A NOTE ON PURITY OF CRYSTALLINE LOCAL SYSTEMS

YONG SUK MOON

Abstract. In this short note, we prove a purity result for crystalline local systems on a smooth p-adic affine formal scheme. Our method is based on the prismatic description of crystalline local systems [\[DLMS24\]](#page-7-0) (cf. [\[GR24\]](#page-7-1)).

1. INTRODUCTION

Let K be a complete discrete valued field of mixed characteristic $(0, p)$ with the ring of integers \mathcal{O}_K and perfect residue field k. Denote $K_0 = W(k)[p^{-1}]$ and $G_K =$ $Gal(\overline{K}/K)$ where \overline{K} is an algebraic closure of K. To any finite dimensional continuous \mathbf{Q}_p -representation V of G_K , Fontaine attached a K_0 -vector space $D_{\text{cris}}(V)$. More precisely, Fontaine introduced the crystalline period ring B_{cris} equipped with a natural Frobenius and G_K -action, and considered $D_{\text{cris}}(V) := (V \otimes_{\mathbf{Q}_p} \mathbf{B}_{\text{cris}})^{G_K}$ ([\[Fon82\]](#page-7-2), [\[Fon94\]](#page-7-3)). We have $\dim_{K_0} D_{\text{cris}}(V) \leq \dim_{\mathbf{Q}_p} V$ in general, and V is called *crystalline* if the equality holds. The underlying motivation of this notion comes from its close connection to good reduction. If X is a proper smooth scheme over K with good reduction, i.e. if there is a proper smooth scheme $\mathcal{X}/\mathcal{O}_K$ such that $\mathcal{X} \times_{\mathcal{O}_K} K = X$, then the G_K -representation $H^i_{\text{\'et}}(X_{\overline{K}}, \mathbf{Q}_p)$ is crystalline and $D_{\text{cris}}(H^i_{\text{\'et}}(X_{\overline{K}}, \mathbf{Q}_p)) \cong$ $H_{\text{cris}}^i(\mathcal{X}_k/W(k))[p^{-1}].$

When X is an abelian variety over K , the converse also holds: X has good reduction if and only if $H^1_{\text{\'et}}(X_{\overline{K}}, \mathbf{Q}_p)$ is crystalline ([\[CI99\]](#page-7-4), [\[Mok93\]](#page-7-5)). However, for abelian schemes over regular bases of mixed characteristic, an interesting discrepancy occurs in terms of purity. Motivated by Grothendieck's work on Nagata–Zariski purity $(|GR62|)$, we can ask the following question.

Question 1.1. Let $R = \mathcal{O}_K[t_1,\ldots,t_d]$ (with $d \geq 1$), and let $\mathfrak{m} \subset R$ be the maximal ideal. Given any abelian scheme over $\operatorname{Spec} R \setminus \{\mathfrak{m}\}\)$, does it extend uniquely to an abelian scheme over SpecR?

The answer to this question is positive if the ramification index $e = [K : K_0] \leq p-1$, but is negative if $e \geq p$ ([\[VZ10\]](#page-8-0)). We remark that when $e \leq p-1$, the purity result implies the uniqueness of integral canonical models of Shimura varieties ([\[VZ10,](#page-8-0) Cor. 30]).

On the other hand, for *arbitrary* ramification index e , one can still study an analogous question on purity for geometric families of crystalline representations as follows. Faltings introduced the notion of crystalline p -adic étale local systems on the generic fiber of a smooth proper scheme over \mathcal{O}_K ([\[Fal88\]](#page-7-7)). Furthermore, for certain affine schemes which include the cases we study in this paper, Brinon studied the foundation for crystalline local systems \dot{a} la Fontaine by generalizing the construction of the crystalline period ring B_{cris} ([\[Bri06\]](#page-7-8), [\[Bri08\]](#page-7-9)). We consider the small affine case, i.e.

when R is the p-adic completion of an étale algebra over $\mathcal{O}_K[T_1^{\pm 1}, \ldots, T_d^{\pm 1}]$ such that $Spec(R/\pi R)$ is connected. Denote $\mathcal{G}_R := \pi_1^{\text{\'et}}(\text{Spec} R[p^{-1}]).$

Let $\pi \in \mathcal{O}_K$ be a uniformizer, and let \mathcal{O}_L be the *p*-adic completion of $R_{(\pi)}$. Denote by \mathcal{G}_{O_L} the absolute Galois group of $L = \mathcal{O}_L[p^{-1}]$. Choose a geometric point of Spec(\tilde{L}), which gives a geometric point of Spec($R[p^{-1}]$) via the map Spec(L) \rightarrow $Spec(R[p^{-1}])$. By the change of paths for étale fundamental groups, we then have a continuous map of Galois groups $\mathcal{G}_{\mathcal{O}_L} \to \mathcal{G}_R$. For a finite dimensional continuous \mathbf{Q}_p -representation V of \mathcal{G}_R , we refer the reader to [\[Bri08,](#page-7-9) §8.2] for the definition of V being Hodge–Tate, de Rham, or crystalline. In this paper, we prove the the following purity statement.

Theorem 1.2. Let R be the p-adic completion of an étale algebra over $\mathcal{O}_K[T_1^{\pm 1}, \ldots, T_d^{\pm 1}]$, and let V be a finite dimensional continuous \mathbf{Q}_p -representation of \mathcal{G}_R . Then V is crystalline if and only if $V|_{\mathcal{G}_{\mathcal{O}_L}}$ is crystalline.

Note that the "only if" part of the above theorem follows directly from the definition.

Remark 1.3. In [\[Tsu,](#page-7-10) Thm. 5.4.8], Tsuji has already proved that if V is de Rham and $V|_{\mathcal{G}_{\mathcal{O}_L}}$ is crystalline, then V is crystalline. Furthermore, the purity of de Rham representations is expected to hold; it is expected that a similar argument as in the proof of [\[LZ17,](#page-7-11) Thm. 1.5 (ii)] would imply that V is de Rham if and only if $V|_{\mathcal{G}_{\mathcal{O}_L}}$ is de Rham. Another possible approach is based on the method in [\[Tsu11\]](#page-8-1). By [\[Tsu11,](#page-8-1) Thm. 9.1], V is Hodge–Tate if and only if $V|_{\mathcal{G}_{\mathcal{O}_L}}$ is Hodge–Tate. It is expected that a similar argument as in loc. cit. can be used via the results in [\[AB10\]](#page-7-12) to show V is de Rham if and only if $V|_{\mathcal{G}_{\mathcal{O}_L}}$ is de Rham. Since any crystalline representation is de Rham, the expected purity of de Rham representations combined with the result of Tsuji [\[Tsu,](#page-7-10) Thm. 5.4.8] would imply Theorem [1.2.](#page-1-0)

Our method in this paper is completely different from the ones in the above remark. We employ the prismatic description of crystalline local systems given in [\[DLMS24\]](#page-7-0) (cf. [\[GR24\]](#page-7-1)).

Notation. Fix a prime p. Let k be a perfect field of characteristic p, and let K be a finite totally ramified extension of $K_0 := W(k)[p^{-1}]$ with ring of integers \mathcal{O}_K . Fix a uniformizer $\pi \in \mathcal{O}_K$, and let $E = E(u) \in W(k)[u]$ be the monic minimal polynomial of π .

For a ring A and a finitely generated ideal $J \subset A$, the J-adic completion of an A-module means the classical completion. Similarly, being J-adically complete or J*complete* is in the classical sense. For a **Z**-module M , we denote its p-adic completion by M_p^{\wedge} .

A p-adically completed étale map from a p-adically complete ring B refers to the p-adic completion of an étale map from B. Write $\mathcal{O}_K\langle T_1^{\pm 1}, \ldots, T_d^{\pm 1}\rangle$ for the padic completion of the Laurent polynomial ring $\mathcal{O}_K[T_1^{\pm 1}, \ldots, T_d^{\pm 1}]$, and similarly for $W(k)\langle T_1^{\pm 1}, \ldots, T_d^{\pm 1} \rangle.$

For an element a of a Q-algebra A and $n \geq 0$, write $\gamma_n(a)$ for the element $\frac{a^n}{n!}$ $\frac{a^n}{n!} \in A$.

Acknowledgements

I would like to thank Heng Du, Tong Liu, and Koji Shimizu for helpful discussions. I also thank the anonymous referees for many valuable suggestions to improve the paper.

2. Absolute prismatic site & Kisin descent datum

We first recall some of the main results in [\[DLMS24\]](#page-7-0) on the equivalence between the category of crystalline local systems and the category of Kisin descent data. As in [\[DLMS24,](#page-7-0) Assumption 2.9], we consider the cases when the base ring is either small over \mathcal{O}_K or a complete discrete valuation ring.

Let R be a p-adically completed étale algebra over $\mathcal{O}_K\langle T_1^{\pm 1}, \ldots, T_d^{\pm 1}\rangle$ for some $d \geq 0$ such that $Spec(R/\pi R)$ is connected. There exists a subring $R_0 \subset R$ such that R_0 is p-adically completed étale over $W(k)\langle T_1^{\pm 1}, \ldots, T_d^{\pm 1} \rangle$ and $R_0 \otimes_{W(k)} \mathcal{O}_K = R$ (see e.g. [\[GR24,](#page-7-1) Lem. 2.9]). Let $\varphi: R_0 \to R_0$ be the (unique) lift of Frobenius on R_0/pR_0 with $\varphi(T_i) = T_i^p$ ^p. Let \mathcal{O}_{L_0} be the p-adic completion of $(R_0)_{(p)}$ equipped with the Frobenius induced from φ on R_0 . Note that \mathcal{O}_{L_0} is a complete discrete valuation ring whose residue field has a finite p-basis given by $\{T_1, \ldots, T_d\}$. We have a natural injective map $R_0 \to O_{L_0}$ compatible with φ . This extends \mathcal{O}_K -linearly to $R \to \mathcal{O}_L \coloneqq \mathcal{O}_{L_0} \otimes_{W(k)} \mathcal{O}_K.$

Assumption. In the following, we will assume the base ring S is either R or \mathcal{O}_L . Denote $S_0 = R_0$ (resp. $S_0 = \mathcal{O}_{L_0}$) when $S = R$ (resp. $S = \mathcal{O}_L$).

Definition 2.1 ([\[BS22,](#page-7-13) Def. 3.2]). A *bounded prism* is a pair (A, I) where A is a δ-ring (cf. [\[BS22,](#page-7-13) Def. 2.1]) and *I* ⊂ *A* is an invertible ideal such that $p ∈ I + φ(I)A$, A/I has bounded p^{∞} -torsion, and A is (p, I) -complete (see [\[BS22,](#page-7-13) Lem. 3.7 (1)]). Here, $\varphi: A \to A$ is given by $\varphi(x) = x^p + p\delta(x)$.

Definition 2.2 ([\[BS23,](#page-7-14) Def. 2.3]). The *absolute prismatic site* S_△ of the *p*-adic formal scheme SpfS consists of the pairs $((A, I), SpfA/I \rightarrow SpfS)$ where (A, I) is a bounded prism and $SpfA/I \rightarrow SpfS$ is a morphism of p-adic formal schemes. For simplicity, we often omit the structure map $\text{Spf}A/I \to \text{Spf}S$ and write $(A, I) \in S_{\mathbb{A}}$. The morphisms are the opposite of morphisms of bounded prisms compatible with the structure maps to SpfS. We equip S_{Λ} with the topology given by (p, I) -completely faithfully flat morphisms of bounded prisms $(A, I) \rightarrow (B, J)$.

An important object in $S_{\mathbb{A}}$ is the *Breuil–Kisin prism* given as follows. Denote $\mathfrak{S}_S = S_0[[u]]$ equipped with the Frobenius extending that on S_0 such that $\varphi(u) = u^p$. Then $(\mathfrak{S}_S, (E))$ is a bounded prism, and it is an object in $S_\mathbb{A}$ via $\mathfrak{S}_S/(E) \cong S$.

The self-product of $(\mathfrak{S}_S,(E))$ in $S_\mathbb{A}$ exists and is computed in [\[DLMS24,](#page-7-0) Ex. 3.4], which we briefly explain. Write $\mathfrak{S}_{S} \widehat{\otimes}_{\mathbf{Z}_{p}} \mathfrak{S}_{S}$ for the p-complete tensor product equipped with the induced ⊗-product Frobenius, and consider $d: \mathfrak{S}_{S} \widehat{\otimes}_{\mathbf{Z}_{p}} \mathfrak{S}_{S} \to S$ given by the composite $\mathfrak{S}_{S} \widehat{\otimes}_{\mathbf{Z}_{p}} \mathfrak{S}_{S} \to \mathfrak{S}_{S}/(E) \cong S$ where the first map is the multiplication. Let J be the kernel of d , and consider

$$
\mathfrak{S}^{(1)}_S\coloneqq (\mathfrak{S}_S\widehat{\otimes}_{\mathbf{Z}_p}\mathfrak{S}_S)\bigg\{\frac{J}{E}\bigg\}_{\delta}^{\wedge}.
$$

Here the \mathfrak{S}_{S} -algebra structure of $\mathfrak{S}_{S}^{(1)}$ $S_S^{(1)}$ is given by $a \mapsto a \otimes 1$, and $\{\cdot\}^{\wedge}_{\delta}$ means adjoining elements in the category of derived (p, E) -complete simplicial δ - \mathfrak{S}_S -algebras. Note that E in $\{\frac{J}{F}$ $\frac{J}{E}$ }^{\wedge} denotes $E \otimes 1$, but using $1 \otimes E$ yields the same $\mathfrak{S}_S^{(1)}$ $S^{\left(1\right)}$. We have $(\mathfrak{S}_S^{(1)}$ $S_S^{(1)}(E)$ $\in S_{\mathbb{\Delta}}$, and it is the self-product of $(\mathfrak{S}_S,(E))$ in $S_{\mathbb{\Delta}}$. Similarly, the selftriple-product $(\mathfrak{S}_S^{(2)})$ $S^{(2)}(E)$ of the Breuil–Kisin prism exists in S_{Δ} . Write $p_i \colon \mathfrak{S}_S \to \mathfrak{S}_S^{(1)}$ S with $i = 1, 2$ and $q_i: \mathfrak{S}_S \to \mathfrak{S}_S^{(2)}$ with $i = 1, 2, 3$ for the projection maps. Note that by the rigidity of maps of prisms ([\[BS22,](#page-7-13) Lem. 3.5]), we have $(p_1(E)) = (E) = (p_2(E))$ as ideals of $\mathfrak{S}_{S}^{(1)}$ $S^{(1)}$, and similarly $(q_i(E)) = (E)$ as ideals of $\mathfrak{S}^{(2)}$ for each $i = 1, 2, 3$.

The Breuil–Kisin prism covers the final object of Shv(S**∆**), and thus a crystal on $S_{\mathbb{A}}$ can be described by a \mathfrak{S}_S -module with a descent datum involving the self-product and self-triple-product. For example, completed prismatic F-crystals on S**∆** given in [\[DLMS24,](#page-7-0) Def. 3.16]) can be described in terms of Kisin descent data defined below ([\[DLMS24,](#page-7-0) Prop. 3.26]).

Definition 2.3 (cf. [\[DLMS24,](#page-7-0) Def. 3.14]).

- We say that a finite \mathfrak{S}_S -module N is projective away from (p, E) if N is ptorsion free, $N[p^{-1}]$ is projective over $\mathfrak{S}_{S}[p^{-1}]$, and $N[E^{-1}]_{p}^{\wedge}$ $_p^{\wedge}$ is projective over $\mathfrak{S}_S[E^{-1}]^\wedge_p$ $_{p}^{\wedge}.$
- We say a finite \mathfrak{S}_S -module N is *saturated* if N is torsion free and N = $N[p^{-1}] \cap N[E^{-1}].$
- Let N be a \mathfrak{S}_S -module equipped with a φ -semi-linear endomorphism $\varphi_N: N \to$ N. We say (N, φ_N) has *finite E-height* if $1 \otimes \varphi_N$: $\mathfrak{S}_S \otimes_{\varphi, \mathfrak{S}_S} N \to N$ is injective and its cokernel is killed by a power of E.

Remark 2.4. When $S = \mathcal{O}_L$, any finite $\mathfrak{S}_{\mathcal{O}_L}$ -module which is projective away from (p, E) and saturated is free over $\mathfrak{S}_{\mathcal{O}_L}$, since $\mathfrak{S}_{\mathcal{O}_L}$ is a regular local ring of dimension 2 (cf. [\[DLMS24,](#page-7-0) Rem. 3.18]).

Definition 2.5 ([\[DLMS24,](#page-7-0) Def. 3.25]). Let $DD_{\mathfrak{S}_{\mathcal{S}}}$ denote the category consisting of triples $(\mathfrak{M}, \varphi_{\mathfrak{M}}, f)$ (called Kisin descent datum) where

- \mathfrak{M} is a finite \mathfrak{S}_S -module that is projective away from (p, E) and saturated;
- $\varphi_{\mathfrak{M}} : \mathfrak{M} \to \mathfrak{M}$ is a φ -semi-linear endomorphism such that $(\mathfrak{M}, \varphi_{\mathfrak{M}})$ has finite E-height;
- $f: \mathfrak{S}_S^{(1)} \otimes_{p_1, \mathfrak{S}_S} \mathfrak{M} \stackrel{\cong}{\to} \mathfrak{S}_S^{(1)} \otimes_{p_2, \mathfrak{S}_S} \mathfrak{M}$ is an isomorphism of $\mathfrak{S}_S^{(1)}$ S^1 -modules compatible with Frobenii and satisfies the cocycle condition over $\mathfrak{S}_{S}^{(2)}$ $S^{(2)}$ (i.e. if $p_{12}, p_{23}, p_{13} : \mathfrak{S}_S^{(1)} \to \mathfrak{S}_S^{(2)}$ denote the projections, then $p_{23}^* f \circ p_{12}^* f = p_{13}^* f$.

The main input we will need is the following theorem proved in [\[DLMS24\]](#page-7-0). Recall that if a finite dimensional continuous \mathbf{Q}_p -representation V of $\mathcal{G}_S := \pi_1^{\text{\'et}}(\text{Spec} S[p^{-1}])$ is crystalline, then it is de Rham, and we can attach a $S[p^{-1}]$ -module $D_{\rm dR}(V)$ projective of rank equal to dim $_{\mathbf{Q}_p}V$ ([\[Bri08,](#page-7-9) §8]). Then $D_{\text{dR}}(V)$ is equipped with a decreasing exhaustive filtration by $S[p^{-1}]$ -submodules $\text{Fil}^iD_{\text{dR}}(V)$, and the Hodge–Tate weights of V are defined to be the integers i such that $\text{Fil}^iD_{\text{dR}}(V) \neq \text{Fil}^{i+1}D_{\text{dR}}(V)$.

Theorem 2.6 ([\[DLMS24,](#page-7-0) Prop. 3.26, Thm. 3.29]). The category $DD_{\mathfrak{S}_S}$ is naturally equivalent to the category of \mathbb{Z}_p -lattices of crystalline representations of \mathcal{G}_S with nonnegative Hodge–Tate weights.

3. Purity of crystalline local systems

We prove Theorem [1.2](#page-1-0) in this section. Let $\mathcal{G}_{\mathcal{O}_L} \to \mathcal{G}_R$ be a map of Galois groups as in §[1.](#page-0-0) Let V be a finite dimensional continuous \mathbf{Q}_p -representation of \mathcal{G}_R such that $V|_{\mathcal{G}_{\mathcal{O}_L}}$ is crystalline. By applying a suitable power of Tate twist (i.e. twist by a power of the p-adic cyclotomic character), we may assume that the Hodge–Tate weights of $V|_{\mathcal{G}_{\mathcal{O}_L}}$ are non-negative. Let $T \subset V$ be a \mathcal{G}_R -stable \mathbb{Z}_p -lattice. By [\[BS23,](#page-7-14) Cor. 3.8], we can naturally associate to T an étale φ –module M which is finite projective over $\mathfrak{S}_R[E^{-1}]^\wedge_p$ $_p^{\wedge}$ together with a $\mathfrak{S}_R^{(1)}$ $_R^{(1)}[E^{-1}]^\wedge_p$ $_{p}^{\wedge}$ -linear isomorphism

$$
f_{\mathrm{\acute{e}t}}\colon \mathfrak{S}^{(1)}_R [E^{-1}]^{\wedge}_p\otimes_{p_1,\mathfrak{S}_R [E^{-1}]^{\wedge}_p} \mathcal{M} \stackrel{\cong}{\to} \mathfrak{S}^{(1)}_R [E^{-1}]^{\wedge}_p\otimes_{p_2,\mathfrak{S}_R [E^{-1}]^{\wedge}_p} \mathcal{M},
$$

which is compatible with φ and satisfies the cocycle condition over $\mathfrak{S}_R^{(2)}$ $_R^{(2)}[E^{-1}]^\wedge_p$ $_{p}^{\wedge}$. Here, we associate $\mathcal M$ and T contravariantly following the convention in [\[DLMS24\]](#page-7-0) (see [\[DLMS24,](#page-7-0) §3.4]).

Note that the map $R_0 \to \mathcal{O}_{L_0}$ extends to $\mathfrak{S}_R \to \mathfrak{S}_{\mathcal{O}_L}$ by $u \mapsto u$, which is compatible with Frobenius. Since $V|_{\mathcal{G}_{\mathcal{O}_L}}$ is crystalline with non-negative Hodge–Tate weights, by Theorem [2.6](#page-4-0) and [\[DLMS24,](#page-7-0) Prop. 3.27], there exists a Kisin descent datum $(\mathfrak{M}_L, \varphi_{\mathfrak{M}_L}, f_L) \in DD_{\mathfrak{S}_{\mathcal{O}_L}}$ over $\mathfrak{S}_{\mathcal{O}_L}$ such that we have a φ -compatible isomorphism $h\colon \mathfrak{M}_L \otimes_{\mathfrak{S}_{\mathcal{O}_L}} \mathfrak{S}_{\mathcal{O}_L}[E^{-1}]^{\tilde{\wedge}}_p$ $\frac{\widetilde{\wedge}}{p}\cong \mathcal{M}\otimes_{\mathfrak{S}_R[E^{-1}]_p^{\wedge}} \mathfrak{S}_{\mathcal{O}_L}[E^{-1}]_p^{\wedge}$ $_p^{\wedge}$ and the base change of the isomorphism

$$
f_L\colon \mathfrak{S}^{(1)}_{\mathcal{O}_L}\otimes_{p_1, \mathfrak{S}_{\mathcal{O}_L}} \mathfrak{M}_L \stackrel{\cong}{\to} \mathfrak{S}^{(1)}_{\mathcal{O}_L}\otimes_{p_2, \mathfrak{S}_{\mathcal{O}_L}} \mathfrak{M}_L
$$

to $\mathfrak{S}^{(1)}_{\mathcal{O}_I}$ $\overset{(1)}{{\cal O}_{L}}[E^{-1}]^{\wedge}_p$ \hat{p} agrees with the base change of $f_{\text{\'et}}$ to $\mathfrak{S}_{\mathcal{O}_I}^{(1)}$ $\overset{(1)}{{\cal O}_{L}}[E^{-1}]^{\wedge}_p$ $_p^{\wedge}$ (with respect to h). Let $\mathcal{M}_L = \mathfrak{M}_L \otimes_{\mathfrak{S}_{\mathcal{O}_L}} \mathfrak{S}_{\mathcal{O}_L}[E^{-1}]_p^{\wedge}$, and regard \mathcal{M} as a $\tilde{\mathfrak{S}}_R[E^{-1}]_p^{\wedge}$ -submodule of \mathcal{M}_L via the isomorphism h.

Consider the S-module

$$
\mathfrak{M} \coloneqq \mathfrak{M}_L \cap \mathcal{M} \subset \mathcal{M}_L
$$

equipped with the induced Frobenius $\varphi_{\mathfrak{M}}$. Note that \mathfrak{M} is torsion free. By [\[DLMS24,](#page-7-0) Prop. 4.20, 4.21, \mathfrak{M} is finite over \mathfrak{S}_R , saturated, and has finite E-height with respect to $\varphi_{\mathfrak{M}}$. Furthermore, by [\[DLMS24,](#page-7-0) Prop. 4.13, 4.26], \mathfrak{M} is projective away from (p, E) and we have natural φ -equivariant isomorphisms

$$
\mathfrak{M} \otimes_{\mathfrak{S}_R} \mathfrak{S}_{\mathcal{O}_L} \cong \mathfrak{M}_L \text{ and } \mathfrak{M} \otimes_{\mathfrak{S}_R} \mathfrak{S}_R[E^{-1}]_p^{\wedge} \cong \mathcal{M}.
$$

We claim that $f_{\text{\'et}}$ and f_L induce an isomorphism

$$
f\colon \mathfrak{S}^{(1)}_R\otimes_{p_1, \mathfrak{S}_R}\mathfrak{M} \stackrel{\cong}{\to} \mathfrak{S}^{(1)}_R\otimes_{p_2, \mathfrak{S}_R}\mathfrak{M}
$$

so that f is compatible with $f_{\text{\'et}}$ and f_L . For this, we need some preliminary facts.

Lemma 3.1. The natural map

$$
\mathfrak{S}_R^{(1)}/(p,E) \to \mathfrak{S}_{\mathcal{O}_L}^{(1)}/(p,E)
$$

is injective.

Proof. By [\[DL23,](#page-7-15) Prop. 2.2.8 (2), 4.1.3], we have

$$
\mathfrak{S}_R^{(1)}/(E) \cong R[\gamma_i(z_j), i \geq 0, j = 0, \ldots, d]_p^{\wedge}
$$

and

$$
\mathfrak{S}_{\mathcal{O}_L}^{(1)}/(E) \cong \mathcal{O}_L[\gamma_i(z_j), i \ge 0, j = 0, \dots, d]_p^{\wedge}
$$

where z_0, \ldots, z_d can be considered as variables. Thus,

$$
\mathfrak{S}_R^{(1)}/(p,E) \cong R[\gamma_i(z_j), i \ge 0, j = 0, \ldots, d]/(p)
$$

and similarly for $\mathfrak{S}_{\mathcal{O}_r}^{(1)}$ $\mathcal{O}_L(p, E)$. Since $R/(p) \to \mathcal{O}_L/(p)$ is injective, the map

$$
\mathfrak{S}_R^{(1)}/(p,E) \to \mathfrak{S}_{\mathcal{O}_L}^{(1)}/(p,E)
$$

is injective. \Box

Lemma 3.2 ([\[DLMS24,](#page-7-0) Cor. 3.6]). Let $S = R$ or $S = \mathcal{O}_L$. Then $\mathfrak{S}_S^{(1)}$ $\int_{S}^{(1)}$ is p-torsion free and E-torsion free. Furthermore,

$$
\mathfrak{S}_S^{(1)} = \mathfrak{S}_S^{(1)}[p^{-1}] \cap \mathfrak{S}_S^{(1)}[E^{-1}],
$$

and $\mathfrak{S}_S^{(1)}$ $\binom{1}{S}[E^{-1}]$ is p-adically separated.

Lemma 3.3. Let $S = R$ or $S = \mathcal{O}_L$. Then $\mathfrak{S}_S^{(1)}$ $^{(1)}_S[E^{-1}]^{\wedge}_p$ $_{p}^{\wedge}$ is p-torsion free.

Proof. By [\[DLMS24,](#page-7-0) Lem. 3.5], $p_1: \mathfrak{S}_S \to \mathfrak{S}_S^{(1)}$ $S⁽¹⁾$ is classically faithfully flat. So the induced map $\mathfrak{S}_S[E^{-1}]_p^{\wedge} \to \mathfrak{S}_S^{(1)}$ $^{(1)}_S[E^{-1}]^{\wedge}_p$ $_p^{\wedge}$ is classically faithfully flat by [\[Sta,](#page-7-16) Tag 0912]. Since $\mathfrak{S}_S[E^{-1}]_p^\wedge$ \hat{p} is *p*-torsion free, the statement follows.

Lemma 3.4. Let $S = R$ or $S = \mathcal{O}_L$. Then $\mathfrak{S}_S^{(1)}$ $\binom{1}{S}/(p)$ is E-adically complete.

Proof. Note that $\mathfrak{S}_{S}^{(1)}$ $S^{(1)}$ is (p, E) -complete. Consider the exact sequence

(3.1)
$$
0 \to p\mathfrak{S}_S^{(1)} \to \mathfrak{S}_S^{(1)} \to \mathfrak{S}_S^{(1)}/(p) \to 0.
$$

By Lemma [3.2,](#page-5-0) $\mathfrak{S}_S^{(1)}$ $S^{(1)}$ is *p*-torsion free and $\mathfrak{S}_S^{(1)}$ $\binom{11}{S}/(p)$ is E^n -torsion free for each $n \geq 1$. In particular, the induced sequence

$$
0 \to p\mathfrak{S}_S^{(1)}/E^n p\mathfrak{S}_S^{(1)} \to \mathfrak{S}_S^{(1)}/(E^n) \to \mathfrak{S}_S^{(1)}/(p, E^n) \to 0
$$

is exact. By [\[Sta,](#page-7-16) Tag 03CA], the sequence [\(3.1\)](#page-5-1) remains exact after E-completion. Since $p\mathfrak{S}_S^{(1)}$ $_S^{(1)}$ is a free $\mathfrak{S}_S^{(1)}$ $S(S)$ -module of rank 1, $p\mathfrak{S}_S^{(1)}$ $_S^{(1)}$ is E-complete. Thus, $\mathfrak{S}_S^{(1)}$ $\binom{1}{S'}(p)$ is E -complete.

Lemma 3.5. Let $S = R$ or $S = \mathcal{O}_L$. The natural maps

$$
\mathfrak{S}_S^{(1)}/(p) \to \mathfrak{S}_S^{(1)}[E^{-1}]/(p) \text{ and } \mathfrak{S}_S^{(1)} \to \mathfrak{S}_S^{(1)}[E^{-1}]_p^{\wedge}
$$

are injective. Furthermore, the maps

$$
\mathfrak{S}_{R}^{(1)}/(p) \to \mathfrak{S}_{\mathcal{O}_{L}}^{(1)}/(p), \ \mathfrak{S}_{R}^{(1)} \to \mathfrak{S}_{\mathcal{O}_{L}}^{(1)}, \ \text{and} \ \mathfrak{S}_{R}^{(1)}[E^{-1}]_{p}^{\wedge} \to \mathfrak{S}_{\mathcal{O}_{L}}^{(1)}[E^{-1}]_{p}^{\wedge}
$$

are injective.

Proof. By Lemma [3.2,](#page-5-0) $\{p, E\}$ form a regular sequence for $\mathfrak{S}_{S}^{(1)}$ $S^{(1)}$, and the maps $\mathfrak{S}_S^{(1)} \to$ $\mathfrak{S}^{(1)}_{\scriptscriptstyle{C}}$ $S^{(1)}[E^{-1}]$ and $\mathfrak{S}_S^{(1)}$ ${}^{(1)}_S[E^{-1}] \to \mathfrak{S}^{(1)}_S$ ${}_{S}^{(1)}[E^{-1}]_{p}^{\wedge}$ are injective. Thus, the maps $\mathfrak{S}_{S}^{(1)}$ $\binom{11}{S'}(p) \rightarrow$ $\mathfrak{S}^{(1)}_{\scriptscriptstyle{C}}$ $S^{(1)}(E^{-1}]/(p)$ and $\mathfrak{S}_S^{(1)} \to \mathfrak{S}_S^{(1)}$ $^{(1)}_S[E^{-1}]^{\wedge}_p$ $_p^{\wedge}$ are injective.

Since $\mathfrak{S}_{\mathcal{O}_{I}}^{(1)}$ $\mathcal{O}_L^{(1)}/(p)$ is E-torsion free, we deduce from Lemma [3.1](#page-4-1) inductively that the map $\mathfrak{S}^{(1)}_R$ $\mathcal{E}_R^{(1)}/(p,E^n)\rightarrow \mathfrak{S}_{\mathcal{O}_L}^{(1)}$ $\mathcal{O}_L^{(1)}(p, E^n)$ is injective for each $n \geq 1$. By taking the inverse limit over n giving the E -adic completions and using Lemma [3.4,](#page-5-2) we have that the map $\mathfrak{S}^{(1)}_R$ $\mathfrak{S}_R^{(1)}/(p)\rightarrow \mathfrak{S}_{\mathcal{O}_L}^{(1)}$ $\mathcal{O}_L^{(1)}(p)$ is injective. Similarly, since $\mathfrak{S}_{\mathcal{O}_L}^{(1)}$ $\mathcal{O}_L^{(1)}$ is *p*-torsion free and $\mathfrak{S}_R^{(1)}$ R and $\mathfrak{S}_{\mathcal{O}_I}^{(1)}$ $\mathcal{O}_L^{(1)}$ are *p*-complete, it follows that $\mathfrak{S}_R^{(1)} \to \mathfrak{S}_{\mathcal{O}_L}^{(1)}$ $\mathcal{O}_L^{(1)}$ is injective. Furthermore, since $\mathfrak{S}^{(1)}_\varnothing$ $\mathcal{O}_L^{(1)}[E^{-1}]$ is p-torsion free and $\mathfrak{S}_R^{(1)}$ $R^{(1)}[E^{-1}]/(p) \to \mathfrak{S}_{\mathcal{O}_L}^{(1)}$ $\mathcal{O}_L^{(1)}[E^{-1}]/(p)$ is injective, the map $\mathfrak{S}^{(1)}_{\scriptscriptstyle{D}}$ $\mathcal{E}_R^{(1)}[E^{-1}]^{\wedge}_p \rightarrow \mathfrak{S}_{\mathcal{O}_L}^{(1)}$ $\overset{(1)}{{\cal O}_{L}}[E^{-1}]^{\wedge}_p$ $\sum_{p=1}^{\infty}$ is injective.

Proposition 3.6. We have

$$
\mathfrak{S}_R^{(1)}=\mathfrak{S}_{\mathcal{O}_L}^{(1)}\cap\mathfrak{S}_R^{(1)}[E^{-1}]^\wedge_p
$$

as subrings of $\mathfrak{S}^{(1)}_{\mathcal{O}_I}$ $\overset{(1)}{\mathcal{O}_L}[E^{-1}]^\wedge_p.$

Proof. By Lemma [3.5,](#page-5-3) the map

$$
\mathfrak{S}_R^{(1)}/(p) \to (\mathfrak{S}_{\mathcal{O}_L}^{(1)}/(p)) \bigcap (\mathfrak{S}_R^{(1)}[E^{-1}]/(p))
$$

is injective, where the intersection is taken as subrings of $\mathfrak{S}_{\mathcal{O}_r}^{(1)}$ $\mathcal{O}_L^{(1)}[E^{-1}]/(p)$. This map is also surjective by Lemma [3.1.](#page-4-1) Since $\mathfrak{S}_{\mathcal{O}_r}^{(1)}$ $\mathcal{O}_L[L^{-1}]_p^{\wedge}$ is p-torsion free by Lemma [3.3](#page-5-4) and $\mathfrak{S}^{(1)}_{\scriptscriptstyle{D}}$ $R_R^{(1)}$ is p-complete, it follows that the map $\mathfrak{S}_R^{(1)} \to \mathfrak{S}_{\mathcal{O}_L}^{(1)}$ $\overset{(1)}{{\cal O}_L} \cap \mathfrak{S}^{(1)}_R$ $_R^{(1)}[E^{-1}]^\wedge_p$ \int_{p}^{\wedge} is surjective. \Box

Now, since $\mathfrak{M}[p^{-1}]$ is projective over $\mathfrak{S}_R[p^{-1}]$, we have

 $(\mathfrak{S}_{\mathcal{O}_I}^{(1)}$ $\mathcal{O}_L^{(1)}[p^{-1}]\otimes_{p_i,\mathfrak{S}_R[p^{-1}]} \mathfrak{M}[p^{-1}])\bigcap (\mathfrak{S}^{(1)}_R)$ $_R^{(1)}[E^{-1}]^{\wedge}_p$ $\phi_p^{\wedge}[p^{-1}] \otimes_{p_i, \mathfrak{S}_R[p^{-1}]} \mathfrak{M}[p^{-1}]) \cong (\mathfrak{S}^{(1)}_R)$ $\mathbb{E}_{R}^{(1)}[p^{-1}]\otimes_{p_{i},\mathfrak{S}_{R}[p^{-1}]} \mathfrak{M}[p^{-1}])$ for $i = 1, 2$ by Proposition [3.6.](#page-6-0) Thus, by [\[DLMS24,](#page-7-0) Lem. 4.10], $f_{\text{\'et}}$ and f_L induce a morphism

$$
f\colon \mathfrak{S}^{(1)}_R\otimes_{p_1,\mathfrak{S}_R}\mathfrak{M}\to \mathfrak{S}^{(1)}_R\otimes_{p_2,\mathfrak{S}_R}\mathfrak{M}.
$$

Furthermore, since $f_{\text{\'et}}$ and f_L are isomorphisms, it follows that f obtained as their intersection is an isomorphism. Since $f_{\text{\'et}}$ is compatible with Frobenius, so is f. It remains to show that f satisfies the cocycle condition over $\mathfrak{S}_R^{(2)}$ $\mathbb{R}^{(2)}$.

Lemma 3.7. For each $i = 1, 2, 3$, the natural map

$$
\mathfrak{S}^{(2)}_R \otimes_{q_i, \mathfrak{S}_R} \mathfrak{M} \to \mathfrak{S}^{(2)}_R [E^{-1}]^{\wedge}_p \otimes_{q_i, \mathfrak{S}_R} \mathfrak{M}
$$

is injective.

Proof. First note that $q_i \colon \mathfrak{S}_R \to \mathfrak{S}_R^{(2)}$ $R^{(2)}$ is classically faithfully flat by [\[DLMS24,](#page-7-0) Lem. 3.5]. So by the same argument as in [\[DLMS24,](#page-7-0) Cor. 3.6 Pf.], we deduce that $\mathfrak{S}_R^{(2)}$ $\frac{p}{R}$ is p torsion free and E-torsion free, and $\mathfrak{S}_R^{(2)}$ $R_R^{(2)}[E^{-1}]$ is *p*-adically separated. In particular, the map $\mathfrak{S}_R^{(2)} \to \mathfrak{S}_R^{(2)}$ $_R^{(2)}[E^{-1}]^\wedge_p$ $_p^{\wedge}$ is injective.

Furthermore, since $\mathfrak{M} \to \mathfrak{M}[p^{-1}]$ is injective, $\mathfrak{S}_R^{(2)} \otimes_{q_i, \mathfrak{S}_R} \mathfrak{M} \to \mathfrak{S}_R^{(2)} \otimes_{q_i, \mathfrak{S}_R} \mathfrak{M}[p^{-1}]$ is injective. The map $\mathfrak{S}_{R}^{(2)} \otimes_{q_i, \mathfrak{S}_R} \mathfrak{M}[p^{-1}] \to \mathfrak{S}_{R}^{(2)}$ $R^{(2)}[E^{-1}]^{\wedge}_p \otimes_{q_i, \mathfrak{S}_R} \mathfrak{M}[p^{-1}]$ is injective since $\mathfrak{M}[p^{-1}]$ is projective over $\mathfrak{S}_R[p^{-1}]$. Thus, the composite

$$
\mathfrak{S}_{R}^{(2)} \otimes_{q_i, \mathfrak{S}_R} \mathfrak{M} \to \mathfrak{S}_{R}^{(2)} [E^{-1}]_{p}^{\wedge} \otimes_{q_i, \mathfrak{S}_R} \mathfrak{M}[p^{-1}]
$$

is injective. Since this map factors through $\mathfrak{S}_R^{(2)} \otimes_{q_i, \mathfrak{S}_R} \mathfrak{M} \to \mathfrak{S}_R^{(2)}$ $R^{(2)}[E^{-1}]^\wedge_p \otimes_{q_i, \mathfrak{S}_R} \mathfrak{M},$ the statement follows. \Box

Since $f_{\text{\'et}}$ satisfies the cocycle condition over $\mathfrak{S}_R^{(2)}$ $_R^{(2)}[E^{-1}]^\wedge_p$ $_{p}^{\wedge},$ we deduce from Lemma [3.7](#page-6-1) that f satisfies the cocycle condition over $\mathfrak{S}_R^{(2)}$ $R^{(2)}$. By Theorem [2.6,](#page-4-0) $V = T[p^{-1}]$ is a crystalline representation of \mathcal{G}_R . This completes the proof of Theorem [1.2.](#page-1-0)

REFERENCES

- [AB10] Fabrizio Andreatta and Olivier Brinon, B_{dR} -représentations dans le cas relatif, Ann. Sci. $\text{Éc. Norm. Supér. (4) }$ 43 (2010), 279–339.
- $[Bri06]$ Olivier Brinon, *Représentations cristallines dans le cas d'un corps résiduel imparfait*, Ann. Inst. Fourier (Grenoble) 56(4) (2006), 919–999.
- [Bri08] , Représentations p-adiques cristallines et de de Rham dans le cas relatif, Mém. Soc. Math. Fr. 112 (2008).
- [BS22] Bhargav Bhatt and Peter Scholze, Prisms and prismatic cohomology, Ann. of Math. (2) 196 (2022), 1135–1275.
- [BS23] , Prismatic F-crystals and crystalline Galois representations, Camb. J. Math. 11 (2023), no. 2, 507–562. MR 4600546
- [CI99] Robert Coleman and Adrian Iovita, The Frobenius and monodromy operators for curves and abelian varieties, Duke Math. J. 97 (1999), 171–215.
- [DL23] Heng Du and Tong Liu, A prismatic approach to (φ, \hat{G}) -modules and F-crystals, arXiv:2107.12240v3, To appear in J. Eur. Math. Soc. (JEMS), 2023.
- [DLMS24] Heng Du, Tong Liu, Yong Suk Moon, and Koji Shimizu, Completed prismatic F-crystals and crystalline \mathbb{Z}_p -local systems, Compos. Math. 160 (2024), 1101–1166.
- [Fal88] Gerd Faltings, Crystalline cohomology and p-adic Galois representations, Algebraic analysis, geometry, and number theory (Baltimore), The Johns Hopkins University Press, 1988, pp. 25–80.
- [Fon82] Jean-Marc Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Ann. of Math. (2) 115 (1982), 529–577.
- [Fon94] , Le corps des périodes p-adiques (appendix by Pierre Colmez), Astérisque 223 (1994), 59–111.
- [GR62] Alexander Grothendieck and Michele Raynaud, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Adv. Stud. Pure Math., 1962.
- [GR24] Haoyang Guo and Emanuel Reinecke, A prismatic approach to crystalline local systems, Invent. Math. 236 (2024), 17–164.
- [LZ17] Ruochuan Liu and Xinwen Zhu, Rigidity and a Riemann-Hilbert correspondence for padic local systems, Invent. Math. 207 (2017), 291–343.
- [Mok93] Abdellah Mokrane, La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke Math. J. 72 (1993), 301–337.
- [Sta] The Stacks project authors, The stacks project, <https://stacks.math.columbia.edu>.
- [Tsu] Takeshi Tsuji, Crystalline sheaves and filtered convergent F-isocrystals on log schemes, preprint.

[Tsu11] , Purity for Hodge-Tate representations, Math. Ann. 350 (2011), 829-866.

[VZ10] Adrian Vasiu and Thomas Zink, Purity results for p-divisible groups and abelian schemes over regular bases of mixed characteristic, Doc. Math. 15 (2010), 571–599.

BEIJING INSTITUTE OF MATHEMATICAL SCIENCES AND APPLICATIONS, BEIJING 101408, CHINA Email address: ysmoon@bimsa.cn