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On De Finetti’s control under Poisson observations: optimality of a

double barrier strategy in a Markov additive model

Lijun Bo∗ Wenyuan Wang† Kaixin Yan‡

Abstract

In this paper we consider the De Finetti’s optimal dividend and capital injection problem under a
Markov additive model. We assume that the surplus process before dividends and capital injections
follows a spectrally positive Markov additive process. Dividend payments are made only at the jump
times of an independent Poisson process. Capitals are required to be injected whenever needed to
ensure a non-negative surplus process to avoid bankruptcy. Our purpose is to characterize the optimal
periodic dividend and capital injection strategy that maximizes the expected total discounted dividends
subtracted by the total discounted costs of capital injection. To this end, we first consider an auxiliary
optimal periodic dividend and capital injection problem with final payoff under a single spectrally
positive Lévy process and conjecture that the optimal strategy is a double barrier strategy. Using the
fluctuation theory and excursion-theoretical approach of the spectrally positive Lévy process and the
Hamilton-Jacobi-Bellman inequality approach of the control theory, we are able to verify the conjecture
that some double barrier periodic dividend and capital injection strategy solves the auxiliary problem.
With the results for the auxiliary control problem and a fixed point argument for recursive iterations
induced by the dynamic programming principle, the optimality of a regime-modulated double barrier
periodic dividend and capital injection strategy is proved for our target control problem.

Keywords: Spectrally positive Markov additive process, De Finetti’s control problem, periodic divi-
dend strategy, capital injection.

Mathematical Subject Classification (2020): 60G51, 93E20, 91G80

1 Introduction

The De Finetti’s dividend problem amounts to a kind of stochastic optimal control problem that aims,
relying on the information of the controlled and uncontrolled processes available so far, to identify some
adapted control process that maximizes the expected total discounted net dividends. It was first studied
in [13] under a symmetric random walk model, where a single barrier dividend strategy was proved to be
the optimal control strategy which yields the maximum expected accumulated discounted net dividends
until ruin. Actually, paying dividends to investors is a common policy in the economics of corporate
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finance; interested readers are referred to [15] for detailed explanations on why companies pay dividends.
However, substantial dividend payments will inevitably increase the risk exposure of bankruptcy for the
company. Hence, to protect the company, it is a common business to raise new capital, which is termed
as capital injection in the literature, by issuing new debts that usually appears in the form of loan from
the bank; see [14] for more details.

Following the pioneer work of [13] on De Finetti’s dividend problem, research works along this line
have been growing fast in insurance and corporate finance. To name a few, the literature has been wit-
nessing many progresses when the underlying surplus processes are Cramér-Lundberg processes, diffusion
processes and Lévy processes; see [1], [6], [7], [8], [9], [10], [16], [22], [23], [25], [30], [33], [34], [36], [37],
[38], etc. However, to the limit of the authors’ knowledge, there are significantly limited existing research
works concerning De Finetti’s stochastic control problem under the Markov additive models; the only
three of them can be found in [21], [24] and [31]. Under the spectrally negative Markov additive process,
[24] studied De Finetti’s dividend and capital injection problem subject to the constraint that the accu-
mulated dividend process is absolutely continuous with bounded density, and verified the optimality of
a regime-modulated refraction-reflection strategy. Then, under the spectrally positive Markov additive
process, De Finetti’s dividend and capital injection problem was investigated in [31]; while this time
the accumulated dividend process can be any non-decreasing, right-continuous and adapted process. A
regime-modulated double barrier dividend and capital injection strategy is proved to dominate any other
strategy. Very recently, [21] appeared to be the first and latest work that considered the Poisson observa-
tion version of De Finetti’s dividend and capital injection problem under the spectrally negative Markov
additive process, where the decision maker makes dividend decisions only at independent Poisson arrival
times, while capital is injected into the surplus process continuously in time so that the controlled surplus
process is always non-negative. By considering an auxiliary problem first and then using approximations
via recursive iterations, the authors showed the optimality of a regime-modulated double barrier dividend
and capital injection strategy.

Motivated by the work of [21], in this paper, we raise a natural conjecture that the form of optimal
strategy solving the Poisson observation version of De Finetti’s dividend and capital injection problem
remains a regime-modulated double barrier strategy when the uncontrolled spectrally negative Markov
additive process of [21] is replaced with a spectrally positive Markov additive process, and aim to verify
the conjecture. We first address an auxiliary optimal dividend and capital injection problem with a final
payoff under a single spectrally positive Lévy process, of which the optimal strategy is guessed to be some
double barrier strategy. To confirm our guess, we need to derive the expression of the value function of
a double barrier strategy for the auxiliary problem. This boils down to the derivation of solutions to the
expected discounted total dividend payment minus the expected discounted total capital injection as well
as the potential measure associated with the spectrally positive Lévy process controlled by a double barrier
dividend and capital injection strategy. During the derivation process, the cases that the underlying single
spectrally positive Lévy process is of bounded or unbounded variation should be considered separately,
and the fluctuation theory and excursion-theoretical approach play important roles. With the expression
of the value function of a double barrier strategy in hand, we can characterize the optimal strategy of
the auxiliary problem among the set of double barrier strategies, to which end we manage to express the
derivative of the value function in terms of the Laplace transform and potential measure of the spectrally
positive Lévy process controlled by a single barrier periodic dividend strategy until the first time it
down-crosses 0. This new compact expression facilitates us to identify the candidate optimal strategy
among the set of double barrier dividend and capital injection strategies and the slope conditions of
the value function of this candidate optimal double barrier strategy. Using these slope conditions and
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the Hamilton-Jacobi-Bellman inequality approach of the control theory, the above candidate optimal
double barrier strategy is verified as the optimal strategy for the auxiliary problem. Finally, thanks to
the results for the auxiliary control problem and a fixed point argument for recursive iterations induced
by the dynamic programming principle, the optimality of a regime-modulated double barrier periodic
dividend and capital injection strategy is proved for our target control problem.

It needs mentioning that the Markov additive model is a regime-switching model. Actually, the
Markov additive process can be viewed as a family of Lévy processes switching according to an inde-
pendent continuous time Markov chain. The regime-switching model has been widely studied due to its
capability to capture the transitions of market behaviors and its mathematical tractability and explicit
structures. A list of empirical studies concerning regime-switching can be found in [5], [18], [28], and the
references therein. Apart from [21], [24] and [31], other works on dividend control problem with regime
switching can be found in [6], [16], [34], [35] and [37], etc. We also mention that the feature of Poisson
observation has been considered in the literature. To name a few, exit problems were studied under
various models in [2], [3], [4], [11], and the references therein. In the context of dividend control problems
under Poisson observation, we refer to a short list of [1], [8], [36] and [21], etc.

Our approach on verifying the optimality of a double barrier strategy relies on the standard two-step
approach for optimal dividend and capital injection control problems under the Markov additive models,
i.e., consider first the control problem with a single regime using purely probabilistic approaches, and
then solve the target control problem with regimes via approximation arguments (see; [21], [24], [31]).
However, our analysis within each step differs substantially from that of [24] and [31] due to the complexity
coming from the Poisson observation. Comparing with [21] where Poisson observation is present, we stress
that we work with spectrally positive Lévy processes. Due to the different path properties of spectrally
positive Lévy processes from that of spectrally negative Lévy processes, distinct computations and proofs
are required to handle the auxiliary control problem. For example, in addition to the fluctuation theory
of the spectrally positive Lévy process, we need also resort to the excursion-theoretical approach, which
is not necessary in the analysis of [21], to derive the expression for the value function of a double barrier
dividend and capital injection strategy. In addition, we have to separately consider the two cases whether
or not the spectrally positive Lévy process has bounded path variation, while [21] does not need to treat
these two cases separately. Actually, arguments involving fluctuation theory and excursion-theoretical
approach are used for the case of bounded variation, approximation and limiting arguments are further
needed to handle the case of unbounded variation. We also note that, the dividend barriers associated
with the optimal strategy of the auxiliary control problem and the target control problem are strictly
positive, while the counterparts of [21] can be 0 in the bounded path variation case.

The rest of the paper unfolds as follows. In Section 2, the optimal dividend and capital injection prob-
lem under the spectrally positive Markov additive process is formulated, some preliminaries of spectrally
positive Lévy processes are also introduced. Section 3 is devoted to study an auxiliary optimal dividend
and capital injection problem with a final payoff at an exponential terminal time. Using fluctuation theory
and excursion-theoretical approach of the spectrally positive Lévy processes, and the Hamilton-Jacobi-
Bellman inequality approach of the control theory, a double-barrier strategy is verified as the optimal
strategy. In Section 4, based on the results obtained for the auxiliary control problem and a fixed point
argument for recursive iterations induced by the dynamic programming principle, the optimality of a
regime-modulated double barrier periodic dividend and capital injection strategy is proved for our target
control problem.
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2 Problem Formulation under Spectrally Positive Markov Additive

Processes

2.1 Some preliminaries of spectrally positive Lévy processes

Let X = (Xt)t≥0 be a Lévy process defined on a probability space (Ω,F ,F,P), where F = {Ft} satisfies
the usual conditions. For x ∈ R, we denote by Px the law of X starting from x and write Ex the associated
expectation. We also use P and E in place of P0 and E0. The Lévy process X is said to be spectrally
positive if it has no negative jumps and it is not a subordinator. The Laplace exponent ψ : [0,∞) → R

satisfying

E[e−θXt ] =: eψ(θ)t, t, θ ≥ 0,

is given by the Lévy-Khintchine formula that

ψ(θ) := cθ +
σ2

2
θ2 +

∫

(0,∞)
(e−θz − 1 + θz1{z<1})υ(dz), θ ≥ 0,

where γ ∈ R, σ ≥ 0, and υ is the Lévy measure of X on (0,∞) that satisfies

∫

(0,∞)
(1 ∧ z2)υ(dz) <∞.

It is well-known that X has paths of bounded variation if and only if σ = 0 and
∫
(0,1) zυ(dz) < ∞; in

this case, we have

Xt = −ct+ St, t ≥ 0,

where

c := c+

∫

(0,1)
zυ(dz),

and (St)t≥0 is a driftless subordinator. As we have ruled out the case that X has monotone paths, it
holds that c > 0. Its Laplace exponent is given by

ψ(θ) = cθ +

∫

(0,∞)
(e−θz − 1)υ(dz), θ ≥ 0.

To exclude the trivial case, it is assumed throughout the paper that

E[X1] = −ψ′(0+) <∞.

Let us also recall the q-scale function for the spectrally positive Lévy process X. For q > 0, there exists
a continuous and increasing function Wq : R → [0,∞), called the q-scale function such that Wq(x) = 0
for all x < 0 and its Laplace transform on [0,∞) is given by

∫ ∞

0
e−sxWq(x)dx =

1

ψ(s)− q
, s > Φq,
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where Φq := sup{s ≥ 0 : ψ(s) = q}. We also define Zq(x) by

Zq(x) := 1 + q

∫ x

0
Wq(y)dy, x ∈ R,

and its anti-derivative

Zq(x) :=

∫ x

0
Zq(y)dy, x ∈ R.

The so-called second scale function is defined by, for s ≥ 0,

Zq(x, s) = esx
(
1− (ψ(s)− q)

∫ x

0
e−syWq(y)dy

)
, x ≥ 0,

and Zq(x, s) = esx for x < 0. Note Zq(x, s) = Zq(x) for s = 0 and that we can rewrite Zq(x, s) for s > Φq
in the form

Zq(x, s) = (ψ(s) − q)

∫ ∞

0
e−syWq(x+ y)dy, x ≥ 0, s > Φq.

We recall that if X has paths of bounded variation, Wq(x) ∈ C1((0,∞)) if and only if the Lévy measure
υ has no atoms. If X has paths of unbounded variation, we have that Wq(x) ∈ C1((0,∞)). Moreover,
if σ > 0, we have Wq(x) ∈ C2((0,∞)). Hence, we have that Zq(x) ∈ C1((0,∞)), Zq(x) ∈ C1(R)
and Zq(x) ∈ C2((0,∞)) for bounded variation case; and we have Zq(x) ∈ C1(R), Zq(x) ∈ C2(R) and
Zq(x) ∈ C3((0,∞)) for the unbounded variation case. We also know that

Wq(0+) =

{
0 if X is of unbounded variation,
1/c if X is of bounded variation.

Let us define τ−a := inf{t ≥ 0;Xt < a} and τ+b := inf{t ≥ 0;Xt > b}. Then, for b ∈ (0,∞) and x ∈ [0, b],
we have

Ex

(
e−qτ

−

0 1{τ−0 <τ
+
b
}

)
=
Wq(b− x)

Wq(b)
, (2.1)

Ex

(
e−qτ

+
b 1{τ+

b
<τ−0 }

)
=Zq(b− x)−

Zq(b)

Wq(b)
Wq(b− x). (2.2)

In addition, for further use, we recall briefly some concepts of the excursion theory for the spectrally
positive Lévy process X reflected from the infimum, i.e., {X(t) −X(t); t ≥ 0} with X(t) = inf0≤s≤tXs,
and we refer to [12] for more details. For x ∈ (−∞,∞), the process {L(t) := −X(t)+x, t ≥ 0} represents
a local time at 0 of the Markov process {X(t) −X(t); t ≥ 0} under Px. Define the inverse local time as

L−1(t) := inf{s ≥ 0 : L(s) > t}.

Let L−1(t−) := lim
s→t−

L−1(s) be the left limit of L−1(s) at s = t. When L−1(t) − L−1(t−) > 0, define a

Poisson point process {(t, et); t ≥ 0} as follows

et(s) := X(L−1(t−) + s)−X(L−1(t)), s ∈ (0, L−1(t)− L−1(t−)],

where L−1(t) − L−1(t−) is referred to as the lifetime of et. While, when L−1(t) − L−1(t−) = 0, define
et := Υ, where Υ is some additional isolated point. A conclusion drawn by Itô states that e is a Poisson
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point process with characteristic measure n when the reflected process {X(t)−X(t); t ≥ 0} is recurrent;
otherwise {et; t ≤ L(∞)} is a Poisson point process which stops until an excursion with infinite lifetime
takes place. Here, n is a measure on the space E of excursions, that is, the space E of càdlàg functions f
such that

f : (0, ζ) → (0,∞) for some ζ = ζ(f) ∈ (0,∞],

f : {ζ} → (0,∞) if ζ <∞,

where ζ = ζ(f) represents the lifetime of the excursion; and we refer to Definition 6.13 of [20] for more
details of the space E of canonical excursions. Denote by ε(·), or ε for short, a generic excursion in E .
Denote by ε = sup

t∈[0,ζ]
ε(t) the excursion height of ε. And, denote by

ρ+b ≡ ρ+b (ε) := inf{t ∈ [0, ζ] : ε(t) > b},

the first passage time of ε with the convention of inf ∅ := ζ. In addition, let εg be the excursion (away from
0) with left-end point g for the reflected process {X(t)−X(t); t ≥ 0}, and let ζg and εg be, respectively,
the lifetime and excursion height of εg; see Section IV.4 of [12].

2.2 Problem Formulation

Let us consider the risk process modelled by the spectrally positive Markov additive process {(Xt, Yt); t ≥
0}. Here, {Yt; t ≥ 0} is a continuous time Markov chain with finite state space E and the generator matrix
(λij)i,j∈E . Condition on that Markov chain Y is in the state i, the process X evolves as a spectrally
positive Lévy process Xi until the Markov chain Y switches to another state j 6= i, at which instant
there is a downward jump in X with a random amount Jij . We assume that (Xi)i∈E , Y , and (Jij)i,j∈E
are independent from each other and are defined on a filtered probability space (Ω,F , {Ft; t ≥ 0},P)
satisfying the usual condition. Denote by Px,i the law of the process {(Xt, Yt); t ≥ 0} conditioning on
{X0 = x, Y0 = i}.

We consider a bail-out dividend control problem in this Markov additive framework, where the ben-
eficiaries of dividends are supposed to injects capitals into the surplus process so that the resulting
surplus process are always non-negative, i.e., bankruptcy never occurs. We consider two non-decreasing,
right-continuous, adapted processes {Dt; t ≥ 0} and {Rt; t ≥ 0} defined on (Ω,F , {Ft; t ≥ 0},P), which,
respectively, represent the cumulative amount of dividends and injected capitals with D0− = R0− = 0.
In this paper we consider that the dividend payments can only be made at the arrival epochs (Tn)n≥1 of
an independent Poisson process (Nt)t≥0 with the intensity γ > 0. Contrary to the dividend payments,
capital injection can be made continuously in time. Hence, the surplus process after taking into account
the dividends and capital injection is formulated as Ut = Xt −Dt +Rt, t ≥ 0. The value function of the
periodic dividend control problem with capital injection is defined by

V (x, i) = sup
D,R

Ex,i

(∫ ∞

0
e−

∫ t
0 δYsdsdDt − φ

∫ ∞

0
e−

∫ t
0 δYsdsdRt

)

subject to Ut = Xt −Dt +Rt ≥ 0 for all t ≥ 0,

both Dt and Rt are non-decreasing, càdlàg and adapted processes,

Dt =

∫ t

0
∆DsdNs, t ≥ 0, for a Poisson process (Nt)t≥0 with intensity γ > 0,
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D0− = R0− = 0, and

∫ ∞

0
e−

∫ t

0
δYsdsdRt <∞, Px,i-almost surely, (2.3)

where (δi) ∈ [0,∞)E is a discounting rate function that switches according to the economic environment
depicted by the Markov chain Y , and φ > 1 is the cost per unit capital injected. Our goal is to identify
the value functions (V (x, i))i∈E and find the optimal strategy (D∗, R∗) that attains the value functions
(V (x, i))i∈E .

Following the similar proof of Proposition 3.1 in [21], we can readily obtain the following dynamic
programming principle for value function of the control problem holds valid, and its proof is hence
omitted.

Proposition 2.1 For x ∈ R and i ∈ E, we have that

V (x, i) = sup
D,R

Ex,i

[∫ eλi

0
e−

∫ t

0
δYsdsdDt − φ

∫ eλi

0
e−

∫ t

0
δYsdsdRt + e−

∫ eλi
0 δYsdsV (Ueλi , Yeλi )

]
,

where eλi is the first time Y switches the regime state under Px,i.

The next theorem is the main result of this paper, which confirms the optimality of a regime-modulated
periodic-classical reflection strategy for the stochastic control problem (2.3), whose proof is deferred to
Section 4.

Theorem 2.1 There exists a function b∗ = (b∗i )i∈E ∈ (0,∞)E such that the periodic dividend and capital

injection strategy with the dynamic upper periodic barrier b∗Yt and fixed lower reflection barrier 0 is optimal

that attains the value function in (2.3) that

V0,b∗(x, i) = V (x, i), (x, i) ∈ R+ × E ,

where V0,b∗(x, i) represents the value function of the periodic-classical barrier dividend and capital injec-

tion strategy with upper barrier b∗Yt and lower barrier 0.

3 Auxiliary Optimal Dividend Problem with Final Payoff

In this section we consider an auxiliary optimal dividend and capital injection problem with final payoff.
We suppose that, without a control, the surplus process evolves as a spectrally positive Lévy process
(Xt)t≥0. It is then assumed that dividend decisions on weather or not a lump sum of dividend payment
is deducted from the surplus process can only be made at the arrival epochs (Tn)n≥1 of an independent
Poisson process (Nt)t≥0 with the intensity γ > 0. In this case, the non-decreasing, cadlág, pure jump
cumulative dividend payment process (Dt)t≥0 can be written as

Dt =

∫ t

0
∆DsdNs =

∞∑

n=1

∆DTn1{Tn≤t}, t ≥ 0,

7



where Ti be the arrival times of an independent Poisson process of intensity γ and ∆DTn = DTn −DTn−

represents the amount of dividends paid at time Tn. Regarding the cumulative capital injection process
(Rt)t≥0, we assume that it is a non-decreasing and cadlág process starting from 0, i.e, R0− = 0. Given a
dividend and capital injection control strategy π = (Dπ, Rπ), we can write the resulting surplus process
under π, denoted by Uπ = (Uπt )t≥0, as

Uπt = Xt −
∞∑

n=1

∆Dπ
Tn
1{Tn≤t} +Rπt , t ≥ 0.

Throughout this section, we assume that the payoff function ω is continuous and concave over [0,∞)
with ω′

+(0+) ≤ φ and ω′
+(∞) ∈ [0, 1], where ω′

+(x) denotes the right derivative of ω at x. A periodic
dividend and capital injection strategy π = (Dπ, Rπ) is said to be admissible if Uπt ≥ 0 for all t ≥ 0. Let’s
denote by Π the set of all admissible periodic dividend and capital injection strategies. For δ, λ > 0 and
π ∈ Π, the value function of the expected terminal payoff added with the expected difference between
the present value of dividends and costs of capital injection is written as

V ω
π (x)=Ex

[ ∫ eλ

0
e−δtdDπ

t − φ

∫ eλ

0
e−δtdRπt + e−δeλω(Uπeλ)

]

=Ex

[ ∫ ∞

0
λe−λt

[ ∞∑

n=1

e−δTn∆Dπ
Tn1{Tn≤t} − φ

∫ t

0
e−δsdRπs + e−δtω(Uπt )

]
dt

]

=Ex

[ ∞∑

n=1

e−qTn∆Dπ
Tn

− φ

∫ ∞

0
e−qtdRπt + λ

∫ ∞

0
e−qtω(Uπt )dt

]
, (3.1)

where q = δ+ λ. The purpose of the auxiliary stochastic control problem is to find the optimal dividend
and capital injection strategy π∗ ∈ Π in the sense that it dominates all other admissible strategies. The
value function of the auxiliary stochastic control problem is then given by

V ω
π∗(x) = sup

π
V ω
π (x) subject to Uπt = Xt −Dπ

t +Rπt ≥ 0 for all t ≥ 0,

both Dπ
t and Rπt are non-decreasing, càdlàg and adapted processes,

Dπ
t =

∫ t

0
∆Dπ

s dNs, t ≥ 0, for a Poisson process (Nt)t≥0 with intensity γ > 0,

Dπ
0− = Rπ0− = 0, and

∫ ∞

0
e−qtdRπt <∞, Px-almost surely. (3.2)

We first consider a smaller subset of admissible dividend and capital injection strategies. We note
that the time value of money (i.e., q > 0), it seems reasonable to inject capitals as late as possible. In
addition, since there are transaction costs charged for per unit of capitals injected (φ > 1), whenever
capitals injection is required, the injected capital should be the amount to keep the surplus process
non-negative, that is, the surplus process will reflect from below at 0. Therefore, by the above intuitive
arguments, we give the following Lemma 3.1. The proof is essentially similar to that of Lemma 4.2 in
[30] and is hence omitted.

Lemma 3.1 The optimal dividend and capital injection process {(Dt, Rt); t ≥ 0} for the optimization

problem is represented as (3.2) is such that 0 ≤ ∆Dt ≤ Xt− and

Rt = − inf
s≤t

(Xs −Ds) ∧ 0. (3.3)
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In particular, {Rt; t ≥ 0} is continuous.

We conjecture that the optimality of the control problem (3.2) can be attained by a double barrier
strategy, associated to which the two dimensional cumulative dividend and capital injection process is
denoted as (D0,b

t , R0,b
t )t≥0 with b ∈ (0,∞). Under the strategy (D0,b

t , R0,b
t )t≥0, the surplus process is

observed at each arrival epoch of an independent Poisson process, whenever the surplus is observed to
be above b, the overshoot is paid out as dividends; while capitals are injected into the surplus process to
push it upward to 0 whenever it is about to down-cross 0. After adopting the strategy (D0,b

t , R0,b
t )t≥0,

the resulting surplus process reads as

U0,b
t := Xt −D0,b

t +R0,b
t , t ≥ 0,

where

D0,b
t =

∞∑

n=1

(
(U0,b

Tn−
+∆XTn − b) ∨ 0

)
1{Tn≤t} and R0,b

t = − inf
0≤s<t

(
(Xs −D0,b

s ) ∧ 0
)
, t ≥ 0.

In addition, denote by down-crossing and up-crossing times of U0,b
t respectively by

κ−a := inf{t ≥ 0;U0,b
t < a} and κ+b := inf{t ≥ 0;U0,b

t > b}.

Let us denote the performance function (see, (3.1)) for the periodic-classical barrier dividend and capital

injection strategy π = (D0,b
t , R0,b

t )t≥0 as

V ω
0,b(x) = Ex

[ ∫ ∞

0
e−qtdD0,b

t − φ

∫ ∞

0
e−qtdR0,b

t + λ

∫ ∞

0
e−qtω(U0,b

t )dt

]
.

For further computations, define Ỹt = Xt −Xt ∧ 0 with Xt = inf0≤s≤tXs, and σ
+
a := inf{t ≥ 0 : Ỹt > a}

for a > 0. Actually, Ỹ can be interpreted as a surplus process with capital injection that prevents the
company from going bankruptcy, where −Xt ∧ 0 represents the total amount of capitals injected during
the time period [0, t]. Furthermore, let T+

b := min{Ti : ỸTi > b} be the first time the process Ỹt is
observed to be above b under Poisson observation, i.e., the first time when a lump sum of dividend is
paid out in the surplus process U0,b

t .

Since it has been conjectured that our auxiliary dividend control problem (3.2) is solved by a double
barrier peoriodoc dividend and capital injection strategy, we need to find an expression for the value
function of a double barrier strategy. We decompose the corresponding computations into the upcoming
Lemmas 3.2-3.5. In particular, the following Lemma 3.2 gives an expression for the expected discounted
total dividend payment minus the expected discounted total capital injection under a double barrier
dividend and capital injection strategy.

Lemma 3.2 For q > 0, b > 0, and φ > 1, we have

Ex

[ ∫ ∞

0
e−qtdD0,b

t − φ

∫ ∞

0
e−qtdR0,b

t

]
=−

γ

q + γ

[
Zq(b− x) +

ψ′(0+)

q

]

+
(γZq(b)− φ(q + γ))

[
Zq(b− x,Φq+γ) +

γ
q
Zq(b− x)

]

(q + γ)Φq+γZq(b,Φq+γ)
, x ∈ (0,∞). (3.4)

9



Proof. Denote by f(x) the left hand side of (3.4). We recall from Lemma 3.4 of [36] that

Ex

[
e−qT1(XT1 − b)1{T1<τ−b }

]
=

γ

q + γ

[
x− b−

ψ′(0+)

q + γ

(
1− e−Φq+γ(x−b)

)]
, x ∈ (b,∞),

Ex

[
e−q(T1∧τ

−

b
)
]
=

γ

q + γ
+

q

q + γ
e−Φq+γ(x−b), x ∈ (b,∞),

which together with the strong Markov property leads to

f(x)=Ex

[
e−qT1(XT1 − b)1{T1<τ−b }

]
+ Ex

[
e−q(T1∧τ

−

b
)
]
f(b)

=
γ

q + γ

[
x− b−

ψ′(0+)

q + γ

(
1− e−Φq+γ(x−b)

)]
+

[
γ

q + γ
+

q

q + γ
e−Φq+γ(x−b)

]
f(b), x ∈ (b,∞). (3.5)

It is not hard to verify that U0,b
t = Ỹt and R0,b

t = − infs≤tXs ∧ 0 = sups≤t((b − Xs) − b) ∨ 0 for
t ≤ T+

b , where the term sups≤t((b − Xs) − b) ∨ 0 can be interpreted as the amount of dividends paid
over the time interval [0, t] under a barrier dividend strategy with barrier b, given that the surplus
process free of dividends evolves as b − Xt; and T

+
b is identical to the first instant the surplus process

(b − Xt) − sups≤t((b − Xs) − b) ∨ 0 = b − Ỹt with dividends paid (out of b − Xt) according to the
barrier dividend strategy with barrier b is observed to be below 0 under the Poisson observation, i.e.,
T+
b = inf{Ti; (b−XTi)− sups≤Ti((b−Xs)− b) ∨ 0 < 0}. Hence, by (23) and (27) of [3], we have

Ex

[
e−qT

+
b

]
=

γ

γ + q

[
Zq(b− x)− qWq(b)

Zq(b− x,Φq+γ)

Z ′
q(b,Φq+γ)

]
, x ∈ [0, b], (3.6)

Ex

[∫ T+
b

0
e−qtdR0,b

t

]
=
Zq(b− x,Φq+γ)

Z ′
q(b,Φq+γ)

, x ∈ [0, b], (3.7)

Ex

[
e−qT

+
b
+θ(b−Ỹ (T+

b
))
]
=
γ
[
Zq(b− x, θ) + Zq(b− x,Φq+γ)

Wq(b)(ψ(θ)−q)−θZq (b,θ)
Z′
q(b,Φq+γ)

]

q + γ − ψ(θ)
x ∈ [0, b]. (3.8)

Differentiating the both sides of (3.8) with respect to θ and then letting θ → 0 yields

Ex

[
e−qT

+
b

(
b− Ỹ (T+

b )
)]

=
γψ′(0+)

(q + γ)2

[
Zq(b− x)− Zq(b− x,Φq+γ)

qWq(b)

Z ′
q(b,Φq+γ)

]
+

γ

q + γ

×

[
Zq(b− x)− ψ′(0+)W q(b− x) + Zq(b− x,Φq+γ)

Wq(b)ψ
′(0+)− Zq(b)

Z ′
q(b,Φq+γ)

]
, x ∈ [0, b]. (3.9)

Combing (3.6)-(3.9) and the strong Markov property, we have

f(x)=−φEx

[∫ T+
b

0
e−qtdR0,b

t

]
+Ex

[
e−qT

+
b

(
Ỹ (T+

b )− b+ f(b)
) ]

=−φ
Zq(b− x,Φq+γ)

Z ′
q(b,Φq+γ)

+
γ

q + γ

[[
Zq(b− x)− qWq(b)

Zq(b− x,Φq+γ)

Z ′
q(b,Φq+γ)

](
f(b)−

ψ′(0+)

q + γ

)

−

[
Zq(b− x)− ψ′(0+)W q(b− x) + Zq(b− x,Φq+γ)

Wq(b)ψ
′(0+)− Zq(b)

Z ′
q(b,Φq+γ)

]]
, x ∈ [0, b]. (3.10)

Letting x = b in (3.10) gives rise to

f(b)=
γZq(b)− φ(q + γ)

qΦq+γZq(b,Φq+γ)
−
γψ′(0+)

q(q + γ)
,
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substituting which into (3.5) and (3.10) yields the desired result. The proof is complete.

To obtain an expression for the value function associated with a double barrier periodic dividend and
capital injection strategy, we still need to find an expression for the potential measure of the spectrally
positive Lévy process controlled by a double barrier periodic dividend and capital injection strategy. To
this end, we need to make some preparations in the following Lemmas 3.3-3.4. In Lemma 3.3 below,
we compute an integral with respect to the excursion measure n, where the integrand involves the scale
function, the excursion height as well as the first passage time of excursion.

Lemma 3.3 For x ∈ (0,∞), we have

n
(
e−pρ

+
x (ε)Wq(x− ǫ(ρ+x ) + y)1{ǫ≥x}

)

=−Wp(x)
d

dx

[
Wp(x+ y) + (q − p)

∫ y
0 Wp(x+ y − z)Wq(z)dz

Wp(x)

]
.

Proof. For 0 ≤ a ≤ x ≤ c and y ≥ 0, by (2.1) it can be checked that

Wq(x+ y)

Wq(c+ y)
=E−x−y

[
e−qτ

−

−c−y1{τ−
−c−y<τ

+
0 }

]

=E−x−y

[
e−qτ

−

−c−y1{τ−
−c−y<τ

+
−a−y}

]
+ E−x−y

[
E−x−y

[
e−qτ

−

−c−y1{τ+
−a−y<τ

−

−c−y<τ
+
0 }

∣∣∣Fτ+
−a−y

]]

=
Wq(x− a)

Wq(c− a)
+ E−x−y

[
e−qτ

+
−a−y1{τ+

−a−y<τ
−

−c−y}

Wq(−Xτ+
−a−y

)

Wq(c+ y)

]
,

which is equivalent to

E−x

[
e−qτ

+
−aWq(−Xτ+

−a
+ y)1{τ+

−a<τ
−

−c}

]
=Wq(x+ y)−

Wq(x− a)

Wq(c− a)
Wq(c+ y).

Then, by Lemma 2.1 of [17], we have that

E−x

[
e−pτ

+
−aWq(−Xτ+

−a
+ y)1{τ+

−a<τ
−

−c}

]
=Wq(x+ y)− (q − p)

∫ x

a

Wp(x− z)Wq(z + y)dz

−
Wp(x− a)

Wp(c− a)

(
Wq(c+ y)− (q − p)

∫ c

a

Wp(c− z)Wq(z + y)dz

)
.

In particular, we have

E−x

[
e−pτ

+
0 Wq(−Xτ+0

+ y)1{τ+0 <∞}

]
=Wq(x+ y)− (q − p)

∫ x

0
Wp(x− z)Wq(z + y)dz

− lim
c↑∞

Wp(x)

Wp(c)

(
Wp(c+ y) + (q − p)

∫ y

0
Wp(c+ y − z)Wq(z)dz

)

=Wp(x+ y) + (q − p)

∫ y

0
Wp(x+ y − z)Wq(z)dz

−Wp(x)

(
eΦpy + (q − p)

∫ y

0
eΦp(y−z)Wq(z)dz

)
, (3.11)
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where we have used the fact that lim
z→∞

Wq(x+z)
Wq(z)

= eΦqx, and that, for non-negative p and q

Wq(x+ y)− (q − p)

∫ x

0
Wq(z + y)Wp(x− z)dz

=Wp(x+ y) + (q − p)

∫ y

0
Wp(x+ y − z)Wq(z)dz, x > 0, x+ y ≥ 0, (3.12)

which can be verified by taking Laplace transform on both sides of the above equation. By the compen-
sation formula, we have

E−x

(
e−pτ

+
0 Wq(−Xτ+0

+ y)1{τ+0 <∞}

)

=E−x


∑

g

e−pg
∏

h<g

1{ǫh<x+L(h)}e
−pρ+

x+L(g)
(ǫg)

×Wq(x+ L(g) − ǫg(ρ
+
x+L(g)) + y)1{ǫg≥x+L(g)}

)

=E−x

(∫ ∞

0
e−pw

∏

h<w

1{ǫh<x+L(h)}

∫

E
e
−pρ+

x+L(w)
(ε)

×Wq(x+ L(w) − ǫ(ρ+
x+L(w)

) + y)1{ǫ≥x+L(w)} n( dε) dL(w)
)

=E−x



∫ ∞

0
e−pL

−1(w−)
∏

h<L−1(w−)

1{ǫh<x+L(h)}

×

∫

E
e−pρ

+
x+w(ε)Wq(x+ w − ǫ(ρ+x+w) + y)1{ǫ≥x+w} n( dε) dw

)

=

∫ ∞

x

E−x

(
e−pτ

−

−w1{τ−
−w<τ

+
0 }

)
n
(
e−pρ

+
w(ε)Wq(w − ǫ(ρ+w) + y)1{ǫ≥w}

)
dw

=

∫ ∞

x

Wp(x)

Wp(w)
n
(
e−pρ

+
w(ε)Wq(w − ǫ(ρ+w) + y)1{ǫ≥w}

)
dw,

which together with (3.11) yields the desired result.

The following Lemma 3.4 below computes an expectation with the integrand involving the scale
function, the surplus process with capital injection Ỹ and the first passage time of Ỹ .

Lemma 3.4 For x ∈ (0, b) and y ∈ (0,∞), we have

Ex

[
e−qσ

+
b Wq+γ(b− Ỹσ+

b
+ y)1{σ+

b
<∞}

]
=Wq(b− x+ y) + γ

∫ y

0
Wq(b− x+ y − z)Wq+γ(z)dz

−
Wq(b− x)

W ′+
q (b)

(
W ′+
q (b+ y) + γ

∫ y

0
W ′+
q (b+ y − z)Wq+γ(z)dz

)
.

Proof. Put ξb(z) = z ∧ 0 + b and ξb(z) = ξb(z) − z. Recall that Ỹt = Xt − X t ∧ 0 and σ+b = inf{t ≥

0; Ỹt > b} = inf{t ≥ 0;Xt > ξb(X t)}. Adapting Lemma 3.2 of [33], one can check that

Ex

(
e−qτ

−

x−w1{τ−x−w<σ
+
b
}

)
= exp

(
−

∫ x

x−w

W ′
q(ξb (z))

Wq(ξb (z))
dz

)
, x ∈ (0, b), w ∈ (0,∞). (3.13)
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By (3.13), Lemma 3.3 as well as the compensation formula, we have

Ex

[
e−qσ

+
b Wq+γ(b− Ỹσ+

b
+ y)1{σ+

b
<∞}

]

=Ex



∑

g

e−qg
∏

h<g

1{ǫh<ξb(x−L(h))}e
−qρ+

ξb(x−L(g))
(ǫg)

×Wq+γ(b+ ((x− L(g)) ∧ 0)− (x− L(g)) − ǫg(ρ
+
ξb(x−L(g))

) + y)1{ǫg≥ξb(x−L(g))}

)

=Ex

(∫ ∞

0
e−qw

∏

h<w

1{ǫh<ξb(x−L(h))}

∫

E
e
−qρ+

ξb(x−L(w))
(ε)

×Wq+γ(ξb(x− L(w)) − ǫg(ρ
+
ξb(x−L(w))

) + y)1{ǫ≥ξb(x−L(w))} n( dε) dL(w)
)

=Ex



∫ ∞

0
e−qL

−1(w−)
∏

h<L−1(w−)

1{ǫh<ξb(x−L(h))}

×

∫

E
e
−qρ+

ξb(x−w)
(ε)
Wq+γ(ξb(x− w)− ǫ(ρ+

ξb(x−w)
) + y)1{ǫ≥ξb(x−w)} n( dε) dw

)

=

∫ ∞

0
Ex

(
e−qτ

−

x−w1{τ−x−w<σ
+
b
}

)
n

(
e
−qρ+

ξb(x−w)
(ε)
Wq+γ(ξb(x− w)− ǫ(ρ+

ξb(x−w)
) + y)1{ǫ≥ξb(x−w)}

)
dw

=

∫ x

−∞
exp

(
−

∫ x

w

W ′
q(ξb (z))

Wq(ξb (z))
dz

)
n

(
e
−qρ+

ξb(w)
(ε)
Wq+γ(ξb(w) − ǫ(ρ+

ξb(w)
) + y)1{ǫ≥ξb(w)}

)
dw

=−

∫ x

−∞
exp

(
−

∫ x

w

W ′+
q (ξb (z))

Wq(ξb (z))
dz

)

×Wq(ξb(w))
d

dv

[
Wq(v + y) + γ

∫ y
0 Wq(v + y − z)Wq+γ(z)dz

Wq(v)

]∣∣∣∣
v=ξb(w)

dw

=−

∫ x

0
exp

(
−

∫ x

w

W ′+
q (b− z)

Wq(b− z)
dz

)

×Wq(b− w)
d

dv

[
Wq(v + y) + γ

∫ y
0 Wq(v + y − z)Wq+γ(z)dz

Wq(v)

]∣∣∣∣
v=b−w

dw

−

∫ 0

−∞
exp

(
−

∫ x

0

W ′+
q (b− z)

Wq(b− z)
dz

)
exp

(
−

∫ 0

w

W ′+
q (b)

Wq(b)
dz

)

×Wq(b)
d

dv

[
Wq(v + y) + γ

∫ y
0 Wq(v + y − z)Wq+γ(z)dz

Wq(v)

]∣∣∣∣
v=b

dw

=−Wq(b− x)

∫ 0

−x

d

dv

[
Wq(v + y) + γ

∫ y
0 Wq(v + y − z)Wq+γ(z)dz

Wq(v)

]∣∣∣∣
v=w+b

dw

−Wq(b− x)

∫ ∞

0
e
−

W ′
q(b)

Wq(b)
w
dw

d

dv

[
Wq(v + y) + γ

∫ y
0 Wq(v + y − z)Wq+γ(z)dz

Wq(v)

]∣∣∣∣
v=b

=Wq(b− x+ y) + γ

∫ y

0
Wq(b− x+ y − z)Wq+γ(z)dz

−
Wq(b− x)

W ′+
q (b)

(
W ′+
q (b+ y) + γ

∫ y

0
W ′+
q (b+ y − z)Wq+γ(z)dz

)
,
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which is the desired result.

Thanks to the above Lemma 3.4, we are now able to give the expression for the potential measure of
the spectrally positive Lévy process controlled by a double barrier periodic dividend and capital injection
strategy in the following Lemma 3.5.

Lemma 3.5 For q > 0, x > 0, and λ > 0, we have

Px

(
U0,b
eq ∈ dy

)
=
qZq(b− x,Φq+γ) + γZq(b− x)

Φq+γZq(b,Φq+γ)

[
Wq(0+)δ0(dy) +W ′+

q (y)1(0,b)(y)dy

+
(
γWq(b)Wq+γ(y − b) +W ′+

q (y) + γ

∫ y−b

0
W ′+
q (y − z)Wq+γ(z)dz

)
1(b,∞)(y)dy

−
qΦq+γZq(b,Φq+γ)

qZq(b− x,Φq+γ) + γZq(b− x)

(γ
q
Wq+γ(y − b)Zq(b− x) +Wq(y − x)

+γ

∫ y

0
Wq(y − x− z)Wq+γ(z)dz

)
1(b,∞)(y)dy

]
− qWq(y − x)1(0,b)(y)dy. (3.14)

Proof. Denote by g(x) the left hand side of (3.14). One can verify that

g(x)=Px

(
U0,b
eq ∈ dy; eq < T1 ∧ κ

−
b

)
+Px

(
U0,b
eq ∈ dy; eq > T1 ∧ κ

−
b

)

=Px

(
U0,b
eq ∈ dy; eq > T1, κ

−
b > T1

)
+ Px

(
U0,b
eq ∈ dy; eq > κ−b , T1 > κ−b

)

+
q

q + γ
Px

(
Xeq+γ

∈ dy; eq+γ < τ−b

)

=
q

q + γ
Px

(
Xeq+γ

∈ dy; eq+γ < τ−b

)
+

[
Ex

[
e−(q+γ)τ−

b

]
+

γ

q + γ
Ex

[
1− e−(q+γ)τ−

b

] ]
g(b)

=
q

q + γ
Px

(
Xeq+γ

∈ dy; eq+γ < τ−b

)
+

[
γ

q + γ
+

q

q + γ
Ex

[
e−(q+γ)τ−

b

] ]
g(b)

=q
(
eΦq+γ(b−x)Wq+γ(y − b)−Wq+γ(y − x)

)
1(b,∞)(y)dy +

γ

q + γ
g(b)

+
q

q + γ
eΦq+γ(b−x)g(b), x ∈ (b,∞). (3.15)

To obtain an expression of g(x) for x ∈ [0, b], recall that Ỹt = Xt −X t ∧ 0 and σ+b = inf{t ≥ 0; Ỹt > b}.
When x ∈ (0, b), by Theorem 1 of [27] and (3.15), it is verified that

g(x)=Px

(
U0,b
eq ∈ dy; eq < κ+b

)
+ Px

(
U0,b
eq ∈ dy; eq > κ+b

)

=Px

(
Ỹeq ∈ dy; eq < σ+b

)
+ Ex

[
e−qσ

+
b g(Ỹσ+

b
)1{σ+

b
<∞}

]

= q
Wq(b− x)Wq(0+)

W ′+
q (b)

δ0(dy) + q

(
Wq(b− x)

W ′+
q (y)

W ′+
q (b)

−Wq(y − x)

)
1(0,b)(y)dy

+q

(
Ex

[
e−qσ

+
b e

Φq+γ(b−Ỹ
σ
+
b

)
]
Wq+γ(y − b)− Ex

[
e−qσ

+
b Wq+γ(y − Ỹσ+

b
)
])

1(b,∞)(y)dy

+
γ

q + γ
Ex
[
e−qσ

+
b

]
g(b) +

q

q + γ
Ex

[
e−qσ

+
b e

Φq+γ(b−Ỹ
σ
+
b

)
]
g(b), x ∈ [0, b]. (3.16)
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By adapting Lemma 3.2 of [32], one can derive

Ex

[
e−qσ

+
b e

Φq+γ(b−Ỹ
σ
+
b

)
]
=

∫ 0

−x
exp

(
−

∫ s

−x

W ′+
q (z + b)

Wq(z + b)
dz

)

×

(
W ′+
q (s+ b)

Wq(s+ b)
Zq(s+ b,Φq+γ)− Φq+γZq(s + b,Φq+γ) + γWq(s+ b)

)
ds

+

∫ ∞

0
exp

(
−

∫ 0

−x

W ′+
q (z + b)

Wq(z + b)
dz −

∫ s

0

W ′+
q (b)

Wq(b)
dz

)

×

(
W ′+
q (b)

Wq(b)
Zq(b,Φq+γ)− Φq+γZq(b,Φq+γ) + γWq(b)

)
ds

=Zq(b− x,Φq+γ)−
Wq(b− x)

W ′+
q (b)

(
Φq+γZq(b,Φq+γ)− γWq(b)

)
, x ∈ [0, b]. (3.17)

Combining (3.16), (3.17) and Lemma 3.4, it is verified that

g(x)=q
Wq(b− x)Wq(0+)

W ′+
q (b)

δ0(dy) + q

[
Wq+γ(y − b)

(
Zq(b− x,Φq+γ)−

Wq(b− x)

W ′+
q (b)

×
(
Φq+γZq(b,Φq+γ)− γWq(b)

))
−Wq(y − x)− γ

∫ y−b

0
Wq(y − x− z)Wq+γ(z)dz

+
Wq(b− x)

W ′+
q (b)

(
W ′+
q (y) + γ

∫ y−b

0
W ′+
q (y − z)Wq+γ(z)dz

)]
1{(b,∞)}(y)dy

+

[
γ

q + γ
Zq(b− x) +

q

q + γ

(
Zq(b− x,Φq+γ)− Φq+γZq(b,Φq+γ)

Wq(b− x)

W ′+
q (b)

)]
g(b)

+q
(
Wq(b− x)

W ′+
q (y)

W ′+
q (b)

−Wq(y − x)
)
1(0,b)(y)dy, x ∈ [0, b]. (3.18)

When X has paths of bounded variation, letting x = b in (3.18) and then using (3.12) with x = 0, we get

g(b)=
( q

q + γ
Φq+γZq(b,Φq+γ)

)−1
[
qWq(0+)δ0(dy) + qW ′+

q (y)1(0,b)(y)dy + q
[
Wq+γ(y − b)

×
(
γWq(b)− Φq+γZq(b,Φq+γ)

)
+W ′

q(y) + γ

∫ y−b

0
W ′
q(y − z)Wq+γ(z)dz

]
1(b,∞)(y)dy

]
. (3.19)

We claim that (3.19) remains valid when X has paths of unbounded variation. Actually, by (9) of [3]
and the strong Markov property, we have

g(b)=Pb
(
U0,b
eq

∈ dy;κ−x < eq ∧ T1
)
+Pb

(
U0,b
eq

∈ dy; eq < κ−x ∧ T1
)
+ Pb

(
U0,b
eq

∈ dy;T1 < κ−x ∧ eq
)

=Eb

[
e−(q+γ)τ−x

]
g(x) +

q

q + γ
Pb

[
Xeq+γ

∈ dy; eq+γ < τ−x

]

+
γ

q + γ
g(b)

[
Pb
(
eq+γ < τ−x

)
− Pb

(
Xeq+γ

∈ (x, b); eq+γ < τ−x
)]

+
γ

q + γ

∫ b

x

g(z)Pb
(
Xeq+γ

∈ dz; eq+γ < τ−x
)

=e−Φq+γ(b−x)g(x) + q
(
e−Φq+γ(b−x)Wq+γ(y − x)−Wq+γ(y − b)

)
1(x,∞)(y)dy
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+
γ

q + γ
g(b)

[
1− e−Φq+γ(b−x) − (q + γ)

∫ b−x

0
e−Φq+γ(b−x)Wq+γ(b− x− z)dz

]

+γ

∫ b−x

0
e−Φq+γ(b−x)Wq+γ(b− x− z)g(b − z)dz, x ∈ (0, b). (3.20)

Plugging (3.20) into (3.18), using (3.12), and then rearranging the yielding equation gives

g(x)


1−

γZq(b− x) + qZq(b− x,Φq+γ)− qΦq+γZq(b,Φq+γ)
Wq(b−x)

W ′+
q (b)

qeΦq+γ(b−x) + γZq+γ(b− x)




= q
Wq(b− x)Wq(0+)

W ′+
q (b)

δ0(dy) + q
(
Wq(b− x)

W ′+
q (y)

W ′+
q (b)

−Wq(y − x)
)
1(0,b)(y)dy

+q
Wq(b− x)

W ′+
q (b)

[
Wq+γ(y − b)

(
γWq(b)− Φq+γZq(b,Φq+γ)

)
+W ′+

q (y)

+γ

∫ y−b

0
W ′+
q (y − z)Wq+γ(z)dz

]
1(b,∞)(y)dy +

(
q + γe−Φq+γ(b−x)Zq(b− x)

)−1

×

[
q
(
qγ

∫ b−x

0
Wq+γ(z + y − b)Wq(b− x− z)dz

+γ2Zq(b− x)e−Φq+γ(b−x)

∫ b−x

0
Wq+γ(z + y − b)Wq(b− x− z)dz

−γ2Zq(b− x)Wq+γ(y − b)

∫ b−x

0
e−Φq+γzWq(z)dz

−qγWq+γ(y − x)

∫ b−x

0
e−Φq+γzWq(z)dz

)
1(b,∞)(y)dy

]

+
γZq(b− x) + qZq(b− x,Φq+γ)− qΦq+γZq(b,Φq+γ)

Wq(b−x)

W ′+
q (b)

q + γe−Φq+γ(b−x)Zq(b− x)

×e−Φq+γ(b−x)

∫ b−x

0
(qω(b− z) + γg(b− z))Wq+γ(b− x− z)dz. (3.21)

Recall that Wq(0+) = 0 in case X has paths of unbounded variation. Hence, for any θ ≥ 0 and any
bounded function h(y), one can verify that

lim
x↑b

∫ b−x
0 e−θzWq(z)dz

Wq(b− x)
= lim

x↑b

∫ b−x
0 Wq+γ(z)dz

Wq(b− x)
= lim

x↑b

∫ b−x
0 h(z)Wq+γ(z)dz

Wq(b− x)
= 0, (3.22)

where, in the last equality of (3.22) we have used the fact that

lim
x↑ b−

Wq+γ(b− x)

Wq(b− x)
= 1, (3.23)

which can be achieved by setting y = 0 and p = q + γ in (3.12). Dividing the both sides of (3.21) by
Wq(b − x), sending x upward to b, and then using (3.22), we finally find that (3.19) also holds true for
the case when X has paths of unbounded variation. Plugging (3.19) into (3.15) and (3.18) yields (3.14).
The proof is complete.

With the preparations made in Lemma 3.2 and Lemma 3.5, we are now ready to give an expression
of the value function, denoted as V ω

0,b, of a double barrier periodic dividend and capital injection strategy
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in the following Lemma 3.6. Since Lemma 3.6 is a direct consequence of Lemma 3.2, Lemma 3.5 as well
as the integrating by parts formula, we omit its proof.

Lemma 3.6 For q > 0, and λ > 0, we have

V ω
0,b(x) =





− γ
q+γ

[
Zq(b− x) + ψ′(0+)

q

]
+

(γZq(b)−φ(q+γ))
[
Zq(b−x,Φq+γ)+

γ
q
Zq(b−x)

]

(q+γ)Φq+γZq(b,Φq+γ)

+λω(b)
q
Zq(b− x)− λ

∫ b
0 ω(y)Wq(y − x)dy − qZq(b−x,Φq+γ)+γZq(b−x)

qΦq+γZq(b,Φq+γ)

×

[
λ
∫ b
0 ω

′
+(y)Wq(y)dy + λ

∫∞
0 ω′

+(b+ y)
[(
Wq(b+ y) + γ

∫ y
0 Wq(b+ y − z)Wq+γ(z)dz

)

− qΦq+γZq(b,Φq+γ)
qZq(b−x,Φq+γ)+γZq(b−x)

(
1
q
Zq(b− x+ y)

+γ
q

∫ y
0 Zq(b− x+ y − z)Wq+γ(z)dz

)]
dy

]
, x ∈ [0,∞),

φx+ V ω
0,b(0), x ∈ (−∞, 0).

The following Lemma 3.7 characterizes the smooth conditions of the value function V ω
0,b(x).

Lemma 3.7 For each b ∈ (0,∞), the function V ω
0,b(x) is continuously differentiable over (−∞,∞).

Furthermore, if X has paths of unbounded variation, V ω
0,b(x) is twice continuously differentiable over

(0,∞).

Proof. By Lemma 3.6, one can readily derive that

V ω′
0,b(x)=

γ

q + γ
Zq(b− x)−

γZq(b)− φ(q + γ)

(q + γ)Zq(b,Φq+γ)
Zq(b− x,Φq+γ)− λ

∫ b

0+
Wq(y − x)ω′

+(y)dy

+
Zq(b− x,Φq+γ)

Zq(b,Φq+γ)

[
λ

∫ b

0+
Wq(y)ω

′
+(y)dy + λ

∫ ∞

0
ω′
+(b+ y)

[(
Wq(b+ y)

+γ

∫ y

0
Wq(b+ y − z)Wq+γ(z)dz

)
−

Zq(b,Φq+γ)

Zq(b− x,Φq+γ)

(
Wq(b− x+ y)

+γ

∫ y

0
Wq(b− x+ y − z)Wq+γ(z)dz

)]
dy

]
, x ∈ (0, b), (3.24)

and

V ω′
0,b(x)=

γ

q + γ
−
γZq(b)− φ(q + γ)

(q + γ)Zq(b,Φq+γ)
e−Φq+γ(x−b) +

e−Φq+γ(x−b)

Zq(b,Φq+γ)

[
λ

∫ b

0+
Wq(y)ω

′
+(y)dy

+λ

∫ ∞

0
ω′
+(b+ y)

[
Wq(b+ y) + γ

∫ y

0
Wq(b+ y − z)Wq+γ(z)dz −

Zq(b,Φq+γ)

eΦq+γ(b−x)

×
(
Wq+γ(b− x+ y)− γ

∫ b−x

0
Wq+γ(y + z)Wq(b− x− z)dz

)]
dy

]
, x ∈ (b,∞). (3.25)

Combining (3.12), (3.23), (3.24) and (3.25), we can find

V ω′
0,b(b+)− V ω′

0,b(b−)=λ

∫ ∞

0
ω′
+(b+ y)

(
Wq(y) + γ

∫ y

0
Wq(y − z)Wq+γ(z)−Wq+γ(y)dz

)
dy = 0,
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where the fact that limx↑b

∫ b
0+ ω

′
+(y)Wq(y−x)dy = limx↑b

∫ b
x
ω′
+(y)Wq(y−x)dy = 0 was used. In addition,

it is easy to get that

V ω′
0,b(0+) = φ = V ω′

0,b(0−).

The above arguments imply the continuous differentiability of V ω
0,b(x) over (−∞,∞).

Furthermore, when X has paths of unbounded variation, the scale function Wq is continuously differ-
entiable, and hence, we have

V ω′′
0,b (x)=−

qγ

q + γ
Wq(b− x) +

γZq(b)− φ(q + γ)

(q + γ)Zq(b,Φq+γ)
[Φq+γZq(b− x,Φq+γ)− γWq(b− x)]

+

∫ b

0
ω′
+(y)W

′+
q (y − x)dy −

Φq+γZq(b− x,Φq+γ)− γWq(b− x)

Zq(b,Φq+γ)

[
λ

∫ b

0+
Wq(y)ω

′
+(y)dy

+λ

∫ ∞

0
ω′
+(b+ y)

[(
Wq(b+ y) + γ

∫ y

0
Wq(b+ y − z)Wq+γ(z)dz

)

−
Zq(b,Φq+γ)

Φq+γZq(b− x,Φq+γ)− γWq(b− x)

(
W ′
q(b− x+ y)

+γ

∫ y

0
W ′+
q (b− x+ y − z)Wq+γ(z)dz

)]]
, x ∈ (0, b), (3.26)

and

V ω′′
0,b (x)=Φq+γ

γZq(b)− φ(q + γ)

(q + γ)Zq(b,Φq+γ)
e−Φq+γ(x−b) −

Φq+γe
−Φq+γ(x−b)

Zq(b,Φq+γ)

[
λ

∫ b

0+
Wq(y)ω

′
+(y)dy

+λ

∫ ∞

0
ω′
+(b+ y)

[
Wq(b+ y) + γ

∫ y

0
Wq(b+ y − z)Wq+γ(z)dz −

Zq(b,Φq+γ)

Φq+γeΦq+γ(x−b)

×
(
W ′+
q (b− x+ y) + γ

∫ y

0
W ′+
q (b− x+ y − z)Wq+γ(z)dz

)]
dy

]
, x ∈ (b,∞). (3.27)

Combining (3.26), (3.27), we have

V ω′′
0,b (b+)− V ω′′

0,b (b−)=
qγ

q + γ
Wq(0+) +

γZq(b)− φ(q + γ)

(q + γ)Zq(b,Φq+γ)
γWq(0+)−

γWq(0+)

Zq(b,Φq+γ)

×

[
λ

∫ b

0+
Wq(y)ω

′
+(y)dy + λ

∫ ∞

0
ω′
+(b+ y)

(
Wq(b+ y) + γ

∫ y

0
Wq(b+ y − z)Wq+γ(z)dz

)]

= 0.

As a result, V ω
0,b is twice continuously differentiable over (0,∞) when X has paths of unbounded variation.

This completes the proof.

Bearing in mind that the optimal strategy solving the auxiliary problem (3.1) is conjectured to be
some double barrier periodic dividend and capital injection strategy, we hence need to characterize the
barrier level corresponding to the optimal strategy among the set of double barrier strategies. To achieve
this goal, we manage to express the derivative of the value function in terms of the Laplace transform and
potential measure of the spectrally positive Lévy process controlled by a single barrier periodic dividend
strategy until the first time it down-crosses 0. Actually, this new compact expression will facilitate us to
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identify the candidate optimal strategy among the set of double barrier dividend and capital injection
strategies and the slope conditions of the value function of this candidate optimal double barrier strategy.
To implement these ideas, we should first provide some preliminary results concerning the spectrally
positive Lévy process controlled by a single barrier periodic dividend strategy. Put

U bt := Xt −Db
t , t ≥ 0,

where Xt is the single spectrally positive Lévy process, Db
t is the cumulative dividend process defined as

Db
t =

∞∑

n=1

(
(U bTn− +∆XTn − b)

)
1{Tn≤t}, t ≥ 0,

with (Tn)n≥1 being the event epochs of an independent Poisson process. In addition, denote the down-
crossing and up-crossing times of U bt , respectively, by

κ−a := inf{t ≥ 0;U bt < a} and κ+c := inf{t ≥ 0;U bt > c}.

The following Lemma 3.8 gives the potential measure of the process U bt until the first time it down-crosses
0. It seems a little bit unexpected that this problem has not been considered in the literature. We hence
provide this result with a detailed proof.

Lemma 3.8 For q > 0, γ > 0 and b > 0, we have

Px

(
U beq ∈ dy; eq < κ−0

)
= q

[
Zq(b− x,Φq+γ)Wq+γ(y − b)−Wq+γ(y − x)

+γ

∫ b−x

0
Wq(b− x− z)Wq+γ(y − b+ z)dz

]
1(b,∞)(y)dy − qWq(y − x)1(0,b)(y)dy

+
γZq(b− x) + qZq(b− x,Φq+γ)

γZq(b) + qZq(b,Φq+γ)

[
qWq(y)1(0,b)(y)dy + q

(
Wq+γ(y)

−Zq(b,Φq+γ)Wq+γ(y − b)− γ

∫ b

0
Wq(b− z)Wq+γ(y − b+ z)dz

)
1(b,∞)(y)dy

]
, x ∈ (0,∞). (3.28)

Proof. Denote by g(x) the left hand side of (3.28). One can verify that

g(x)=Px

(
U beq ∈ dy; eq < T1 ∧ κ

−
b

)
+ Px

(
U beq ∈ dy; eq > T1 ∧ κ

−
b , eq < κ−0

)

=
q

q + γ
Px
(
Xeq+γ

∈ dy; eq+γ < τ−b
)
+ Px

(
U beq ∈ dy; eq > T1, κ

−
b > T1, eq < κ−0

)

+Px

(
U beq ∈ dy; eq > κ−b , T1 > κ−b , eq < κ−0

)

=
q

q + γ
Px
(
Xeq+γ

∈ dy; eq+γ < τ−b
)
+

[
Ex

[
e−(q+γ)τ−

b

]
+

γ

q + γ
Ex

[
1− e−(q+γ)τ−

b

]]
g(b)

=
q

q + γ
Px
(
Xeq+γ

∈ dy; eq+γ < τ−b
)
+

[
γ

q + γ
+

q

q + γ
Ex

[
e−(q+γ)τ−

b

]]
g(b)

=q
[
eΦq+γ(b−x)Wq+γ(y − b)−Wq+γ(y − x)

]
1(b,∞)(y)dy

+
γ

q + γ
g(b) +

q

q + γ
eΦq+γ(b−x)g(b), x ∈ (b,∞).
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Using a similar manner and (2.2), one can verify that

g(x)=Px

(
U beq ∈ dy; eq < κ+b ∧ κ−0

)
+ Px

(
U beq ∈ dy;κ+b < eq < κ−0

)

=Px

(
Xeq ∈ dy; eq < τ+b ∧ τ−0

)
+ Ex

[
e−qτ

+
b 1{τ+

b
<τ−0 }g(Xτ+

b
)
]

= q

[
Wq(b− x)

Wq(b)
Wq(y)−Wq(y − x)

]
1(0,b)(y)dy +

γ

q + γ
Ex

[
e−qτ

+
b 1{τ+

b
<τ−0 }

]
g(b)

+q

[
Ex

[
e−qτ

+
b e

Φq+γ(b−X
τ
+
b

)
1{τ+

b
<τ−0 }

]
Wq+γ(y − b)

−Ex

[
e−qτ

+
b Wq+γ(y −Xτ+

b
)1{τ+

b
<τ−0 }

] ]
1(b,∞)(y)dy

+
q

q + γ
Ex

[
e−τ

+
b e

Φq+γ(b−X
τ
+
b

)
1{τ+

b
<τ−0 }

]
g(b)

= q

[ [
Zq(b− x,Φq+γ)−Wq(b− x)

Zq(b,Φq+γ)

Wq(b)

]
Wq+γ(y − b)−Wq+γ(y − x)

+γ

∫ b−x

0
Wq(b− x− z)Wq+γ(y − b+ z)dz +

Wq(b− x)

Wq(b)

×

[
Wq+γ(y)− γ

∫ b

0
Wq(b− z)Wq+γ(y − b+ z)dz

] ]
1(b,∞)(y)dy

+

[
γZq(b− x) + qZq(b− x,Φq+γ)

q + γ
−
γZq(b) + qZq(b,Φq+γ)

q + γ

Wq(b− x)

Wq(b)

]
g(b)

+q

[
Wq(b− x)

Wq(b)
Wq(y)−Wq(y − x)

]
1(0,b)(y)dy, x ∈ (0, b). (3.29)

When X has paths of bounded variation, letting x ↑ b in (3.29) yields

g(b)=

[
γZq(b) + qZq(b,Φq+γ)

q + γ

]−1 [
qWq(y)1(0,b)(y)dy + q

(
Wq+γ(y)

−Zq(b,Φq+γ)Wq+γ(y − b)− γ

∫ b

0
Wq(b− z)Wq+γ(y − b+ z)dz

)
1(b,∞)(y)dy

]
. (3.30)

We now claim that (3.30) remains valid even when X has paths of unbounded variation. Using a method
similar to that of the proof of Lemma 3.5, we get

g(b)=Pb

(
U beq ∈ dy; eq < T1 ∧ κ

−
x

)
+Pb

(
U beq ∈ dy;κ−x < T1 ∧ eq, eq < κ−0

)

+Pb

(
U beq ∈ dy;T1 < κ−x ∧ eq, eq < κ−0

)

=
q

q + γ
Pb

(
Xeq+γ

∈ dy; eq+γ < τ−x

)
+ Eb

[
e−(q+γ)τ−x

]
g(x)

+
γ

q + γ

[
Pb
(
eq+γ < τ−x

)
− Pb

(
Xeq+γ

∈ (x, b); eq+γ < τ−x
)]
g(b)

+
γ

q + γ

∫ b

x

g(y)Pb
(
Xeq+γ

∈ dy; eq+γ < τ−x
)

= q
(
e−Φq+γ(b−x)Wq+γ(y − x)−Wq+γ(y − b)

)
1(x,∞)(y)dy + e−Φq+γ(b−x)g(x)
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+
γ

q + γ
g(b)

[
1− e−Φq+γ(b−x) − (q + γ)

∫ b−x

0
e−Φq+γ(b−x)Wq+γ(b− x− y)dy

]

+γ

∫ b−x

0
e−Φq+γ(b−x)Wq+γ(b− x− y)g(b− y)dy, x ∈ (0, b). (3.31)

Plugging (3.31) into (3.29), and then rearranging the yielding equation gives

g(x)


1−

γZq(b− x) + qZq(b− x,Φq+γ)−
(
γZq(b) + qZq(b,Φq+γ)

)
Wq(b−x)
Wq(b)

qeΦq+γ(b−x) + γZq+γ(b− x)




= q

[
Wq(b− x)

Wq(b)
Wq(y)−Wq(y − x)

]
1(0,b)(y)dy +

qWq(b− x)

Wq(b)

[
Wq+γ(y)

−Zq(b,Φq+γ)Wq+γ(y − b)− γ

∫ b

0
Wq(b− z)Wq+γ(y − b+ z)dz

]
1(b,∞)(y)dy

+q

[
Zq(b− x,Φq+γ)Wq+γ(y − b)−Wq+γ(y − x)

+γ

∫ b−x

0
Wq(b− x− z)Wq+γ(y − b+ z)dz

]
1(b,∞)(y)dy

+

[
γZq(b− x) + qZq(b− x,Φq+γ)

q + γ
−
γZq(b) + qZq(b,Φq+γ)

q + γ

Wq(b− x)

Wq(b)

]

×

[
q + γe−Φq+γ(b−x)Zq+γ(b− x)

q + γ

]−1

×
[
γ

∫ b−x

0
e−Φq+γ(b−x)Wq+γ(b− x− y)g(b− y)dy

+q
(
e−Φq+γ(b−x)Wq+γ(y − x)−Wq+γ(y − b)

)
1(x,∞)(y)dy

]

= q
Wq(b− x)

Wq(b)
Wq(y)1(0,b)(y)dy − qWq(y − x)1(x,b)(y)dy +

qWq(b− x)

Wq(b)

[
Wq+γ(y)

−Zq(b,Φq+γ)Wq+γ(y − b)− γ

∫ b

0
Wq(b− z)Wq+γ(y − b+ z)dz

]
1(b,∞)(y)dy

+γ

∫ b−x

0
Wq(b− x− z)Wq+γ(y − b+ z)dz1(b,∞)(y)dy −

Wq(b− x)

Wq(b)

×
γZq(b) + qZq(b,Φq+γ)

q + γe−Φq+γ(b−x)Zq+γ(b− x)

[
γ

∫ b−x

0
e−Φq+γ(b−x)Wq+γ(b− x− y)g(b− y)dy

+q
(
e−Φq+γ(b−x)Wq+γ(y − x)−Wq+γ(y − b)

)
1(x,∞)(y)dy

]

+
γZq(b− x) + qZq(b− x,Φq+γ)

q + γe−Φq+γ(b−x)Zq+γ(b− x)
×
[
γ

∫ b−x

0
e−Φq+γ(b−x)Wq+γ(b− x− y)g(b− y)dy

+q
(
e−Φq+γ(b−x)Wq+γ(y − x)−Wq+γ(y − b)

)
1(x,b)(y)dy

]

+q

[γe−Φq+γ(b−x)
(∫ b−x

0 qWq(z)dz −
∫ b−x
0 (q + γ)Wq+γ(z)dz

)

q + γe−Φq+γ(b−x)Zq+γ(b− x)
Wq+γ(y − x)

−
q
∫ b−x
0 γe−Φq+γzWq(z)dz + q

∫ b−x
0 (q + γ)Wq+γ(z)dz

q + γe−Φq+γ(b−x)Zq+γ(b− x)
Wq+γ(y − b)

]
1(b,∞)(y)dy. (3.32)

Dividing the both sides of (3.32) with Wq(b−x), sending x upward to b, and then using (3.22), (3.23), we
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finally find that (3.30) also holds true for the case when X has paths of unbounded variation. Plugging
(3.30) into (3.29) yields (3.28). The proof is complete.

The following Lemma 3.9 gives the Laplace transform of the first passage time of 0 for the spectrally
positive Lévy process with dividends subtracted according to the single barrier periodic dividend strategy
with barrier level b. As far as the authors know, this result is also new to the literature.

Lemma 3.9 For q > 0, γ > 0 and b > 0, we have

Ex

[
e−qκ

−

0

]
=
γZq(b− x) + qZq(b− x,Φq+γ)

γZq(b) + qZq(b,Φq+γ)
, x ∈ (0,∞). (3.33)

Proof. By (3.5) and the strong Markov property, we have

Ex

[
e−qκ

−

0

]
=Ex

[
e−qκ

−

0 1{T1∧κ−b <κ
−

0 }

]
= Ex

[
e−q(T1∧τ

−

b
)
]
Eb

[
e−qκ

−

0

]

=

(
γ

q + γ
+

q

q + γ
e−Φq+γ(x−b)

)
Eb

[
e−qκ

−

0

]
, x ∈ (b,∞), (3.34)

and

Ex

[
e−qκ

−

0

]
=Ex

[
e−qκ

−

0 1{κ−0 <κ
+
b
}

]
+ Ex

[
e−qκ

−

0 1{κ+
b
<κ−0 }

]

=Ex

[
e−qτ

−

0 1{τ−0 <τ
+
b
}

]
+Ex

[
e−qτ

+
b 1{τ+

b
<τ−0 }EXτ

+
b

[
e−qκ

−

0

]]

=
Wq(b− x)

Wq(b)
+ Eb

[
e−qκ

−

0

][ γ

q + γ
Ex

[
e−qτ

+
b 1{τ+

b
<τ−0 }

]

+
q

q + γ
Ex

[
e−qτ

+
b e

−Φq+γ(X
τ
+
b

−b)
1{τ+

b
<τ−0 }

] ]

=
Wq(b− x)

Wq(b)
+ Eb

[
e−qκ

−

0

][ γ

q + γ

(
Zq(b− x)−

Zq(b)

Wq(b)
Wq(b− x)

)

+
q

q + γ

(
Zq(b− x,Φq+γ)−

Wq(b− x)

Wq(b)
Zq(b,Φq+γ)

)]
, x ∈ (0, b). (3.35)

When X has paths of bounded variation, letting x ↑ b in (3.35) yields

Eb

[
e−qκ

−

0

]
=

q + γ

qZq(b,Φq+γ) + γZq(b)
. (3.36)

We claim that (3.36) remains valid when X has paths of unbounded variation. Actually, by the strong
Markov property, we have

Eb

[
e−qκ

−

0

]
=Eb

[
e−qκ

−

0 1{κ−x <κ−0 ∧T1}

]
+ Eb

[
e−qκ

−

0 1{T1<κ−x <κ−0 }

]

=Eb

[
e−(q+γ)τ−x

]
Ex

[
e−qκ

−

0

]
+

γ

q + γ

∫ b

x

Ey

[
e−qκ

−

0

]
Pb
(
Xeq+γ

∈ dy; eq+γ < τ−x
)

+
γ

q + γ
Eb

[
e−qκ

−

0

] [
Pb
(
eq+γ < τ−x

)
− Pb

(
Xeq+γ

∈ (x, b); eq+γ < τ−x
)]
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=
γ

q + γ
Eb

[
e−qκ

−

0

] [
1− e−Φq+γ(b−x) − (q + γ)

∫ b−x

0
e−Φq+γ(b−x)Wq+γ(b− x− y)dy

]

+γ

∫ b−x

0
e−Φq+γ(b−x)Wq+γ(b− x− y)Eb−y

[
e−qκ

−

0

]
dy

+e−Φq+γ(b−x)Ex

[
e−qκ

−

0

]
, x ∈ (0, b). (3.37)

Plugging (3.37) into (3.35), and then rearranging the yielding equation gives

Ex

[
e−qκ

−

0

]

1−

γZq(b− x) + qZq(b− x,Φq+γ)−
(
γZq(b) + qZq(b,Φq+γ)

)
Wq(b−x)
Wq(b)

qeΦq+γ(b−x) + γZq+γ(b− x)




=
Wq(b− x)

Wq(b)
+

[
q + γe−Φq+γ(b−x)Zq+γ(b− x)

q + γ

]−1

×

[
γZq(b− x) + qZq(b− x,Φq+γ)

q + γ
−
γZq(b) + qZq(b,Φq+γ)

q + γ

Wq(b− x)

Wq(b)

]

×
[
γ

∫ b−x

0
e−Φq+γ(b−x)Wq+γ(b− x− y)Eb−y

[
e−qκ

−

0

]
dy
]
. (3.38)

Dividing the both sides of (3.38) with Wq(b−x), sending x upward to b, and then using (3.22), (3.23), we
finally find that (3.36) also holds true for the case when X has paths of unbounded variation. Plugging
(3.36) into (3.34) and (3.35) yields (3.33).

With the help of Lemmas 3.8-3.9, we can give, in the following Lemma 3.10, an alternative expression
for the derivative of the value function of a double barrier strategy for the auxiliary problem, in terms
of, the Laplace transform of κ−0 as well as the potential measure of U bt until κ−0 .

Lemma 3.10 We have

V ω′
0,b(b) =

φ− 1− Eb

[ ∫ κ−0
0 e−qt(qφ− λω′

+(U
b
t ))dt

]

Eb

[
e−qκ

−

0

]
Zq(b,Φq+γ)

+ 1, b ∈ (0,∞).

Proof. By Lemmas 3.8-3.9, one can verify that

V ω′
0,b(b)=

γ

q + γ
−
γZq(b)− φ(q + γ)

(q + γ)Zq(b,Φq+γ)

+
1

Zq(b,Φq+γ)

[
λ

∫ b

0+
Wq(y)ω

′
+(y)dy + λ

∫ ∞

0
ω′
+(b+ y)

[
Wq(b+ y)

+γ

∫ y

0
Wq(b+ y − z)Wq+γ(z)dz − Zq(b,Φq+γ)Wq+γ(y)dy

]]

=
λEb

[∫ κ−0
0 e−qtω′

+(U
b
t )dt

]
+ φEb

[
e−qκ

−

0

]
− 1

Eb

[
e−qκ

−

0

]
Zq(b,Φq+γ)

+ 1

23



=
φ− 1− Eb

[ ∫ κ−0
0 e−qt(qφ− λω′

+(U
b
t ))dt

]

Eb

[
e−qκ

−

0

]
Zq(b,Φq+γ)

+ 1,

which is the desired result.

Thanks to Lemma 3.10, we are able to define, in the following Lemma 3.11, the dividend barrier level
bω of the candidate optimal periodic dividend and capital injection strategy among the set of double
barrier strategies.

Lemma 3.11 Let us denote bω by

bω := inf

{
b ≥ 0 : φ− 1− Eb

[ ∫ κ−0

0
e−qt(qφ− λω′

+(U
b
t ))dt

]
≤ 0

}
.

Then bω > 0 exists and is unique.

Proof. We recall the assumption that the payoff function ω is continuous and concave over [0,∞) with
ω′
+(0+) ≤ φ and ω′

+(∞) ∈ [0, 1]. Under this assumption, we have that b 7→ qφ−λω′
+(b) is non-decreasing.

By definition, we know that κ−0 is non-decreasing with respect to the starting value b of the process U bt ,
which combined with the concavity of ω results in the fact that the function

b 7→ φ− 1− Eb

[∫ κ−0

0
e−qt(qφ− λω′

+(U
b
t ))dt

]
(3.39)

is non-increasing. In addition, due to spatial homogeneity of Lévy processes and dominated convergence
theorem, it can be verified that

lim
b→∞

[
φ− 1− Eb

[∫ κ−0

0
e−qt(qφ− λω′

+(U
b
t ))dt

]]

=φ− 1− lim
b→∞

E0

[∫ ∞

0
e−qt1{t≤κ−

−b
}(qφ− λω′

+(b+ U0
t ))dt

]

=
λ

q
ω′
+(∞)− 1 < 0. (3.40)

Furthermore, by (3.36), we know that lim
b↓0

κ−0 = 0 almost surely, which together with the dominated

convergence theorem gives

lim
b→0

[
φ− 1− Eb

[∫ κ−0

0
e−qt(qφ− λω′

+(U
b
t ))dt

]]
= φ− 1 > 0. (3.41)

Piecing together (3.40), (3.41) as well as the non-increasing property of the function given by (3.39) yields
the desired result. The proof is complete.

With the candidate optimal dividend barrier defined in Lemma 3.11, we can now investigate, in the
upcoming Lemma 3.12, the analytical properties, especially the slope conditions, of the value function
V ω
0,bω(x) of the double barrier periodic dividend and capital injection strategy with dividend barrier bω

and capital injection barrier 0.
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Lemma 3.12 The value function V ω
0,bω(x) is increasing and concave over (−∞,∞). In addition, we have

1 ≤ V ω′
0,bω(x) ≤ φ for x ∈ (0, bω), and 0 ≤ V ω′

0,bω(x) ≤ 1 for x ∈ [bω,∞).

Proof. By Lemma 3.11 and the proof of Lemma 3.7, one finds that

V ω′
0,bω(x)=

γ

q + γ
Zq(b

ω − x)−
γZq(b

ω)− φ(q + γ)

(q + γ)Zq(bω,Φq+γ)
Zq(b

ω − x,Φq+γ)

−λ

∫ b

0+
Wq(y − x)ω′

+(y)dy +
Zq(b

ω − x,Φq+γ)

Zq(bω,Φq+γ)

[
λ

∫ bω

0+
Wq(y)ω

′
+(y)dy

+λ

∫ ∞

0
ω′
+(b

ω + y)
[(
Wq(b

ω + y) + γ

∫ y

0
Wq(b

ω + y − z)Wq+γ(z)dz
)
−

Zq(b
ω,Φq+γ)

Zq(bω − x,Φq+γ)

×
(
Wq(b

ω − x+ y) + γ

∫ y

0
Wq(b

ω − x+ y − z)Wq+γ(z)dz
)]

dy

]
, x ∈ (0,∞), (3.42)

and

1 = V ω′
0,bω(b

ω)=
γ

q + γ
−
γZq(b

ω)− φ(q + γ)

(q + γ)Zq(bω,Φq+γ)

+
1

Zq(bω,Φq+γ)

[
λ

∫ bω

0+
Wq(y)ω

′
+(y)dy + λ

∫ ∞

0
ω′
+(b

ω + y)

[
Wq(b

ω + y)

+γ

∫ y

0
Wq(b

ω + y − z)Wq+γ(z)dz − Zq(b
ω,Φq+γ)Wq+γ(y)dy

]]
. (3.43)

Plugging (3.43) into (3.42) and then rearranging the yielding equation gives

V ω′
0,bω(x)=

γZq(b
ω − x) + qZq(b

ω − x,Φq+γ)

q + γ
− λ

∫ bω

0+
Wq(y − x)ω′

+(y)dy

+λ

∫ ∞

0
ω′
+(b

ω + y)
(
Wq+γ(y)Zq(b

ω − x,Φq+γ)−Wq+γ(y − x+ bω)

−γ

∫ y

0
Wq(y − z − x+ bω)Wq+γ(z)dz

)
dy

=φEx

[
e−qκ

−

0

]
+ λEx

[ ∫ κ−0

0
e−qtω′

+(U
bω

t )dt
]

=φ− Ex

[ ∫ κ−0

0
e−qt

(
qφ− λω′

+(U
bω

t )
)
dt
]
.

Recall that the payoff function ω is continuous and concave over [0,∞) with ω′
+(0+) ≤ φ and ω′

+(∞) ∈
[0, 1]. It follows that V ω′

0,bω(0) ≤ φ and V ω′
0,bω is no-increasing on (−∞,∞). Furthermore, due to the fact

that V ω′
0,bω(b

ω) = 1, we derive that 1 ≤ V ω′
0,bω(x) ≤ φ for x ∈ (0, bω), and 0 ≤ V ω′

0,bω(x) ≤ 1 for x ∈ [bω,∞).
The proof is complete.

Thanks to the slope conditions provided in Lemma 3.12, we are now to confirm our conjecture that
the double barrier periodic dividend and capital injection strategy with dividend barrier bω and capital
injection barrier 0 is the optimal strategy of the auxiliary control problem (3.1). To this purpose, we need
the following Lemma 3.13 for use of verification. To begin with, for any function v that is sufficiently
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differentiable (i.e., v is once (resp., twice) continuously differentiable whenX has paths of bounded (resp.,
unbounded) variation), let us define an operator A on v that

Av(x) :=
1

2
σ2v′′(x)− cv′(x) +

∫

(0,∞)

(
v(x+ y)− v(x) − v′(x)y1(0,1)(y)

)
ν(dy),

where x ∈ (−∞,∞).

Lemma 3.13 (Verification Lemma) Suppose that the function v(x) is non-decreasing and continu-

ously differentiable over (−∞,∞). Suppose further that v(x) is twice continuously differentiable over

(0,∞) if X has paths of unbounded variation. Additionally, suppose

max{(A− q) v(x)+λω(x) + γ max
0≤z≤x

(z + v(x− z)− v(x)) , v′(x)− φ} ≤ 0. (3.44)

Then v(x) ≥ V ω
π (x) for all x ∈ (−∞,∞) and all admissible periodic dividend and capital injection strategy

(Dπ, Rπ) ∈ Π.

Proof. Let D be the set of admissible dividend and capital injection strategy (Dπ
t , R

π
t )t≥0 with Rπt being

continuous and of form (3.3). By Lemma 3.1, we only need to prove that v(x) dominates the value function
of any admissible dividend and capital injection strategies among D. For a given strategy (Dπ, Rπ) ∈ D,
recall that Uπt = Xt−

∑∞
n=1∆D

π
Tn
1{Tn≤t}+R

π
t for t ≥ 0. We follow Theorem 2.1 in [20] to denoteXt as the

sum of the independent processes −ct+σBt,
∑

s≤t∆Xs1{∆Xs≥1}, andXt+ct−σBt−
∑

s≤t∆Xs1{∆Xs≥1},
with the latter one being a square integrable martingale. Denote by {Uπ,ct ; t ≥ 0} as the continuous part
of {Uπt ; t ≥ 0}. By Theorem 4.57 (Itô’s formula) in [19], we have, for x ∈ (0,∞),

e−qtv(Uπt )− v(x)

=−

∫ t

0−
qe−qsv(Uπs−)ds+

∫ t

0−
e−qsv′(Uπs−)dU

π
s

+
1

2

∫ t

0−
e−qsv′′(Uπs−)d〈U

π,c(·), Uπ,c(·)〉s

+
∑

s≤t

e−qs
(
v(Uπs− +∆Uπs )− v(Uπs−)− v′(Uπs−)∆U

π
s

)

=−

∫ t

0−
qe−qsv(Uπs−)ds+

∫ t

0−
e−qsv′(Uπs−)d(−cs+ σBs)

+

∫ t

0−
e−qsv′(Uπs−)d

(
Xs + cs− σBs −

∑

r≤s

∆Xr1{∆Xr≥1}

)

+

∫ t

0−
e−qsv′(Uπs−)dR

π
s +

σ2

2

∫ t

0−
e−qsv′′(Uπs−)ds

+

∫ t

0−
e−qsv′(Us−)d

(∑

r≤s

∆Xr1{∆Xr≥1}

)

+
∑

s≤t,∆Dπ
s=0,∆Xs 6=0

e−qs
[
v(Uπs− +∆Xs)− v(Uπs−)− v′(Uπs−)∆Xs

]

+
∑

s≤t,∆Dπ
s 6=0

e−qs
[
v(Uπs− +∆Xs +∆Dπ

s )− v(Uπs− +∆Xs)
]
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=−

∫ t

0−
qe−qsv(Uπs−)ds+

∫ t

0−
e−qsv′(Uπs−)d(−cs+ σBs)

+

∫ t

0−
e−qsv′(Uπs−)d

(
Xs + cs− σBs −

∑

r≤s

∆Xr1{∆Xr≥1}

)

+

∫ t

0−
e−qsv′(Uπs−)dR

π
s +

σ2

2

∫ t

0−
e−qsv′′(Uπs−)ds

+
∑

s≤t

e−qs
[
v(Uπs− +∆Xs)− v(Uπs−)− v′(Uπs−)∆Xs1{∆Xs<1}

]

+

∫ t

0−
e−qs

[
v(Uπs− +∆Xs +∆Dπ

s )− v(Uπs− +∆Xs)
]
dNs, (3.45)

where ∆Xs = Xs −Xs−, ∆D
π
s =

∑∞
n=1∆D

π
Tn
1{Tn=s} and ∆Uπs = Uπs − Uπs− = ∆Xs −∆Dπ

s . Define a

sequence of stopping times (T̃m)m≥1 that

T̃m := m ∧ inf{t ≥ 0;Uπt ≥ m}, n ≥ 1.

It follows that T̃m → ∞ almost surely as n → ∞. In addition, Ut− is confined in the compact set [0,m]
for t ≤ T̃m. By (3.44)-(3.45), we have

e−q(t∧T̃m)v(Uπ
t∧T̃m

)− v(x)

=M
t∧T̃m

+

∫ t∧T̃m

0−
e−qs

(
(A− q)v(Uπs−) + λω(Uπs−)

+γ
[
∆Dπ

s + v(Uπs− +∆Xs +∆Dπ
s )− v(Uπs− +∆Xs)

])
ds

+

∫ t∧T̃m

0−
e−qsv′(Uπs−)dR

π
s −

∫ t∧T̃m

0
e−qsλω(Uπs−)ds−

∫ t∧T̃m

0
e−qs∆Dπ

s dNs

≤M
t∧T̃m

+ φ

∫ t∧T̃m

0−
e−qsdRπs −

∫ t∧T̃m

0
e−qsλω(Uπs−)ds−

∫ t∧T̃m

0
e−qs∆Dπ

s dNs, (3.46)

whereM
t∧T̃m

is the sum of the three zero mean martingales M1
t∧T̃m

, M2
t∧T̃m

and M3
t∧T̃m

given respectively

by

M1
t∧T̃m

=

∫ t∧T̃m

0−
e−qsv′(Uπs−)d

(
Xs + cs−

∑

r≤s

∆Xr1{∆Xr≥1}

)
,

and

M2
t∧T̃m

=

∫ t∧T̃m

0−

∫ ∞

0
e−qs

(
v(Uπs− + y)− v(Uπs−)− v′(Uπs−)y1(0,1](y)

)
N(ds,dy),

and

M3
t∧T̃m

=

∫ t∧T̃m

0−
e−qs

[
∆Dπ

s + v(Uπs− +∆Xs +∆Dπ
s )− v(Uπs− +∆Xs)

]
(dNs − γds) ,
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where we used the Lévy-Itô decomposition theorem (see, Theorem 2.1 in [20]) and the compensation
formula (see, Theorem 4.4 in [20]), respectively. Then taking the expectation on both side of (3.46),
letting t and m go to infinity, and by bounded convergence theorem (note that v(0) is bounded) yields

v(x)≥ lim
t,m→∞

Ex

[
e−q(t∧T̃m)v(Uπ

t∧T̃m
)
]
− φEx

[ ∫ t∧T̃m

0−
e−qsdRπs

]

+Ex

[ ∫ t∧T̃m

0
e−qs∆Dπ

s dNs

]
+ Ex

[ ∫ t∧T̃m

0−
e−qsλω(Uπs−)ds

]

≥ lim
t,m→∞

Ex

[
e−q(t∧T̃m)v(0)

]
− φEx

[ ∫ t∧T̃m

0−
e−qsdRπs

]

+Ex

[ ∞∑

n=1

e−qTn∆Dπ
Tn
1
{Tn≤t∧T̃m}

]
+ Ex

[ ∫ t∧T̃m

0
e−qsλω(Uπs−)ds

]

≥−φEx
[ ∫ ∞

0−
e−qsdRπs

]
+ Ex

[ ∞∑

n=1

e−qTn∆Dπ
Tn

]
+Ex

[ ∫ ∞

0
e−qsλω(Uπs )ds

]

=V ω
π (x), x ∈ (0,∞).

The arbitrariness of π and the continuity of v imply that v(x) ≥ V ω
π (x) for all x ∈ [0,∞) and all admissible

(Dπ, Rπ) ∈ Π. The reverse inequality is trivial, and the proof is complete.

Lemma 3.14 It holds that, for x ∈ (0,∞),
{
AV ω

0,b(x)− qV ω
0,b(x) + λω(x) = 0, x ∈ (0, b),

AV ω
0,b(x)− qV ω

0,b(x) + λω(x) + γ(x− b+ V ω
0,b(b)− V ω

0,b(x)) = 0, x ∈ [b,∞).
(3.47)

Proof. Put κ := κ−0 ∧ κ+b . By the definition of U0,b
t , one can get that the controlled process U0,b

t follows
the same dynamics of X before κ. By the strong Markov property of the process X, we have

Ex

[
∞∑

n=1

e−qTn∆D0,b
Tn

− φ

∫ ∞

0
e−qtdR0,b

t + λ

∫ ∞

0
e−qtω(U0,b

t )dt

∣∣∣∣Fs∧κ

]

=Ex

[
∞∑

n=1

e−qTn∆D0,b
Tn

1{Tn≥s∧κ} − φ

∫ ∞

0
e−q(t+s∧κ)dR0,b

t+s∧κ

+λ

∫ ∞

0
e−q(t+s∧κ)ω(U0,b

t+s∧κ)dt

∣∣∣∣Fs∧κ
]
+ λ

∫ s∧κ

0
e−qtω(Xt)dt

=e−q(s∧κ)EXs∧κ

[
∞∑

n=1

e−qTn∆D0,b
Tn

− φ

∫ ∞

0
e−qtdR0,b

t + λ

∫ ∞

0
e−qtω(U0,b

t )dt

]

+λ

∫ s∧κ

0
e−qtω(Xt)dt

=e−q(s∧κ)V ω
0,b(Xs∧κ) + λ

∫ s∧κ

0
e−qtω(Xt)dt, x ∈ (0, b),

which implies that the right-side of the above equation is a martingale. By Itô’s formula, it holds that

e−q(t∧κ)V ω
0,b(Xt∧κ) + λ

∫ t∧κ

0
e−qsω(Xs)ds− V ω

0,b(x)
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=

∫ t∧κ

0−
e−qs

(
(A− q)V ω

0,b(Xs−) + λω(Xs−)
)
ds+

∫ t∧κ

0−
σe−qsV ω′

0,b(Xs−)dBs

+

∫ t∧κ

0−
e−qsV ω′

0,b(Xs−)d(Xs + cs− σBs −
∑

r≤s

∆Xr1{∆Xr≥1})

+

∫ t∧κ

0−

∫ ∞

0
e−qs[V ω

0,b(Xs− − y)− V ω
0,b(Xs−) + V ω′

0,b(Xs−)y1(0,1](y)]N (ds,dy), t ≥ 0.

Following the same arguments in the proof of Lemma 3.13, we get that all the terms (except for the
first one) on the right hand side of the above equality are martingales starting from 0. Therefore, taking
expectations on both sides of the above equation yields

0 = Ex

[∫ t∧κ

0−
e−qs

(
(A− q)V ω

0,b(Xs−) + λω(Xs−)
)
ds

]
, t ≥ 0, x ∈ (0, bω).

Dividing both sides of the above equation by t and then setting t ↓ 0, we can obtain the equality in (3.47)
for x ∈ (0, b) by the mean value theorem and the dominated convergence theorem. For x ∈ [b,∞), it can
be verified that

(A− q) (b− x+
ψ′(0+)

q
) = −q(b− x), (3.48)

and

(A− q) e−Φq+γx = γe−Φq+γx. (3.49)

In addition, by (5.6) in [23], one can get

(A− q)
(
Zq(b− x+ y) + γ

∫ y

0
Zq(b− x+ y − z)Wq+γ(z)dz

)

=γ
(
Zq(b− x+ y) + γ

∫ y

0
Zq(b− x+ y − z)Wq+γ(z)dz

)
, x ∈ [b, b+ y). (3.50)

By (3.48)-(3.50), and the definition of V ω
0,b(x), we have

(A− q)V ω
0,b(x)

=(A− q)

[
−γ

q + γ

(
b− x+

ψ′(0+)

q

)
− λ

∫ b

0
ω(y)Wq(y − x)dy +

λω(b)

q
Zq(b− x)

+
γZq(b)− φ(q + γ)

q(q + γ)Φq+γZq(b,Φq+γ)
(qeΦq+γ(b−x) + γ)−

qeΦq+γ(b−x) + γ

qΦq+γZq(b,Φq+γ)
×

[
λ

∫ b

0
ω′(y)Wq(y)dy

+λ

∫ ∞

0
ω′(b+ y)

(
Wq(b+ y) + γ

∫ y

0
Wq(b+ y − z)Wq+γ(z)dz −

Φq+γZq(b,Φq+γ)

qeΦq+γ(b−x) + γ

×
[(
Zq(b− x+ y) + γ

∫ y

0
Zq(b− x+ y − z)Wq+γ(z)dz

)
1{y>x−b} + 1{y≤x−b}

])
dy

]]

=
qγ

q + γ
(x− b)−λω(b) +

γZq(b)− φ(q + γ)

(q + γ)Φq+γZq(b,Φq+γ)
(γeΦq+γ (b−x) − γ)−

γeΦq+γ(b−x) − γ

Φq+γZq(b,Φq+γ)

×

(
λ

∫ b

0
ω′(y)Wq(y)dy + λ

∫ ∞

0
ω′(b+ y)

[(
Wq(b+ y) + γ

∫ y

0
Wq(b+ y − z)Wq+γ(z)dz

)
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−
Φq+γZq(b,Φq+γ)

eΦq+γ(b−x) − 1

(
Zq(b− x+ y) + γ

∫ y

0
Zq(b− x+ y − z)Wq+γ(z)dz

)
1{y>x−b}

]
dy

)

−λω(x) + λω(b)

=γ(x− b+ V ω
0,b(b)− V ω

0,b(x))− λω(x).

The proof is complete.

Lemma 3.15 Let bω > 0 be defined as in Lemma 3.11. We have

max
0≤z≤x

{z + V ω
0,bω(x− z)− V ω

0,bω(x)} =

{
0, x ∈ (0, bω),

x− bω + V ω
0,bω(b

ω)− V ω
0,bω(x), x ∈ [bω,∞).

Proof. The result is immediate consequence of Lemma 3.12.

Putting together Lemma 3.7 and Lemmas 3.13-3.15, we can easily verify, in the following Theorem
3.1, the conjecture that the double barrier strategy with dividend barrier bω and capital injection barrier
0 is the optimal strategy for the auxiliary control problem (3.1). The proof is omitted.

Theorem 3.1 The periodic dividend and capital injection strategy (D0,bω

t , R0,bω

t ) dominates all admissible

singular periodic dividend and capital injection strategies that

V ω
0,bω(x) = sup

π
V ω
π (x).

4 Optimality of Regime-modulate Double Barrier Strategy

We continue to prove the main result Theorem 2.1 using results from the previous auxiliary control
problem with a final payoff and the recursive iteration based on dynamic programming principle. As
preparations, let us consider the following space of functions

B := {f : R+ × E → R| for each i ∈ E , f(·, i) ∈ C([0,∞)) and ‖f‖ <∞},

endowed with the norm

‖f‖ := max
i∈E

sup
x≥0

|f(x, i)|

1 + |x|
,

and the metric ρ(·, ·) induced by ‖ · ‖. It is not hard to check that the metric space (B, ρ) is complete.

For any function f : [0,∞)× E → R, we define a function f̂ : [0,∞) × E → R that

f̂(x, i) :=
∑

j∈E,j 6=i

λij
λi

∫ 0

−∞

[
f(x+ y, j)1{−y≤x} + (φ(x+ y) + f(0, j))1{−y>x}

]
dFij(y),

where λi =
∑

j 6=i λij , and Fij is the distribution function of Jij for i, j ∈ E . Note that
∣∣∣f̂(x, i)

∣∣∣
1 + |x|

=

∣∣∣∣∣∣

∑

j∈E,j 6=i

λij
λi

∫ 0

−∞

[
f(x+ y, j)

1 + |x|
1{−y≤x} +

( f(0, j)
1 + |x|

+
φ (x+ y)

1 + |x|

)
1{−y>x}

]∣∣∣∣∣∣
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≤
∑

j∈E,j 6=i

λij
λi

[
‖f‖

∫ 0

−∞

1 + |x+ y|

1 + |x|
1{−y≤x}dFij(y) +

φE|Jij |

1 + |x|
+ (φ+ |f(0, j)|)

]

≤
∑

j∈E,j 6=i

λij
λi

[
‖f‖+ φE|Jij |+ (φ+ |f(0, j)|)

]
, (x, i) ∈ [0,∞)× E ,

which together the fact that maxi,j∈E E|Jij | <∞, one can get that f̂ ∈ B when f ∈ B.

For any function b = (bi) ∈ [0,∞)E , denote by V0,b(x, i) the value function (i.e., the NPV of the
accumulated differences between dividends and the costs of capital injections) of the periodic dividend
and capital injection strategy with dynamic upper periodic barrier bYt and constant lower barrier 0. In
addition, let us define a mapping Tb acting on f ∈ B such that

Tbf(x, i) :=Eix

[ ∞∑

n=1

e−qiTn∆Dbi,i
Tn

− φ

∫ ∞

0
e−qitdRbi,it + λi

∫ ∞

0
e−qitf̂(U bi,it , i)dt

]
, (4.1)

where qi = δi + λi and Eix denotes the expectation operator with respect to the law of the process Xi

conditioned on the event {Xi
0 = x}. The process U bi,it is the controlled process with upper periodic

barrier bi ≥ 0, lower reflecting barrier 0, and the underlying risk process Xi; and Dbi,i
t , Rbi,it are the

cumulative dividends paid and capitals injected, respectively. In what follows, the scale functions of Xi

will be denoted by Wq,i, Zq,i and Zq,i, whose definitions are given in Section 2.1 where the subscript i is
absent.

Lemma 4.1 For (x, i) ∈ R+ × E, we have V (x, i) ∈ B.

Proof. Denote δ := mini∈E δi, X t := sups≤tXs, and Xt := infs≤tXs. We can derive an upper bound of
V (x, i) by considering the extreme case where the manager of the company pays every dollar accumulated
by X as dividends as early as possible (i.e., Dt := X t ∨ 0), and cover all deficits by capital injection (i.e.,
Rt := − infs≤t(Xs− (X t ∨ 0))). Note that the surplus process Ut = Xt− (X t ∨ 0)− infs≤t(Xs− (Xt ∨ 0))
takes positive values. Hence, Dt = Xt∨0 amounts to the maximum reasonable amount of dividends paid
until time t ≥ 0. Therefore, we have

V (x, i) ≤ x+ E0,i

[ ∫ ∞

0
e−δtd(X t ∨ 0)

]
=: V (x, i).

Similarly, we can also derive a lower bound by considering the extreme case where the manager of the
company injects capitals to keep the surplus over x before the time that the first Poisson arrival with
intensity γ > 0 (i.e., Rt := − infs≤t(Xs − x) ∧ 0, t ≤ eγ), and pays whatever he has as dividends as the
first Poisson arrival time (i.e., Deγ :=

(
Xeγ − infs≤eγ(Xs−x)∧0

)
); and then pays no dividends afterwards

and bails out all deficits by injecting capitals. Hence, by the spatial homogeneity, we have

V (x, i) :=Ex,i

[
e−δeγ

(
Xeγ − (Xeγ

− x) ∧ 0
)
+ φ

∫ eγ

0
e−δtd

(
(X t − x) ∧ 0

)]

+E0,i

[
φ

∫ ∞

0
e−δ(t+eγ)d

(
Xt+eγ ∧ 0

)]

= E0,i

[
e−δeγ

(
Xeγ −Xeγ ∧ 0

)
+ φ

∫ eγ

0
e−δtd

(
Xt ∧ 0

)]
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+E0,i

[
φ

∫ ∞

0
e−δ(t+eγ)d

(
Xt+eγ ∧ 0

)]
+ xE

[
e−δeγ

]

≤ V (x, i).

It is not hard to verify that both the upper and lower bound is bounded under the norm ‖ · ‖, which can
yield V (x, i) ∈ B. The proof is complete.

Lemma 4.2 For b ∈ [0,∞)E and (x, i) ∈ R× E, we have V0,b(x, i) = TbV0,b(x, i).

Proof. When Y0 = i, let eλi be the first time Y switches its states. By the strong Markov property and
the independence between (Xi)i∈E , Y and (Jij)i,j∈E , we obtain

V0,b(x, i)=Ex,i

[ ∞∑

n=1

e−δiTn∆Dbi,i
Tn

1{Tn≤eλi}
− φ

∫ eλi

0
e−δitdRbi,it + e−δieλiV0,b(U

bi,i
eλi

+ JiYeλi
, Yeλi )

]

=Eix

[ ∞∑

n=1

e−qiTn∆Dbi,i
Tn

− φ

∫ ∞

0
e−qitdRbi,it

]
+
∑

j 6=i

λijE
i
x

[ ∫ ∞

0
e−qitV0,b(U

bi,i
t + Jij , j)dt

]

=−
γ

qi + γ

[
Zqi,i(bi − x) +

ψ′
i(0+)

qi

]
+

[
Zqi,i(bi − x,Φqi+γ) +

γ

qi
Zqi,i(bi − x)

]

×
(γZqi,i(bi)− φ(qi + γ))

(qi + γ)Φqi+γZqi,i(bi,Φqi+γ)
+
∑

j 6=i

λij
qi

∫ 0

−∞

[ ∫ ∞

0+
V0,b(y + z, j)Px

(
U0,bi
eqi

∈ dy
)

+V0,b(z, j)Px

(
U0,bi
eqi

= 0
)]

dFij(z), x ∈ [0,∞), qi = δi + λi,

V0,b(x, i)=φx+ V0,b(0, i), x ∈ (−∞, 0). (4.2)

Using the expression of V 0
0,bi

, the boundedness of V0,b under norm ‖ · ‖ in Lemma 4.1 as well as the
fact that maxj 6=iE|Jij | < ∞, we can deduce that V0,b ∈ B. By the defination of Tb in (4.1), the second

equality in (4.2), the independence between U bi,it and Jij for all i, j ∈ E , and the fact that

V0,b(U
bi,i
t + Jij , j) = V0,b(U

bi,i
t + Jij , j)1{Ubi ,i

t ≥−Jij}
+
(
V0,b(0, j) + φ(U bi,it + Jij)

)
1
{U

bi,i

t <−Jij}
,

we can conclude that V0,b(x, i) = TbV0,b(x, i). The proof is complete.

Lemma 4.3 The operator Tb is a contraction on B under the metric ρ(·, ·). In particular, for f ∈ B, we
have that

V0,b(x, i) = lim
n→∞

T n
b f(x, i), (x, i) ∈ [0,∞) × E , (4.3)

where the convergence is under metric ρ(·, ·) and T n
b
(f) := Tb(T

n−1
b

(f)) for n > 1 with T 1
b
:= Tb.

Proof. Recall that the metric space (B, ρ) is complete. By Lemma 3.6, for f ∈ B, we have

|Tbf(x, i)|

1 + |x|
=(1 + |x|)−1

∣∣∣∣∣E
i
x

[ ∞∑

n=1

e−qiTn∆Dbi,i
Tn

− φ

∫ ∞

0
e−qitdRbi,it + λi

∫ ∞

0
e−qitf̂(U bi,it , i)dt

]∣∣∣∣∣
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=(1 + |x|)−1

∣∣∣∣
−γ

qi + γ

[
Zqi,i(bi − x) +

ψ′
i(0+)

qi

]
+
λi
qi

∫ ∞

0
f̂(y, i)Px

(
U bi,ieqi

∈ dy
)

+
(γZqi,i(bi)− φ(qi + γ))

[
Zqi,i(bi − x,Φqi+γ) +

γ
qi
Zqi,i(bi − x)

]

(qi + γ)Φqi+γZqi,i(bi,Φqi+γ)

∣∣∣∣∣∣
, x ∈ (0,∞). (4.4)

By (4.4), Lemma 3.5, and the fact that f̂ ∈ B, it holds that Tbf ∈ B. Furthermore, for f, g ∈ B, we can
get that

ρ(Tbf,Tbg) = max
i∈E

sup
x≥0

Eix

[
e−δieλi

∑

j∈E,j 6=i

λij
λi

∫ −U
bi,i
eλi

−∞

|f(0, j) − g(0, j)|

1 + |x|
dFij(y)

+e−δieλi
∑

j∈E,j 6=i

λij
λi

∫ 0

−U
bi,i
eλi

|f(U bi,ieλi
+ y, j) − g(U bi,ieλi

+ y, j)|

1 + |x|
dFij(y)

]

≤ ρ(f, g) sup
i∈E

Ei0[e
−δieλi ]

:=βρ(f, g), β ∈ (0, 1). (4.5)

By (4.5), for f ∈ B, (T n
b
f)n≥1 is a Cauchy sequence. Therefore, we have

T ∞
b f := lim

n↑∞
T n
b f = Tb( lim

n↑∞
T n
b f) = Tb(T

∞
b f), f ∈ B,

which implies that T ∞
b
f is a fixed point of the mapping Tb. By Lemma 4.2, we obtain the desired result.

This completes the proof.

Let us define another space of function that

C := {f ∈ B|f̂(x, i) is concave and f̂ ′(0, i) ≤ φ and f̂ ′(∞, i) ∈ [0, 1] for i ∈ E}.

Lemma 4.4 Suppose that f ∈ B ∩ C1(R+) is concave, non-decreasing, and satisfies f ′(·, i) ≤ φ and

f ′(∞, i) ∈ [0, 1] for all i ∈ E, we have that f ∈ C.

Proof. By definition, f̂ can be rewritten as

f̂(x, i)=
∑

j∈E,j 6=i

λij
λi

[ ∫ 0

−x

[
f(x+ y, j)− (φ(x+ y) + f(0, j))

]
dFij(y) + φ(x+ E[Jij ]) + f(0, j)

]
,

which implies that

f̂ ′(x, i) =
∑

j∈E,j 6=i

λij
λi

[
φ+

∫ 0

−x

[
f ′(x+ y, j) − φ

]
dFij(y)

]
. (4.6)

Combining the concavity of f and (4.6), one can get f̂(x, i) is also concave. Furthermore, by the fact
that f ′(x+ y, j) − φ ≤ 0, we can deduce that

f̂ ′(x, i) ≤
∑

j∈E,j 6=i

λij
λi
φ = φ.
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On the other hand, by the fact that f ′(∞, i) ∈ [0, 1], we have

0 =
∑

j∈E,j 6=i

λij
λi

[
φ−

∫ 0

−∞
φdFij(y)

]
≤ f̂ ′(∞, i) ≤

∑

j∈E,j 6=i

λij
λi

[
φ+

∫ 0

−∞

(
1− φ

)
dFij(y)

]
= 1.

Then, f ∈ C. The proof is complete.

For f ∈ C and (x, i) ∈ R+ × E , let us define another operator Tsup that

Tsupf(x, i) :=sup
D,R

Ex,i

[ ∞∑

n=1

e−δiTn∆DTn1{Tn≤eλi}
− φ

∫ eλi

0
e−δitdRt + e−δieλi f̂(Ueλi−, i)

]

= sup
Di,Ri

Eix

[ ∞∑

n=1

e−qiTn∆Di
Tn − φ

∫ ∞

0
e−qitdRit + λi

∫ ∞

0
e−qitf̂(U it , i)dt

]
, (4.7)

where U it = Xi
t − Di

t + Rit represents the controlled surplus process with control (Di, Ri) and driving
process Xi.

Denote V 0 := V and V 0 := V as well as V n := Tsup(V n−1) and V n := Tsup(V n−1), for n ≥ 1.

Lemma 4.5 We have V n ≤ V ≤ V n on R+ × E for all n ≥ 1, and

V (x, i) = lim
n↑∞

V n(x, i) = lim
n↑∞

V n(x, i), (x, i) ∈ R+ × E , (4.8)

where the convergence is under the metric ρ(·, ·). Moreover, we have V ∈ C.

Proof. One can verify the first claim of Lemma 4.5 by the method of induction. In fact, by Lemma 4.1
and Lemma 4.4, we have V 0 ≤ V ≤ V 0 and V 0, V 0 ∈ C. Suppose that V n−1 ≤ V ≤ V n−1, then

V n = Tsup(V n−1) ≤ Tsup(V ) ≤ Tsup(V n−1) = V n,

which, together with the fact that V is a fixed point of the mapping Tsup, implies that V n ≤ V ≤ V n for
all n ≥ 1.

To prove the second claim of Lemma 4.5, for any f ∈ C and i ∈ E , Theorem 3.1 guarantees the
existence of bfi ∈ (0,∞) such that the second equality of (4.7) is achieved by the expected NPV under

a periodic-classical barrier strategy with upper barrier bfi and lower barrier 0. Denote bf = (bfi )i∈E , it
follows that Tsupf = Tbf f over R+ × E . Furthermore, by Lemma 3.7 and Lemma 3.11, one can get that
Tsupf(·, i) ∈ C1(0,∞) and it is concave as well as (Tsupf)

′(0, i) ≤ φ and (Tsupf)
′(∞, i) ∈ [0, 1] for i ∈ E ,

which together with Lemma 4.4 yields Tsupf ∈ C and

ρ(Tsupf,Tsupg) = ρ(Tbf f,Tbgg) = ρ(sup
b

Tbf, sup
b

Tbg) ≤ sup
b

ρ(Tbf,Tbg) ≤ βρ(f, g), β ∈ (0, 1),

i.e.,Tsup is a contraction mapping from C to itself. Hence, the Cauchy sequences (V n)n≥1 and (V n)n≥1

converge to the unique fixed point V of Tsup. In addition, by (4.8) and the dominated convergence
theorem, we have that

V̂ (x, i)=
∑

j∈E,j 6=i

λij
λi

∫ 0

−∞

[
V (x+ y, j)1{−y≤x} + (φ(x+ y) + V (0, j))1{−y>x}

]
dFij(y)

34



= lim
n→∞

∑

j∈E,j 6=i

λij
λi

∫ 0

−∞

[
V n(x+ y, j)1{−y≤x} + (φ(x+ y) + V n(0, j))1{−y>x}

]
dFij(y)

= lim
n→∞

∑

j∈E,j 6=i

λij
λi

∫ 0

−∞

[
V n(x+ y, j)1{−y≤x} + (φ(x+ y) + V n(0, j))1{−y>x}

]
dFij(y)

= lim
n→∞

V̂ n(x, i) = lim
n→∞

V̂ n(x, i), (x, i) ∈ R+ × E . (4.9)

By (4.9) and the fact that (V n)n≥1 ⊆ C and (V n)n≥1 ⊆ C, we derive that V ∈ C.

Finally, we give the proof of Theorem 2.1 using the previous preparations.

Proof of Theorem 2.1. By Lemma 4.5, we have V ∈ C, which together with Theorem 3.1 yields
that there exists a function bV = (bVi )i∈E ∈ (0,∞)E such that V (x, i) = TsupV (x, i) = TbV (x, i) for all
(x, i) ∈ R+ × E . Hence, by (4.3) and V ∈ B (as V ∈ C), we have that

V (x, i) = lim
n↑∞

T n
bV V (x, i) = V0,bV (x, i),

i.e., b∗ := bV = (bVi )i∈E is the desired periodic barrier function such that the conclusion of Theorem 2.1
holds. The proof is then complete.

References

[1] Albrecher, H., Cheung, E. and Thonhauser, S., 2011. Randomized observation periods for the compound

poisson risk model: dividends. Astin Bulletin, 41(2), 645-672.

[2] Albrecher, H., Cheung, E. and Thonhauser, S., 2013. Randomized observation periods for the compound

Poisson risk model: The discounted penalty function. Scandinavian Actuarial Journal, 6, 424-452.

[3] Albrecher H., Ivanovs J. and Zhou X., 2016. Exit identities for Lévy processes observed at Poisson arrival
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[12] Bertoin, J., 1996. Lévy Processes. Cambridge University Press.

[13] De Finetti, B., 1957. Su un’impostazion alternativa dell teoria collecttiva del rischio. In Trans. XVth Inter-

national Congress of Actuaries, 2, 433-443.

[14] Easterbrook, F., 1984. Two-agency cost explanations of dividends. American Economic Review, 74(4), 650-

659.

[15] Feldstein, M. and Green, J., 1983. Why do companies pay dividends? American Economic Review, 73(1),

17-30.

[16] Jiang, Z. and Pistorius, M., 2012. Optimal dividend distribution under Markov regime switching. Finance

and Stochastics, 16, 449-476.

[17] Loeffen, R., Renaud, J. and Zhou, X., 2014. Occupation times of intervals until first passage times for spectrally
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