
ar
X

iv
:2

21
0.

08
29

2v
1

 [
m

at
h.

O
C

]
 1

5
O

ct
 2

02
2

Integer Programming Models

for Round Robin Tournaments

Jasper van Doornmalen, Christopher Hojny*, Roel Lambers, and Frits C.R.
Spieksma

Eindhoven University of Technology, Department of Mathematics and Computer
Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{m.j.v.doornmalen, c.hojny, r.lambers, f.c.r.spieksma}@tue.nl

Abstract

Round robin tournaments are omnipresent in sport competitions and beyond. We propose
two new integer programming formulations for scheduling a round robin tournament, one of
which we call the matching formulation. We analytically compare their linear relaxations with

the linear relaxation of a well-known traditional formulation. We find that the matching for-
mulation is stronger than the other formulations, while its LP relaxation is still being solvable
in polynomial time. In addition, we provide an exponentially sized class of valid inequalities

for the matching formulation. Complementing our theoretical assessment of the strength of the
different formulations, we also experimentally show that the matching formulation is superior
on a broad set of instances. Finally, we describe a branch-and-price algorithm for finding round

robin tournaments that is based on the matching formulation.
Keywords: Integer Programming, OR in sports, Cutting planes, Branch-and-price

1 Introduction

Integer programming continues to be a very popular way to obtain a schedule for a round robin
tournament. The ability to straightforwardly model such a tournament, and next solve the resulting
formulation using an integer programming solver, greatly facilitates practitioners. Moreover, it is
usually possible to add all kinds of specific local constraints to the formulation that help addressing
particular challenges. We substantiate this claim of the widespread use of integer programming
by mentioning some of the works that use integer programming to arrive at a schedule for a
round robin tournament. Indeed, from the literature, it is clear that for national football leagues
(which are predominantly organized according to a so-called double round robin format), integer
programming-based techniques are used extensively to find schedules. Without claiming to be
exhaustive we mention Alarcón et al. [2], Della Croce and Oliveri [9], Durán et al [11, 12, 10],
Goossens and Spieksma [17], Rasmussen [27], Recalde et al. [29], Ribeiro and Urrutia [30]. Other
sport competitions that are organized in a round robin fashion (or a format close to a round robin)
have also received ample attention: we mention Cocchi et al. [8] and Raknes and Pettersen [26]
who use integer programming for scheduling volleyball leagues, Fleurent and Ferland [16] who
use integer programming for scheduling a hockey league, Kim [21] and Bouzarth et al. [4] for
baseball leagues, Kostuk and Willoughby [23] for Canadian football, Nemhauser and Trick [25]
and Westphal [36] for basketball leagues. Further, there has been work on studying properties
of the traditional formulation, among others, by Trick [33] and Briskorn and Drexl [5]. Well-
known surveys are given by Rasmussen and Trick [28], Kendall et al. [20] and Goossens and
Spieksma [18]; we also refer to Knust [22], who maintains an elaborate classification of literature
on sports scheduling. More recently, the international timetabling competition [35] featured a

*Corresponding author

1

http://arxiv.org/abs/2210.08292v1

round robin sports timetabling problem, and most of the submissions for this competition used
integer programming in some way to obtain a good schedule.

All this shows that integer programming is one of the most preferred ways to find schedules for
competitions organized via a round robin format.

In this paper, we aim to take a fresh look at the problem of finding an optimal schedule for
round robin tournaments using integer programming techniques. Depending upon how often a
pair of teams is required to meet, different variations of a round robin tournament arise: in case
each pair of teams meets once, the resulting format is called a Single Round Robin, in case each
pair of teams is required to meet twice, we refer to the resulting variation as a Double Round
Robin. These formats are the ones that occur most in practice; in general we speak of a k-Round
Robin to describe the situation where each pair of teams is required to meet k times.

We have organized the paper as follows. In Section 2, we precisely define the problem cor-
responding to the Single Round Robin tournament, and we present three integer programming
formulations for it. We call them the traditional formulation (Section 2.1), the matching formu-
lation (Section 2.2), and the permutation formulation (Section 2.3); the latter two formulations
are, to the best of our knowledge, new. We show that their linear relaxations can be solved in
polynomial time. We prove in Section 3 that the matching formulation is stronger than the other
formulations. In Section 4 we provide a class of valid inequalities for the matching formulation.
We show in Section 5 how our results extend to the k-Round Robin tournament. In Section 6,
we generate instances of our problem with two goals in mind: (i) to experimentally assess the
quality of the bounds found by our models (Section 6.2), and (ii) to report on the performance of
a branch-and-price algorithm (Section 6.3). We conclude in Section 7.

2 Problem definition and formulations

In this section, we provide a formal definition of our problem and introduce the necessary termi-
nology and notation. We start by describing the so-called Single Round Robin (SRR) tournament,
where every pair of teams has to meet exactly once, and we return to the general version of the
problem, where every pair of teams has to meet k times (k ≥ 1), in Section 5.

Throughout the entire paper, we assume that n is an even integer that denotes the number of
teams; for reasons of convenience we assume n ≥ 4. We denote the set of all teams by T . A match
is a set consisting of two distinct teams and the set of all matches is denoted by M, in formulae,
M = {m = {i, j} : i, j ∈ T, i 6= j}. We denote, for each i ∈ T , byMi = {{i, j} : j ∈ T \ {i}} the
set of matches played by team i. As we assume in this section that every pair of teams meets once,
and as n is even, the matches can be organized in n− 1 rounds, which we denote by R; hence, we
deal in this section with a compact single round robin tournament.

Prepared with this terminology and notation, we are able to provide a formal definition of the
SRR problem.

Problem 1. (SRR) Given an even number n ≥ 4 of teams with corresponding matches M, a set
of n − 1 rounds R, as well as an integral cost cm,r for every match m ∈ M and round r ∈ R, the
single round robin (SRR) problem is to find an assignment A ⊆ M× R of matches to rounds that
minimizes the cost

∑

(m,r)∈A cm,r such that every team plays a single match per round and each

match is played in some round.

Since the SRR problem is NP-hard (see Easton [13], Briskorn et al. [6], and Van Bulck and
Goossens [34]), there does not exist a polynomial time algorithm to find an optimal assignment
unless P = NP. For this reason, several researchers have investigated integer programming (IP)
techniques for finding an optimal assignment of matches to rounds. We follow this line of research
and discuss three different IP formulations for the SRR problem: a traditional formulation with
polynomially many variables and constraints (Section 2.1) as well as two formulations that involve
exponentially many variables (Sections 2.2 and 2.3). To the best of our knowledge, the latter
models have not been discussed in the literature before.

2

2.1 The traditional formulation

The traditional formulation of the SRR problem has been discussed, among others, by Trick [33]
and Briskorn and Drexl [5]. To model an assignment of matches to rounds, this formulation
introduces, for every match m ∈ M and round r ∈ R, a binary decision variable xm,r to model
whether match m is played at round r (xm,r = 1) or not (xm,r = 0). With these variables, problem
SRR can be modeled as:

min
∑

m∈M

∑

r∈R

cm,rxm,r (T1)

∑

r∈R

xm,r = 1, m ∈ M, (T2)

∑

m∈Mi

xm,r = 1, i ∈ T, r ∈ R, (T3)

xm,r ∈ {0, 1}, m ∈ M, r ∈ R. (T4)

Constraints (T2) ensure that each pair of teams meets once, and Constraints (T3) imply that each
team plays in each round. This model has O(n2) constraints and O(n3) variables. Note that
Constraints (T4) can be replaced by xm,r ∈ Z+ as the upper bound xm,r ≤ 1 is implicitly imposed
via Constraints (T2) and non-negativity of variables. The linear programming relaxation of (T)
arises when we replace (T4) by xm,r ≥ 0; given an instance I of SRR, we denote the resulting
value by vLP

tra (I).

2.2 The matching formulation

Consider the complete graph that results when associating a node to each team, say Kn = (T,M).
Clearly, a single round of a feasible schedule can be seen as a perfect matching in this graph. This
observation allows us to build a matching based formulation by introducing a binary variable for
every perfect matching in Kn; we denote the set of all perfect matchings in Kn by M.

We employ a binary variable yM,r for each perfect matching M ∈ M and round r ∈ R.
If yM,r = 1, the model prescribes that matching M is used for the schedule of round r, whereas
yM,r = 0 encodes that a different schedule is used. To be able to represent the cost of round r ∈ R,
the total cost of all matches in M is denoted by dM,r :=

∑

m∈M cm,r, which leads to the model

min
∑

M∈M

∑

r∈R

dM,ryM,r (M1)

∑

M∈M

yM,r = 1, r ∈ R, (M2)

∑

M∈M :
m∈M

∑

r∈R

yM,r = 1, m ∈ M, (M3)

yM,r ∈ {0, 1}, M ∈M, r ∈ R. (M4)

Constraints (M2) ensure that a matching is selected in each round, while Constraints (M3) enforce
that each pair of teams meets in some round. Similarly to the traditional formulation, we can
replace (M4) by yM,r ∈ Z+. In this way, the linear programming relaxation of (M) arises when
replacing (M4) by yM,r ≥ 0; given an instance I of SRR, the resulting value is denoted by vLP

mat(I).
Notice that this formulation uses an exponential number of variables, as the number of matchings
grows exponentially in n. Thus, a relevant question is whether we can find vLP

mat in polynomial
time. The following observation shows that it can be answered affirmatively.

Lemma 2.1. The LP relaxation of the matching formulation (M) can be solved in polynomial time.

Proof. Due to the celebrated result by Grötschel et al. [19], it is sufficient to show that the sepa-
ration problem for the constraints of the dual of the linear relaxation of Model (M) can be solved
in polynomial time. To avoid an exponential number of variables in the dual, we replace Con-
straint (M4) by yM,r ∈ Z+ as explained above. Then, by introducing dual variables αr, r ∈ R,

3

corresponding to Constraints (M2) and βm, m ∈ M, corresponding to Constraints (M3), the con-
straints of the dual of the LP relaxation of Model (M) are:

αr +
∑

m∈M

βm ≤ dM,r, M ∈M, r ∈ R.

Given values for the dual variables, say (ᾱ, β̄), the separation problem is to decide whether it sat-
isfies all dual constraints. For fixed r ∈ R, we show that this problem can be solved in polynomial
time. Thus, the assertion follows as there are only O(n) rounds.

Indeed, if r ∈ R is fixed, the problem reduces to check whether there exists a matching M ∈M

such that
ᾱr +

∑

m∈M

β̄m > dM,r =
∑

m∈M

cm,r ⇔
∑

m∈M

(β̄m − cm,r) > −ᾱr.

The latter inequality asks whether there exists a perfect matching of teams with weight greater
than −ᾱr, where an edge m between two teams is assigned weight (β̄m − cm,r). This problem
can be solved in polynomial time by Edmonds’ blossom algorithm [14, 15], which concludes the
proof.

2.3 The permutation formulation

Instead of fixing the schedule of a round, the permutation formulation fixes, for a given team,
the order of the teams against which the given team plays its successive matches. That is, it
introduces a variable for each team i and each permutation of T \ {i}. We denote the set of all
such permutations by Π−i. Moreover, for a team j ∈ T and round r ∈ R, denote the set of all
permutations where j occurs at position r in the permutation by Π−i

j,r. Permutations from Π−i
j,r thus

encode that team i plays against team j on round r. For a permutation π ∈ Π−i and round r ∈ R,
we refer to the opponent of team i at round r as πr ∈ T \ {i}. The cost of a schedule encoded
via permutations Π−i for a team i ∈ T is then given by ei,π :=

∑

r∈R c{i,πr},r. Using binary
variables zi,π, where i ∈ T and π ∈ Π−i, that encode whether i plays against its opponents in
order π (zi,π = 1) or not (zi,π = 0), the permutation formulation is

min
1

2

∑

i∈T

∑

π∈Π−i

ei,πzi,π (P1)

∑

π∈Π−i

zi,π = 1, i ∈ T, (P2)

∑

π∈Π−i
j,r

zi,π =
∑

π∈Π−j
i,r

zj,π, {i, j} ∈ M, r ∈ R, (P3)

zi,π ∈ {0, 1}, i ∈ T, π ∈ Π−i. (P4)

Constraints (P2) ensure that a permutation is selected for each team, while Constraints (P3) en-
force that, given a round and a pair of teams, these teams meet in that round, or they do not meet
in that round. Due to rescaling the objective by 1

2 , we find the cost of an optimal SRR schedule.
Moreover, we can again replace Constraint (P4) by zi,π ∈ Z+. The linear programming relaxation
of (P) then arises when replacing Constraints (P4) by zi,π ≥ 0; given an instance I of SRR, we
denote the resulting value by vLP

per(I).
Since this model has n! variables, we again investigate whether its LP relaxation can be solved

efficiently.

Lemma 2.2. The LP relaxation of the permutation formulation (P) can be solved in polynomial time.

Proof. As in the proof of Lemma 2.1, it is sufficient to show that the separation problem cor-
responding to the constraints of the dual of the relaxation of the permutation formulation can
be solved in polynomial time. Again, to avoid exponentially many variables in the dual, we
replace (P4) by zi,π ∈ Z+. We introduce dual variables αi for each constraint of type (P2)

4

and β{i,j},r for each constraint of type (P3). To normalize Constraint (P3), we assume it to be
given by

∑

π∈Π−i
j,r

zi,π −
∑

π∈Π−j
i,r

zj,π = 0 with i < j. Then, the dual constraints are given by

αi +
∑

r∈R :
i<πr

β{i,πr},r −
∑

r∈R :
i>πr

β{i,πr},r ≤
1

2
ei,π i ∈ T, π ∈ Π−i.

If i ∈ T is fixed, the separation problem for dual values (ᾱ, β̄) is to decide whether there exists a
permutation π ∈ Π−i such that

∑

r∈R :
i<πr

β̄{i,πr},r −
∑

r∈R :
i>πr

β̄{i,πr},r −
1

2

∑

r∈R

c{i,πr},r > −ᾱi

due to the definition of ei,π. To answer this question, it is sufficient to find a permutation maxi-
mizing the left-hand side expression. Such a permutation can be found by computing a maximum
weight perfect matching in the complete bipartite graph with node bipartition (T \ {i}) ∪ R and
edge weights defined for each j ∈ T \ {i} and r ∈ R by

wj,r =

{

− 1
2c{i,j},r + β̄{i,j},r, if i < j,

− 1
2c{i,j},r − β̄{i,j},r, otherwise.

Since this problem can be solved in polynomial time, the assertion follows by solving this problem
for each of the n teams.

3 Comparing the strength of the different formulations

In the previous section, we have introduced three different models for finding an optimal schedule
for problem SRR. While the traditional formulation contains both polynomially many variables
and constraints, the matching and permutation formulation make use of an exponential number of
variables. The aim of this section is to investigate whether the increase in the number of variables
in comparison with the traditional formulation leads to a stronger formulation. We measure the
strength of a formulation based on the value of its LP relaxation, where a higher value of the LP
relaxation indicates a stronger formulation as the LP relaxation’s value is closer to the optimum
value of the integer program, as encapsulated by the following definitions.

Definition 3.1. Let f and g be mixed-integer programming formulations of the SRR problem and
denote by vLP

f (I) and vLP
g (I) the value of the respective LP relaxations for an instance I of SRR.

• We say that f and g are relaxation-equivalent if, for each instance I of problem SRR, the value
of the linear programming relaxations are equal, i.e., vLP

f (I) = vLP
g (I).

• We say that f is stronger than (or dominates) g if (i) for each instance I of problem SRR,
vLP
f (I) ≥ vLP

g (I), and (ii) there exists an instance I of problem SRR for which vLP
f (I) > vLP

g (I).

We now proceed by formally comparing the strength of the formulations from Section 2 using
the terminology of these definitions. We state our results using three lemmata, and summarize all
our results in Theorem 3.5.

First, we show that the traditional and permutation formulation have equivalent LP relaxations.

Lemma 3.2. The permutation formulation (P) is relaxation-equivalent to the traditional formula-
tion (T).

Proof. To prove this lemma, we show that there is a one-to-one correspondence of feasible solutions
of the traditional formulation’s and the permutation formulation’s LP relaxations that preserves the
objective value. First, we construct a solution of the LP relaxation of the traditional formulation
from a solution z of the LP relaxation of the permutation formulation. To this end, define for
each {i, j} ∈ M and r ∈ R a solution x ∈ R

M×R via x{i,j},r =
∑

π∈Π−i
j,r

zi,π. Note that x is

5

non-negative as all z-variables are non-negative. Moreover, it is well-defined as
∑

π∈Π−i
j,r

zi,π =
∑

π∈Π−j
i,r

zj,π due to (P3). Finally, all constraints of type (T2) and (T3) are satisfied since

for each m ∈ M :
∑

r∈R

x{i,j},r =
∑

r∈R

∑

π∈Π−i
j,r

zi,π =
∑

π∈
⋃

r∈R
Π−i

j,r

zi,π =
∑

π∈Π−i

zi,π
(P2)
= 1,

for each i ∈ T, r ∈ R :
∑

j∈T\{i}

x{i,j},r =
∑

j∈T\{i}

∑

π∈Π−i
j,r

zi,π =
∑

π∈Π−i

zi,π
(P2)
= 1.

We conclude the proof by constructing a feasible solution for the LP relaxation of the permutation
formulation from a feasible solution x of the traditional formulation’s LP relaxation.

Let x be such a solution and let i ∈ T . Consider the matrix X i ∈ R
(T\{i})×R with en-

tries X i
j,r = x{i,j},r . Due to all constraints of the traditional formulation’s LP relaxation, X i is

a doubly stochastic matrix and is thus contained in the Birkhoff polytope, see [37]. Consequently,
X i can be written as a convex combination of all permutation matrices. That is, if P i,π is the
permutation matrix associated with π ∈ Π−i, there exist multipliers λi

π ≥ 0, π ∈ Π−i, such
that X i =

∑

π∈Π−i λi
πP

i,π and
∑

π∈Π−i λi
π = 1. Based on these multipliers, we define a solution z

of the permutation formulation via zi,π = λi
π . To conclude the proof, we need to show that this

solution z is feasible for the permutation formulation’s LP relaxation and has the same objective
value as x. Observe that z is non-negative since all λ’s are non-negative. Constraints (P2) and (P3)
are satisfied as

for each i ∈ T :
∑

π∈Π−i

zi,π =
∑

π∈Π−i

λi
π = 1,

for each {i, j} ∈ M, r ∈ R :
∑

π∈Π−i
j,r

zi,π =
∑

π∈Π−i
j,r

λi
π = x{i,j},r =

∑

π∈Π−j
i,r

λj
π =

∑

π∈Π−j

zj,π

since
∑

π∈Π−i λi
π = 1 and x{i,j},r is a convex combination of permutation matrices that assign

team j (or i) to round r, respectively. Consequently, z is feasible for the permutation formulation’s
LP relaxation. Finally, both x and z have the same objective value because

1

2

∑

i∈T

∑

π∈Π−i

ei,πzi,π =
1

2

∑

i∈T

∑

π∈Π−i

ei,πλ
i
π =

1

2

∑

i∈T

∑

π∈Π−i

∑

r∈R

c{i,πr},rλ
i
π

=
1

2

∑

i∈T

∑

j∈T\{i}

∑

r∈R

c{i,j},r
∑

π∈Π−i :
πr=j

λi
πP

i,π
πr,r =

1

2

∑

i∈T

∑

j∈T\{i}

∑

r∈R

c{i,j},rx{i,j},r

=
∑

{i,j}∈M

∑

r∈R

c{i,j},rx{i,j},r .

which proves that both formulations are relaxation-equivalent.

Next, we turn our focus to the matching formulation and compare it with the traditional for-
mulation (and thus, by the previous lemma, also with the permutation formulation).

Lemma 3.3. For each n ≥ 6, the matching formulation (M) is stronger than the traditional formula-
tion (T).

Proof. First, we show that we can transform any feasible solution of the matching formulation’s
LP relaxation to a feasible solution of the traditional formulation’s LP relaxations. Afterwards, to
show that the matching formulation is stronger than the traditional formulation, we show that,
for any even n ≥ 6, there exists an instance of SRR for which the LP relaxation of the matching
formulation has a strictly larger value than the traditional formulation’s LP relaxation.

Let y be a feasible solution of the matching formulation’s LP relaxation. We construct a solu-
tion x for the traditional formulation by setting xm,r =

∑

M∈M : m∈M ym,r. Since y is non-negative,

6

also x is non-negative. Moreover, Conditions (T2) and (T3) are satisfied as

for each m ∈ M :
∑

r∈R

xm,r =
∑

r∈R

∑

M∈M :
m∈M

yM,r
(M3)
= 1,

for each i ∈ T, r ∈ R :
∑

j∈T\{i}

x{i,j},r =
∑

j∈T\{i}

∑

M∈M :
{i,j}∈M

y{i,j},r =
∑

M∈M

yM,r
(M2)
= 1.

Finally, both x and y have the same objective value as
∑

m∈M

∑

r∈R

cm,rxm,r =
∑

m∈M

∑

r∈R

cm,r

∑

M∈M :
m∈M

yM,r =
∑

M∈M

∑

r∈R

∑

m∈M

cm,ryM,r =
∑

M∈M

∑

r∈R

dM,ryM,r,

that is, the traditional formulation cannot be stronger than the matching formulation.
To prove that the matching formulation dominates the traditional formulation for n ≥ 6 even,

we distinguish three cases. In the first case, assume n ≥ 10. Consider the pairs of teams given by

P =
{

{1, 2}, {2, 3}, {1, 3}
}

∪
{

{4, 5}, {5, 6}, {4, 6}
}

∪
{

{7, 8}, {8, 9}, . . . , {n− 1, n}, {7, n}
}

.

Interpreting P as the edges of an undirected graph, P defines three connected components consist-
ing of two 3-cycles and an even cycle. We construct an instance of the SRR problem by specifying
the cost function c ∈ R

M×R via

cm,r =

{

1, if m /∈ P and r ∈ {1, 2},

0, otherwise.

It is easy to verify that x ∈ R
M×R given by

xm,r =

1
2 , if m ∈ P and r ∈ {1, 2},

0, if m /∈ P and r ∈ {1, 2},
1

n−3 , otherwise,

is feasible for the LP relaxation of the traditional formulation and has objective value 0. Hence, x
is optimal.

Solving the LP relaxation of the matching formulation for this instance, however, results in an
objective value that is at least 2. Indeed, each perfect matching M ∈ M contains at least one
match m ∈ M with m ∈ {{i, j} : (i, j) ∈ {1, 2, 3} × {4, 5, . . . , n}}. Since cm,1 = cm,2 = 1 for such
a match, it follows that in both rounds 1 and 2, matchings are selected with total weight at least 1
due to (M3),leading to a solution with total cost at least 2.

In the second case, we consider n = 6. To prove the statement, we use the same construction
as before, however, we do not require the even cycle anymore. That is, P defines two 3-cycles and
the argumentation remains the same as before.

In the last case n = 8, we consider the set of pairs

P =
{

{1, 2}, {1, 3}, {2, 3}
}

∪
{

{4, 5}, {5, 6}, {6, 7}, {7, 8}, {4, 8}
}

.

If we interpret P as edges of an undirected graph, the corresponding graph has two connected
components being a 3-cycle and a 5-cycle, respectively. We choose the cost-coefficients c ∈ R

M×R

to be

cm,r =

{

1, if m /∈ P and r ∈ {1, 2},

0, otherwise.

Simple calculations show that an optimal solution of the traditional formulation’s LP relaxation
is x ∈ R

M×R with

xm,r =

1
2 , if m ∈ P and r ∈ {1, 2},

0, if m /∈ E and r ∈ {1, 2},
1
5 , otherwise,

which has objective value 0, whereas the matching formulation’s LP relaxation has value 2.

7

The previous two lemmata completely characterize the relative strength of the three different
formulations except for n = 4. The status of this missing case is settled next.

Lemma 3.4. For n = 4, the traditional formulation and the matching formulation are relaxation-
equivalent.

Proof. Observe that exactly the same arguments as in the proof of Lemma 3.3 can be used to show
that the matching formulation is at least as strong as the traditional formulation if n = 4. Hence, it
remains to show that every solution x of the traditional formulation’s LP relaxation can be turned
into a solution of the LP relaxation of the matching formulation if n = 4. Let x be such a solution.
Let M =

{

{i, j}, {k, l}
}

∈ M. Since x satisfies Equations (T3), summing the equations for i, j
and subtracting the equations for k, l yields 2x{i,j},r − 2x{k,l},r = 0. That is, the x-variables for
the two matches of a matching within the same round have the same value. Consequently, the
solution y ∈ R

M×R given by yM,r = x{i,j},r is well-defined and it is immediate to check that y is
feasible for the matching formulation’s LP relaxation and has the same objective value as x.

Summarizing the previous results of this section, we can provide a complete comparison of the
strength of the traditional, matching, and permutation formulation.

Theorem 3.5. For each n ≥ 6, the traditional and permutation formulation are relaxation-equivalent,
whereas the matching formulation is stronger than either of them. For n = 4, the traditional, match-
ing, and permutation formulation for problem SRR are relaxation-equivalent.

Besides verifying that all three models are equivalent for n = 4, we can also show that the
matching formulation’s integer hull is already completely characterized by (M2), (M3), as well as
non-negativity inequalities for all variables.

Proposition 3.6. For n = 4, Equations (M2) and (M3) as well as non-negativity inequalities define
an integral polyhedron. That is, the matching formulation’s LP relaxation coincides with its integer
hull.

Proof. To prove the proposition’s statement, we show that the constraint matrix of (M) is totally
unimodular. The result follows then by the Hoffman-Kruskal theorem [32] as all right-hand side
values in (M) are integral.

For n = 4, the set of all matchings M consists of exactly the three matchings

M1 =
{

{1, 2}, {3, 4}
}

, M2 =
{

{1, 3}, {2, 4}
}

, M3 =
{

{1, 4}, {2, 3}
}

.

The non-trivial constraints from Formulation (M) are Equations (M2) and (M3), which yield system

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

yM1,1

yM1,2

yM1,3

yM2,1

yM2,2

yM2,3

yM3,1

yM3,2

yM3,3

=

1
1
1
1
1
1
1
1
1

.

((M2), r = 1)
((M2), r = 2)
((M2), r = 3)
((M3),m = {1, 2})
((M3),m = {1, 3})
((M3),m = {1, 4})
((M3),m = {2, 3})
((M3),m = {2, 4})
((M3),m = {3, 4})

Note that the last three equations are redundant and can be removed. The constraint matrix of
the remaining equations is the node-edge incidence matrix of a bipartite graph and hence totally
unimodular, which concludes the proof.

Thus, for n = 4, simply solving the LP-relaxation of the matching formulation by the simplex
method, suffices to find an optimum integral solution.

8

4 Strengthening the formulations

In this section, we continue our investigations of the structure of the formulations. In Section 4.1,
we derive an exponentially sized class of valid inequalities for the matching formulation. Also, we
show in Section 4.2 that adding the so-called odd-cut inequalities to the traditional formulation
yields a formulation that is relaxation-equivalent to the matching formulation.

4.1 Strengthening the matching formulation

Observe that Theorem 3.5 does not rule out the possibility that, for n ≥ 6, every vertex of the
matching formulation is integral. That, however, is not the case already for n = 6 as we will show
next. To this end, we first provide a fractional point y⋆ that is contained in the LP relaxation of the
matching formulation for n = 6. Afterwards, we derive a class of valid inequalities for the integer
hull matching formulation, and finally, we provide one such inequality that is violated by y⋆.

Example 4.1. Let n = 6. Then, the set of teams and rounds is given by T = {1, . . . , 6} and
rounds R = {1, . . . , 5}, respectively. In Figure 1, we depict a fractional solution of the matching
formulation’s LP relaxation. For each round r ∈ R, we provide two perfect matchings between
the teams T , the blue and green (dashed) matching M , whose corresponding variables yM,r have
value 1

2 in the corresponding solution; all remaining variables have value 0. It is easy to verify that
this fractional solution is indeed feasible for the LP relaxation of (M).

1

2

3

4

5

6

(a) round 1

1

2

3

4

5

6

(b) round 2

1

2

3

4

5

6

(c) round 3

1

2

3

4

5

6

(d) round 4

1

2

3

4

5

6

(e) round 5

Figure 1: A feasible point for the LP relaxation of Formulation (M).

To describe our class of valid inequalities, consider the following lemma.

Lemma 4.2. Let m1,m2 ∈M be disjoint and let r′ ∈ R. Then,

∑

r∈R\{r′}

∑

M∈M :
m1∈M or m2∈M

yM,r +
∑

M∈M :
m1 /∈M or m2 /∈M

yM,r′ +
∑

M∈M :
m1,m2∈M

2yM,r′ ≥ 2 (4)

is a valid inequality for (M). In particular, it is a Chvátal-Gomory cut derived from the LP relaxation
of (M).

Proof. It is sufficient to prove that (4) is indeed a Chvátal-Gomory cut. To this end, we multiply
Equation (M2) for round r′ and Equations (M3) for matches m1 and m2 by 1

2 and sum the resulting
equations to obtain

∑

r∈R\{r′}

∑

M∈M :
m1∈M or m2∈M

CM,r

2
yM,r +

∑

M∈M :
m1 /∈M or m2 /∈M

1 + CM,r

2
yM,r′ +

∑

M∈M :
m1,m2∈M

3
2yM,r′ =

3

2
,

where CM,r = |M ∩ {m1,m2}|. Since all y-variables are non-negative, we can turn this equation
into a ≥-inequality by rounding up the left-hand side coefficients. Moreover, since in a feasible
solution for (M) all variables attain integer values, we can increase the right-hand side from 3

2
to 2, which yields the desired inequality.

Using this class of inequalities, we can show that the point y⋆ presented in the previous example
is indeed not contained in the matching formulation’s integer hull. Select r′ = 1, m1 = {1, 6},
and m2 = {3, 5}, and let M be the blue and M ′ be the green matching of the first round as well

9

as M ′′ the blue matching of round 4. Then, the corresponding inequality’s left-hand side evaluates
in y⋆ to y⋆M ′′,4 + y⋆M,1 + y⋆M ′,1 = 3

2 . Hence, y⋆ violates the corresponding inequality as 3
2 � 2.

Note that Inequality (4) is a so-called {0, 12}-cut [7] as all multipliers used in the derivation
are 1

2 (and 0 for inequalities/equations that have not been used). By taking more equations in the
generation of a valid inequality into account, we can generalize (4) to an exponentially large class
of inequalities.

Proposition 4.3. Let A ⊆M be a set of pairwise disjoint matches and let B ⊆ R. If |A|+ |B| is odd,
then

∑

M∈M

∑

r∈B

⌈

1 + |M ∩ A|

2

⌉

yM,r +
∑

M∈M

∑

r∈R\B

⌈

|M ∩ A|

2

⌉

yM,r ≥
1 + |A|+ |B|

2
, (5)

is a valid inequality for (M). In particular, it is a Chvátal-Gomory cut derived from the LP relaxation
of (M).

Proof. We follow the line of the proof of Lemma 4.2 and multiply each constraint of type (M2) with
index in A and each constraint of type (M3) with index in B by 1

2 and sum all resulting equations.
This leads to

n/2
∑

j=1

∑

M∈M :
|M∩A|=j

∑

r∈B

1 + j

2
yM,r +

n/2
∑

j=1

∑

M∈M :
|M∩A|=j

∑

r∈R\B

j

2
yM,r =

|A|+ |B|

2
.

Since all y-variables are non-negative, we derive the inequality

∑

M∈M

∑

r∈B

⌈

1 + |M ∩ A|

2

⌉

yM,r +
∑

M∈M

∑

r∈R\B

⌈

|M ∩ A|

2

⌉

yM,r ≥
|A|+ |B|

2
,

and by integrality of the y-variables, we can round up the right-hand side, which leads to the
desired inequality.

While Inequalities (4) can trivially be separated in polynomial time, an efficient separation
algorithm for (5) is not immediate. We leave the complexity status of separating (5) open for
future research.

4.2 Strengthening the traditional formulation

Revisiting the proof of Lemma 3.3, it becomes clear that it is possible to assign, for a fixed round,
each edge (match) of an odd cycle in Kn a weight of 1

2 . That is, the traditional formulation can

assign an odd cycle of length k a weight of k
2 . Such a solution, however, cannot be written as

a convex combination of integer feasible solutions, because each such solution defines a perfect
matching on the matches of a fixed round, i.e., the total weight of an odd cycle can be at most k−1

2 .
To strengthen the traditional formulation, one can thus add facet defining inequalities for the
perfect matching polytope PM to Model (T), which results in the additional inequalities

∑

i∈U

∑

j∈T\U

x{i,j},r ≥ 1, U ⊆ T with |U | odd, r ∈ R, (6)

which correspond to the odd-cut inequalities for the matching polytope and can be separated in
polynomial time.

Lemma 4.4. Let n ≥ 6. The traditional formulation (T) extended by (6) is relaxation-equivalent to
the matching formulation.

Proof. We use the same proof strategy as for Lemma 3.3. Therefore, consider again the solu-
tion x ∈ R

M×R given by xm,r =
∑

M∈M : m∈M yM,r for a solution y of the matching formula-
tion’s LP relaxation. Due to the proof of Lemma 3.3, it is sufficient to show that x satisfies (6) to
prove that the matching formulation is at least as strong as the enhanced traditional formulation.

10

Let U ⊆ T have odd cardinality. Since every M ∈ M is a perfect matching, there is at least one
team i ∈ U that does not play against another team in U since U is odd. Hence, for each M ∈M,
there is a match {i, j} ∈M with i ∈ U and j /∈ U . Then,

∑

i∈U

∑

j∈T\U

x{i,j},r =
∑

i∈U

∑

j∈T\U

∑

M∈M :
{i,j}∈M

yM,r

=
∑

M∈M

∑

i∈U

∑

j∈T\U :
{i,j}∈M

yM,r ≥
∑

M∈M

yM,r

(M3)
≥ 1.

Consequently, the matching formulation is at least as strong as the enhanced traditional formula-
tion.

To prove that the enhanced traditional formulation is not weaker than the matching formula-
tion, we use a strategy similar to the one pursued in the proof of Lemma 3.2. Since the enhanced
traditional formulation contains, per round r, all facet defining inequalities as well as equations
for the perfect matching polytope PM , each vector Xr ∈ R

M given by Xr
{i,j} = x{i,j},r is con-

tained in PM . Hence, there exist non-negative multipliers λr ∈ R
M
+ with

∑

M∈M
λr
M = 1 such

that Xr =
∑

M∈M
λr
MVM , where VM is the vertex of PM corresponding to the perfect match-

ing M . We claim that y ∈ R
M×R given by yM,r = λr

M is feasible for the LP relaxation of the
matching formulation. Because Xr =

∑

M∈M
λr
MVM implies Xr

m =
∑

M∈M : m∈M λr
M , both (M2)

and (M3) are satisfied as
∑

M∈M

yM,r =
∑

M∈M

λr
M = 1,

∑

M∈M :
m∈M

∑

r∈R

yM,r =
∑

M∈M :
m∈M

∑

r∈R

λr
M =

∑

r∈R

xm,r
(T2)
= 1.

Moreover, y is non-negative as the λ’s form a convex combination and both x and y have the same
objective value since

∑

M∈M

∑

r∈R

dM,ryM,r =
∑

M∈M

∑

r∈R

∑

m∈M

cm,rλ
r
M =

∑

m∈M

∑

r∈R

∑

M∈M :
m∈M

cm,rλ
r
M =

∑

m∈M

∑

r∈R

cm,rxm,r,

which concludes the proof.

Remark 4.5. Since the traditional and permutation formulation are equivalent, one might wonder
whether also the permutation formulation can be enhanced by odd-cut inequalities. Indeed, using
the transformation x{i,j},r =

∑

π∈Π−i
j,r

zi,π as in the proof of Lemma 3.2, one can show that the

corresponding version of odd-cut inequalities is given by

∑

i∈U

∑

j∈T\U

∑

π∈Π−i
j,r

zi,π ≥ 1, U ⊆ T with |U | odd, r ∈ R,

and that the enhanced traditional and permutation formulation are equivalent.

5 An extension: k-round robin tournaments

In this section, we generalize the models for single round robin tournaments to k-round robin
tournaments, where each pair of teams is required to meet exactly k times, for k ≥ 1. As a
consequence, the total number of matches that need to be scheduled becomes 1

2kn(n− 1), and we
set R := {1, 2, . . . , k(n− 1)}.

Problem 2 (kRR). Let n ≥ 4 be an even integer and let k ≥ 1 be integral. Given n teams
with corresponding matches M, a set of 1

2kn(n − 1) rounds R (k ≥ 1), as well as an integral
cost cm,r for every m ∈ M and round r ∈ R, the k-round robin (kRR) problem is to find an

11

assignment A ⊆ M× R of matches to rounds such that (i) every team plays a single match per
round, (ii) each match is played in k, pairwise distinct, rounds, while total cost

∑

(m,r)∈A cm,r is

minimized.

Problem 1 (SRR) is a special case of kRR as it arises when k = 1. Another very prominent special
case arises when k = 2, the so-called Double Round Robin tournament, denoted hereafter by DRR.

In principle, it is easy to generalize the models from Section 2 to account for meeting k times
instead of once. Indeed, by replacing the right-hand side of constraints (T2), or the right-hand side
of constraints (M3) by k, or by redefining Π−i and Π−i

j,r to ordered lists for team i that features
every opponent j exactly k times, the resulting formulations for kRR directly arise. In fact, we
claim that it is not difficult to verify that the results concerning the polynomial solvability of the
linear relaxations (Lemmata 2.1 and 2.2), as well as the strength of the relaxations (Theorem 3.5)
hold for the kRR for each k ≥ 1.

However, in practice, a number of additional properties become relevant when considering
k-round robin tournaments: phased tournaments and tournaments where playing home or away
matters. We now discuss these properties, and their consequences for the formulations, in more
detail.

Phased (PH) The tournament is split into k parts such that each pair of teams meets once in
each part. Here a part of the tournament refers to n − 1 consecutive rounds, starting at round
ℓ(n − 1) + 1, for ℓ ∈ {0, . . . , k − 1}. Moreover, we use Rℓ := {ℓ(n − 1) + 1, . . . , (ℓ + 1)(n − 1)} to

denote the rounds in part ℓ ∈ {0, . . . , k − 1}, and R :=
⋃k−1

ℓ=0 Rℓ.
Without the presence of any additional constraints, a phased tournament can be trivially de-

composed in multiple single-round robin tournaments: one for each set of rounds Rℓ.

Home-away (HA) Each team has a home venue, implying that to specify a schedule it is no
longer sufficient to specify the matches in each round; instead, one also has to specify, for each
match, which teams plays home, and which team plays away. We denote this by redefining a
match between teams i, j ∈ T (i 6= j) where i is the home-playing team, by an ordered pair (i, j)
(in contrast to an unordered pair {i, j}).

Let k be a positive integer. For n teams and a k-round robin setting, denote T := {1, . . . , n}
and R := {1, . . . , k(n − 1)}. Let M := {(i, j) : i, j ∈ T, i 6= j} be the set of ordered matches.
The assignment of match (i, j) ∈ M to round r ∈ R comes at a cost c(i,j),r, and in contrast to the
SRR case, c(i,j),r and c(j,i),r can be different. We proceed by describing the phased k-round robin
problem with home-away patterns (kRR-PH-HA):

Problem 3 (kRR-PH-HA). Given an even number n ≥ 4 of teams with corresponding matchesM,
a set of 1

2kn(n − 1) rounds R (k ≥ 1), as well as an integral cost cm,r for every m ∈ M and
round r ∈ R, the kRR-PH-HA problem is to find an assignment A ⊆ M×R of matches to rounds
such that (i) every team plays a single match per round, (ii) each pair of teams meets once in
part Rℓ, ℓ ∈ {1, . . . , k}, and (iii) each ordered match is played ⌊k2⌋ or ⌈k2 ⌉ times so that each pair of
teams meets in total k times, while total cost

∑

(m,r)∈A cm,r is minimized.

We will show how the three formulations of Sections 2.1–2.3 can be adapted to deal with these
properties.

Extending the traditional formulation for k-RR tournaments For reasons of convenience,
we assume k is even; this implies that for each pair of distinct teams i, j ∈ T match (i, j) and

12

match (j, i) each need to occur k
2 times in any feasible schedule.

min
∑

(i,j)∈M

∑

r∈R

c(i,j),rx(i,j),r (kT1)

∑

r∈R

x(i,j),r =
k

2
, (i, j) ∈ M, (kT2)

∑

r∈Rℓ

(x(i,j),r + x(j,i),r) = 1, i, j ∈ T, i 6= j, ℓ ∈ {0, . . . , k − 1}, (kT3)

∑

j∈T\{i}

(x(i,j),r + x(j,i),r) = 1, i ∈ T, r ∈ R, (kT4)

x(i,j),r ∈ {0, 1}, (i, j) ∈ M, r ∈ R. (kT5)

Constraints (kT2) ensure that each match is played k
2 times, Constraints (kT3) express that

each pair of teams has to meet once in each part (the “phased” property), and Constraints (kT4)
prescribe that each team plays a single match in each round.

Extending the matching formulation for kRR tournaments We now assume that Kn = (T,A)
is a directed multi-graph, where each arc (i, j) with i, j ∈ T , i 6= j is present k

2 times; a (directed)
matching M is now defined as a set of n

2 arcs incident to each node once, and M now stands for
the set of all (directed) matchings.

min
∑

M∈M

∑

r∈R

dM,ryM,r (kM1)

∑

M∈M

yM,r = 1, r ∈ R, (kM2)

∑

r∈R

∑

M∈M :
(i,j)∈M

yM,r =
k

2
, (i, j) ∈M, (kM3)

∑

r∈Rℓ

∑

M∈M :
(i,j)∈M or (j,i)∈M

yM,r = 1, i, j ∈ T, i 6= j, ℓ ∈ {0, . . . , k − 1}, (kM4)

yM,r ∈ {0, 1}, M ∈M, r ∈ R. (kM5)

Constraints (kM2) ensure that a (directed) perfect matching is selected in each round, Con-
straints (kM3) say that each match occurs k

2 times, and Constraints (kM4) model the fact that
each pair of teams has to meet once in each part.

Extending the permutation formulation for kRR tournaments We have to redefine Π−i: each
entry needs to specify home or away, and of course, the fact that each team meets all other teams
in rounds (ℓ − 1)(n − 1) + 1, . . . , ℓ(n − 1), for each ℓ ∈ {1, . . . , k} needs to be taken into account.
Other than that Formulation (P) remains unchanged.

Without giving formal proofs, we claim that the linear relaxations of the extension of the match-
ing formulation, as well as the linear relaxation of the extension of the permutation formulation
can be solved in polynomial time. We also claim that the extension of the matching formulation is
stronger than the other two formulations—the adaptations to the proofs of Lemmata 2.1 and 2.2
and Theorem 3.5 are straightforward.

6 Computational results

In this section, we report the outcomes of our computational experiments. Section 6.1 describes
the test set that we have used in our experiments. Afterwards, we investigate the quality of the
LP relaxations of the different models and compare their corresponding values in Section 6.2.

13

Finally, we discuss our experience with solving instances of the SRR problem using the matching
formulation, i.e., not only solving the LP relaxation but also the corresponding integer program.
To this end, we have implemented a branch-and-price algorithm whose details are described in
Section 6.3.

6.1 Test set

We have generated 1000 instances1 of the SRR problem to evaluate the quality of the LP relax-
ations of the different models. Our test set comprises of instances of different sizes and thus
different levels of difficulty, which are parameterized by a tuple (n, ρ) and have cost coefficients at-
taining values 0 or 1. Parameter n encodes the number of teams and has range n ∈ {6, 12, 18, 24};
parameter ρ controls the number of 1-entries in the objective. More precisely, we pick a set of
match-round pairs M× R of size ⌊ρ · |M × R|⌋ uniformly at random, denoted by S ⊆ M × R,
where ρ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. The generated instance consists of n teams and has cost coeffi-
cients cm,r = 1 if (m, r) ∈ S and cm,r = 0 otherwise. For each combination of n ∈ {6, 12, 18, 24}
and ρ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}we have generated 50 instances.

6.2 A computational comparison of the linear relaxations

In this section, we provide a computational comparison between the LP relaxation values of the
traditional formulation (T) (and thus by Lemma 3.2 also of the permutation formulation) and LP
relaxation values of the matching formulation (M), and compare these to the actual optimal (or
best found) integral solutions. Before we discuss our numerical results, we provide details about
our implementation as well as on how we find optimal integral solutions first.

Implementation details To find the LP relaxation values, we implemented both formulations in
Python 3 using the PySCIPOpt 4.1.0 package [24] for SCIP 8.0.0 [3], with CPLEX 20.1.0.0 as LP
solver. The traditional formulation is implemented as a compact model. For the matching formu-
lation, we use a column generation procedure that receives a subset of all variables, solves the
corresponding LP relaxation restricted to these variables, and adds further variables until it can
prove that an optimal LP solution has been found. To identify whether new variables need to
be added, we solve the so-called pricing problem, which corresponds to separating a correspond-
ing solution of the dual problem. The separation problem can be solved by finding a maximum
weight perfect matching as detailed in the proof of Lemma 2.1. We start with the empty set of
variables, which means that the primal problem is initially infeasible. Analogously to the proof of
Lemma 2.1, we resolve infeasibility by adding variables to the problem that are associated with
a dual constraint that violate a dual unbounded ray of this infeasible problem. The column gen-
eration procedure has been embedded in a so-called pricer plug-in of SCIP, which adds newly
generated variables to the matching formulation. The maximal weight perfect matchings are com-
puted using NetworkX 2.5.1, which provides an implementation of Edmonds’ blossom algorithm.

Finding optimal integer solutions To obtain the optimal integer solution value of as many in-
stances as possible, we have used two different solvers to solve the integer program of Model (T).
On the one hand, we have used SCIP as described in the above setup. On the other hand, we
have modeled (T) using Gurobi 9.1.2 via its Python 3 interface. For each instance and solver, we
have imposed a time limit of 48 h to find an optimal integer solution. Using SCIP, we managed
to solve 852 of the 1000 instances to optimality. With Gurobi, we were able to solve 866 of the
1000 instances to optimality. There were 45 instances where SCIP found a better primal objec-
tive value, and 79 instances where Gurobi found a better primal objective value. All experiments
have been run on a compute cluster with identical machines, using one (resp. two) thread(s) on
Xeon Platinum 8260 processors, with 10.7 GB (resp. 21.4 GB) memory, respectively for SCIP and
Gurobi.

1The instances as well as the implementation of our algorithms are publicly available at
https://github.com/JasperNL/round-robin; all experiments have been conducted using the code with githash
1657b4d7.

14

https://github.com/JasperNL/round-robin

Table 1: Comparison of the LP relaxation values of the traditional and matching formulation.

all instances restricted to instances with vLP
tra < vIP

average value solved average value solved gap closed

n ρ vLP
tra vLP

mat vIP O T # vLP
tra vLP

mat vIP O T average maximal

6 0.5 2.227 2.297 2.380 50 0 14 2.452 2.702 3.000 14 0 43.45% 100.00%
6 0.6 3.802 3.865 3.920 50 0 12 3.924 4.188 4.417 12 0 52.08% 100.00%
6 0.7 5.430 5.510 5.540 50 0 9 5.611 6.056 6.222 9 0 66.67% 100.00%
6 0.8 7.620 7.635 7.660 50 0 4 7.250 7.438 7.750 4 0 37.50% 100.00%
6 0.9 10.003 10.040 10.060 50 0 6 10.361 10.667 10.833 6 0 66.67% 100.00%

12 0.5 0.080 0.080 0.080 50 0 0 – – – 0 0 – –
12 0.6 2.018 2.213 3.480 50 0 49 2.019 2.217 3.510 49 0 15.29% 100.00%
12 0.7 8.022 8.342 9.500 50 0 50 8.022 8.342 9.500 50 0 22.27% 70.77%
12 0.8 17.184 17.474 18.340 50 0 50 17.184 17.474 18.340 50 0 29.89% 100.00%
12 0.9 31.459 31.654 31.840 50 0 31 31.096 31.410 31.710 31 0 56.87% 100.00%

18 0.5 0.000 0.000 0.000 50 0 0 – – – 0 0 – –
18 0.6 0.060 0.060 0.060 50 0 0 – – – 0 0 – –
18 0.7 2.045 2.292 5.600 50 0 50 2.045 2.292 5.600 50 0 6.68% 15.66%
18 0.8 19.831 20.330 23.900 50 0 50 19.831 20.330 23.900 50 0 12.37% 28.19%
18 0.9 52.700 53.066 54.500 50 0 49 52.673 53.047 54.510 49 0 21.55% 100.00%

24 0.5 0.000 0.000 0.000 50 0 0 – – – 0 0 – –
24 0.6 0.000 0.000 0.000 50 0 0 – – – 0 0 – –
24 0.7 0.200 0.200 4.340 0 50 49 0.163 0.163 4.408 0 49 0.00% 0.00%
24 0.8 12.352 12.893 24.180 0 50 50 12.352 12.893 24.180 0 50 4.57% 7.91%
24 0.9 69.327 69.922 74.860 29 21 50 69.327 69.922 74.860 29 21 10.69% 21.68%

Numerical results Table 1 shows the aggregated computational results of our experiments. For
each number of teams n and ratio ρ, we provide the average of the objective values of the relaxation
of the traditional formulation (column “vLP

tra”), the average of the objective values of the relaxation
of the matching formulation (column “vLP

mat”), and the average optimum value (column “vIP”).
Notice that for n = 24 we have not been able to solve all instances to optimality; in this case, we
use the value of the best known solution instead of the (unknown) optimum for that instance in
the vIP column. Recall that each value is an average over 50 instances. The number of optimally
solved instances (resp. instances not terminating within the time limit) are shown in column “O”
(resp. “T”).

To be able to assess the strength of the matching formulation compared to the traditional
formulation, we focus, in the right side of the table, on those instances for which vLP

tra < vIP; their
number (out of 50) is given in the column labeled “#”. From this column, we see that the fraction ρ
that leads to instances with a gap between vLP

tra and vIP slowly increases with n. Indeed, for n = 6,
most instances do not have a gap, for n = 12, almost all instances with ρ ∈ {0.6, 0.7, 0.8} have a
gap, and for n = 18, almost all instances with ρ ∈ {0.7, 0.8, 0.9} have a gap.

We use the notion of the relative gap that is closed by the matching formulation relative to the
traditional formulation, given by

rgap(I) :=
vLP

mat(I)− vLP
tra(I)

vIP(I)− vLP
tra(I)

for an instance I of SRR with vIP(I)− vLP
tra(I) > 0.

A value of zero for rgap(I) implies that the relaxation values of the traditional formulation and the
matching formulation are equal, while a value of one (i.e., 100%) implies that the relaxation of the
matching formulation is equal to the true objective of the optimal integral solution. The column
“average” gives the average rgap, whereas column “maximal” shows the maximum relative closed
gap for an instance of this sub test set.

For n = 6, there are few instances with a gap. However, for those instances for which there
is a gap, it is clear that a sizable part of that gap is closed by the relaxation of the matching
formulation. For larger values of n, many instances have a gap. We observe that a significant
percentage of the gap is closed by the relaxation of the matching formulation. If n is getting larger,
however, both the value of the average gap closed as well as the value of the maximal gap closed
decrease. We conclude that for small values of n, and thus for many realistic applications, the
matching formulation provides a much better relaxation value than the traditional formulation.

15

6.3 A branch-and-price algorithm

Since the matching formulation can dominate the traditional formulation, a natural question is
whether the stronger formulation also allows to solve the SRR problem faster than the traditional
formulation. For this reason, we have implemented a branch-and-price algorithm (in the computa-
tional setup as described above) to compute optimal integral solutions of the matching formulation.
That is, we use a branch-and-bound algorithm to solve the matching formulation, where each LP
relaxation is solved using a column generation procedure.

Implementation details In classical branch-and-bound algorithms, the most common way to
implement the branching scheme is to select a variable xi whose value x⋆

i in the current LP solu-
tion is non-integral and to generate two subproblems by additionally enforcing either xi ≤ ⌊x

⋆
i ⌋

or xi ≥ ⌈x
⋆⌉. In principle, this strategy is also feasible for the matching formulation, where the

subproblems correspond to forbidding a schedule M ∈M for a round r ∈ R or fixing the schedule
in round r to be M . This branching scheme, however, leads to a very unbalanced branch-and-
bound tree as the former subproblem only rules out a very specific schedule, while the latter one
fixes the matches of an entire round. Another difficulty of the classical scheme is that it might
affect the structure of the pricing problem in the newly generated subproblems. Ideally, the pricing
problem should not change such that the same algorithm can be used for adding new variables to
the problem. We will address both issues next.

To obtain a more balanced branch-and-bound tree, we have implemented a custom branching
rule following the Ryan-Foster branching scheme [31]: Our scheme selects a match {i, j} ∈ M
at a round r ∈ R and creates two children. In the left child, we forbid that {i, j} is played in
round r, and in the right child, we enforce that {i, j} is played in round r. Note that for all
matchings M ∈M this branching decision fixes all variables yM,r to zero if {i, j} ∈ M for the left
child, and {i, j} /∈M for the right child.

Using this branching strategy, the structure of the pricing problem at each subproblem remains
a matching problem. At the root node of the branch-and-bound tree, we need to solve a maximum
weight perfect matching problem in a weighted version of Kn as described above. At other nodes
of the branch-and-bound tree, we have added branching decisions that enforce that two teams i
and j either do meet or do not meet in a round r ∈ R. These decisions can easily be incorporated
by deleting edges from Kn. When generating variables for round r, we remove edge {i, j} from Kn

if i and j shall not meet in this round; if the match {i, j} shall take place, then we remove all edges
incident with i and j except for {i, j}. Consequently, our branching strategy allows to solve the LP
relaxations of all subproblems in polynomial time.

Since our Python implementation of the traditional and matching formulation took too much
time to be used in a branching scheme, we decided to implement our branch-and-price algorithm
as a plug-in using the C-API of SCIP. The pricer plug-in is analogous, and maximal weight perfect
matchings are now computed using the LEMON 1.3.1 graph library. To ensure that the branching
decisions are taken into account, we also implemented a constraint that fixes yM,r to zero if the
matching M violates the branching decisions for round r, and added a plug-in that implements the
branching decisions.

The branching rule sketched above admits some degrees of freedom in selecting the match {i, j}
and round r. In our implementation, we decided to mimic two well-known branching rules: most
infeasible branching and strong branching on a selection of variables, see Achterberg et al. [1]
for an overview on branching rules. Most infeasible branching branches on a binary variable
with fractional value in an LP solution that is closest to 0.5, and strong branching branches on
the variable that yields the largest dual bound improvement based on some metric. Since strong
branching requires significant computational effort, it is common to make a limited branching
candidate selection and apply strong branching on those.

The pseudocode for our branching rule is given in Algorithm 1. We start by computing the frac-
tional match-on-round assignment values induced by the y-variables. Then, we make a selection
of potentially good branching candidates (m, r) ∈ M × R, that is based on the scorem,r metric
shown in Line 8: this score prioritizes match-on-round assignments for which (i) the assignment
value is close to 0.5, (ii) the cost coefficients are large, and (iii) the assignment values are relatively
high. Using this score, we hope to resolve fractionality soon (by (i)). By (ii), we want to enforce

16

Algorithm 1: Determining the branching candidate for an LP node.

input : An LP solution y⋆m,r in a branch-and-bound tree node at depth d with objective obj.
output: The branching decision (match m ∈M on round r ∈ R), or detected integrality.

1 // fractional assignment of match m to round r
2 compute assignm,r ←

∑

M∈M : m∈M y⋆M,r for m ∈ M and r ∈ R;

3 if assignm,r is 0 or 1 for all m ∈M and r ∈ R then

4 return integral solution found;

5 // fractional part of assignm,r

6 compute fracm,r ← min{assignm,r, 1.0− assignm,r} for m ∈M and r ∈ R;

7 // score for every match-round pair

8 compute scorem,r ← fracm,r · (1.0 + |cm,r|) · (assignm,r)
2 for m ∈M and r ∈ R ;

9 // strong branching candidate selection

10 number_of_candidates← max{1, ⌊0.1 · |M×R| · 0.65d⌋};
11 if number_of_candidates > 1 then
12 pick number_of_candidates candidates (m, r) ∈M×R with highest scorem,r as strong

branching candidates;
13 foreach strong branching candidate (m, r) do
14 if scorem,r = 0.0 then
15 // then assignm,r is 0 or 1, skip this candidate

16 continue (i.e., skip this candidate);

17 apply strong branching on (m, r), with objectives objforbid, objenforce in the two
children;

18 compute score⋆m,r ← (objforbid − obj + 1.0) · (objenforce − obj + 1.0);

19 return branch on strong branching candidate (m, r) with maximal score⋆m,r;

20 else
21 // do not apply strong branching deep in the branch-and-bound tree

22 return branch on (m, r) ∈M×R with maximal scorem,r;

17

Table 2: Computational results for the branch-and-price algorithm for Model (M).

Solved Solving time (s)

n ρ # O T min mean max

6 0.5 50 50 0 0.00 0.00 0.01
6 0.6 50 50 0 0.00 0.00 0.01
6 0.7 50 50 0 0.00 0.00 0.01
6 0.8 50 50 0 0.00 0.00 0.01
6 0.9 50 50 0 0.00 0.00 0.01

12 0.5 50 50 0 1.25 2.38 5.73
12 0.6 50 50 0 0.12 4.09 8.28
12 0.7 50 50 0 0.21 3.33 7.38
12 0.8 50 50 0 0.14 2.05 7.63
12 0.9 50 50 0 0.11 0.54 2.21

18 0.5 50 50 0 54.61 106.09 210.77
18 0.6 50 48 2 103.41 866.21 7200.00
18 0.7 50 3 47 930.53 6854.47 7200.09
18 0.8 50 22 28 312.65 4084.21 7200.06
18 0.9 50 50 0 6.74 332.98 3990.61

a significant change of the objective value in the child that forbids match m, whereas the child
enforcing that m is played selects a match that is most likely played due to (iii). Experiments show
that full strong branching leads to a smaller number of nodes to solve the problem, but this turns
out to be very costly computationally. Therefore, we only apply strong branching for branch-and-
bound tree nodes close to the root, and only evaluate a subset of branching candidates that have
the highest scorem,r-metric. This is our candidate pre-selection. The higher the depth of the con-
sidered branch-and-bound tree node, the smaller the number of candidates considered. Of those
branching candidates, we pick the candidate that maximizes score⋆m,r as defined in Line 18. The
goal of this score is to choose the candidate where the objective values of the hypothetical chil-
dren are different from the current node’s objective. By considering the product of this difference,
we prioritize if the objective of both hypothetical children have some difference with the current
node objective. If the number of candidates is only one, no strong branching is applied and that
candidate match-on-round assignment is chosen for branching.

All experiments have been run on a Linux cluster with Intel Xeon E5 3.5 GHz quad core pro-
cessors and 32 GB memory. The code was executed using a single thread and the time limit for all
computations was 2 h per instance.

Numerical results Table 2 summarizes our results for our instances for n ∈ {6, 12, 18}. We dis-
tinguish the instances by their parameters n and ρ, and we report on the number of instances that
could be solved (resp. could not be solved) within the time limit in column “O” (resp. “T”). More-
over, we report on the the minimum, mean, and maximum running time per parameterization.
The mean of all running times ti is reported in shifted geometric mean

∏50
i=1(ti + s)

1

50 − s using a
shift of 10 s to reduce the impact of instances with very small running times.

We observe that instances with 6 and 12 teams can be solved very efficiently within fractions
of seconds in the former and within seconds in the latter case. Instances with 18 teams are more
challenging, in particular, if the ratio ρ ∈ {0.7, 0.8}. In this case, only 3 and 22 instances could be
solved, respectively, but note that not all instances are equally difficult. For instance, for n = 18
and ρ = 0.8, there exists an instance that can be solved within roughly five minutes, whereas the
mean running time is more than an hour. To fully benefit from the strong LP relaxation of the
matching formulation, it might be the case that additional algorithmic enhancements can further
improve the performance of the branch-and-price algorithm.

7 Conclusion

The use of integer programming for finding schedules of round robin tournaments is widespread.
We have introduced and analyzed two new formulations for this problem, one of which (the
matching formulation) is stronger than the other formulations. We have proposed a class of valid

18

inequalities for the matching formulation, which may be of use when developing cutting-plane
based techniques for this problem. By randomly generating instances, we studied the strength of
the formulations, and we implemented a branch-and-price algorithm based on the matching for-
mulation to see its efficiency. Although this algorithm is able to solve small-scale instances rather
efficiently, solving large instances of the SRR efficiently remains a challenge.

Possible directions of future research are thus to further strengthen our integer programming
formulations/techniques. On the one hand, once can investigate additional cutting planes to
strengthen both the traditional and matching formulation. For the matching formulation, cutting
planes will in particular affect the pricing problem and thus might change its structure. Thus, the
trade-off between the strength of cutting planes and the difficulty of solving the pricing problem
that needs to be investigated. On the other hand, one can enhance our branch-and-price algorithm
in several directions, e.g., the development of more sophisticated branching rules or heuristics for
producing good schedules.

Acknowledgment The fourth author’s research is supported by the Dutch Research Council
(NWO) through Gravitation grant NETWORKS-024.002.003.

References

[1] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research Letters,
33(1):42–54, 2005.

[2] F. Alarcón, G. D. M. Guajardo, J. Miranda, H. Munoz, L. Ramirez, M. Ramirez, D. Saure,
M. Siebert, S. Souyris, A. Weintraub, R. Wolf-Yadlin, and G. Zamoranoa. Operations research
transforms the scheduling of chilean soccer leagues and south american world cup qualifiers.
Interfaces, 47:52–69, 2017.

[3] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen,
L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen, C. Ho-
jny, R. van der Hulst, T. Koch, M. Lübbecke, S. J. Maher, F. Matter, E. Mühmer, B. Müller, M. E.
Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano, B. Sofranac, M. Turner,
S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, and J. Witzig. The SCIP Optimization
Suite 8.0. Technical report, Optimization Online, December 2021.

[4] E. L. Bouzarth, B. C. Grannan, J. M. Harris, and K. R. Hutson. Scheduling the valley baseball
league. INFORMS Journal on Applied Analytics, 2021.

[5] D. Briskorn and A. Drexl. IP models for round robin tournaments. Computers & Operations
Research, 36(3):837–852, 2009.

[6] D. Briskorn, A. Drexl, and F. C. Spieksma. Round robin tournaments and three index assign-
ments. 4OR, 8(4):365–374, 2010.

[7] A. Caprara and M. Fischetti. {0, 1/2}-Chvátal-Gomory cuts. Mathematical Programming,
74(3):221–235, 1996.

[8] G. Cocchi, A. Galligari, F. Nicolino, V. Piccialli, F. Schoen, and M. Sciandrone. Scheduling the
Italian National Volleyball Tournament. Interfaces, 48:271–284, 2018.

[9] F. D. Croce and D. Oliveri. Scheduling the Italian Football League: an ILP-based approach.
Computers and Operations Research, 33:1963–1974, 2006.

[10] G. Durán, M. Guajardo, F. Gutiérrez, J. Marenco, D. Sauré, and G. Zamorano. Scheduling
the main professional football league of Argentina. INFORMS Journal on Applied Analytics,
51(5):361–372, 2021.

[11] G. Duran, M. Guajardo, J. Miranda, D. Saure, S. Souyris, A. Weintraub, and R. Wolf. Schedul-
ing the Chilean soccer league by integer programming. Interfaces, 37:539–552, 2007.

[12] G. Durán, M. Guajardo, and D. Saure. Scheduling the South American Qualifiers to the
2018 FIFA World Cup by integer programming. European Journal of Operational Research,
262:1109–1115, 2017.

19

[13] K. K. Easton. Using integer programming and constraint programming to solve sports scheduling
problems. PhD thesis, Georgia Institute of Technology, 2003.

[14] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research of
the National Bureau of Standards B, 69(125-130):55–56, 1965.

[15] J. Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.

[16] C. Fleurent and J. Ferland. Allocating games for the NHL using integer programming. Oper-
ations Research, 41:649–654, 1993.

[17] D. Goossens and F. Spieksma. Scheduling the Belgian soccer league. Interfaces, 39:109–118,
2009.

[18] D. Goossens and F. Spieksma. Soccer schedules in Europe: an overview. Journal of Scheduling,
15:641–651, 2012.

[19] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[20] G. Kendall, S. Knust, C. C. Ribeiro, and S. Urrutia. Scheduling in sports: An annotated
bibliography. Computers & Operations Research, 37(1):1–19, 2010.

[21] T. Kim. Optimal approach to game scheduling of multiple round-robin tournament: Korea
professional baseball league in focus. Computers and Industrial Engineering, 136:95–105,
2019.

[22] S. Knust. Classification of literature on sports scheduling.
http://www.inf.uos.de/knust/sportssched/sportlit_class/. Accessed: March
2022.

[23] K. Kostuk and K. Willoughby. A decision support system for scheduling the Canadian football
league. Interfaces, 42:286–295, 2012.

[24] S. Maher, M. Miltenberger, J. P. Pedroso, D. Rehfeldt, R. Schwarz, and F. Serrano. PySCIPOpt:
Mathematical programming in python with the SCIP optimization suite. In Mathematical
Software – ICMS 2016, pages 301–307. Springer International Publishing, 2016.

[25] G. Nemhauser and M. Trick. Scheduling a major college basketball conference. Operations
Research, 46:1–8, 1998.

[26] M. Raknes and K. Pettersen. Optimizing sports scheduling: Mathematical and constraint pro-
gramming to minimize traveled distance with benchmark from the Norwegian professional
volleyball league. Master’s thesis, Norwegian Business School, 2018.

[27] R. Rasmussen. Scheduling a triple round robin tournament for the best Danish soccer league.
European Journal of Operational Research, 185:795–810, 2008.

[28] R. V. Rasmussen and M. A. Trick. Round robin scheduling–a survey. European Journal of
Operational Research, 188(3):617–636, 2008.

[29] D. Recalde, R. Torres, and P. Vaca. Scheduling the professional Ecuadorian football league by
integer programming. Computers and Operations Research, 40:2478–2484, 2013.

[30] C. Ribeiro and S. Urrutia. Scheduling the Brazilian soccer tournament: solution approach
and practice. Interfaces, 42:260–272, 2012.

[31] D. Ryan and B. Foster. An integer programming approach to scheduling. In A. Wren, editor,
Computer scheduling of public transport: Urban passenger vehicle and crew scheduling, pages
269–280. North-Holland, 1981.

[32] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1987.

[33] M. A. Trick. Integer and constraint programming approaches for round-robin tournament
scheduling. In International Conference on the Practice and Theory of Automated Timetabling,
pages 63–77. Springer, 2002.

[34] D. Van Bulck and D. Goossens. On the complexity of pattern feasibility problems in time-
relaxed sports timetabling. Operations Research Letters, 48(4):452–459, 2020.

20

http://www.inf.uos.de/knust/sportssched/sportlit_class/

[35] D. van Bulck, D. Goossens, J. Beliën, and M. Davari. The fifth international timetabling
competition (ITC 2021): Sports timetabling. In Proceedings of MathSport International 2021
Conference, MathSport, pages 117–122, 2021.

[36] S. Westphal. Scheduling the German basketball league. Interfaces, 44:498–508, 2014.

[37] G. M. Ziegler. Lectures on Polytopes. Springer, New York, graduate texts in mathematics 152
edition, 1995.

21

	1 Introduction
	2 Problem definition and formulations
	2.1 The traditional formulation
	2.2 The matching formulation
	2.3 The permutation formulation

	3 Comparing the strength of the different formulations
	4 Strengthening the formulations
	4.1 Strengthening the matching formulation
	4.2 Strengthening the traditional formulation

	5 An extension: k-round robin tournaments
	6 Computational results
	6.1 Test set
	6.2 A computational comparison of the linear relaxations
	6.3 A branch-and-price algorithm

	7 Conclusion

