and are continuous. In the cases τ = 0 and τ = T , the partial deriva-
tive ∂f/∂τ is understood as the corresponding one-sided derivative.

Then, in particular, the function f∗ given by (31) possesses the property below:

(f∗.4) For any τ ∈ [0, T ], any x ∈ R
n, and any µ ∈ rpm(P ), the equalities

∂f∗

∂τ
(τ, x, µ) =

∫

P

∂f

∂τ
(τ, x, u)µ(du),

∂f∗

∂x
(τ, x, µ) =

∫

P

∂f

∂x
(τ, x, u)µ(du)

(46)
hold, and, moreover, the mappings ∂f∗/∂τ : [0, T ] × R

n × rpm(P ) → R
n

and ∂f∗/∂x : [0, T ]× R
n × rpm(P ) → R

n×n are continuous.

Let us note also that condition (f.4) implies condition (f.2).
Let C1−α((0, 1],Rn) be the set of all continuous functions q : (0, 1] → R

n

such that the function (0, 1] ∋ ϑ 7→ ϑ1−α‖q(ϑ)‖ is bounded. In a similar way,
let us introduce the set C1−α((0, 1],Rn×n).

Let (t, w(·)) ∈ G0 be fixed. Let us denote

q(ϑ) := −
(1− α)(1− ϑ)

Γ(α)

∫ t

0

(CDαw)(ξ)

(t+ ϑ(T − t)− ξ)2−α
dξ,

Q(ϑ) :=
Idn

Γ(α)ϑ1−α(T − t)1−α
∀ϑ ∈ (0, 1], (47)

where Idn ∈ R
n×n is the identity matrix. Note that q(·) ∈ C1−α((0, 1],Rn)

and Q(·) ∈ C1−α((0, 1],Rn×n) (see, e.g., [12, Lemma 3]). Further, let ν(·) ∈ N
be also fixed. Let us take the corresponding solution y(·) := y(· | t, w(·), ν(·))
of integral equation (38), denote

A(ϑ, u) := (T − t)α
∂f

∂x
(t+ ϑ(T − t), y(ϑ), u),

b(ϑ, u) := (1− ϑ)(T − t)α
∂f

∂τ
(t+ ϑ(T − t), y(ϑ), u)

−
αf(t+ ϑ(T − t), y(ϑ), u)

(T − t)1−α
∀ϑ ∈ [0, 1] ∀u ∈ P, (48)
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and, accordingly, for any ϑ ∈ [0, 1] and any µ ∈ rpm(P ), put

A∗(ϑ, µ) :=

∫

P

A(ϑ, u)µ(du), b∗(ϑ, µ) :=

∫

P

b(ϑ, u)µ(du). (49)

The functions A : [0, 1] × P → R
n×n and b : [0, 1] × P → R

n are continuous
in view of assumptions (f.1) and (f.4), which, in particular, implies that the
functions A∗ : [0, 1]× rpm(P ) → R

n×n and b∗ : [0, 1]× rpm(P ) → R
n are well-

defined and continuous. Let us consider two linear Volterra integral equations

z(ϑ) = q(ϑ) +
1

Γ(α)

∫ ϑ

0

A∗(ζ, ν(ζ))z(ζ) + b∗(ζ, ν(ζ))

(ϑ− ζ)1−α
dζ ∀ϑ ∈ (0, 1] (50)

and

Z(ϑ) = Q(ϑ) +
1

Γ(α)

∫ ϑ

0

A∗(ζ, ν(ζ))Z(ζ)

(ϑ− ζ)1−α
dζ ∀ϑ ∈ (0, 1]. (51)

By a solution of equation (50), we mean a function z(·) ∈ C1−α((0, 1],Rn)
satisfying this equation. Arguing similarly to the proof of [12, Proposition 1],
it can be shown that such a solution z(·) exists and is unique. Let us denote
it by z(·) := z(· | t, w(·), ν(·)). Similarly, let us consider the unique solution
Z(·) := Z(· | t, w(·), ν(·)) ∈ C1−α((0, 1],Rn×n) of equation (51).

Lemma 8.1 Let assumptions (f.1), (f.3), and (f.4) hold and let N ≥ cf ,
M ≥ 0, and η ∈ (0, T ). Then, there is λy ≥ 0 such that, for any (t, w(·)) ∈ Gη

N ,

any f ∈ B(M), any ν(·) ∈ N , any δ ∈ (0, η/2], and any ϑ ∈ (0, 1],

∥

∥

∥

∥

y(ϑ | t+ δ, x
(f)
t+δ(· | t, w(·)), ν(·)) − y(ϑ | t, w(·), ν(·))

δ

∥

∥

∥

∥

≤
λy
ϑ1−α

, (52)

where x
(f)
t+δ(· | t, w(·)) is the restriction of x(f)(· | t, w(·)) (see (16)) to [0, t+ δ]

(see (6)) and y(· | t + δ, x
(f)
t+δ(· | t, w(·)), ν(·)) is the solution of the integral

equation (38). Moreover,

∥

∥

∥

∥

y(1 | t+ δ, x
(f)
t+δ(· | t, w(·)), ν(·)) − y(1 | t, w(·), ν(·))

δ

− z(1 | t, w(·), ν(·)) − Z(1 | t, w(·), ν(·))f

∥

∥

∥

∥

→ 0 as δ → 0+

uniformly in (t, w(·)) ∈ Gη
N , f ∈ B(M), and ν(·) ∈ N .

Proof We follow the lines of the proofs of [12, Lemmas 2 and 4–6]. Therefore,
in some places, we omit details and give only the corresponding references.

1. Considering the number RN+M ≥ 0, determined in accordance with
(43), and using property (f∗.4), let us choose λ∗f ≥ 0 such that

‖f∗(τ, x, µ) − f∗(τ ′, x′, µ)‖ ≤ λ∗f (|τ − τ ′|+ ‖x− x′‖)
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for all τ , τ ′ ∈ [0, T ], all x, x′ ∈ B(RN+M ), and all µ ∈ rpm(P ). Let us put

λa :=
RN + 21−αM

Γ(α)η1−α
, λ∗y := Γ(α)λa +

21−αcf (1 +RN+M )

η1−α
+
Tαλ∗f
α

,

and λy := λ∗yEα,α(T
αλ∗f ), where Eα,α is the two-parametric Mittag-Leffler

function (see, e.g., [15, Chapter 4]). Let us fix (t, w(·)) ∈ Gη
N , f ∈ B(M), and

ν(·) ∈ N . For any δ ∈ [0, η/2] and any ϑ ∈ [0, 1], let us denote (see (8))

a(δ)(ϑ) := a(t+ δ + ϑ(T − t− δ) | t+ δ, x
(f)
t+δ(· | t, w(·))),

y(δ)(ϑ) := y(ϑ | t+ δ, x
(f)
t+δ(· | t, w(·)), ν(·)). (53)

Let δ ∈ [0, η/2] be fixed. Arguing as in the proof of [12, Lemma 2], we derive

‖a(δ)(ϑ)− a(0)(ϑ)‖ ≤
RN (1 − ϑ)δ

Γ(α)ϑ1−α(T − t)1−α
+

Mδ

Γ(α)ϑ1−α(T − t− δ)1−α

≤
λaδ

ϑ1−α
∀ϑ ∈ (0, 1]. (54)

Further, based on (38), (44), and (54), similarly to the proof of [12, Lemma 5,
item (iii)], we obtain

‖y(δ)(ϑ)− y(0)(ϑ)‖ ≤
λ∗yδ

Γ(α)ϑ1−α
+
Tαλ∗f
Γ(α)

∫ ϑ

0

‖y(δ)(ζ)− y(0)(ζ)‖

(ϑ− ζ)1−α
dζ

for all ϑ ∈ (0, 1]. Hence, applying a Gronwall type inequality (see, e.g., [12,
Corollary 1]), we get

‖y(δ)(ϑ)− y(0)(ϑ)‖ ≤
λ∗yEα,α(T

αλ∗f )δ

ϑ1−α
=

λyδ

ϑ1−α
∀ϑ ∈ (0, 1],

which gives (52).
2. Let us prove the second part of the lemma. Let us fix (t, w(·)) ∈ Gη

N ,
f ∈ B(M), and ν(·) ∈ N . Let us consider the functions q(·) and Q(·) given by
(47) and the solutions z(·) := z(· | t, w(·), ν(·)) and Z(·) := Z(· | t, w(·), ν(·))
of the integral equations (50) and (51), respectively. For any δ ∈ (0, η/2] and
any ϑ ∈ (0, 1], using the notation introduced in (53), let us put

r(δ)a (ϑ) :=

∥

∥

∥

∥

a(δ)(ϑ)− a(0)(ϑ)

δ
− q(ϑ)−Q(ϑ)f

∥

∥

∥

∥

,

r(δ)y (ϑ) :=

∥

∥

∥

∥

y(δ)(ϑ)− y(0)(ϑ)

δ
− z(ϑ)− Z(ϑ)f

∥

∥

∥

∥

.

Let δ ∈ (0, η/2] and ϑ ∈ (0, 1] be fixed. Arguing as in the proof of [12, Lemma
4, equality (5.5)], we obtain

r(δ)a (ϑ) ≤
RN + 2M

Γ(α)

(

1

ϑ1−α(T − t− δ)1−α
−

1

(δ + ϑ(T − t− δ))1−α

)

.
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Since the function in the parentheses is increasing in t ∈ [0, T − η], we have

r(δ)a (ϑ) ≤
RN + 2M

Γ(α)

(

1

ϑ1−α(η − δ)1−α
−

1

(δ + ϑ(η − δ))1−α

)

(55)

and, in particular,

r(δ)a (1) ≤
RN + 2M

Γ(α)

(

1

(η − δ)1−α
−

1

η1−α

)

. (56)

Based on (55), similarly to the proof of [12, Lemma 4, equality (5.6)], we derive

∫ 1

0

r
(δ)
a (ζ)

(1− ζ)1−α
dζ

≤
RN + 2M

Γ(α)(η − δ)1−α

(
∫ 1

0

dζ

(1− ζ)1−αζ1−α
−

∫ 1

0

dζ

(1 − ζ)1−α
(

δ
η−δ

+ ζ
)1−α

)

≤
RN + 2M

Γ(α)(η − δ)1−α

(

B(α, α)

(

1−

(

1 +
δ

η − δ

)2α−1)

+
1

α

(

δ

η − δ

)α)

, (57)

where B is the beta-function. Let us note that the functions from the right-
hand sides of estimates (56) and (57) do not depend on a particular choice of
(t, w(·)) and f and tend to zero as δ → 0+. Hence, we conclude that

r(δ)a (1) → 0,

∫ 1

0

r
(δ)
a (ζ)

(1 − ζ)1−α
dζ → 0 as δ → 0+ (58)

uniformly in (t, w(·)) ∈ Gη
N and f ∈ B(M).

3. Let us consider the set Ω := [0, T − η/2]× [0, 1]×B(RN+M )× rpm(P )
and the function

ω∗(τ, ϑ, x, µ) := (T − τ)αf∗(τ + ϑ(T − τ), x, µ) ∀(τ, ϑ, x, µ) ∈ Ω.

By properties (f∗.1) and (f∗.4), the function ω∗ is continuous together with
its partial derivatives (in this connection, see (31), (46), (48), and (49))

∂ω∗

∂τ
(τ, ϑ, x, µ) = (1 − ϑ)(T − τ)α

∂f∗

∂τ
(τ + ϑ(T − τ), x, µ)

−
αf∗(τ + ϑ(T − τ), x, µ)

(T − τ)1−α
,

∂ω∗

∂x
(τ, ϑ, x, µ) = (T − τ)α

∂f∗

∂x
(τ + ϑ(T − τ), x, µ) ∀(τ, ϑ, x, µ) ∈ Ω.

Since the set Ω is compact, there exists R ≥ 0 such that

∥

∥

∥

∥

∂ω∗

∂x
(τ, ϑ, x, µ)

∥

∥

∥

∥

≤ R ∀(τ, ϑ, x, µ) ∈ Ω.
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4. Now, let ε > 0 be given. Due to the uniform convergence (58), there
exists δ1 ∈ (0, η/2] such that, for any (t, w(·)) ∈ Gη

N , any f ∈ B(M), and any
δ ∈ (0, δ1],

r(δ)a (1) +REα,α(R)

∫ 1

0

r
(δ)
a (ζ)

(1− ζ)1−α
dζ ≤

ε

2
.

Let us choose κ > 0 from the condition

κEα,α(R)(1 + λy)B(α, α) ≤
ε

2

and take χ > 0 such that, for any (τ, ϑ, x, µ), (τ ′, ϑ, x′, µ) ∈ Ω with |τ−τ ′| ≤ χ
and ‖x− x′‖ ≤ χ,

∥

∥

∥

∥

∂ω∗

∂τ
(τ, ϑ, x, µ)−

∂ω∗

∂τ
(τ ′, ϑ, x′, µ)

∥

∥

∥

∥

≤ κ,

∥

∥

∥

∥

∂ω∗

∂x
(τ, ϑ, x, µ)−

∂ω∗

∂x
(τ ′, ϑ, x′, µ)

∥

∥

∥

∥

≤ κ.

By Corollary 8.1, there exists δ2 ∈ (0, η/2] such that, for any (t, w(·)) ∈ Gη
N ,

any f ∈ B(M), any ν(·) ∈ N , and any δ ∈ (0, δ2],

‖y(δ)(·)− y(0)(·)‖[0,1] ≤ χ.

Let us put δ∗ := min{δ1, δ2, χ} > 0.
Let (t, w(·)) ∈ Gη

N , f ∈ B(M), ν(·) ∈ N , and δ ∈ (0, δ∗] be fixed. Then,
arguing as in the proof of [12, Lemma 6], we derive

r(δ)y (ϑ) ≤ r(δ)a (ϑ) +
κ(1 + λy)B(α, α)

Γ(α)ϑ1−α
+

R

Γ(α)

∫ ϑ

0

r
(δ)
y (ζ)

(ϑ− ζ)1−α
dζ ∀ϑ ∈ (0, 1].

Hence, noting that r
(δ)
a (·), r

(δ)
y (·) ∈ C1−α((0, 1],R) and applying a Gronwall

type inequality (see, e.g., [12, Corollary 1]), we obtain

r(δ)y (1) ≤ κEα,α(R)(1 + λy)B(α, α) + r(δ)a (1) +REα,α(R)

∫ 1

0

r
(δ)
a (ζ)

(1− ζ)1−α
dζ

≤ ε,

which completes the proof of the lemma. ⊓⊔
Let us prove a continuity dependence property of solutions z(· | t, w(·), ν(·))

and Z(· | t, w(·), ν(·)) of the integral equations (50) and (51) with respect to
the parameter ν(·) ∈ N .

Lemma 8.2 Let assumptions (f.1), (f.3), and (f.4) hold. Then, for every

(t, w(·)) ∈ G0, the following mappings are continuous:

N ∋ ν(·) 7→ z(1 | t, w(·), ν(·)) ∈ R
n,

N ∋ ν(·) 7→ Z(1 | t, w(·), ν(·)) ∈ R
n×n. (59)
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Proof We prove continuity of the first mapping from (59) only, since continuity
of the second one can be verified in a similar way. Let {νi(·)}i∈N0

⊂ N be such
that νi(·) → ν0(·) as i→ ∞ and let zi(·) := z(· | t, w(·), νi(·)) for all i ∈ N0. It
is required to show that zi(1) → z0(1) as i→ ∞.

For every i ∈ N0, let us consider the solution yi(·) := y(· | t, w(·), νi(·))
of the integral equation (38) and introduce the corresponding functions Ai, bi
and A∗

i , b
∗
i according to (48) and (49), respectively. Due to assumptions (f.1)

and (f.4) and since yi(·) → y0(·) as i → ∞ by Lemma 7.1, we obtain that
‖Ai(ϑ, u) − A0(ϑ, u)‖ → 0 and ‖bi(ϑ, u) − b0(ϑ, u)‖ → 0 as i → ∞ uniformly
in ϑ ∈ [0, 1] and u ∈ P , and, hence,

‖A∗
i (ϑ, µ)−A∗

0(ϑ, µ)‖ → 0, ‖b∗i (ϑ, µ)− b∗0(ϑ, µ)‖ → 0 as i→ ∞ (60)

uniformly in ϑ ∈ [0, 1] and µ ∈ rpm(P ). In particular, there is R ≥ 0 such that

‖A∗
i (ϑ, µ)‖ ≤ R ∀ϑ ∈ [0, 1] ∀µ ∈ rpm(P ) ∀i ∈ N0.

Based on (50), for any i ∈ N0 and any ϑ ∈ (0, 1], we derive

‖zi(ϑ)− z0(ϑ)‖ =

∥

∥

∥

∥

1

Γ(α)

∫ ϑ

0

A∗
i (ζ, νi(ζ))zi(ζ) + b∗i (ζ, νi(ζ))

(ϑ− ζ)1−α
dζ

−
1

Γ(α)

∫ ϑ

0

A∗
0(ζ, ν0(ζ))z0(ζ) + b∗0(ζ, ν0(ζ))

(ϑ− ζ)1−α
dζ

∥

∥

∥

∥

≤
R

Γ(α)

∫ ϑ

0

‖zi(ζ) − z0(ζ)‖

(ϑ− ζ)1−α
dζ + r

(1)
i (ϑ) + r

(2)
i (ϑ),

where we denote

r
(1)
i (ϑ) :=

1

Γ(α)

∫ ϑ

0

‖A∗
i (ζ, νi(ζ))−A∗

0(ζ, νi(ζ))‖‖z0(ζ)‖

(ϑ− ζ)1−α
dζ

+
1

Γ(α)

∫ ϑ

0

‖b∗i (ζ, νi(ζ)) − b∗0(ζ, νi(ζ))‖

(ϑ− ζ)1−α
dζ,

r
(2)
i (ϑ) :=

∥

∥

∥

∥

1

Γ(α)

∫ ϑ

0

A∗
0(ζ, νi(ζ))z0(ζ) + b∗0(ζ, νi(ζ))

(ϑ− ζ)1−α
dζ

−
1

Γ(α)

∫ ϑ

0

A∗
0(ζ, ν0(ζ))z0(ζ) + b∗0(ζ, ν0(ζ))

(ϑ− ζ)1−α
dζ

∥

∥

∥

∥

.

Now, let ε > 0 be given. Let us choose ε∗ > 0 from the condition

ε∗Eα,α(R)

(

B(α, α) +
1

α
+ 1

)

≤ ε,

where Eα,α denotes again the two-parametric Mittag-Leffler function. In view
of the inclusion z0(·) ∈ C1−α((0, 1],Rn) and the uniform convergence (60),
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there exists i1 ∈ N such that, for any i ∈ N with i ≥ i1 and any ϑ ∈ (0, 1],

r
(1)
i (ϑ) ≤

ε∗
Γ(α)

∫ ϑ

0

dζ

(ϑ− ζ)1−αζ1−α
+

ε∗
Γ(α)

∫ ϑ

0

dζ

(ϑ− ζ)1−α

≤
ε∗

Γ(α)ϑ1−α

(

B(α, α) +
1

α

)

.

Further, for every i ∈ N0, let us consider the auxiliary function

hi(ϑ) :=
ϑ1−α

Γ(α)

∫ ϑ

0

A∗
0(ζ, νi(ζ))z0(ζ) + b∗0(ζ, νi(ζ))

(ϑ− ζ)1−α
dζ ∀ϑ ∈ [0, 1].

Let us fix ϑ ∈ (0, 1] and introduce the function b
[ϑ] : [0, 1]× P → R

n by

b
[ϑ](ζ, u) :=







ϑ1−α(A0(ζ, u)z0(ζ) + b0(ζ, u))

Γ(α)(ϑ − ζ)1−α
, if ζ ∈ (0, ϑ),

0, if ζ ∈ {0} ∪ [ϑ, 1],

for all u ∈ P . Note that the function b
[ϑ] is a Carathéodory function due to

continuity of the functions A0 and b0 and the inclusion z0(·) ∈ C((0, 1],Rn).
Therefore, by definition (28) of convergence in N , we have

hi(ϑ) =

∫ 1

0

∫

P

b
[ϑ](ζ, u)νi(ζ, du) dζ →

∫ 1

0

∫

P

b
[ϑ](ζ, u)ν0(ζ, du) dζ = h0(ϑ)

as i → ∞. Consequently, and since hi(0) = 0 for all i ∈ N0, we conclude
that hi(ϑ) → h0(ϑ) as i → ∞ for all ϑ ∈ [0, 1]. In addition, by continuity of
the functions A∗

0 and b∗0 and the inclusion z0(·) ∈ C((0, 1],Rn), there exists
κ ≥ 0 such that ζ1−α‖A∗

0(ζ, µ)z0(ζ) + b∗0(ζ, µ)‖ ≤ κ for all ζ ∈ (0, 1] and all
µ ∈ rpm(P ), and, then, it follows from [7, Corollary 2.1] that

‖hi(ϑ) − hi(ϑ
′)‖ ≤

2κ

Γ(α+ 1)

(

1 +
sin(απ)

απ

)

|ϑ− ϑ′|α

for all i ∈ N0 and all ϑ, ϑ′ ∈ [0, 1]. Hence, the functions hi(·) for all i ∈ N0

are equicontinuous, which together with the pointwise convergence established
above implies that {hi(·)}i∈N converges to h0(·) as i → ∞ uniformly on [0, 1]
(see, e.g., [30, Theorem I.5.3]). Thus, there exists i2 ∈ N such that, for any
i ∈ N with i ≥ i2 and any ϑ ∈ (0, 1],

r
(2)
i (ϑ) =

‖hi(ϑ)− h0(ϑ)‖

ϑ1−α
≤

ε∗
Γ(α)ϑ1−α

.

As a result, for any i ∈ N with i ≥ max{i1, i2}, we get

‖zi(ϑ)− z0(ϑ)‖ ≤
ε∗

Γ(α)ϑ1−α

(

B(α, α)+
1

α
+1

)

+
R

Γ(α)

∫ ϑ

0

‖zi(ζ)− z0(ζ)‖

(ϑ− ζ)1−α
dζ

for all ϑ ∈ (0, 1], wherefrom, recalling that zi(·), z0(·) ∈ C((0, 1],Rn) and
applying a Gronwall type inequality (see, e.g., [12, Corollary 1]), we derive

‖zi(1)− z0(1)‖ ≤ ε∗Eα,α(R)

(

B(α, α) +
1

α
+ 1

)

≤ ε,

which completes the proof. ⊓⊔
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8.3 Directional Differentiability of Functional ψ

From now on, let us assume that the function σ from the cost functional (9)
satisfies the following condition:

(σ.2) The partial derivatives ∂σ/∂x : Rn → R
n exist and are continuous.

Let us note that condition (σ.2) implies condition (σ.1).
Let us consider the functional ψ given by (40) and put

∂αt ψ(t, w(·), ν(·)) :=

〈

∂σ

∂x

(

y(1 | t, w(·), ν(·))
)

, z(1 | t, w(·), ν(·))

〉

,

∇αψ(t, w(·), ν(·)) := Z(1 | t, w(·), ν(·))⊤
∂σ

∂x

(

y(1 | t, w(·), ν(·))
)

(61)

for all (t, w(·)) ∈ G0 and all ν(·) ∈ N . In the above, y(· | t, w(·), ν(·)) is the
solution of the integral equation (38), z(· | t, w(·), ν(·)) and Z(· | t, w(·), ν(·))
are the solutions of the integral equations (50) and (51), respectively, and the
superscript ⊤ denotes transposition.

Lemma 8.3 Let assumptions (f.1), (f.3), (f.4), and (σ.2) hold. Then, for

any N ≥ cf , any M ≥ 0, and any η ∈ (0, T ),

∣

∣

∣

∣

ψ(t+ δ, x
(f)
t+δ(· | t, w(·)), ν(·)) − ψ(t, w(·), ν(·))

δ

− ∂αt ψ(t, w(·), ν(·)) − 〈∇αψ(t, w(·), ν(·)), f〉

∣

∣

∣

∣

→ 0 as δ → 0+

uniformly in (t, w(·)) ∈ Gη
N , f ∈ B(M), and ν(·) ∈ N , where x

(f)
t+δ(· | t, w(·))

is the restriction of x(f)(· | t, w(·)) (see (16)) to [0, t+ δ] (see (6)).

Proof Let us take λy ≥ 0 from Lemma 8.1. Let us consider the number
RN+M ≥ 0, determined in accordance with (43), and, based on assumption
(σ.2), choose R ≥ 0 such that

∥

∥

∥

∥

∂σ

∂x
(x)

∥

∥

∥

∥

≤ R ∀x ∈ B(RN+M ).

Let ε > 0 be given. Let us choose ε∗ > 0 from the condition ε∗(λy+R) ≤ ε.
By Lemma 8.1, there exists δ1 ∈ (0, η/2] such that, for any (t, w(·)) ∈ Gη

N , any
f ∈ B(M), any ν(·) ∈ N , and any δ ∈ (0, δ1],

∥

∥

∥

∥

y(δ)(1)− y(0)(1)

δ
− z(1)− Z(1)f

∥

∥

∥

∥

≤ ε∗,

where z(1) := z(1 | t, w(·), ν(·)) and Z(1) := Z(1 | t, w(·), ν(·)) and the nota-
tion introduced in (53) is used. Using assumption (σ.2), let us take κ > 0 such
that, for any x, x′ ∈ B(RN+M ) with ‖x− x′‖ ≤ κ,

∥

∥

∥

∥

∂σ

∂x
(x) −

∂σ

∂x
(x′)

∥

∥

∥

∥

≤ ε∗.
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By Corollary 8.1, there exists δ2 ∈ (0, η/2] such that, for any (t, w(·)) ∈ Gη
N ,

any f ∈ B(M), any ν(·) ∈ N , and any δ ∈ (0, δ2],

‖y(δ)(1)− y(0)(1)‖ ≤ κ.

Let us put δ∗ := min{δ1, δ2} > 0.

Let (t, w(·)) ∈ Gη
N , f ∈ B(M), ν(·) ∈ N , and δ ∈ (0, δ∗] be fixed. We have

ψ(t+ δ, x
(f)
t+δ(· | t, w(·)), ν(·)) − ψ(t, w(·), ν(·)) = σ(y(δ)(1))− σ(y(0)(1)).

By the mean value theorem, on the segment connecting the points y(δ)(1) and
y(0)(1), there exists a point y′ for which

σ(y(δ)(1))− σ(y(0)(1)) =

〈

∂σ

∂x
(y′), y(δ)(1)− y(0)(1)

〉

.

Since y(δ)(1), y(0)(1) ∈ B(RN+M ) by Corollary 8.1, we get y′ ∈ B(RN+M ).
Moreover, we derive ‖y(0)(1)−y′‖ ≤ ‖y(δ)(1)−y(0)(1)‖ ≤ κ and, consequently,

∥

∥

∥

∥

∂σ

∂x
(y(0)(1))−

∂σ

∂x
(y′)

∥

∥

∥

∥

≤ ε∗.

Hence, taking (61) into account, we get

∣

∣

∣

∣

σ(y(δ)(1))− σ(y(0)(1))

δ
− ∂αt ψ(t, w(·), ν(·)) − 〈∇αψ(t, w(·), ν(·)), f〉

∣

∣

∣

∣

=

∣

∣

∣

∣

〈

∂σ

∂x
(y′),

y(δ)(1)− y(0)(1)

δ

〉

−

〈

∂σ

∂x
(y(0)(1)), z(1) + Z(1)f

〉∣

∣

∣

∣

≤

∥

∥

∥

∥

∂σ

∂x
(y′)−

∂σ

∂x
(y(0)(1))

∥

∥

∥

∥

∥

∥

∥

∥

y(δ)(1)− y(0)(1)

δ

∥

∥

∥

∥

+

∥

∥

∥

∥

∂σ

∂x
(y(0)(1))

∥

∥

∥

∥

∥

∥

∥

∥

y(δ)(1)− y(0)(1)

δ
− z(1)− Z(1)f

∥

∥

∥

∥

≤ ε∗λy + ε∗R ≤ ε.

The proof is complete. ⊓⊔

In addition, let us note that Lemmas 7.1 and 8.2 immediately imply

Corollary 8.2 Let assumptions (f.1), (f.3), (f.4), and (σ.2) hold. Then, for
every (t, w(·)) ∈ G0, the following mappings are continuous:

N ∋ ν(·) 7→ ∂αt ψ(t, w(·), ν(·)) ∈ R, N ∋ ν(·) 7→ ∇αψ(t, w(·), ν(·)) ∈ R
n.



Title Suppressed Due to Excessive Length 31

9 Directional Differentiability of Order α of Value Functional

Based on representation (39) of the value functional ρ of the optimal control
problem (3), (9), using compactness of the metric space N and the properties
of the functional ψ from (40) established in Sections 7 and 8 (see Corollaries
7.1 and 8.2 and Lemma 8.3), and applying Theorem 4.1, we arrive at the
following result.

Theorem 9.1 Under assumptions (f.1), (f.3), (f.4), and (σ.2), the value

functional ρ of the optimal control problem (3), (9) is directionally differen-

tiable of order α. In addition, for any (t, w(·)) ∈ G0 and any f ∈ R
n,

∂α{ρ(t, w(·)) | f}

= min
ν(·)∈N◦(t,w(·))

(

∂αt ψ(t, w(·), ν(·)) + 〈∇αψ(t, w(·), ν(·)), f〉
)

, (62)

where ∂αt ψ(t, w(·), ν(·)) and ∇αψ(t, w(·), ν(·)) are given by (61) and

N ◦(t, w(·)) :=
{

ν(·) ∈ N : ψ(t, w(·), ν(·)) = ρ(t, w(·))
}

. (63)

In particular, as a consequence of this result and Theorem 3.3, we obtain

Corollary 9.1 Under assumptions (f.1), (f.3), (f.4), and (σ.2), a functional

ϕ : G→ R is the value functional of the optimal control problem (3), (9) if and
only if ϕ is continuous, possesses the local Lipschitz continuity property (L),
is directionally differentiable of order α, meets the boundary condition (14),
and, for any (t, w(·)) ∈ G0, satisfies the pair of differential inequalities

min
f∈co f(t,w(t),P )

∂α{ϕ(t, w(·)) | f} ≤ 0 ≤ min
u∈P

∂α{ϕ(t, w(·)) | f(t, w(t), u)}.

Let us finally assume that the function f from the right-hand side of the
dynamic equation (3) also satisfies the following condition:

(f.5) The set f(t, x, P ) (see (18)) is convex for all t ∈ [0, T ) and all x ∈ R
n.

In this case, Corollary 9.1 immediately implies the criteria below.

Corollary 9.2 Under assumptions (f.1), (f.3)–(f.5), and (σ.2), a functional

ϕ : G→ R is the value functional of the optimal control problem (3), (9) if and
only if ϕ is continuous, possesses the local Lipschitz continuity property (L),
is directionally differentiable of order α, meets the boundary condition (14),
and satisfies the equality

min
u∈P

∂α{ϕ(t, w(·)) | f(t, w(t), u)} = 0 ∀(t, w(·)) ∈ G0. (64)

Let us observe that, according to (12) and (19), at every point (t, w(·)) ∈ G0

of ci-differentiability of order α of a functional ϕ : G → R, the equality from
(64) turns into the equality from (13). In this sense, equation (64) can be
considered as a non-smooth generalization of the Hamilton–Jacobi–Bellman
equation (13).
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10 Optimal Positional Control Strategy in Non-Smooth Case

The main result of the present paper is

Theorem 10.1 Let assumptions (f.1), (f.3)–(f.5), and (σ.2) hold. Then, a

positional control strategy U◦ satisfying the condition

U◦(t, w(·)) ∈ argmin
u∈P

∂α{ρ(t, w(·)) | f(t, w(t), u)} ∀(t, w(·)) ∈ G0 (65)

is optimal in the problem (3), (9). In the above, ∂α{ρ(t, w(·)) | f(t, w(t), u)} is

the derivative of order α of the value functional ρ of this problem at the point

(t, w(·)) in the direction f(t, w(t), u).

The proof of Theorem 10.1 is based on the properties of the value functional
ρ established in Corollary 9.2, the representation of this functional given by
(39) and (40), formulas (62) and (63) for computing its directional derivatives
of order α, and the property of uniform directional differentiability of order
α of the functional ψ from (40) established in Lemma 8.3. Let us note also
that the proof uses the notation introduced throughout the paper (see, in
particular, Sections 2.7 and 8.1).

Proof Let us fix (t, w(·)) ∈ G0 and ε > 0. Let us choose N ≥ cf from the
condition (t, w(·)) ∈ GN . Using assumption (f.1), let us take M ≥ 0 such that

‖f(τ, x, u)‖ ≤M ∀τ ∈ [0, T ] ∀x ∈ B(RN ) ∀u ∈ P.

Due to compactness of the set XN in ACα([0, T ],Rn) and continuity of map-
ping (5) and the value functional ρ, there exists η ∈ (0, T − t) such that, for
any τ ∈ [T − η, T ] and any x(·) ∈ XN ,

|ρ(τ, xτ (·)) − ρ(T, x(·))| ≤
ε

3
.

Note that (t, w(·)) ∈ Gη
N by construction. Applying Lemma 8.3, let us choose

δ1 ∈ (0, η/2] such that, for any (t′, w′(·)) ∈ Gη
N , any f ∈ B(M), any ν(·) ∈ N ,

and any δ ∈ (0, δ1],

∣

∣

∣

∣

ψ(t′ + δ, x
(f)
t′+δ(· | t

′, w′(·)), ν(·)) − ψ(t′, w′(·), ν(·))

δ

− ∂αt ψ(t
′, w′(·), ν(·)) − 〈∇αψ(t′, w′(·), ν(·)), f〉

∣

∣

∣

∣

≤
ε

3T
.

Since the value functional ρ possesses property (L), it can be proved similarly
to [13, Proposition 3] that there exists κ ≥ 0 such that, for any (t′, w′(·)) ∈ Gη

N ,
any x(·), x′(·) ∈ X(t′, w′(·)) ∩XN+M , and any τ ∈ [t′, T − η/2],

|ρ(τ, xτ (·)) − ρ(τ, x′τ (·))|

≤ κ

∫ τ

t′
‖(CDαx)(ξ) − (CDαx′)(ξ)‖ dξ + κ(τ − t′)α+1.
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Using assumption (f.1) and compactness of the set XN in ACα([0, T ],Rn),
let us choose δ2 > 0 such that, for any τ , τ ′ ∈ [0, T ] with |τ − τ ′| ≤ δ2, any
x(·) ∈ XN , and any u ∈ P ,

κ‖f(τ, x(τ), u)− f(τ ′, x(τ ′), u)‖+ κδα2 ≤
ε

3T
.

Let us put δ := min{δ1, δ2} > 0.
Let us take a partition ∆ := {τj}j∈1,k+1 of [t, T ] satisfying the condition

diam(∆) ≤ δ and consider the control u◦(·) := u(· | t, w(·), U◦, ∆) and the
motion x◦(·) := x(· | t, w(·), u◦(·)) of system (3), which correspond to the
positional control strategy U◦ from (65) and the partition ∆. Let us note that
x◦(·) ∈ XN . Since τ1 = t < T − η, let us choose m ∈ 2, k + 1 such that
τm−1 < T − η ≤ τm. For every j ∈ 1,m− 1, let us denote u◦j := U◦(τj , x

◦
τj
(·))

and fj := f(τj , x
◦(τj), u

◦
j). We derive

ρ(T, x◦(·))− ρ(t, w(·)) = ρ(T, x◦(·))− ρ(τm, x
◦
τm

(·))

+

m−1
∑

j=1

(

ρ(τj+1, x
◦
τj+1

(·)) − ρ(τj+1, x
(fj)
τj+1

(· | τj , x
◦
τj
(·)))

)

+
m−1
∑

j=1

(

ρ(τj+1, x
(fj)
τj+1

(· | τj , x
◦
τj
(·))) − ρ(τj , x

◦
τj
(·))

)

,

where the function x(fj)(· | τj , x◦τj (·)) is defined in accordance with (16). In
view of the inclusion τm ∈ [T − η, T ], we obtain

ρ(T, x◦(·))− ρ(τm, x
◦
τm

(·)) ≤
ε

3
.

Now, let j ∈ 1,m− 1 be fixed. Note that (τj , x
◦
τj
(·)) ∈ Gη

N and fj ∈ B(M),

and, therefore, x(fj)(· | τj , x◦τj (·)) ∈ X(τj , x
◦
τj
(·)) ∩XN+M . Hence, taking into

account that τj+1 ≤ T − η/2 and u◦(τ) = u◦j for all τ ∈ [τj , τj+1), we get

ρ(τj+1, x
◦
τj+1

(·)) − ρ(τj+1, x
(fj)
τj+1

(· | τj , x
◦
τj
(·)))

≤ κ

∫ τj+1

τj

‖f(ξ, x◦(ξ), u◦j )− fj‖ dξ + κ(τj+1 − τj)
α+1

≤
ε(τj+1 − τj)

3T
.

Further, by virtue of (64) (for the value functional ρ) and (65), we derive

∂α{ρ(τj , x
◦
τj
(·)) | fj} = min

u∈P
∂α{ρ(τj , x

◦
τj
(·)) | f(τj , x

◦(τj), u)} = 0,

and, consequently, due to (62), there exists ν◦j (·) ∈ N ◦(τj , x
◦
τj
(·)) such that

∂αt ψ(τj , x
◦
τj
(·), ν◦j (·)) + 〈∇αψ(τj , x

◦
τj
(·), ν◦j (·)), fj〉 = 0.
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Then, in accordance with (39), (40), and (63), we obtain

ρ(τj+1, x
(fj)
τj+1

(· | τj , x
◦
τj
(·)))− ρ(τj , x

◦
τj
(·))

≤ ψ(τj+1, x
(fj)
τj+1

(· | τj , x
◦
τj
(·)), ν◦j (·))− ψ(τj , x

◦
τj
(·), ν◦j (·))

≤
ε(τj+1 − τj)

3T
.

As a result, recalling that the value functional ρ satisfies the boundary condi-
tion (11), we conclude that

σ(x◦(T )) = ρ(T, x◦(·)) ≤ ρ(t, w(·)) + ε,

which implies that the control u◦(·) is ε-optimal and completes the proof. ⊓⊔
Finally, let us observe that, according to (19), at every point (t, w(·)) ∈ G0

of ci-differentiability of order α of the value functional ρ, the inclusion from
(65) turns into the inclusion from (15). Hence, the rule for constructing an
optimal positional control strategy (65) can be considered as a non-smooth
generalization of the rule (15).

11 Example

Let us illustrate the results presented in this paper by a model example. Let
us consider an optimal control problem for a dynamical system described by
the Caputo fractional differential equation (we take n = 1)

(CDαx)(τ) = Γ(α)g(τ)u(τ), (66)

where τ ∈ [0, T ], x(τ) ∈ R, u(τ) ∈ [−1, 1], and g : [0, T ] → R is a given contin-
uously differentiable function (the multiplier Γ(α) is added for convenience),
and the terminal cost functional

J(t, w(·), u(·)) := −
(

x(T | t, w(·), u(·))
)2

(67)

for all (t, w(·)) ∈ G0 and all u(·) ∈ U(t, T ). In this problem, assumptions (f.1),
(f.3)–(f.5), and (σ.2) are clearly hold. Let us apply Theorem 10.1 in order to
construct an optimal positional control strategy.

Let us consider the functional

ϕ(t, w(·)) := −

(

|a(T | t, w(·))| +

∫ T

t

|g(τ)|

(T − τ)1−α
dτ

)2

∀(t, w(·)) ∈ G,

where the function a(· | t, w(·)) is given by (8). Using Corollary 9.2, let us prove
that ϕ is actually the value functional of the problem (66), (67). According
to [5, Section 12], the auxiliary functional ϕ∗(t, w(·)) := a(T | t, w(·)) for all
(t, w(·)) ∈ G is ci-smooth of order α and

∂αt ϕ∗(t, w(·)) = 0, ∇αϕ∗(t, w(·)) =
1

Γ(α)(T − t)1−α
∀(t, w(·)) ∈ G0.



Title Suppressed Due to Excessive Length 35

Based on these properties, it can be shown that the functional ϕ is continuous
and possesses property (L). Moreover, arguing similarly to [5, Section 12], we
derive that, at every point (t, w(·)) ∈ G0 such that a(T | t, w(·)) 6= 0, the
functional ϕ is ci-differentiable of order α and

∂αt ϕ(t, w(·)) =
2|g(t)|

(T − t)1−α

(

|a(T | t, w(·))| +

∫ T

t

|g(τ)|

(T − τ)1−α
dτ

)

,

∇αϕ(t, w(·)) =
−2 sgn(a(T | t, w(·)))

Γ(α)(T − t)1−α

(

|a(T | t, w(·))| +

∫ T

t

|g(τ)|

(T − τ)1−α
dτ

)

.

(68)

In particular, at all such points, the Hamilton–Jacobi–Bellman equation cor-
responding to the optimal control problem (66), (67) is satisfied:

∂αt ϕ(t, w(·)) − Γ(α)|g(t)||∇αϕ(t, w(·))| = 0.

At the same time, for every point (t, w(·)) ∈ G0 with a(T | t, w(·)) = 0, we get

∂α{ϕ(t, w(·)) | f} =
2(Γ(α)|g(t)| − |f |)

Γ(α)(T − t)1−α

∫ T

t

|g(τ)|

(T − τ)1−α
dτ ∀f ∈ R, (69)

and, in particular, the equality below is valid:

min
u∈[−1,1]

∂α{ϕ(t, w(·)) | Γ(α)g(t)u} = 0.

Thus, taking into account that

ϕ(T,w(·)) = −
(

a(T | t, w(·))
)2

= −
(

w(T )
)2

∀w(·) ∈ ACα([0, T ],R),

we conclude that ϕ is the value functional of the problem (66), (67).

Let us emphasize that, according to (19), it follows from (69) that, at
every point (t, w(·)) ∈ G0 such that a(T | t, w(·)) = 0, the functional ϕ is not
ci-differentiable of order α if the function g is not identically zero on [t, T ].

As a result, using formulas (68) and (69) for the corresponding derivatives
of the value functional of the problem (66), (67), we obtain by Theorem 10.1
that the following positional control strategy U◦ is optimal:

U◦(t, w(·)) :=











sgn(g(t)), if a(T | t, w(·)) > 0,

1, if a(T | t, w(·)) = 0,

− sgn(g(t)), if a(T | t, w(·)) < 0,

∀(t, w(·)) ∈ G0.
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