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A NOTE ON PURITY OF CRYSTALLINE LOCAL SYSTEMS

YONG SUK MOON

Abstract. In this short note, we prove a purity result for crystalline local systems
on a smooth p-adic affine formal scheme. Our method is based on the prismatic
description of crystalline local systems [DLMS24] (cf. [GR24]).

1. Introduction

Let K be a complete discrete valued field of mixed characteristic (0, p) with the
ring of integers OK and perfect residue field k. Denote K0 = W (k)[p−1] and GK =
Gal(K/K) where K is an algebraic closure of K. To any finite dimensional continu-
ous Qp-representation V of GK , Fontaine attached a K0-vector space Dcris(V ). More
precisely, Fontaine introduced the crystalline period ring Bcris equipped with a nat-
ural Frobenius and GK-action, and considered Dcris(V ) := (V ⊗Qp

Bcris)
GK ([Fon82],

[Fon94]). We have dimK0
Dcris(V ) ≤ dimQp

V in general, and V is called crystalline

if the equality holds. The underlying motivation of this notion comes from its close
connection to good reduction. If X is a proper smooth scheme over K with good
reduction, i.e. if there is a proper smooth scheme X /OK such that X ×OK

K = X ,
then the GK-representation H i

ét(XK ,Qp) is crystalline and Dcris(H
i
ét(XK ,Qp)) ∼=

H i
cris(Xk/W (k))[p−1].
WhenX is an abelian variety overK, the converse also holds: X has good reduction

if and only if H1
ét(XK ,Qp) is crystalline ([CI99], [Mok93]). However, for abelian

schemes over regular bases of mixed characteristic, an interesting discrepancy occurs
in terms of purity. Motivated by Grothendieck’s work on Nagata–Zariski purity
([GR62]), we can ask the following question.

Question 1.1. Let R = OK [[t1, . . . , td]] (with d ≥ 1), and let m ⊂ R be the maximal
ideal. Given any abelian scheme over SpecR \ {m}, does it extend uniquely to an
abelian scheme over SpecR?

The answer to this question is positive if the ramification index e = [K : K0] ≤ p−1,
but is negative if e ≥ p ([VZ10]). We remark that when e ≤ p − 1, the purity
result implies the uniqueness of integral canonical models of Shimura varieties ([VZ10,
Cor. 30]).
On the other hand, for arbitrary ramification index e, one can still study an analo-

gous question on purity for geometric families of crystalline representations as follows.
Faltings introduced the notion of crystalline p-adic étale local systems on the generic
fiber of a smooth proper scheme over OK ([Fal88]). Furthermore, for certain affine
schemes which include the cases we study in this paper, Brinon studied the founda-
tion for crystalline local systems à la Fontaine by generalizing the construction of the
crystalline period ring Bcris ([Bri06], [Bri08]). We consider the small affine case, i.e.
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when R is the p-adic completion of an étale algebra over OK [T
±1
1 , . . . , T±1

d ] such that
Spec(R/πR) is connected. Denote GR := πét

1 (SpecR[p−1]).
Let π ∈ OK be a uniformizer, and let OL be the p–adic completion of R(π). Denote

by GOL
the absolute Galois group of L = OL[p

−1]. Choose a geometric point of
Spec(L), which gives a geometric point of Spec(R[p−1]) via the map Spec(L) →
Spec(R[p−1]). By the change of paths for étale fundamental groups, we then have
a continuous map of Galois groups GOL

→ GR. For a finite dimensional continuous
Qp-representation V of GR, we refer the reader to [Bri08, §8.2] for the definition of V
being Hodge–Tate, de Rham, or crystalline. In this paper, we prove the the following
purity statement.

Theorem 1.2. Let R be the p-adic completion of an étale algebra over OK [T
±1
1 , . . . , T±1

d ],
and let V be a finite dimensional continuous Qp-representation of GR. Then V is

crystalline if and only if V |GOL
is crystalline.

Note that the “only if” part of the above theorem follows directly from the definition.

Remark 1.3. In [Tsu, Thm. 5.4.8], Tsuji has already proved that if V is de Rham
and V |GOL

is crystalline, then V is crystalline. Furthermore, the purity of de Rham
representations is expected to hold; it is expected that a similar argument as in the
proof of [LZ17, Thm. 1.5 (ii)] would imply that V is de Rham if and only if V |GOL

is

de Rham. Another possible approach is based on the method in [Tsu11]. By [Tsu11,
Thm. 9.1], V is Hodge–Tate if and only if V |GOL

is Hodge–Tate. It is expected that

a similar argument as in loc. cit. can be used via the results in [AB10] to show V is
de Rham if and only if V |GOL

is de Rham. Since any crystalline representation is de
Rham, the expected purity of de Rham representations combined with the result of
Tsuji [Tsu, Thm. 5.4.8] would imply Theorem 1.2.

Our method in this paper is completely different from the ones in the above remark.
We employ the prismatic description of crystalline local systems given in [DLMS24]
(cf. [GR24]).

Notation. Fix a prime p. Let k be a perfect field of characteristic p, and let K be a
finite totally ramified extension of K0 := W (k)[p−1] with ring of integers OK . Fix a
uniformizer π ∈ OK , and let E = E(u) ∈ W (k)[u] be the monic minimal polynomial
of π.
For a ring A and a finitely generated ideal J ⊂ A, the J-adic completion of an

A-module means the classical completion. Similarly, being J-adically complete or J-
complete is in the classical sense. For a Z-module M , we denote its p-adic completion
by M∧

p .
A p-adically completed étale map from a p-adically complete ring B refers to the

p-adic completion of an étale map from B. Write OK〈T
±1
1 , . . . , T±1

d 〉 for the p-
adic completion of the Laurent polynomial ring OK [T

±1
1 , . . . , T±1

d ], and similarly for
W (k)〈T±1

1 , . . . , T±1
d 〉.

For an element a of a Q-algebra A and n ≥ 0, write γn(a) for the element an

n!
∈ A.
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2. Absolute prismatic site & Kisin descent datum

We first recall some of the main results in [DLMS24] on the equivalence between
the category of crystalline local systems and the category of Kisin descent data. As in
[DLMS24, Assumption 2.9], we consider the cases when the base ring is either small
over OK or a complete discrete valuation ring.
Let R be a p-adically completed étale algebra over OK〈T

±1
1 , . . . , T±1

d 〉 for some
d ≥ 0 such that Spec(R/πR) is connected. There exists a subring R0 ⊂ R such
that R0 is p-adically completed étale over W (k)〈T±1

1 , . . . , T±1
d 〉 and R0⊗W (k)OK = R

(see e.g. [GR24, Lem. 2.9]). Let ϕ : R0 → R0 be the (unique) lift of Frobenius on
R0/pR0 with ϕ(Ti) = T p

i . Let OL0
be the p-adic completion of (R0)(p) equipped

with the Frobenius induced from ϕ on R0. Note that OL0
is a complete discrete

valuation ring whose residue field has a finite p-basis given by {T1, . . . , Td}. We have
a natural injective map R0 → OL0

compatible with ϕ. This extends OK-linearly to
R → OL := OL0

⊗W (k) OK .

Assumption. In the following, we will assume the base ring S is either R or OL.
Denote S0 = R0 (resp. S0 = OL0

) when S = R (resp. S = OL).

Definition 2.1 ([BS22, Def. 3.2]). A bounded prism is a pair (A, I) where A is a
δ-ring (cf. [BS22, Def. 2.1]) and I ⊂ A is an invertible ideal such that p ∈ I +ϕ(I)A,
A/I has bounded p∞-torsion, and A is (p, I)-complete (see [BS22, Lem. 3.7 (1)]).
Here, ϕ : A → A is given by ϕ(x) = xp + pδ(x).

Definition 2.2 ([BS23, Def. 2.3]). The absolute prismatic site S∆ of the p-adic
formal scheme SpfS consists of the pairs ((A, I), SpfA/I → SpfS) where (A, I) is a
bounded prism and SpfA/I → SpfS is a morphism of p-adic formal schemes. For
simplicity, we often omit the structure map SpfA/I → SpfS and write (A, I) ∈ S∆.
The morphisms are the opposite of morphisms of bounded prisms compatible with the
structure maps to SpfS. We equip S∆ with the topology given by (p, I)-completely
faithfully flat morphisms of bounded prisms (A, I) → (B, J).

An important object in S∆ is the Breuil–Kisin prism given as follows. Denote
SS = S0[[u]] equipped with the Frobenius extending that on S0 such that ϕ(u) = up.
Then (SS, (E)) is a bounded prism, and it is an object in S∆ via SS/(E) ∼= S.
The self-product of (SS, (E)) in S∆ exists and is computed in [DLMS24, Ex. 3.4],

which we briefly explain. WriteSS⊗̂Zp
SS for the p-complete tensor product equipped

with the induced ⊗-product Frobenius, and consider d : SS⊗̂Zp
SS → S given by the

compositeSS⊗̂Zp
SS → SS → SS/(E) ∼= S where the first map is the multiplication.

Let J be the kernel of d, and consider

S
(1)
S := (SS⊗̂Zp

SS)

{
J

E

}∧

δ

.
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Here theSS-algebra structure of S
(1)
S is given by a 7→ a⊗1, and {·}∧δ means adjoining

elements in the category of derived (p, E)-complete simplicial δ-SS-algebras. Note

that E in { J
E
}∧δ denotes E ⊗ 1, but using 1 ⊗ E yields the same S

(1)
S . We have

(S
(1)
S , (E)) ∈ S∆, and it is the self-product of (SS, (E)) in S∆. Similarly, the self-

triple-product (S
(2)
S , (E)) of the Breuil–Kisin prism exists in S∆. Write pi : SS → S

(1)
S

with i = 1, 2 and qi : SS → S
(2)
S with i = 1, 2, 3 for the projection maps. Note that by

the rigidity of maps of prisms ([BS22, Lem. 3.5]), we have (p1(E)) = (E) = (p2(E))

as ideals of S
(1)
S , and similarly (qi(E)) = (E) as ideals of S(2) for each i = 1, 2, 3.

The Breuil–Kisin prism covers the final object of Shv(S∆), and thus a crystal on
S∆ can be described by a SS-module with a descent datum involving the self-product
and self-triple-product. For example, completed prismatic F -crystals on S∆ given in
[DLMS24, Def. 3.16]) can be described in terms of Kisin descent data defined below
([DLMS24, Prop. 3.26]).

Definition 2.3 (cf. [DLMS24, Def. 3.14]).

• We say that a finite SS-module N is projective away from (p, E) if N is p-
torsion free, N [p−1] is projective over SS[p

−1], and N [E−1]∧p is projective over

SS[E
−1]∧p .

• We say a finite SS-module N is saturated if N is torsion free and N =
N [p−1] ∩N [E−1].

• LetN be aSS-module equipped with a ϕ-semi-linear endomorphism ϕN : N →
N . We say (N,ϕN) has finite E-height if 1⊗ϕN : SS⊗ϕ,SS

N → N is injective
and its cokernel is killed by a power of E.

Remark 2.4. When S = OL, any finite SOL
-module which is projective away from

(p, E) and saturated is free over SOL
, since SOL

is a regular local ring of dimension
2 (cf. [DLMS24, Rem. 3.18]).

Definition 2.5 ([DLMS24, Def. 3.25]). Let DDSS
denote the category consisting of

triples (M, ϕM, f) (called Kisin descent datum) where

• M is a finite SS-module that is projective away from (p, E) and saturated;
• ϕM : M → M is a ϕ-semi-linear endomorphism such that (M, ϕM) has finite
E-height;

• f : S
(1)
S ⊗p1,SS

M
∼=
→ S

(1)
S ⊗p2,SS

M is an isomorphism of S
(1)
S -modules com-

patible with Frobenii and satisfies the cocycle condition over S
(2)
S (i.e. if

p12, p23, p13 : S
(1)
S → S

(2)
S denote the projections, then p∗23f ◦ p∗12f = p∗13f).

The main input we will need is the following theorem proved in [DLMS24]. Recall
that if a finite dimensional continuousQp-representation V of GS := πét

1 (SpecS[p
−1]) is

crystalline, then it is de Rham, and we can attach a S[p−1]-module DdR(V ) projective
of rank equal to dimQp

V ([Bri08, §8]). Then DdR(V ) is equipped with a decreasing

exhaustive filtration by S[p−1]-submodules FiliDdR(V ), and the Hodge–Tate weights
of V are defined to be the integers i such that FiliDdR(V ) 6= Fili+1DdR(V ).
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Theorem 2.6 ([DLMS24, Prop. 3.26, Thm. 3.29]). The category DDSS
is naturally

equivalent to the category of Zp-lattices of crystalline representations of GS with non-

negative Hodge–Tate weights.

3. Purity of crystalline local systems

We prove Theorem 1.2 in this section. Let GOL
→ GR be a map of Galois groups

as in §1. Let V be a finite dimensional continuous Qp–representation of GR such that
V |GOL

is crystalline. By applying a suitable power of Tate twist (i.e. twist by a power

of the p-adic cyclotomic character), we may assume that the Hodge–Tate weights of
V |GOL

are non-negative. Let T ⊂ V be a GR-stable Zp-lattice. By [BS23, Cor. 3.8],
we can naturally associate to T an étale ϕ–module M which is finite projective over

SR[E
−1]∧p together with a S

(1)
R [E−1]∧p -linear isomorphism

fét : S
(1)
R [E−1]∧p ⊗p1,SR[E−1]∧p M

∼=
→ S

(1)
R [E−1]∧p ⊗p2,SR[E−1]∧p M,

which is compatible with ϕ and satisfies the cocycle condition over S
(2)
R [E−1]∧p . Here,

we associate M and T contravariantly following the convention in [DLMS24] (see
[DLMS24, §3.4]).
Note that the map R0 → OL0

extends to SR → SOL
by u 7→ u, which is com-

patible with Frobenius. Since V |GOL
is crystalline with non-negative Hodge–Tate

weights, by Theorem 2.6 and [DLMS24, Prop. 3.27], there exists a Kisin descent
datum (ML, ϕML

, fL) ∈ DDSOL
over SOL

such that we have a ϕ-compatible isomor-

phism h : ML ⊗SOL
SOL

[E−1]∧p
∼= M ⊗SR[E−1]∧p SOL

[E−1]∧p and the base change of
the isomorphism

fL : S
(1)
OL

⊗p1,SOL
ML

∼=
→ S

(1)
OL

⊗p2,SOL
ML

to S
(1)
OL

[E−1]∧p agrees with the base change of fét to S
(1)
OL

[E−1]∧p (with respect to h).

Let ML = ML ⊗SOL
SOL

[E−1]∧p , and regard M as a SR[E
−1]∧p -submodule of ML

via the isomorphism h.
Consider the S-module

M := ML ∩M ⊂ ML

equipped with the induced Frobenius ϕM. Note that M is torsion free. By [DLMS24,
Prop. 4.20, 4.21], M is finite over SR, saturated, and has finite E-height with respect
to ϕM. Furthermore, by [DLMS24, Prop. 4.13, 4.26], M is projective away from
(p, E) and we have natural ϕ-equivariant isomorphisms

M⊗SR
SOL

∼= ML and M⊗SR
SR[E

−1]∧p
∼= M.

We claim that fét and fL induce an isomorphism

f : S
(1)
R ⊗p1,SR

M
∼=
→ S

(1)
R ⊗p2,SR

M

so that f is compatible with fét and fL. For this, we need some preliminary facts.

Lemma 3.1. The natural map

S
(1)
R /(p, E) → S

(1)
OL

/(p, E)

is injective.
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Proof. By [DL23, Prop. 2.2.8 (2), 4.1.3], we have

S
(1)
R /(E) ∼= R[γi(zj), i ≥ 0, j = 0, . . . , d]∧p

and

S
(1)
OL

/(E) ∼= OL[γi(zj), i ≥ 0, j = 0, . . . , d]∧p

where z0, . . . , zd can be considered as variables. Thus,

S
(1)
R /(p, E) ∼= R[γi(zj), i ≥ 0, j = 0, . . . , d]/(p)

and similarly for S
(1)
OL

/(p, E). Since R/(p) → OL/(p) is injective, the map

S
(1)
R /(p, E) → S

(1)
OL

/(p, E)

is injective. �

Lemma 3.2 ([DLMS24, Cor. 3.6]). Let S = R or S = OL. Then S
(1)
S is p-torsion

free and E-torsion free. Furthermore,

S
(1)
S = S

(1)
S [p−1] ∩S

(1)
S [E−1],

and S
(1)
S [E−1] is p-adically separated.

Lemma 3.3. Let S = R or S = OL. Then S
(1)
S [E−1]∧p is p-torsion free.

Proof. By [DLMS24, Lem. 3.5], p1 : SS → S
(1)
S is classically faithfully flat. So the

induced map SS[E
−1]∧p → S

(1)
S [E−1]∧p is classically faithfully flat by [Sta, Tag 0912].

Since SS[E
−1]∧p is p-torsion free, the statement follows. �

Lemma 3.4. Let S = R or S = OL. Then S
(1)
S /(p) is E-adically complete.

Proof. Note that S
(1)
S is (p, E)-complete. Consider the exact sequence

(3.1) 0 → pS
(1)
S → S

(1)
S → S

(1)
S /(p) → 0.

By Lemma 3.2, S
(1)
S is p-torsion free and S

(1)
S /(p) is En-torsion free for each n ≥ 1.

In particular, the induced sequence

0 → pS
(1)
S /EnpS

(1)
S → S

(1)
S /(En) → S

(1)
S /(p, En) → 0

is exact. By [Sta, Tag 03CA], the sequence (3.1) remains exact after E-completion.

Since pS
(1)
S is a free S

(1)
S -module of rank 1, pS

(1)
S is E-complete. Thus, S

(1)
S /(p) is

E-complete. �

Lemma 3.5. Let S = R or S = OL. The natural maps

S
(1)
S /(p) → S

(1)
S [E−1]/(p) and S

(1)
S → S

(1)
S [E−1]∧p

are injective. Furthermore, the maps

S
(1)
R /(p) → S

(1)
OL

/(p), S
(1)
R → S

(1)
OL

, and S
(1)
R [E−1]∧p → S

(1)
OL

[E−1]∧p

are injective.
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Proof. By Lemma 3.2, {p, E} form a regular sequence for S
(1)
S , and the maps S

(1)
S →

S
(1)
S [E−1] and S

(1)
S [E−1] → S

(1)
S [E−1]∧p are injective. Thus, the maps S

(1)
S /(p) →

S
(1)
S [E−1]/(p) and S

(1)
S → S

(1)
S [E−1]∧p are injective.

Since S
(1)
OL

/(p) is E-torsion free, we deduce from Lemma 3.1 inductively that the

map S
(1)
R /(p, En) → S

(1)
OL

/(p, En) is injective for each n ≥ 1. By taking the inverse
limit over n giving the E-adic completions and using Lemma 3.4, we have that the

map S
(1)
R /(p) → S

(1)
OL

/(p) is injective. Similarly, since S
(1)
OL

is p-torsion free and S
(1)
R

and S
(1)
OL

are p-complete, it follows that S
(1)
R → S

(1)
OL

is injective. Furthermore, since

S
(1)
OL

[E−1] is p-torsion free and S
(1)
R [E−1]/(p) → S

(1)
OL

[E−1]/(p) is injective, the map

S
(1)
R [E−1]∧p → S

(1)
OL

[E−1]∧p is injective. �

Proposition 3.6. We have

S
(1)
R = S

(1)
OL

∩S
(1)
R [E−1]∧p

as subrings of S
(1)
OL

[E−1]∧p .

Proof. By Lemma 3.5, the map

S
(1)
R /(p) → (S

(1)
OL

/(p))
⋂

(S
(1)
R [E−1]/(p))

is injective, where the intersection is taken as subrings of S
(1)
OL

[E−1]/(p). This map is

also surjective by Lemma 3.1. Since S
(1)
OL

[E−1]∧p is p-torsion free by Lemma 3.3 and

S
(1)
R is p-complete, it follows that the map S

(1)
R → S

(1)
OL

∩S
(1)
R [E−1]∧p is surjective. �

Now, since M[p−1] is projective over SR[p
−1], we have

(S
(1)
OL

[p−1]⊗pi,SR[p−1]M[p−1])
⋂

(S
(1)
R [E−1]∧p [p

−1]⊗pi,SR[p−1]M[p−1]) ∼= (S
(1)
R [p−1]⊗pi,SR[p−1]M[p−1])

for i = 1, 2 by Proposition 3.6. Thus, by [DLMS24, Lem. 4.10], fét and fL induce a
morphism

f : S
(1)
R ⊗p1,SR

M → S
(1)
R ⊗p2,SR

M.

Furthermore, since fét and fL are isomorphisms, it follows that f obtained as their
intersection is an isomorphism. Since fét is compatible with Frobenius, so is f . It

remains to show that f satisfies the cocycle condition over S
(2)
R .

Lemma 3.7. For each i = 1, 2, 3, the natural map

S
(2)
R ⊗qi,SR

M → S
(2)
R [E−1]∧p ⊗qi,SR

M

is injective.

Proof. First note that qi : SR → S
(2)
R is classically faithfully flat by [DLMS24, Lem. 3.5].

So by the same argument as in [DLMS24, Cor. 3.6 Pf.], we deduce that S
(2)
R is p-

torsion free and E-torsion free, and S
(2)
R [E−1] is p-adically separated. In particular,

the map S
(2)
R → S

(2)
R [E−1]∧p is injective.
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Furthermore, since M → M[p−1] is injective, S
(2)
R ⊗qi,SR

M → S
(2)
R ⊗qi,SR

M[p−1]

is injective. The map S
(2)
R ⊗qi,SR

M[p−1] → S
(2)
R [E−1]∧p ⊗qi,SR

M[p−1] is injective since

M[p−1] is projective over SR[p
−1]. Thus, the composite

S
(2)
R ⊗qi,SR

M → S
(2)
R [E−1]∧p ⊗qi,SR

M[p−1]

is injective. Since this map factors through S
(2)
R ⊗qi,SR

M → S
(2)
R [E−1]∧p ⊗qi,SR

M,
the statement follows. �

Since fét satisfies the cocycle condition over S
(2)
R [E−1]∧p , we deduce from Lemma 3.7

that f satisfies the cocycle condition over S
(2)
R . By Theorem 2.6, V = T [p−1] is a

crystalline representation of GR. This completes the proof of Theorem 1.2.
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