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Abstract

This paper presents a novel algorithmic study with extensive numerical experiments of distribution-
ally robust multistage convex optimization (DR-MCO). Following the previous work on dual dynamic
programming (DDP) algorithmic framework for DR-MCO [48], we focus on data-driven DR-MCO
models with Wasserstein ambiguity sets that allow probability measures with infinite supports. These
data-driven Wasserstein DR-MCO models have out-of-sample performance guarantees and adjustable
in-sample conservatism. Then by exploiting additional concavity or convexity in the uncertain cost
functions, we design exact single stage subproblem oracle (SSSO) implementations that ensure the
convergence of DDP algorithms. We test the data-driven Wasserstein DR-MCO models against mul-
tistage robust convex optimization (MRCO), risk-neutral and risk-averse multistage stochastic convex
optimization (MSCO) models on multi-commodity inventory problems and hydro-thermal power plan-
ning problems. The results show that our DR-MCO models could outperform MRCO and MSCO
models when the data size is small.
Keywords: distributionally robust optimization, multistage convex optimization, dual dynamic pro-
gramming algorithm, multi-commodity inventory, hydro-thermal power planning problem

1 Introduction

Multistage convex optimization is a decision-making problem where objective functions and constraints
are convex and decisions need to be made each time some of the uncertainty information is revealed. As it
is often challenging to gain precise knowledge of the probability distributions of the uncertainty, distribu-
tionally robust multistage convex optimization (DR-MCO) allows ambiguities in probability distribution
and aims to find optimal decisions that minimize the overall expected objective cost with respect to the
worst-case distribution. The DR-MCO framework encompasses multistage stochastic convex optimiza-
tion (MSCO) and multistage robust convex optimization (MRCO) as special cases, and thus have been
widely applied in many areas including energy systems, supply chain and inventory planning, portfolio
optimization, and finance [43, 6].

Distributionally robust optimization (DRO) has received significant research attention in recent years.
Common choices of the ambiguity sets include moment-based ambiguity sets [40, 10, 42, 47], discrepancy
or distance-based ambiguity sets [5, 4, 36, 7], and many other ones that are constructed from shape
requirements or special properties of the distributions (we refer any interested reader to the review pa-
pers [37, 29] for more details). Among all these choices, data-driven Wasserstein ambiguity sets, i.e.,
Wasserstein distance balls centered at an empirical probability distribution obtained from given uncer-
tainty data, has gained increasing popularity because of the following reasons: (1) measure concentration
in Wasserstein distance guarantees with high probability that the decisions or policies obtained from
solving the in-sample model provides an upper bound on the out-of-sample mean cost [16, 15]; and (2)
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even if we consider general probability distributions in the ambiguity sets, tractable finite-dimensional
reformulation or approximation can be derived using strong duality for 1-Wasserstein distance of prob-
ability measures on Euclidean spaces [15, 50, 23], or more generally for any p-Wasserstein distance of
probability measures on Polish spaces [17]. We remark that these reformulations or approximations are
derived for single-stage or two-stage settings. To the best of our knowledge, it remains unclear how to
solve DR-MCO problems with Wasserstein ambiguity sets and infinite uncertainty sets.

There are also many works on DRO in the multistage settings. In particular, since taking expec-
tation with respect to a worst-case probability distribution in an ambiguity set gives a coherent risk
measure, multistage DRO falls into the category of risk-averse multistage stochastic optimization [43, 35],
which dates back to at least [14]. When the underlying uncertainty is stagewise independent, a ran-
dom nested cutting plane algorithm, which is called stochastic dual dynamic programming (DDP) and
is very often used for risk-neutral multistage stochastic linear optimization (MSLO) problems [31], has
been extended to risk-averse MSLO with polyhedral risk measures in [21, 45]. DDP algorithms iteratively
build under-approximations of the worst-case expected cost-to-go functions in the dynamic programming
recursion, which lead to policies that minimize the approximate total cost starting from each stage. To
estimate the quality of the obtained policy, deterministic over-approximation is proposed in addition
to the under-approximations for risk-averse MSLO problem in [34]. Alternatively, for time-consistent
conditional-value-at-risk (CVaR) risk measures, a new sampling scheme based on importance sampling
is proposed to achieve tighter estimation of the policy quality [25]. Further exploiting the deterministic
over-approximation, a deterministic version of the DDP algorithm is proposed for risk-averse MSLO in [1].
As a variant, robust DDP is proposed for multistage robust linear optimization (MRLO) using similar
deterministic over-approximation of cost-to-go functions in [18]. In [32], stochastic DDP algorithm is used
to solve distributionally robust multistage linear optimization (DR-MLO) using ambiguity sets defined by
a modified χ2-distance for probability distributions supported on the historical data. In [13], stochastic
DDP algorithm is used to solve DR-MLO with Wasserstein ambiguity sets on finitely supported proba-
bility distributions with asymptotic convergence and promising out-of-sample performance. We comment
that the above solution approaches for risk-averse MSLO or DR-MLO rely either on sample average
approximations of the risk measures or on the assumption that all uncertainties have finite support.

As DDP-type algorithms are extensively applied in solving risk-neutral and risk-averse MSLO and
DR-MLO, their convergence analysis and complexity study become central questions. The finite time
convergence of stochastic DDP algorithms is first proved for MSLO problems using polyhedrality of cost-
to-go functions in [33, 41]. Such convergence is similarly proved for deterministic DDP algorithms for
MSLO in [2], for MRLO in [18], and for DR-MLO in [1]. An asymptotic convergence of stochastic DDP
algorithms is proved using monotone convergence argument in the space of convex cost-to-go function
approximations for general risk-neutral multistage stochastic convex optimization (MSCO) in [19] and
risk-averse MSCO in [20]. Complexity study of DDP algorithms is established using Lipschitz continuity
of the under-approximations of the cost-to-go functions for risk-neutral MSCO in [26, 27], and for risk-
neutral multistage mixed-integer nonlinear optimization in [49]. Our recent work [48] adopts an abstract
definition of single stage subproblem oracles (SSSO) and proves SSSO-based complexity bounds, hence
also the convergence, for two DDP algorithms applied to DR-MCO problems with general uncertainty
supports and ambiguity sets.

Following [48], we aim to further study data-driven DR-MCO models and compare their numerical
performance to other baselines models. In particular, our paper makes the following contributions to the
literature.

1. We prove the out-of-sample performance guarantee using measure concentration results, adjustable
in-sample conservatism assuming Lipschitz continuity of the value functions in the uncertainty
variables for the data-driven DR-MCO models with Wasserstein ambiguity sets.

2. We discuss implementations of SSSO in the context of Wasserstein ambiguity sets containing in-
finitely supported probability distributions. Such SSSO allows DDP algorithms to converge with
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provable complexity bounds to an ε-global optimal first-stage solution, which could help minimize
the influence from the sub-optimality caused by early termination of the algorithms when we com-
pare model performances.

3. We present extensive numerical experiments using multi-commodity inventory problem with either
uncertain demands or uncertain prices, and hydro-thermal power planning problems with real-world
data, that compares the out-of-sample performances of our DR-MCO models against risk-neutral
and CVaR risk-averse MSCO models, as well as the MRCO model. To the best of our knowledge,
these are the first numerical experiments in the literature that compare DR-MCO models with
MSCO and MRCO models when the uncertainty has infinitely many outcomes.

The rest of the paper is organized as follows. In Section 2, we define the DR-MCO model considered
in this paper and show some of its favorable properties. In Section 3, we review DDP algorithms for
DR-MCO and study the implementation of SSSO for Wasserstein ambiguity sets. In Section 4, we
present numerical experiment results comparing DR-MCO models against other baseline models on two
application problems. We provide some concluding remarks in Section 5.

2 Data-driven Model and Its Properties

2.1 Data-driven Model Formulation

In this section, we present a data-driven model for DR-MCO and some of its properties. Let T :=
{1, . . . , T} denote the set of stage indices. In each stage t ∈ T , we use Xt ⊂ Rdt to denote the convex state
space and xt its elements, which is known as the state vector. We denote the set of uncertainties before
stage t as Ξt ⊆ Rδt and its elements as ξt. For simplicity, we use the notation X0 = {x0} and Ξ1 = {ξ1}
to denote parameter sets of the given initial state. After each stage t ∈ T \ {T}, the uncertainty ξt is
assumed to be distributed according to an unknown probability measure pt taken from a subset of the
probability measures Pt ⊂MProb(Ξt) supported on Ξt. The cost in each stage t ∈ T is described through
a nonnegative, lower semicontinuous local cost function ft(xt−1, xt; ξt), which is assumed to be convex in
xt−1 and xt for every ξt ∈ Ξt. We allow ft to take +∞ to model constraints relating the states xt−1, xt
and the uncertainty ξt (so that Xt can be independent of xt−1 and ξt). The DR-MCO can be written in
a nested formulation as follows.

inf
x1∈X1

f1(x0, x1; ξ1) + sup
p2∈P2

Eξ2∼p2

[
inf

x2∈X2

f2(x1, x2; ξ2)+ (1)

+ sup
p3∈P3

Eξ3∼p3

[
inf

x3∈X3

f3(x2, x3; ξ3) + · · ·

+ sup
pT∈PT

EξT∼pT

[
inf

xT∈XT

fT (xT−1, xT ; ξT )
]
· · ·
]]

.

Here, Eξt∼pt is the expectation with respect to variable ξt distributed according to the probability measure
pt. We remark that both the uncertainty sets Ξt and the ambiguity sets Pt are independent between stages,
which are usually referred to as stagewise independence.

Based on stagewise independence in the nested formulation, we can write the following recursion that
is equivalent to (1) using the (worst-case expected) cost-to-go functions,

Qt−1(xt−1) := sup
pt∈Pt

Eξt∼pt

[
inf

xt∈Xt

ft(xt−1, xt; ξt) +Qt(xt)

]
, (2)

for each t ∈ T and we set by convention QT (xT ) := 0 for any xT ∈ XT . To simplify the notation, we also
define the following value function for each stage t ∈ T :

Qt(xt−1; ξt) := inf
xt∈Xt

ft(xt−1, xt; ξt) +Qt(xt). (3)
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Using these value functions, we may write the optimal value of the DR-MCO (1) as Q1(x0; ξ1) and further
simplify the recursion (2) as

Qt−1(xt−1) = sup
pt∈Pt

∫
Ξt

Qt(xt−1; ξt) dpt(ξt). (4)

While there are many different choices of the ambiguity set Pt for each stage t ∈ T (see e.g., [47]),
we focus on the data-driven ambiguity sets constructed as follows. Suppose we have the knowledge
of nt samples ξ̂t,1, . . . , ξ̂t,nt of the uncertainty ξt. The empirical probability measure is given by ν̂t :=
1
nt

∑nt
k=1 δξ̂t,k , where for each k = 1, . . . , nt, δξ̂t,k is the Dirac probability measure supported at the point

ξ̂t,k ∈ Ξt, i.e.,
∫
Ξt

f dδξ̂t,k = f(ξ̂t,k) for any compactly supported function f on Ξt. Such an empirical

probability measure ν̂t captures the information from the sample data and is often used to build the
sample average approximation for multistage stochastic optimization [43].

Fix any distance function dt(·, ·) on Ξt, the Wasserstein distance of order 1 (a.k.a, Kantorovich-
Rubinstein distance) is defined as

Wt(µ, ν) := inf
π∈MProb(Ξt×Ξt)

{∫
Ξt×Ξt

dt(ξ
1, ξ2) dπ(ξ1, ξ2) : P 1

∗ (π) = µ, P 2
∗ (π) = ν

}
, (5)

for any two probability measures µ, ν ∈ MProb(Ξt), where P i
∗(π) is the pushforward measure induced by

the projection maps P i : Ξt × Ξt → Ξt by sending P i(ξ1, ξ2) = ξi, for i = 1 or 2. That is, the joint
probability measure π in (5) has marginal probability measures equal to µ and ν.

It can be shown that Wt is indeed a distance on the space of probability measures MProb(Ξt) [46,
Definition 6.1] except that it may take the value of +∞. Thus it is natural to restrict our attention to
the convex subset of probability measures with finite distance to a Dirac measure on Ξt

Wt :=

{
µ ∈MProb(Ξt) :

∫
Ξt

dt(ξ̄, ξ) dµ(ξ) < +∞, for some ξ̄ ∈ Ξt

}
. (6)

Note that any continuous function g(ξ) that satisfies |g(ξ)| ≤ C(1 + dt(ξ̄, ξ)) for some C > 0 and ξ̄ ∈
Ξt would be integrable for any probability measure in Wt. Now given any such continuous functions
gt,1, . . . , gt,mt on Ξt and a real vector ρt := (ρt,j)

mt
t=0 ∈ Rmt+1, we define the Wasserstein ambiguity set Pt

as
Pt :=

{
p ∈ Wt : Wt(p, ν̂t) ≤ ρt,0, ⟨gt,j , p⟩ ≤ ρt,j , j = 1, . . . ,mt

}
, (7)

The first inequality constraint in the definition (7) bounds the Wasserstein distance of the probability
measure p ∈ Wt from the empirical measure ν̂t, while the second set of constraints on p are defined as
⟨gt,j , p⟩ :=

∫
Ξt

gt,j(ξ) dp(ξ), which could be bounds on the moments.
It is well studied that the recursion for data-driven Wasserstein DR-MCO problems (2) can be re-

formulated as a finite-dimensional minimum-supremum optimization problem, under the assumption of
strict feasibility.

Assumption 1. The empirical probability measure ν̂t is a strictly feasible solution of (7), i.e. it satisfies
⟨gt,j , ν̂t⟩ = 1

nt

∑nt
i=1 gt,j(ξ̂t,k) < ρt,j for all j = 1, . . . ,mt.

Theorem 1. Under Assumption 1, in any stage t ≥ 2, the expected cost-to-go function (2) can be
equivalently rewritten as

Qt−1(xt−1) = (8)

min
λ≥0


mt∑
j=0

ρt,jλj +
1

nt

nt∑
k=1

sup
ξk∈Ξt

Qt(xt−1; ξk)− λ0dt,k(ξk)−
mt∑
j=1

λjgt,j(ξk)


 .
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We provide the derivation and proof details in Section A. As a corollary, we can prove a special version
of the Kantorovich-Rubinstein duality formula [46, Remark 6.5].

Corollary 2. Under Assumption 1, if the value function Qt(xt−1; ξt) is lt-Lipschitz continuous in the
uncertainty ξt ∈ Ξt for any xt−1 ∈ Xt−1, then we have

Qt−1(xt−1) ≤ ρt,0lt +
1

nt

nt∑
k=1

Qt(xt−1; ξ̂t,k).

Proof. Take a feasible solution λ0 = lt and λj = 0 for j = 1, . . . ,mt in (8) of Theorem 1. Note that by

the Lipschitz continuity assumption, the supremum is attained at ξ̂t,k for each k = 1, . . . , nt.

2.2 Out-of-Sample Performance Guarantee

A major motivation for using Wasserstein DR-MCO models is the out-of-sample performance guarantee,
which ensures that the decisions evaluated on the true probability distribution would perform no worse
than the in-sample training with high probability. To begin with, we say that a probability measure
µ ∈ Wt is sub-Gaussian if

∫
Ξt

exp(Cξ2) dµ(ξ) < +∞ for some constant C > 0, or it has finite third

moments if
∫
Ξt
∥ξ∥3 dµ(ξ) < +∞. Our discussion is based on the following specialized version of the

measure concentration inequality [16, Theorem 2].

Theorem 3. Fix any probability measure νt ∈ MProb(Ξt) in stage t and let ν̂t denote the empirical
measure constructed from nt independent and identically distributed (iid) samples of νt. Then for any
ρt,0 > 1, we have

P
(
Wt(νt, ν̂t) > ρt,0

)
≤

Ct exp
(
−C ′

tntρ
max{δt,2}
t,0

)
, if νt is sub-Gaussian and δt ̸= 2, (9)

C ′′
t (ntρ

2
t,0)

−1, if νt has finite third moments, (10)

for some positive constants Ct, C
′
t, C

′′
t > 0 that depend only on νt.

The measure concentration bound in (9) becomes slightly more intricate when the dimension of the
uncertainty δt = 2 (see the details in [16]), so we focus our discussion below on the other cases.

The out-of-sample performance refers to the evaluation of the solutions and policies obtained from
solving DR-MCO (1) on the true probability measures νt for each t ∈ T . To be precise, fix any optimal
policy given by the DR-MCO (1), i.e., an optimal initial stage state x∗1 ∈ argminx1∈X1

{f1(x0, x1; ξ1) +
Q1(x1)}, and a collection of mappings x∗t : Xt−1 × Ξt → Xt for t = 2, . . . , T , such that

1. x∗t (xt−1, ·) is Borel measurable for any xt−1 ∈ Xt−1;

2. x∗t (xt−1, ξt) ∈ argminxt∈Xt
{ft(xt−1, xt; ξt) +Qt(xt)} for any xt−1 ∈ Xt−1 and ξt ∈ Ξt.

We define recursively the costs in the out-of-sample evaluation cost-to-go functions as

QEval
t−1 (xt−1) :=

∫
Ξt

[
ft(xt−1, x

∗
t (xt−1, ξt); ξt) +QEval

t (x∗t (xt−1, ξt))
]
dνt(ξt), (11)

with QEval
T (xT ) = 0 for any xT ∈ XT . Then the out-of-sample evaluation mean cost associated with

this policy is defined as vEval := f1(x0, x
∗
1; ξ1) + QEval

1 (x∗1). The next theorem provides a lower bound
on the probability that the event vEval ≤ Q1(x0; ξ1) happens, which is often known as the out-of-sample
performance guarantee.

Theorem 4. Fix any probability measure νt ∈ Wt and let ν̂t denote the empirical measure from nt iid
samples of νt for all stages t ∈ T . Assume that ⟨gt,j , νt⟩ ≤ ρt,j for j = 1, . . . ,mt, and ρt,0 > 1 for all
t ∈ T . Then for any α ∈ (0, 1), we have vEval ≤ Q1(x0; ξ1) with probability at least α if either of the
following conditions holds for each t ∈ T :
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1. the probability measure νt is sub-Gaussian, δt ̸= 2, and

nt · ρmax{δt,2}
t,0 ≥ 1

C ′
t

[
lnCt − ln

(
1− α1/(T−1)

)]
,

2. the probability measure νt has finite third moments and

nt · ρ2t,0 ≥
C ′′
t

1− α1/(T−1)
,

where Ct, C
′
t, and C ′′

t are the positive constants in Theorem 3, that depend only on νt.

Proof. If either of the conditions is satisfied, then it is straightforward to check from Theorem 3 that the
probability P(Wt(νt, ν̂t) > ρt,0) ≤ 1 − α1/(T−1). By the assumption on the iid sampling of ν̂t and that
⟨gt,j , νt⟩ ≤ ρt,j for j = 1, . . . ,mt, the event E := {νt ∈ Pt for t = 2, . . . , T} has the probability

P(E) = P{Wt(νt, ν̂t) ≤ ρt,0 for all t ∈ T } =
T∏
t=2

P(Wt(νt, ν̂t) ≤ ρt,0) ≥ α.

To complete the proof, we claim that QEval
t (xt) ≤ Qt(xt) for all xt ∈ Xt and t ∈ T everywhere on E. Note

that QEval
T (xT ) = QT (xT ) = 0 for all xT ∈ XT . Now if QEval

t (xt) ≤ Qt(xt) for all xt ∈ Xt, then

ft(xt−1, x
∗
t (xt−1, ξt); ξt) +QEval

t (x∗t (xt−1, ξt))

≤ ft(xt−1, x
∗
t (xt−1, ξt); ξt) +Qt(x

∗
t (xt−1, ξt))

= min
xt∈Xt

{ft(xt−1, xt; ξt) +Qt(xt)}

= Qt(xt−1; ξt).

Therefore, on the event E, we have

QEval
t−1 (xt−1) =

∫
Ξt

[
ft(xt−1, x

∗
t (xt−1, ξt); ξt) +QEval

t (x∗t (xt−1, ξt))
]
dνt(ξt)

≤
∫
Ξt

Qt(xt−1; ξt) dνt(ξt) ≤ sup
pt∈Pt

∫
Ξt

Qt(xt−1; ξt) dpt(ξt) = Qt−1(xt−1).

This recursion shows that QEval
1 (x1) ≤ Q1(x1) for all x1 ∈ X1, and thus

vEval = f1(x0, x
∗
1; ξ1) +QEval

1 (x∗1) ≤ min
x1∈X1

{f1(x0, x1; ξ1) +Q1(x1)} = Q1(x0; ξ1).

While Theorem 4 is a direct consequence of Theorem 3, it shows some interesting aspects of DR-
MCO using Wasserstein ambiguity sets. First, to get a certain probabilistic bound for the out-of-sample
performance guarantee, we may need to increase the number of samples nt or the Wasserstein distance
bound ρt,0 for a larger number of stages T . Second, for probability measures that are not sub-Gaussian
(or more generally those with heavy tails, see [15]), for which we would like to apply the second condition,
such increase require the product nt · ρ2t,0 to grow approximately on the order of O(T ) when α is close to
1. Therefore, it is sometimes useful to take larger values of ρt,0 for out-of-sample performance guarantees,
especially when the number of sample nt is limited, or when the true probability measures νt are not
sub-Gaussian.
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2.3 Adjustable In-Sample Conservatism

Another well studied approach to guarantee out-of-sample performance is the multistage robust convex
optimization (MRCO) model [18, 48]. However, MRCO considers only the worst-case outcomes of the
uncertainties and thus can be overly conservative. To be precise, we define the nominal MSCO from the
empirical measures ν̂t without risk aversion by the following recursion

QNomin
t−1 (xt−1) :=

∫
Ξt

QNomin
t (xt−1; ξt) dν̂t(ξt) =

1

nt

nt∑
k=1

QNomin
t (xt−1; ξ̂t,k), (12)

where
QNomin

t (xt−1; ξt) := inf
xt∈Xt

ft(xt−1, xt; ξt) +QNomin
t (xt), (13)

and QNomin
T (xT ) = 0 for any xT ∈ XT . Any MRCO that is built directly from data could have a much

larger optimal cost than the nominal MSCO with a probability growing with the numbers of samples nt

and stages T , as illustrated by the following example.

Example 1. Consider an MSCO with local cost functions ft(xt−1, xt; ξt) := xt + ξt and state spaces
Xt := [0, 1] ⊆ R for all t ∈ T . For each t ≥ 2, the uncertainties are described by a probability measure νt
on the set Ξt := R≥0 such that for any C > 0, we have νt(C,+∞) > 0. Now to approximate this MSCO,
suppose we are given iid samples ξ̂t,1, . . . , ξ̂t,nt from the probability measure νt in each stage t ≥ 2. Then
any MRCO defined by the following recursion of expected cost-to-go functions

QRobust
t−1 (xt−1) := sup

ξt∈Ξ̂t

min
xt∈Xt

ft(xt−1, xt; ξt) +QRobust
t (xt), ∀ t ≥ 2,

where Ξ̂t ⊇ {ξ̂t,1, . . . , ξ̂t,nt} is an uncertainty subset constructed from the data, would have its optimal

value QRobust
1 (x0; ξ1) ≥ x0 + ξ1 +

∑T
t=2 ξ̂

max
t , where ξ̂max

t := max{ξ̂t,1, . . . , ξ̂t,nt}. The optimal value of

the corresponding nominal MSCO is QNomin
1 (x0; ξ1) = x0 + ξ1 +

∑T
t=2 ξ̂

mean
t where ξ̂mean

t := 1
nt

∑nt
k=1 ξ̂t,k.

Therefore, for any constant C > maxt=2,...,T E[ξt], we can show that

P
{
QRobust

1 (x0; ξ1)−QNomin
1 (x0; ξ1) > C

}
= 1−

T∏
t=2

(
(νt[0, 2C])nt + P

{
ξ̂mean
t > C

})
,

which goes to 1 as nt →∞.

In contrast, the difference of the optimal values between the DR-MCO and the nominal MSCO
Q1(x0; ξ1)−QNomin

1 (x0; ξ1) can be bounded by the Wasserstein distances ρt,0, as shown below.

Theorem 5. Suppose the value function Qt(xt−1; ξt) is lt-Lipschitz continuous in ξt ∈ Ξt for any xt−1 ∈
Xt−1, for each stage t ∈ T . Under Assumption 1, the difference of optimal values between the DR-MCO
and the nominal MSCO satisfies

Q1(x0; ξ1)−QNomin
1 (x0; ξ1) ≤

T∑
t=2

ltρt,0.

Proof. We first observe that if there exists ε ≥ 0 such that supxt∈Xt
|Qt(xt) − QNomin

t (xt)| ≤ ε, then the
value functions satisfy Qt(xt−1; ξt)−QNomin

t (xt−1; ξt) ≤ ε by the definitions (3) and (13). Now we prove
by recursion that Qt(xt)−QNomin

t (xt) ≤
∑

s>t lsρs,0 for any xt ∈ Xt, which holds trivially for t = T . For

7



any t ∈ T , we have

Qt−1(xt−1)−QNomin
t−1 (xt−1) =

(
sup
pt∈Pt

∫
Ξt

Qt(xt−1; ξt) dpt(ξt)−
∫
Ξt

Qt(xt−1; ξt) dν̂t(ξt)

)

+

∫
Ξt

(
Qt(xt−1; ξt)−QNomin

t (xt−1; ξt)
)
dν̂t(ξt)

≤ltρt,0 +
∑
s>t

lsρs,0 =
∑

s>t−1

lsρs,0,

where the first part before the inequality is bounded by ltρt,0 using Corollary 2, and the second part is

bounded by our observation above. This recursion shows that Q1(x1)−QNomin
1 (x1) ≤

∑T
t=2 ltρt,0, which

completes the proof by the same observation.

Theorem 5 shows that the conservatism of the DR-MCO can be adjusted linearly with the Wasser-
stein distance bound ρt,0, assuming the Lipschitz continuity of the value functions in the uncertainties.
However, as the out-of-sample performance guarantee in Theorem 4 depends on some unknown constants
in Theorem 3, it is not easy to numerically determine the Wasserstein distance bounds ρt,0. We discuss
some practical choices of the bounds ρt,0 in Section 4.

3 Dual Dynamic Programming Algorithm

In this section, we first review the recursive cutting plane approximations and the dual dynamic program-
ming (DDP) algorithm. Then we focus on different realizations of the single stage subproblem oracles
(SSSO) for DR-MCO with Wasserstein ambiguity sets that would guarantee the convergence of the DDP
algorithm.

3.1 Recursive Approximations and Regularization

Recall that for any convex function Q : X → R ∪ {+∞}, an affine function V : X → R is called a
(valid) linear cut if Q(x) ≥ V(x) for all x ∈ X . A collection of such valid linear cuts {Vj}1≤j≤i defines a
valid under-approximation Qi(x) := max1≤j≤i Vj(x) of Q(x). Similarly by convexity, given a collection of
overestimate values vj ≥ Q(xj) for j = 1, . . . , i, we can define a valid over-approximation by the convex

envelope Qi
(x) := conv1≤j≤i(v

j + ιxj (x)), where ιxj (x) = 0 when x = xj and +∞ otherwise, is the
convex indicator function centered at xj . The validness of these approximations Q(x) ≤ Q(x) ≤ Q(x)
for all x ∈ X suggests that we may use them in the place of Q for recursive updates during a stagewise
decomposition algorithm.

To see how the recursive updates may work, let us assume temporarily in this subsection that the
worse-case probability measure p∗t in (4) exists and can be found. Given any under-approximation Qt for

Qt, for any ξ̂t ∈ Ξt, we can generate a linear cut Vt(xt−1; ξt) := v(ξ̂t) + u(ξ̂t)
T(xt−1 − x̃t−1) for the value

function Qt(xt−1; ξ̂t) with some x̃t−1 ∈ Xt−1, where v(ξ̂t) and u(ξ̂t) are the optimal value and an optimal
dual solution to the following Lagrangian dual of the under-approximation problem that is parametrized
by ξ̂t:

v(ξ̂t) := sup
u∈Rdt−1

min
{
ft(zt, xt; ξ̂t) +Qt(xt) + uT(x̃t−1 − zt) : xt ∈ Xt, zt ∈ Rdt−1

}
, (14)

assuming that u(ξ̂t) exists. Then we can aggregate these linear cuts Vt(xt−1; ξt) into a linear cut Vt−1(·) :=
Eξt∼p∗t

Vt(·; ξt) for Qt−1, where the expectation is taken componentwise with respect to the probability
measure p∗t . In this way, we can use the under-approximationQt forQt to update the under-approximation
Qt−1 for Qt−1 by the aggregated linear cut Vt−1.
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Likewise, given any over-approximation Qt for Qt, for any ξ̂t ∈ Ξt and x̃t−1 ∈ Xt−1, we can solve the
following over-estimation problem

v̄(ξ̂t) := min
{
ft(x̃t−1, xt; ξ̂t) +Qt(xt) : xt ∈ Xt

}
, (15)

which gives an overestimate value v̄(ξ̂t) ≥ Qt(x̃t−1; ξ̂t). Again we can aggregate the overestimate value
by setting vt−1 := Eξt∼p∗t

v̄(ξt), which by definition satisfies vt−1 ≥ Qt−1(x̃t−1) and thus can be used to

update the over-approximation Qt−1 for Qt−1.
There are, however, some potential issues with this recursive approximation method. First, the supre-

mum in the Lagrangian dual problem (14) may not be attained, which could happen if v(ξ̂t) = +∞ (i.e.,
x̃t−1 is an infeasible state for ξ̂t) or if any neighborhood of x̃t−1 contains such an infeasible state. In this
case, we may fail to generate a linear cut Vt(·; ξ̂t). Second, Lipschitz constants of the linear cuts Vt−1 may
be affected by the under-approximation Qt, causing a worse approximation quality. This may happens
when x̃t−1 is an extreme point of Xt−1. In fact, it is shown in [48] that the Lipschitz constants of Qt could
exceed those of Qt and grow with the total number of stages T . Third, the over-approximation function
evaluates to +∞ at any point that is not in the convex hull of previously visited points, which makes the
gap Qt(x)−Qt(x) less useful as an estimate of the quality of the current solutions or policies.

To remedy these issues, we consider a technique called Lipschitzian regularization. Given regularization
factors Mt > 0, we define the regularized local cost function as

fR
t (xt−1, xt; ξt) := inf

zt∈Rdt−1

ft(zt, xt; ξt) +Mt∥xt−1 − zt∥, (16)

and the regularized value function

QR
t (xt−1; ξt) := min

xt∈Xt

fR
t (xt−1, xt; ξt) +QR

t (xt), (17)

recursively for t = T, T − 1, . . . , 2, where QR
t is the regularized expected cost-to-go function defined as

QR
t (xt) := sup

pt+1∈Pt+1

Eξt+1∼pt+1Q
R
t+1(xt; ξt+1), (18)

for t ≤ T − 1, and QR
T (xT ) ≡ 0 for any xT ∈ XT . It is then straightforward to check that QR

t (xt−1; ξt) is
uniformly Mt-Lipschitz continuous in xt−1 for each ξt ∈ Ξt, and consequently QR

t−1 is also Mt-Lipschitz
continuous. In the definitions (14) and (15), we can replace accordingly the original cost functions ft with
the regularized cost function fR

t , which would guarantee the Mt-Lipschitz continuity of the generated cuts
and allow us to enhance the over-approximation to be Mt-Lipschitz continuous.

Lipschitzian regularization in general only gives under-approximations of the true value and expected
cost-to-go functions. We need the following assumption to preserve the optimality and feasibility of the
solutions.

Assumption 2. For the given regularization factors Mt > 0, t ∈ T , the optimal value of the regularized
DR-MCO satisfies

min
x1∈X1

f1(x0, x1; ξ1) +Q1(x1) = min
x1∈X1

f1(x0, x1; ξ1) +QR
1 (x1)

and the sets of optimal first-stage solutions are the same, i.e., argmin{f1(x0, x1; ξ1) + QR
1 (x1) : x1 ∈

X1} = argmin{f1(x0, x1; ξ1) +Q1(x1) : x1 ∈ X1}.

We remark by the following proposition that Assumption 2 can be satisfied in any problem that
already have uniformly Lipschitz continuous value function Qt(·; ξt) for all ξt ∈ Ξt.

Proposition 6 (Proposition 4,[48]). Suppose each state space Xt ⊆ Rdt is full dimensional, i.e., intXt ̸=
∅. Then Assumption 2 holds if for each stage t ≥ 2, the value function Qt(·; ξt) is Mt-Lipschitz continuous
for any ξt ∈ Ξt.

In general, we can execute the DDP algorithm even with Mt = +∞, as described below.
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3.2 Dual Dynamic Programming Algorithm

DDP algorithms generally refer to the recursive cutting plane algorithms that exploit the stagewise in-
dependence structure. We first review the definitions of single stage subproblem oracles (SSSO), which
symbolize the subroutines of subproblem solving in each stage with under- and over-approximations of
the expected cost-to-go functions [48].

Definition 1 (Initial stage subproblem oracle). Let Q1,Q1 : X1 → R̄ denote two lsc convex functions,
representing an under-approximation and an over-approximation of the cost-to-go function QR

1 in (18),
respectively. Consider the following subproblem for the first stage t = 1,

min
x1∈X1

f1(x0, x1; ξ1) +Q1(x1). (I)

The initial stage subproblem oracle provides an optimal solution x1 to (I) and calculates the approximation
gap γ1 := Q1(x1) − Q1(x1) at the solution. We thus define the subproblem oracle formally as a map
O1 : (Q1,Q1) 7→ (x1; γ1).

Definition 2 (Noninitial stage subproblem oracle). Fix any regularization parameter Mt > 0. Let
Qt,Qt : Xt → R̄ denote two lsc convex functions, representing an under-approximation and an over-
approximation of the cost-to-go function QR

t in (18), respectively, for some stage t > 1. Then given a
feasible state xt−1 ∈ Xt−1, the noninitial stage subproblem oracle provides a feasible state xt ∈ Xt, an
Mt-Lipschitz continuous linear cut Vt−1(·), and an over-estimate value vt−1 such that

• they are valid, i.e., Vt−1(x) ≤ QR
t−1(x) for any x ∈ Xt−1 and vt−1 ≥ QR

t−1(xt−1);
• the gap is controlled, i.e., vt−1 − Vt−1(xt−1) ≤ γt := Qt(xt)−Qt(xt).

We thus define the subproblem oracle formally as a map Ot : (xt−1,Qt,Qt) 7→ (Vt−1, vt−1, xt; γt).

Now we can present the (consecutive) DDP algorithm based on the SSSO. In Algorithm 1, each
iteration i ∈ N consists of two steps: the noninitial stage step and the initial stage step. In the noninitial
stage step, we evaluate the SSSO from stage t = 2 to t = T to collect feasible states xit, overestimate

values vit−1, and a valid linear cut V it−1 for updating the approximations Qi
t−1 and Q

i
t−1. Then we evaluate

the initial stage SSSO to get an optimal solution xi+1
1 and its optimality gap γi+1

1 . We terminate the
algorithm when the gap is sufficiently small.

Algorithm 1 is proved to terminate with an ε-optimal solution in finitely many iterations [48]. We
include the theorem here for completeness.

Theorem 7. Suppose that all the state spaces Xt have the dimensions bounded by d and diameters by
D, and let M := max{Mt : t = 1, . . . , T − 1}. If for each stage t ∈ T , the local cost functions are
strictly positive ft(xt−1, xt; ξt) ≥ C for all feasible solutions xt ∈ Xt, uncertainties ξt ∈ Ξt and some
constant C > 0, then the total number of noninitial stage subproblem oracle evaluations before achieving
an α-relative optimal solution x∗1 for Algorithm 1 is bounded by

#Eval ≤ 1 + T (T − 1)

(
1 +

2MD

αC

)d

.

We remark that the DDP algorithm can also be executed in a nonconsecutive way with a similar
complexity bound. However, since we need to run the algorithm for a fixed number of iterations to
compare different models, we restrict our attention to the consecutive version here. Any interested reader
is referred to [48] for more detailed discussion.

In Section 3.1, we have seen how SSSO could be implemented if the worst-case probability measure
exists in (4) and can be found. However, it is well known that the worst-case probability measure
may not exist (see e.g., [15, Example 2]). Moreover, the integration with respect to some worst-case
probability measure could also be numerically challenging. Therefore, we next provide two possible SSSO
implementation methods directly using the recursion (8).
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Algorithm 1 Dual Dynamic Programming Algorithm

Require: subproblem oracles Ot for t ∈ T , optimality gap ε > 0
Ensure: an ε-optimal first stage solution x∗1 to the regularization (18)

1: initialize: Q0
t ← 0,Q0

t ← +∞, t ∈ T \{T}; Qj
T ,Q

j
T ← 0, j ∈ N; i← 1

2: evaluate (x11; γ
1
1)← O1(Q0

1,Q
0
1)

3: set LowerBound← f1(x0, x
1
1; ξ1), UpperBound← +∞

4: while UpperBound− LowerBound > ε do
5: for t = 2, . . . , T do

6: evaluate (V it−1, v
i
t−1, x

i
t; γ

i
t) = Ot(x

i
t−1,Qi−1

t ,Qi−1
t ) ▷ noninitial stage step

7: update Qi
t−1(x)← max{Qi−1

t−1(x),V
i
t−1(x)}

8: update Qi
t−1(x)← conv{Qi−1

t−1(x), v
i
t−1 +Mt−1∥x− xit−1∥}

9: evaluate (xi+1
1 ; γi+1

1 )← O1(Qi
1,Q

i
1) ▷ initial stage step

10: update LowerBound← f1(x0, x
i+1
1 ; ξ1) +Qi

1(x
i+1
1 )

11: update UpperBound′ ← f1(x0, x
i+1
1 ; ξ1) +Q

i
1(x

i+1
1 )

12: if UpperBound′ < UpperBound then
13: set x∗1 ← xi+1

1 , UpperBound← UpperBound′

14: update i← i+ 1

3.3 Subproblem Oracles: Concave Uncertain Cost Functions

If the following assumption holds, we are able to reformulate the recursion (8) into a convex optimization
problem.

Assumption 3. The local cost function ft(xt−1, xt; ξt) is concave and upper semicontinuous in the un-
certainty ξt for any xt−1 ∈ Xt−1 and xt ∈ Xt.

A direct consequence of Assumption 3 is that the effective domain of the state xt does not depend on
the uncertainty ξt, as shown in the following lemma.

Lemma 8. Under Assumption 3, we have dom ft(xt−1, ·; ξt) = dom ft(xt−1, ·; ξ′t) for any xt−1 ∈ Xt−1 and
ξt, ξ

′
t ∈ Ξt.

Proof. Assume for contradiction that there exists some xt−1 ∈ Xt−1, xt ∈ Xt, and ξt, ξ
′
t ∈ Ξt such that

ft(xt−1, xt; ξt) < +∞ but ft(xt−1, xt; ξ
′
t) = +∞. Then for c ∈ (0, 1), we have ft(xt−1, xt; (1− c)ξt + cξ′t) =

+∞ by the concavity and nonnegativity of ft. It follows from upper semicontinuity that ft(xt−1, xt; ξt) ≥
lim supc→0+ ft(xt−1, xt; (1− c)ξt + cξ′t) = +∞, which is a contradiction.

We are now ready to prove the alternative formulation of the recursion (8).

Theorem 9. Under Assumption 3, if we further assume that the continuous functions gt,j are convex for

j = 1, . . . ,m and dt,k(ξt,k) = ∥ξt,k − ξ̂t,k∥ for k = 1, . . . , nt, then we have

Qt−1(xt−1) = min

mt∑
j=0

ρt,jλt,j +
1

nt

nt∑
k=1

[
ht,k(zt, xt,k, ζt,k, λt) +Qt(xt,k)

]
s.t.

∥∥ζt,k∥∥∗ ≤ λt,0,

zt = xt−1,

λt ∈ Rmt+1
≥0 , xt,k ∈ Xt,

(19)

where for each k = 1, . . . , nt, ht,k is defined as

ht,k(xt−1, xt,k, ζt,k, λt) := sup
ξt,k∈Ξt

ft(xt−1, xt,k; ξt,k)−
mt∑
j=1

λt,jgt,j(ξt,k) + ζTt,k(ξt,k − ξ̂t,k).
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Proof. By Lemma 8, for any xt−1 ∈ Xt−1, we can define a set Xt(xt−1) := dom ft(xt−1, ·; ξt) ⊆ Xt which
is independent of ξt ∈ Ξt and closed by the lower semicontinuity of ft. Note that the norm function has
the dual representation dt,k(ξt,k) = ∥ξt,k − ξ̂t,k∥ = max∥ζ∥∗≤1 ζ

T(ξt,k − ξ̂t,k). Thus by the recursion (8), we
can write

Qt−1(xt−1) = min
λt∈Rmt+1

≥0

mt∑
j=0

ρt,jλt,j +
1

nt

nt∑
k=1

sup
ξt,k∈Ξt

[
−

mt∑
j=1

λt,jgt,j(ξt,k)

+ min
xt,k,ζt,k

ft(xt−1, xt,k; ξt,k) +Qt(xt,k) + ζTt,k(ξt,k − ξ̂t,k)

]
s.t.

∥∥ζt,k∥∥∗ ≤ λt,0,

xt,k ∈ Xt(xt−1).

Now for any fixed xt−1 and λt, we see that the sets {ζt,k : ∥ζt,k∥∗ ≤ λt,0} and Xt(xt−1) are compact.
Moreover, the function inside the supremum of ξt,k is concave and upper semicontinuous in ξt,k, while
convex and lower semicontinuous in ξt,k and ζt,k. Thus the result follows by applying Sion’s minimax
theorem [24].

Remark. The proof remains valid if we replace simultaneously Qt, Qt−1, and ft with QR
t , QR

t−1, and fR
t

in the theorem. In this case we use hRt,k to denote the convex conjugate functions.

We provide a possible implementation for noninitial stage SSSO in Algorithm 2 based on Theorem 9.
Its correctness is verified by the following corollary.

Algorithm 2 Single Stage Subproblem Oracle Implementation Under Assumption 3

Require: function ht, over- and under-approximations Qi
t and Qi

t, and a state xt−1 ∈ Xt−1

Ensure: a linear cut Vt−1, an overestimate vt−1, a state xt, and a gap value γt
1: Solve the minimization (19) with Qt replaced by Qi

t and store the optimal value v∗t−1, optimal solutions
λ∗
t and (x∗t,k, ζ

∗
t,k)

nt
k=1 and the dual solutions ut associated with the constraints zt = xt−1

2: for k = 1, . . . , nt do

3: Compute the gap value γt,k := Qi
t(x

∗
t,k)−Q

i
t(x

∗
t,k)

4: Set Vt−1(·)← v∗t−1 + uTt (·)
5: Set vt−1 ← v∗t−1 +

1
nt

∑nt
k=1 γt,k

6: Take any k∗ ∈ argmax{γt,k : k = 1, . . . , nt} and set xt ← x∗t,k∗ , γt ← γt,k∗

Corollary 10. Under the same assumptions of Theorem 9, the outputs (Vt−1, vt−1, xt; γt) of Algorithm 2
satisfy the conditions in Definition 2.

Proof. To check the validness of vt−1, let (z∗t , x
∗
t,k, ζ

∗
t,k, λ

∗
t ) denote an optimal solution in the minimiza-

tion (19) with Qt replaced by Qi
t. Then we have

vt−1 = v∗t−1 +
1

nt

nt∑
k=1

γt,k

=

mt∑
j=0

ρt,jλ
∗
t,j +

1

nt

nt∑
k=1

[ht,k(z
∗
t , x

∗
t,k, ζ

∗
t,k, λ

∗
t ) +Qi

t(x
∗
t,k) + γt,k]

≥
mt∑
j=0

ρt,jλ
∗
t,j +

1

nt

nt∑
k=1

[ht,k(z
∗
t , x

∗
t,k, ζ

∗
t,k, λ

∗
t ) +Qt(x

∗
t,k)] ≥ Qt−1(xt−1),
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the last inequality is due to the feasibility of (Vt−1, vt−1, xt; γt) in the minimization (19). For the validness
of Vt−1(·), note that the value v∗t−1 and the dual solution ut define a valid linear under-approximation for
the function Q′

t−1(·) defined by replacing Qt with Qi
t in the minimization (19). Since clearly Q′

t−1(xt−1) ≤
Qt−1(xt−1) for all xt−1 ∈ Xt−1, we see that Vt−1(·) is a valid under-approximation for Qt−1(·). Finally
the gap vt−1 − Vt−1(xt−1) =

1
nt

∑nt
k=1 γt,k ≤ γt is controlled.

Theorem 9 and Algorithm 2 would be most useful when the functions ht,k can be written explicitly as
minimization problems. We thus spend the rest of this section to derive the form of ht,k in a special yet
practically important case, where the local cost function ft can be written as

ft(xt−1, xt; ξt) = min (Atξt + at)
Tyt

s.t. (xt−1, yt, xt) ∈ Ft,
(20)

for some compact convex set Ft ⊆ Xt−1×Rd′t ×Xt in each stage t ∈ T . It is straightforward to check that
ft in (20) is lower semicontinuous and convex in (xt−1, xt) for any ξt ∈ Ξt. To simplify our discussion,
we assume that ft(·, xt; ξt) is Mt-Lipschitz continuous, so by Proposition 6 Qt = QR

t for all t ∈ T . The
problem (20) is a common formulation in the usual MSCO literature, such as [41], where Ft is supposed
to be a polytope.

Proposition 11. Suppose the local cost function ft(xt−1, xt; ξt) is given in the form (20) and uniformly
Mt-Lipschitz continuous in the variable xt−1. Fix any point ξ̄t ∈ intΞt and let σt(ζ) := supξ∈Ξt

ζT(ξ − ξ̄t)

denote the support function of the set Ξt − ξ̄t. If the functions gt,j(ξt) = ξTt Bt,jξt + bTt,jξt are quadratic

with coefficients Bt,j ∈ Sδt⪰0 and bt,j ∈ Rδt for j = 1, . . . ,mt, then we can write

ht,k(xt−1, xt,k, ζt,k, λt) = min
yt,k,wt,j ,w′

t,j ,κj

(Atξ̄t + at)
Tyt,k −

mt∑
j=1

λt,j [ξ̄
T
t Bt,j ξ̄t + bTt,j ξ̄t] (21)

+ ζTt,k(ξ̄t − ξ̂t,k) +

mt∑
j=1

κt,j + σt(wt,0)

s.t.

mt∑
j=0

wt,j = ζt,k +AT
t yt,k −

mt∑
j=1

λt,j

[
2Bt,j ξ̄t + bt,j

]
,

κt,j ≥ 0, j = 1, . . . ,m,

wt,j ∈ Rδt , j = 0, . . . ,m,

κt,j + λt,j ≥ ∥(κt,j − λt,j , Ut,jwt,j)∥2, j = 1, . . . ,mt,

wt,j = Bt,jw
′
t,j , w′

t,j ∈ Rδt , j = 1, . . . ,m,

(xt−1, yt,k, xt,k) ∈ Ft.

Here, Ut,j is a δt × δt real matrix such that UT
t,jUt,j is the pseudoinverse of Bt,j.

Proof. Under the assumptions, we can write the function ht,k as

ht,k(xt−1, xt,k, ζt,k, λt) = sup
ξt∈Ξt

min
yt,k

(Atξt + at)
Tyt,k + ζTt,k(ξt − ξ̂t,k)−

mt∑
j=1

λt,j(ξ
T
t Bt,jξt + bTt,jξt)

s.t. (xt−1, yt,k, xt,k) ∈ Ft.

Note that the objective function in (21) is continuous in both yt and ξt,k, and the projection of Ft onto
the variables yt,k is compact. Thus by the minimax theorem [24], we can exchange the supremum and
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minimum operations

ht,k(xt−1, xt,k, ζt,k, λt) = min
yt,k

(Atξ̄t + at)
Tyt,k −

mt∑
j=1

λt,j [ξ̄
T
t Bt,j ξ̄t + bTt,j ξ̄t] + ζTt,k(ξ̄t − ξ̂t,k)

+ sup
ξt∈Rδt

ζTt,kξt − ιt(ξt) + yTt,kAtξt −
mt∑
j=1

λt,j(ξ
T
t Bt,jξt + 2ξ̄tBt,jξt + bTt,jξt)


s.t. (xt−1, yt,k, xt,k) ∈ Ft,

(22)

where ιt is the convex indicator function of the set Ξt − ξ̄t, the convex conjugate of which is the support
function σt by definition. If we further denote φt,j(ξt;λt,j) := λt,j(ξ

T
t Bt,jξt), the supremum can be written

using convex conjugacy asιt +

mt∑
j=1

φt,j(·;λt,j)

∗(
ζt,k +AT

t yt,k −
mt∑
j=1

λt,j

[
2Bt,j ξ̄t + bt,j

])
.

Note that for each j = 1, . . . ,mt, the parametrized conjugate function φ∗
t,j(·;λt,j) can be written as [39,

Example 11.10]

φ∗
t,j(w;λt,j) =


wTB†

t,jw

4λt,j
, if w ∈ rangeBt,j ,

+∞, otherwise,

= min
{
κt,j ≥ 0 : 4κt,jλt,j ≥ (Ut,jw)

T(Ut,jw), w = Bt,jw
′
}

= min
{
κt,j ≥ 0 : κt,j + λt,j ≥ ∥(κt,j − λt,j , Ut,jw)∥2, w = Bt,jw

′} ,
which is nonnegative and second-order conic representable. Here the convention for λt,j = 0 is consistent:

we have φ∗
t,j(0; 0) = 0 and φ∗

t,j(w; 0) = +∞ for any w ̸= 0 because (Ut,jBt,j)
T(Ut,jBt,j) = Bt,jB

†
t,jBt,j =

Bt,j , which implies that Ut,jw = Ut,jBt,jw
′ ̸= 0. Now using the formula for convex conjugate of sum of

convex functions, we haveιt +

mt∑
j=1

φt,j(·;λt,j)

∗

= cl
(
σt2φ

∗
t,1(·;λt,1)2 · · · 2φt,mt(·;λt,mt)

)
, (23)

where 2 denotes the infimal convolution (a.k.a. epi-addition) of two convex functions and cl denotes the
lower semicontinuous hull of a proper function. Since ξ̄t ∈ intΞt, the support function is coercive, i.e.,
lim∥w∥→∞ σt(w) = +∞. Moreover, each φ∗

t,j is bounded below as it is nonnegative. Therefore, the closure
operation is superficial and the convex conjugate of the sum is indeed lower semicontinuous [3, Proposition
12.14]. The rest of the proof follows from substitution of this convex conjugate expression (23) into the
supremum in (22).

3.4 Subproblem Oracles: Convex Uncertain Cost Functions

We provide another useful reformulation of the recursion (8) in this section, based on the following
assumption.

Assumption 4. The local cost function ft(xt−1, xt; ξt) is jointly convex in the state variable xt and the
uncertainty ξt, for any xt−1 ∈ Xt−1. Moreover, the uncertainty set Ξt is a pointed polyhedron and the
distance function dt,k(·) is polyhedrally representable.
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We first mention some direct consequences of Assumption 4. First, the value function Qt(xt−1; ξt)
would be a convex function in the uncertainty ξt for each state xt−1 ∈ Xt−1, although it may not be a
jointly convex function. Second, recall that a polyhedron is pointed if it does not contain any lines. Any
point in a pointed polyhedron can be written as a convex combination of its extreme points and rays [9,
Theorem 3.37]. Now under Assumption 4, we may define a lifted uncertainty set as Ξ̃t,k := {(ζ, ξ) : ξ ∈
Ξt, ζ ≥ dt,k(ξ)}. It is easy to see that Ξ̃t,k is also a pointed polyhedron. We denote the finite set of
extreme points of it as ext Ξ̃t,k = {(ζ̃l, ξ̃l)}l∈Et,k

where Et,k is the set of indices, and want to show that

the maximization in (8) can be taken over the finite set {(ζ̃l, ξ̃l)}l∈Et,k
in two important cases. First, we

consider problems with bounded uncertainty sets Ξt.

Proposition 12. Under Assumption 4, if we further assume that Ξt is bounded and all functions gt,j are
concave for j = 1, . . . ,mt, then the problem (8) can be equivalently reformulated as

Qt−1(xt−1) = min
λt,τt

mt∑
j=0

ρt,jλt,j +
1

nt

nt∑
k=1

τt,k (24)

s.t. λt ≥ 0,

τt,k ≥ Qt(xt−1; ξ̃l)− λt,0ζ̃l −
mt∑
j=1

λt,jgt,j(ξ̃l), for all l ∈ Et,k and k = 1, . . . , nt.

Proof. From the definition of lifted uncertainty set Ξ̃t, we have

sup
ξk∈Ξt

Qt(xt−1; ξk)− λt,0dt,k(ξk)−
mt∑
j=1

λt,jgt,j(ξk)


= max

ξk∈Ξt,ζk∈R

Qt(xt−1; ξk)− λt,0ζk −
mt∑
j=1

λt,jgt,j(ξk) : ζk ≥ dt,k(ξk)


= max

(ζk,ξk)∈Ξ̃t,k

Qt(xt−1; ξk)− λt,0ζk −
mt∑
j=1

λt,jgt,j(ξk)


= max

l∈Et,k

Qt(xt−1; ξ̃l)− λt,0ζ̃l −
mt∑
j=1

λt,jgt,j(ξ̃l)

 .

To see the last equality, note that if Ξt is bounded, then the only recession direction of the lifted uncertainty
set Ξ̃t,k is (1, 0). Since λt,0 ≥ 0, any maximum solution (ζ∗k , ξ

∗
k) lies in the convex hull of ext Ξ̃t,k.

Now the last equality follows from the convexity of the function Qt(xt−1; ξk) − λt,0ζk −
∑mt

j=1 λt,jgt,j(ξk)
in terms of ξk and ζk. Finally, the reformulation is done by replacing the maximum of finitely many
functions by its epigraphical representation τt,k ≥ Qt(xt−1; ξl) − λt,0ζl −

∑mt
j=1 λt,jgt,j(ξl) for all l ∈ Et,k

and k = 1, . . . , nt.

If the uncertainty sets Ξt are unbounded, then in general the supremum in (8) can take +∞ in some
unbounded directions of Ξt, even when the value function Qt(xt−1; ·) has finite values everywhere. To
avoid such situation, we consider the growth rate of the value function Qt(xt−1; ·) defined as

rt(xt−1) := lim sup
dt,k(ξt)→∞,

ξt∈Ξt

Qt(xt−1; ξt)−Qt(xt−1; ξ̂t,k)

dt,k(ξt)
≥ 0, (25)

for any real-valued Qt(xt−1, ·), where the limit superior is in fact independent of the choice of k = 1, . . . , nt,
and the inequality is due to that Qt(xt−1; ·) is assumed to be lower bounded by 0. Our convention is to
set rt(xt−1) ≡ 0 when Ξt is bounded. We now consider problems with unbounded uncertainty sets Ξt.
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Proposition 13. Under Assumption 4, if Qt(xt−1; ·) has finite growth rate rt(xt−1) and all functions
gt,j are bounded and concave for j = 1, . . . ,mt, then the problem (8) with any xt−1 ∈ Xt−1 such that
Qt−1(xt−1) < +∞ can be equivalently reformulated as

Qt−1(xt−1) = min
λt,τt

mt∑
j=0

ρt,jλt,j +
1

nt

nt∑
k=1

τt,k (26)

s.t. λt ≥ 0,

λt,0 ≥ rt(xt−1),

τt,k ≥ Qt(xt−1; ξ̃l)− λt,0ζ̃l −
mt∑
j=1

λt,jgt,j(ξ̃l), for all l ∈ Et,k and k = 1, . . . , nt.

Proof. We claim that the supremum

sup
ξk∈Ξt

{
Qt(xt−1; ξk)− λt,0dt,k(ξk)−

mt∑
j=1

λt,jgt,j(ξk)

}
< +∞

if and only if λt,0 ≥ rt(xt−1), for each k = 1, . . . , nt. Suppose λt,0 < rt(xt−1). By definition (25),

there exists a sequence {ξ(i)k }i∈N ⊆ Ξt and a constant ε > 0 such that dt,k(ξ
(i)
k ) → ∞ as i → ∞

and Qt(xt−1; ξ
(i)
k ) ≥ Qt(xt−1; ξ̂t,k) + (λt,0 + ε)dt,k(ξ

(i)
k ). Thus supi∈N{Qt(xt−1; ξ

(i)
k ) − λt,0dt,k(ξ

(i)
k ) −∑mt

j=1 λt,jgt,j(ξ
(i)
k )} ≥ supi∈N{εdt,k(ξ

(i)
k ) −

∑mt
j=1 λt,jgt,j(ξ

(i)
k )} = +∞ as gt,j(ξ

(i)
k ) for j = 1, . . . ,mt are

bounded.
Conversely, by definition (25), there exists a constant d̄ > dt,k(ξ̂t,k) such thatQt(xt−1; ξk) ≤ Qt(xt−1; ξ̂t,k)+

λt,0dt,k(ξk) for all ξk ∈ Ξt with dt,k(ξk) ≥ d̄. Thus we have

sup
ξk∈Ξt

Qt(xt−1; ξk)− λt,0dt,k(ξk)−
mt∑
j=1

λt,jgt,j(ξk)


≤ sup

dt,k(ξk)≤d̄

{
Qt(xt−1; ξk)− λt,0dt,k(ξk)

}
+ sup

ξk∈Ξt

mt∑
j=1

(
−λt,jgt,j(ξk)

)
= max

(ζk,ξk)∈Ξ̃t(d̄)

{
Qt(xt−1; ξk)− λt,0ζk

}
+ sup

ξk∈Ξt

mt∑
j=1

(
−λt,jgt,j(ξk)

)
< +∞,

where Ξ̃t(d̄) := {(ζ, ξ) : ξ ∈ Ξt, dt,k(ξ) ≤ d̄, ζ ≥ dt,k(ξ)}, and the maximum is finite because it is attained
on some extreme point (ζ̄k, ξ̄k) ∈ Ξ̃t(d̄) by convexity, so Qt(xt−1; ξ̄k)− λt,0ζ̄k < +∞.

Now from this claim, we see that for any xt−1 ∈ Xt−1 such that Qt−1(xt−1) < +∞, the problem (8)
can be formulated equivalently as

Qt−1(xt−1) = min
λt≥0

1

nt

nt∑
k=1

sup
(ζk,ξk)∈Ξt

Qt(xt−1; ξk)− λt,0ζk −
mt∑
j=1

λt,jgt,j(ξk)

+

mt∑
j=0

ρt,jλt,j

s.t. λt,0 ≥ rt(xt−1).

The supremum can be attained in Ξ̃′
t,k := conv(ext Ξ̃t,k): otherwise there exists a point (ζ̌k, ξ̌k) ∈ Ξ̃t,k\Ξ̃′

t,k

and (ζ̄k, ξ̄k) ∈ Ξ̃′
t,k such that

Qt(xt−1; ξ̌k)− λt,0ζ̌k −
mt∑
j=1

λt,jgt,j(ξ̌k) > Qt(xt−1; ξ̄k)− λt,0ζ̄k −
mt∑
j=1

λt,jgt,j(ξ̄k).
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In other words, (ζ̌k, ξ̌k) − (ζ̄k, ξ̄k) defines a strictly increasing ray of Ξ̃t, which by convexity implies that
the supremum is +∞, a contradiction. Using the convexity again as in the proof of Proposition 12, we
conclude that the supremum is indeed attained in ext Ξ̃t,k, and this completes the proof.

Proposition 13 reduces to Proposition 12 since the growth rate rt(xt−1) = 0 and any continuous
function gt,j over a bounded polyhedron is bounded. The finite growth rate condition is often satisfied,
especially when the value function Qt(xt−1; ·) is Lipschitz continuous. However, it is in general difficult
to estimate the growth rate (25). Fortunately, in some application problem, we can derive explicitly the
growth rate, as discussed in Section 4.3.

Note that the problems (24) and (26) are standard linear optimization problems in the variables λt

and τt. Thus by strong duality, we can write the dual problem as

Qt−1(xt−1) = max
θt,κt,k,l≥0

θtrt(xt−1) +

nt∑
k=1

∑
l∈Et,k

κt,k,lQt(xt−1; ξ̃l)

s.t.
∑

l∈Et,k

κt,k,l =
1

nt
, k = 1, . . . , nt,

θt +

nt∑
k=1

∑
l∈Et,k

ζ̃lκt,k,l ≤ ρt,0,

nt∑
k=1

∑
l∈Et,k

gt,j(ξ̃l)κt,k,l ≤ ρt,j , j = 1, . . . ,mt.

(27)

Consequently, any feasible dual solutions θt and κt,k,l to the dual (27) define a valid under-approximation

Qt−1(xt−1) ≥ θtrt(xt−1) +

nt∑
k=1

∑
l∈Et,k

κt,k,lQt(xt−1; ξ̃l), ∀xt−1 ∈ Xt−1. (28)

We now describe an SSSO implementation in Algorithm 3. Its correctness is verified in the following
corollary.

Corollary 14. Suppose that the growth rate function rt(·) is convex. Under the assumptions of of Propo-
sition 13, the outputs (Vt−1, vt−1, xt; γt) of Algorithm 3 satisfy the conditions in Definition 2.

Proof. The validness of Vt−1(·) follows directly from the inequality (28) and the fact that Q
t
(xt−1; ξk) ≤

Qt(xt−1; ξk) for any xt−1 ∈ Xt−1 and ξk ∈ Ξt by definition. To see the validness of vt−1, note that for any
k = 1, . . . , nt and l ∈ Et,k, we have

Qt(xt−1; ξ̃l) ≤ min
xt∈Xt

[
ft(xt−1, xt; ξ̃l) +Q

i
t(xt)

]
≤ ft(xt−1, xt,k,l; ξ̃l) +Q

i
t(xt,k,l)

≤ ft(xt−1, xt,k,l; ξ̃l) +Qi
t(xt,k,l) + γt,k,l

≤ Q
t
(xt−1; ξ̃l) + γt,k

by the definition of γt,k in Algorithm 3. Thus for any optimal solution λ∗
t to the problem (26) with

Qt(xt−1; ξ̃l) replaced by Q
t
(xt−1; ξ̃l), we have

max
l∈Et,k

Qt(xt−1; ξ̃l)− λ∗
t,0ζ̃l −

mt∑
j=1

λ∗
t,jgt,j(ξ̃l) ≤ max

l∈Et,k

Q
t
(xt−1; ξ̃l)− λ∗

t,0ζ̃l −
mt∑
j=1

λ∗
t,jgt,j(ξ̃l) + γt,k,

and consequently vt−1 ≥ Qt−1(xt−1) since λ∗
t is also a feasible solution to the minimization in (26).

Finally, the gap is controlled since vt−1 − Vt−1(xt−1) =
1
nt

∑nt
k=1 γt,k ≤ γt,k∗ = Qi

t(xt)−Qi
t(xt).
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Algorithm 3 Single Stage Subproblem Oracle Implementation Under Assumption 4

Require: over- and under-approximations Qi
t and Qi

t, a state xt−1 ∈ Xt−1, growth rate rt(xt−1), and

extreme point sets ext Ξ̃t,k for k = 1, . . . , nt

Ensure: a linear cut Vt−1, an overestimate vt−1, a state xt, and a gap value γt
1: for k = 1, . . . , nt do
2: for l ∈ Et,k do
3: Evaluate the approximate value function

Q
t
(xt−1; ξ̃l) := min

xt∈Xt

ft(xt−1, xt; ξ̃l) +Qi
t(xt)

with a minimizer stored as xt,k,l and a subgradient vector as ut,k,l ∈ ∂Q
t
(·; ξ̃l) at xt−1

4: Calculate γt,k,l := Q
i
t(xt,k,l)−Qi

t(xt,k,l)

5: Solve the problem (26) (or (24) if Ξt is bounded) with Qt(xt−1; ξ̃l) replaced by Q
t
(xt−1; ξ̃l) and store

the optimal value v∗t−1 and dual solutions θ∗t , κ
∗
t,k,l to (27)

6: for k = 1, . . . , nt do

7: Take any l∗ ∈ argmax
{
Qi

t(xt,k,l)−Qi
t(xt,k,l) : l ∈ Et,k

}
8: Set γt,k ← γt,k,l∗ and xt,k ← xt,k,l∗

9: Take a subgradient wt ∈ ∂rt(·) at xt−1

10: Set Vt−1(·)← v∗t−1 + θ∗tw
T
t (· − xt−1) +

∑nt
k=1

∑
l∈Et

κ∗t,k,lu
T
t,k,l(· − xt−1)

11: Set vt−1 ← v∗t−1 +
1
nt

∑nt
k=1 γt,k

12: Take any k∗ ∈ argmax{γt,k : k = 1, . . . , nt} and set xt ← xt,k∗ , γt ← γt,k∗

4 Numerical Experiments

In this section, we first introduce baseline models used for comparison against the DR-MCO model (1).
Then we present comprehensive numerical studies of two application problems: the multi-commodity
inventory problem with either uncertain demands or uncertain prices, and the hydro-thermal power system
planning problem with uncertain water inflows.

4.1 Baseline Models and Experiment Settings

For performance comparison, we introduce two types of baseline models in addition to the DR-MCO
with Wasserstein ambiguity sets (7). The first baseline model is the simple multistage robust convex
optimization (MRCO) model, where we simply consider the worst-case outcome out of the uncertainty
set Ξt in each stage t. Namely, the cost-to-go functions of the MRCO can be defined recursively as

QRobust
t−1 (xt−1) := sup

ξt∈Ξt

min
xt∈Xt

ft(xt−1, xt; ξt) +QRobust
t (xt), t = T, T − 1, . . . , 2. (29)

When the sum ft(xt−1, xt; ξt)+QRobust
t (xt) is jointly convex in the state xt and the uncertainty ξt for any

given xt−1, then the supremum can be attained at some extreme point of the convex hull of Ξt if it is finite.
In particular, if we have relatively complete recourse, (i.e., the sum is always finite for any given xt−1),
and if Ξt is a polytope, (i.e., it is a convex hull of finitely many points), then we can enumerate over the
extreme points of Ξt to find the supremum, which allows us to solve the simple MRCO by Algorithm 1.
In general, if the uncertainty set Ξt is unbounded, then the cost-to-go functions of the MRCO model can
take +∞ everywhere, so we will only use the baseline MRCO model when we have polytope uncertainty
sets Ξt.

The second type of baseline models consists of risk-neutral and risk-averse multistage stochastic convex
optimization (MSCO) models. The nominal probability measures in the MSCO models can be either the
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empirical measure ν̂t, or a probability measure associated with the sample average approximation (SAA)

of a fitted probability measure, which we denote as ν̃t =
1
n′
t

∑n′
t

k=1 δξ̃t,k . The main difference here is that the

outcomes in an SAA probability measure ξ̃t,1, . . . , ξ̃t,n′
t
can be different from those given by the empirical

measure ξ̂t,1, . . . , ξ̂t,nt . Moreover, we are able to take n′
t > nt for a potentially better training effect. To

ease the notation, we also allow ν̃t = ν̂t to happen when we describe the risk measures in the rest of this
section.

For the risk-averse MSCO models, we use the risk measure that is called conditional value-at-risk
(CVaR, a.k.a. average value-at-risk or expected shortfall). Its coherence leads to a dual representation [34],
that allows the risk-averse MSCO models solved by Algorithm 1 with a straightforward implementation
of SSSO. For simplicity, we only introduce the CVaR risk-averse MSCO based on this dual representation,
and any interested reader is referred to [43] for the primal definition and the proof of duality.

Given parameters α ∈ (0, 1) and β ∈ [0, 1], we define the cost-to-go functions associated with the
(α, β)-CVaR risk measures recursively for t = T, T − 1, . . . , 2 as

QCVaR
t−1 (xt−1) := max

pt∈PCVaR
t

n′
t∑

k=1

pt,k

{
min
xt∈Xt

ft(xt−1, xt; ξ̃t,k) +QCVaR
t (xt)

}
, (30)

where the ambiguity set is defined as

PCVaR
t :=

pt = (pt,1, . . . , pt,n′
t
) ∈ Rn′

t :

0 ≤ pt,k ≤
β

nt
+

1− β

αnt
,

k = 1, . . . , n′
t;

n′
t∑

k=1

pt,k = 1,

 . (31)

Note that when β = 1, the ambiguity set PCVaR
t = {( 1

n′
t
, . . . , 1

n′
t
)} has only one element corresponding

to the SAA probability measure ν̃t. Thus the CVaR risk-averse MSCO model (30) reduces to the risk-
neutral nominal MSCO in this case. Alternatively, if β = 0 and α ≤ 1

nt
, then the CVaR risk-averse MSCO

model 30 considers only the worst outcome of the SAA probability measure in each stage. We remark
that both the simple MRCO model (29) and the CVaR risk-averse MSCO model (30) can be solved by
Algorithm 1 since only finitely many outcomes need to be considered in each stage t. More details on the
SSSO for these two baseline models can be found in [48].

Our numerical experiments aim to demonstrate two attractive aspects of the DR-MCO models on some
application problems: better out-of-sample performance compared to the baseline models, and ability to
achieve out-of-sample performance guarantee with reasonable conservatism. For ease of evaluation, we
assume that we have the knowledge of the true underlying probability measure ν ∈ M(Ξ2 × · · · × ΞT ),
and thus the marginal probability measures νt := P t

∗(ν), where P t
∗ is the pushforward of the canonical

projection map P t : Ξ2 × · · ·ΞT → Ξt, for t = 2, . . . , T . Here, we do not restrict our attention to the
case that ν is a product of ν2, . . . , νT , i.e., the true probability measure is stagewise independent, so
our modeling (2) can be used as approximation for problems under general stochastic processes. The
experiments are then carried out in the following procedures with a uniform number of data points nt = n
in each stage.

1. Draw n iid samples from ν to form the empirical probability measures ν̂t;
2. Construct the baseline models and DR-MCO models using ν̂t;
3. Solve these models using our DDP algorithm (Algorithm 1) to a desired accuracy or within the

maximum number of iterations or computation time;
4. Draw N iid sample paths from ν and evaluate the performance profiles (mean, variance, and quan-

tiles) of the models on these sample paths.
In particular, we focus on limited or moderate training sample sizes n ∈ {5, 10, 20, 40}, while keeping our
sizes of evaluation sample paths to be relatively large (N = 100, 000). In each independent test run of
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our numerical experiment, the training samples used in a smaller-sized test are kept in larger-sized tests,
and the evaluation sample paths are held unchanged for all models and sample sizes.

Our algorithms and numerical examples are implemented using Julia 1.6 [8], with Gurobi 9.0 [22]
interfaced through the JuMP package (version 0.23) [12]. We use 25 single-core 2.1GHz Intel Xeon
processors (24 for the worker processes and 1 for the manager process) with 50 GByte of RAM to allow
parallelization of the SSSO (Algorithm 3).

4.2 Multi-commodity Inventory Problems

We consider a multi-commodity inventory problem which is adapted from the ones studied in [18, 48]. Let
J := {1, 2, . . . , J} denote the set of product indices. We first describe the variables in each stage t ∈ T .
We use xlt,j to denote the variable of inventory level, yat,j (resp. xbt,j) to denote the amount of express
(resp. standard) order fulfilled in the current (resp. subsequent) stage, and yrt,j to denote the amount of

rejected order of each product j ∈ J . Let xt := (xlt,1, . . . , x
l
t,K , xbt,1, . . . , x

b
t,K) be the state variable and

yt := (yat,1, . . . , y
a
t,K , yrt,1, . . . , y

r
t,K) be the internal variable for each stage t ∈ T . The stage t subproblem

can be defined through the local cost functions ft as

ft(xt−1, xt; ξt) := min
yt

CF +
∑
j∈J

(
Ca
t,jy

a
t,j + Cb

t,jx
b
t,j + Cr

j y
r
t,j + CH

j [xlt,j ]+ + CB
j [xlt,j ]−

)
(32)

s.t.
∑
j∈J

yat,j ≤ Bc,

xlt,j ≤ xlt−1,j + yat,j + xbt−1,j + yrt,j −Dt,j ,∀ j ∈ J ,
yat,j ∈ [0, Ba

j ], yrt,j ∈ [0, Dt,j ], ∀ j ∈ J ,

xbt,j ∈ [0, Bb
j ], xlt,j ∈ [Bl,−

j , Bl,+
j ], ∀ j ∈ J .

In the definition (32), we use Ca
t,j = Ca

t,j(ξt) (resp. C
b
t,j = Cb

t,j(ξt)) to denote the uncertain express (resp.

standard) order unit cost, CH
j (resp. CB

j ) the inventory holding (resp. backlogging) unit cost, Cr
j the

penalty on order rejections, CF ≡ 1 a positive fixed cost, Ba
j (resp. Bb

j) the bound for the express (resp.

standard) order, and Bl,−
j , Bl,+

j the bounds on the backlogging and inventory levels, Dt,j = Dt,j(ξt) the
uncertain demand for the product j, respectively. The first constraint in (32) is a cumulative bound Bc

on the express orders, the second constraint characterizes the change in the inventory level, and the rest
are bounds on the decision variables with respect to each product. The notations [x]+ := max{x, 0} and
[x]− := −min{0, x} are used to denote the positive and negative parts of a real number x. The initial
state is given by xb0,j = xl0,j = 0 for all j ∈ J . Before we discuss the details of the uncertain parameters

Ca
t,j , C

b
t,j or Dt,j , we make the following remarks on the definition (32).

First, it is easy to check that if we Ca
t,j , C

b
t,j (resp. Dt,j) are deterministic, then Assumption 4 (resp.

Assumption 3) is satisfied so we are able to apply the SSSO implementations discussed in Sections 3.4

and 3.3. Second, as the bounds Bl,−
j , Bl,+

j do not change with t and all orders can be rejected (i.e.,
yrt,j = Dt,j is feasible for all j ∈ J ), we see that the problem (32) has relatively complete recourse. Third,
the Lipschitz constant of the value functions Qt(·; ξt) is uniformly bounded by

∑
j∈J Cr

j , so Proposition 6
can be applied here if we set the regularization factors to be sufficiently large Mt ≥

∑
j∈J Cr

j . Besides, the
Lipschitz continuity guarantees the in-sample adjustable conservatism by Theorem 5. Last, since all state
variables are bounded, together with the above observation, we know by Theorem 7 that Algorithm 1
would always converge on our inventory problem (32).

4.2.1 Inventory Problems with Uncertain Demands

First, we consider the inventory problems with uncertain demands, where the goal is to seek a policy with
minimum mean inventory cost plus the penalty on order rejections. The uncertain demands are modeled
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by the following expression:

Dt,j(ξt) := D0

[
1 + cos

(
2π(t+ j)

τ

)]
+ D̄ · ξt,j , j ∈ J , t ∈ T . (33)

Here, D0 is a factor and τ is the period for the base demands, and D̄ is the bound on the uncertain
demands. The uncertain vector ξt ∈ [0, 1]J has its components described as follows: ξt,1 ∼ Uniform(0, 1),
and for j = 2, . . . , J , we have

ξt,j | ξt,j−1 ∼

Uniform(0, (1 + ξt,j−1)/2), if ξt,j−1 ≤
1

2
,

Uniform(ξt,j−1/2, 1), otherwise.
(34)

For the experiments, we consider J = 3 products and T = τ = 5 stages. The unit prices of each product
are deterministically set to Ca

t,j = 5 and Cb
t,j = 1 for all t ∈ T ; the inventory and holding costs are CH

j = 2

and CB
j = 10, and the rejection costs are Cr

j = 100, for each j ∈ J . The bounds are set to Bc = 15,

Ba
j = 10, Bb

j = 20, Bl,−
j = 10, and Bl,+

j = 100 for each j ∈ J . We pick the uncertainty parameters D0 = 5

and D̄ = 50. We terminate the DDP algorithm if it reaches 1% relative optimality or 2000 iterations.
For Wasserstein ambiguity sets, we only consider the radius constraint (i.e., mt = 0) with radius set to
be relative to the following estimation of the distance among data points:

d̂t := max
k=1,...,nt

Wt(ν̂t, δξ̂t,k) = max
k=1,...,nt

1

nt

∑
k′ ̸=k

∥ξ̂t,k − ξ̂t,k′∥. (35)

For the MSCO models, we directly use the empirical probability measures ν̂t for each t ∈ T . Further, we
consider parameters α ∈ {0.01, 0.05, 0.10} and β ∈ {0.0, 0.25, 0.50, 0.75} for the CVaR risk-averse MSCO
models.

Using the experiment procedure described in Section 4.1, we present the results of our data-driven
DR-MCO model with Wasserstein ambiguity sets and the baseline models.

Figure 1 (and Figures 5 and 6 in Section B) displays the out-of-sample cost quantiles of the nominal
stochastic model and the DR-MCOmodels with different Wasserstein radii, constructed from the empirical
probability measures ν̂t. Here we use the log radius −∞ to denote the nominal stochastic model, i.e.,
ρt,0 = 0. From the plot, we see that in small-sample case (nt = 5), the Wasserstein DR-MCO model
significantly reduces the top 10% out-of-sample evaluation costs when the radius is set to be 10−1.4−10−1.0

of the estimation d̂t. Moreover, the difference between top 10% and bottom 10% of the out-of-sample
evaluation costs becomes smaller around the 10−0.8 · d̂t even for larger sample sizes. However, the median
out-of-sample cost increases with the Wasserstein radius, suggesting that larger Wasserstein radii may
lead to overly conservative policies.

To better quantify the trade-off between mean and variance of the out-of-sample evaluation costs,
we present Figure 2 (and Figures 7 and 8 in Section B). Here, the lines connect the points representing
Wasserstein DR-MCO models from the smallest radius to the largest one. We say one policy dominates
another policy if the former has smaller mean and standard deviation than the latter does, and have the
following observations. First, in all cases, the policy from the robust model is dominated by some policy
from the Wasserstein DR-MCO model. Second, the policies from the nominal and CVaR MSCO models
are all dominated by some policy from the DR-MCO model, when the sample size is small (nt = 5). Last,
policies from the CVaR MSCO model could penetrate the frontier formed by policies from the DR-MCO
model, especially when the sample sizes increase to nt = 20 or 40.

4.2.2 Inventory Problems with Uncertain Prices

Now we discuss the inventory problems with uncertain prices and fixed demands. These problems can
be viewed as a simplified model for supply contract problems [28], where the goal is to estimate the total
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Figure 1: Out-of-sample Cost Quantiles for Different Radii on Multi-commodity Inventory with Uncertain
Demands
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Figure 2: Comparison against Baseline Models on Multi-commodity Inventory with Uncertain Demands
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cost of such supply contract and under-estimation would be very undesirable. The uncertain prices are
modeled by the following expression:

Cb
t,j(ξt) := ξt,j , Ca

t,j(ξt) := C1 · ξt,j , j ∈ J , t ∈ T . (36)

Here, C1 is a factor for express orders. The uncertain vector ξt ∈ RJ
≥0 follows a truncated multivariate

normal distribution:

ξt := max
{
Normal(µt, C̄ · Σt), C

}
, µt := C0

[
1 + sin

(
2π(t+ j)

τ

)]
, (37)

where the maximum is taken componentwise, C0 is a factor for base prices, τ is the period, C̄ is the
magnitude on the price variation, C is the lower bound on the prices, and the covariance matrix Σt

is randomly generated (by multiplying a uniformly distributed random matrix with its transpose) and
normalized to have its maximum eigenvalue equal to 1. The demands are deterministically given by

Dt,j := D0

[
1 + cos

(
2π(t+ j)

τ

)]
+ D̄, j ∈ J , t ∈ T . (38)

For the experiments, we consider J = 5 products, T = 10 stages, and the period τ = 5. The price
uncertainty has parameters C0 = 1, C1 = 5, C̄ = 0.1, and C = 0.001. We choose the demand parameters
D0 = 5 and D̄ = 10. The inventory and holding costs are CH

j = 1 and CB
j = 10, and the rejection

costs are Cr
j = 100, for each j ∈ J . The bounds are set to Bc = 15, Ba

j = 10, Bb
j = 20, Bl,−

j = 20,

and Bl,+
j = 20 for each j ∈ J . The Wasserstein radii in the DR-MCO models are set relatively with

respect to d̂t defined in (35). The baseline MSCO models are constructed in the same way as described in
Section 4.2.1. We do not consider the baseline MRCO model here as the uncertainty set Ξt is unbounded.
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Figure 3: In-sample and Out-of-sample Mean Costs on Multi-commodity Inventory with Uncertain Prices

We plot the in-sample objective costs and out-of-sample mean evaluation costs in Figure 3 (and
Figures 9 and 10 in Section B). The label Nominal refers to the nominal risk-neutral MSCO model using
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the empirical probability measures ν̂t; Wass(γ) refers to the Wasserstein DR-MCO model with radius
ρt,0 = γ · d̂t in each stage t ≥ 2; and CVaR(α, β) refers to the CVaR risk-averse MSCO model with
parameters α and β. As the uncertainty vectors now have an unbounded support, the robust model is
no longer applicable. We see that in all cases, the in-sample objective cost grows linearly with respect
to the Wasserstein distance, as predicted by Theorem 5. As the nominal stochastic model inevitably
under-estimates the mean evaluation costs, using Wasserstein DR-MCO models with a relative radius
γ ∈ [1.6, 2.4] depending on the sample size nt could achieve the out-of-sample performance guarantee in
almost all test cases. Moreover, none of the CVaR risk-averse model in the experiments could achieve
similar effect. Thus we believe that the Wasserstein DR-MCO models are particularly more favorable in
the context of supply contracts. It is however worth mentioning that we do not observe any improvement
of the mean or the variance of evaluation costs from the Wasserstein DR-MCO model over the baseline
models.

4.3 Hydro-thermal Power Planning Problem

We next consider the Brazilian interconnected power system planning problem described in [11]. Let
J = {1, . . . , J} denote the indices of four regions in the system, and L = ∪j∈JLj the indices of thermal
power plants, where each of the disjoint subsets Lj is associated with the region j ∈ J . We first describe
the decision variables in each stage t ∈ T . We use xlt,j to denote the stored energy level, yht,j to denote the
hydro power generation, and yst,j to denote the energy spillage, of some region j ∈ J ; and ygt,l to denote
the thermal power generation for some thermal power plant l ∈ L. For two different regions j ̸= j′ ∈ J ,
we use yet,j,j′ to denote the energy exchange from region j to region j′, and yat,j,j′ to denote the deficit

account for region j in region j′. Let xt := (xlt,1, . . . , x
l
t,J) be the state vector of energy levels, yt the

internal decision vector consisting of yst,j and yht,j for j ∈ J , ygt,l for all l ∈ L, yet,j,j′ and yat,j,j′ for any

j ̸= j′ ∈ J ; and (ξt,1, . . . , ξt,J) ∈ RJ
≥0 the uncertain vector energy inflows in stage t. We define the

DR-MCO by specifying cost functions ft as

ft(xt−1, xt; ξt) := min
yt

∑
j∈J

(
Csyst,j +

∑
l∈Lj

Cg
l y

g
t,l +

∑
j′ ̸=j

(
Ce
j,j′y

e
t,j,j′ + Ca

j,j′y
a
t,j,j′

))
(39)

s.t. xlt,j + yht,j + yst,j = xlt−1,j + ξt,j , ∀ j ∈ J ,

yht,j +
∑
l∈Lj

ygt,l +
∑
j′ ̸=j

(yat,j,j′ − yet,j,j′ + yet,j′,j) = Dt,j , ∀ j ∈ J ,

ygt,l ∈ [Bg,−
l , Bg,+

l ], ∀ l ∈ L,

xlt,j ∈ [0, Bl
j ], yht,j ∈ [0, Bh

j ], ∀ j ∈ J ,
yat,j,j′ ∈ [0, Ba

j,j′ ], yet,j,j′ ∈ [0, Be
j,j′ ], ∀ j, j′ ∈ J .

Here in the formulation, Cs denotes the unit penalty on energy spillage, Cg
l the unit cost of thermal power

generation of plant l, Ce
j,j′ the unit cost of power exchange from region j to region j′, Ca

j,j′ the unit cost
on the energy deficit account for region j in region k′, Dt,j the deterministic power demand in stage t
and region k, Bl

j the bound on the storage level in region j, Bh
j the bound on hydro power generation in

region j, Bg,−
l , Bg,+

l the lower and upper bounds of thermal power generation in plant l, Ba
j,j′ the bound

on the deficit account for region j in region j′ such that
∑

j′ ̸=j B
a
j,j′ = Dt,j , and Be

j,j′ the bound on the
energy exchange from region j to region j′. The first constraint in (39) characterizes the change of energy
storage levels in each region, the second constraint imposes the power generation-demand balance for each
region, and the rest are bounds on the decision variables. The initial state x0 and uncertainty vector ξ1
are given by data. In our experiment, we consider T = 13 and all other parameters used in this problem
can be found in [11].

For the problem (39), we have the following remarks. First, we always have the relatively complete
recourse as we allow spillage for extra energy inflows and deficit for energy demands in each region. Then
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it is straightforward to check that the Lipschitz constant of ft in either xt−1 or ξt can be bounded by the
maximum of the deficit cost Ca

j,j′ and the spillage penalty Cs. Second, as now the uncertainty has an

unbounded support RJ
≥0, we need to estimate the growth rate of the value function rt(xt−1). Note that if

for any region the inflow is sufficiently large such that all demands and energy exchanges have met their
upper bounds, then the only cost incurred by further increasing the inflow is simply the spillage penalty.
Thus we conclude that rt(xt−1) = Cs ·J , which is a constant function for all xt−1 ∈ Xt−1. Last, it is easy to
see that Assumption 4 holds for the problem (39) and that the state variables Xt is compact, so our SSSO
implementation (Algorithm 3) would guarantee the convergence of our DDP algorithm (Algorithm 1).

Now we assume that the true uncertainty can be described by the following logarithmic autoregressive
time series:

ln ξt − µt = φt(ln ξt−1 − µt−1) + εt, εt ∼ Normal(0,Σt), (40)

where the logarithm and the product are taken componentwise, and the parameters µt, φt ∈ RJ and
Σt ∈ SJ⪰0 are fit from historical data (see modeling details in [44] and coding details in [11]). Note
that (40) is not linear with respect to the uncertainty vectors ξt, and consequently it cannot directly
be reformulated into a stagewise independent MSCO (or a DR-MCO) [30]. While there are approaches
based on Markov chain DDP or linearized version of the model (40), they would require alteration of the
DDP algorithm or an increase in the state space dimension. Alternatively, we would like to study the
effects of the stagewise independence assumption [13] and the Wasserstein ambiguity sets in our DR-MCO
model (2).

We can see that under the assumption on the true uncertainty (40), each uncertainty ξt follows a
multivariate lognormal distribution. Thus instead of directly using the empirical probability measures ν̂t
in the MSCO models, we can fit lognormal distributions based on the empirical outcomes ξ̂t,1, . . . , ξ̂t,nt ,
from which we further construct the SAA probability measures ν̃t for the MSCO models. Moreover, we
can also use this SAA probability measure ν̃t to estimate the Wasserstein distance bound ρt,0 using

d̃t := Wt(ν̂t, ν̃t) = min
πk,k′≥0

nt∑
k=1

n′
t∑

k′=1

πk,k′ · dt(ξ̂t,k, ξ̃t,k′)

s.t.

n′
t∑

k′=1

πk,k′ =
1

nt
, k = 1, . . . , nt,

nt∑
k=1

πk,k′ =
1

n′
t

, k = 1, . . . , n′
t.

(41)

We then set theWasserstein radius to be ρt,0 = γ·d̃t for the relative factors γ = 10−2.0, 10−1.8, . . . , 10−0.2, 1.0.
For the baseline risk-averse MSCOmodels, we use CVaR parameters α = 0.1 and β ∈ {0.0, 0.1, . . . , 0.9, 1.0}.

Note that as the SAA resampling step is random, the performance of our DR-MCO models and
MSCO models would also be random. In addition, as it is often very challenging to solve the prob-
lem (39) to certain optimality gap, we choose to terminate it with a maximum of 1000 iterations, and
allow random sampling in the Algorithm 1, in which the noninitial stage step does not strictly follow
Definition 2 and guarantees only the validness. The benefit of such random sampling is that empirically
the under-approximations (hence the policies) often improve faster especially in the beginning stage of
the algorithms. We refer any interested readers to stochastic DDP literature (e.g., [2, 49, 26]) for more
details.

Due to the randomness of the models and the algorithm, we repeat each test 3 times with the same
empirical probability measures ν̂t in the experiment procedure. Then we plot the median values with
error bars indicating the maximum and minimum values in Figure 4 (and Figures 11 and 12 in Section B)
with increasing values of γ in the Wasserstein DR-MCO models and decreasing values of β in the CVaR
risk-averse MSCO models. First, we see that most of the Wasserstein DR-MCO models and the CVaR
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Figure 4: Comparison against Baseline Models on Hydro-thermal Power Planning

risk-averse MSCO models achieve better performances in either the mean or the standard deviation of
evaluation costs, compared with the risk-neutral MSCO model. This observation justifies the usage of
ambiguity sets or risk aversion when we approximate a stagewise dependent problem with stagewise
independent models. Second, when the sample sizes are small (nt = 5 or 10), we see that the Wasserstein
DR-MCO could outperform the CVaR risk-averse MSCO models (e.g., for γ ∈ [10−1.0, 10−0.6]) in the
out-of-sample mean cost. Third, as the sample size grows to nt = 20 or 40, while the policies obtained
from Wasserstein DR-MCO models are always dominated by those from the CVaR risk-averse MSCO
models, the latter could achieve both lower mean cost and standard deviation. Our conjecture is that for
larger sample sizes, the cost-to-go functions of the Wasserstein DR-MCO models have more complicated
shapes, thus making it hard to approximate in the limited 1000 iterations. This also suggests that the
CVaR risk-averse MSCO models could lead to good out-of-sample performances when an probability
distribution fitting is possible and the computation budget is limited.

5 Concluding Remarks

In this work, we study the data-driven DR-MCO models with Wasserstein ambiguity sets. We show that
with a sufficiently large Wasserstein radius, such DR-MCO model satisfies out-of-sample performance
guarantee with high probability even with limited data sizes. Using convex dual reformulation, we show
that the in-sample conservatism is linearly bounded by the radius when the value functions are Lipschitz
continuous in the uncertainties. To numerically solve the data-driven DR-MCO models, we design exact
SSSO subproblems for the DDP algorithms by exploiting either the concavity of the convexity of the
cost functions in terms of the uncertainties. We conduct extensive numerical experiments to compare the
performance of our DR-MCO models against MRCO models, risk-neutral and risk-averse MSCO models.
On the multi-commodity inventory problems with uncertain demands, we observe that the DR-MCO
models are able to provide policies that dominate those baseline model policies in the out-of-sample
evaluations when the in-sample data size is small. Moreover, on the inventory problems with uncertain
prices, the DR-MCO models could achieve out-of-sample performance guarantee with little compromise
of the objective value, which has not been achieved by the baseline models. On the hydro-thermal power
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planning problems with uncertain energy inflows, we see that with limited number of iterations, while the
policies from the DR-MCO models could achieve better out-of-sample performances than the risk-averse
MSCO models for small data sizes, they are dominated by the risk-averse MSCO models for larger data
sizes. We hope these numerical experiments could serve as benchmarks for future studies on DR-MCO
problems.
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A Finite-dimensional Dual Recursion for DR-MCO

In this section, we briefly review some general strong Lagrangian duality theory and then apply it to
derive our finite-dimensional dual recursion for our DR-MCO problems (2).

A.1 Generalized Slater Condition and Lagrangian Duality

Given an R-vector spaceM, we consider the following optimization problem.

vP := inf
µ∈C

φ0(µ) (42)

s.t. φj(µ) ≤ 0, j = 1, . . . , l,

φj(µ) = 0, j = l + 1, . . . ,m.

Here, C ⊂ M is a convex subset, the functions φj :M→ R ∪ {+∞} are convex for each j = 0, 1, . . . , l
and φj :M→ R are affine for each j = l+1, . . . ,m. Using a vector of multipliers λ ∈ Rm, the Lagrangian
dual problem of (42) can be written as

vD := sup
λ∈Λ

inf
µ∈C

φ0(µ) +
m∑
j=1

λjφj(µ)

 , (43)

where the admissible set for the multipliers is defined as Λ := {λ ∈ Rm : λj ≥ 0, ∀ j = 1, . . . , l}. We want
to show the strong duality between (42) and (43), given the following condition.

Definition 3. We say that the problem (42) satisfies the (generalized) Slater condition if the point η = 0
is in the relative interior of the effective domain of the convex value function associated with the primal
problem (42)

v(η) := inf
µ∈C

{
φ0(µ) : φj(µ) = ηj , j = 1, . . . , l, and φj(µ) ≤ ηj , j = l + 1, . . . ,m

}
, η ∈ Rm.

Recall that the effective domain of a convex function v : Rm → R∪{±∞} is defined as dom v := {η ∈
Rm : v(η) < +∞}, which is clearly a convex set. The affine hull of a convex set K ⊂ Rm is defined to
be the smallest affine space containing K, and the relative interior of K is the interior of K viewed as
a subset of its affine hull (equipped with the subspace topology). By convention, we have v(η) = +∞ if
there is no µ ∈ C such that φj(µ) ≤ ηj for all j = 1, . . . ,m.

Proposition 15. Assuming the Slater condition, the strong duality holds vP = vD with an optimal dual
solution λ∗ ≥ 0 (i.e., the supremum in the dual problem (43) is attained).

Proof. The weak duality vP ≥ vD holds with a standard argument of exchanging the inf and sup operators,
so it suffices to show that vP ≤ vD. If vP = −∞ then the inequality holds trivially, so we assume that
vP > −∞. Given the Slater condition, the value function v(η) of the primal problem (42) must be proper
v(η) > −∞ for all η ∈ Rm (ref. Theorem 7.2 in [38]) because η = 0 is in the relative interior of the
effective domain of v and v(0) > −∞. Thus it is also subdifferentiable at the point η = 0 (ref. Theorem
23.4 in [38]), i.e., there exists a subgradient vector λ∗ ∈ Rm such that v(η) ≥ v(0) − (λ∗)Tη for any
η ∈ Rm. Here, for each j = 1, . . . , l, the multiplier λ∗

j must be nonnegative since the function v(η) is not

increasing in the j-th component, so we have λ ∈ Λ. Since the inequality v(η)+(λ∗)Tη ≥ v(0) = vP holds
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for any η ∈ Rm, we have

vP ≤ inf
η∈Rm

{v(η) + (λ∗)Tη}

= inf
µ∈C

inf
η∈Rm

φ0(µ) +

m∑
j=1

λ∗
jηj : φj(µ) ≤ ηj , j = 1, . . . , l, φj(µ) = ηj , j = l + 1, . . . ,m


= inf

µ∈C

φ0(µ) +
m∑
j=1

λ∗
jφj(µ)

 ≤ vD.

The first equality here results from exchanging two infimum operators, while the second one follows by
taking ηj = φj(µ), due to the nonnegativity of λ∗

j for each j = 1, . . . , l, and replacing ηj with φj(µ) for
each j = l + 1, . . . ,m.

The strong Lagrangian duality guaranteed by the Slater condition is useful for many applications
because we do not have to specify the topology on the vector spaceM. The corollary below summarizes
a special case where there is no equality constraint, and all the inequality constraints can be strictly
satisfied.

Corollary 16. For problems (42) and (43) with l = m (no equality constraints), the strong duality holds
if there exists a point µ̄ ∈ C such that φj(µ̄) < 0, for each j = 1, . . . ,m.

Proof. Let εj := −φj(µ) > 0 for j = 1, . . . ,m, and U :=
∏m

j=1(−
εj
2 ,

εj
2 ) ⊂ Rm be an open hyperrectangle.

Then for any η ∈ U , we have v(η) ≤ φ0(µ̄) < +∞. Therefore, we know that the Slater condition holds
because 0 ∈ U ⊂ dom v, and the result follows from Proposition 15.

Assuming that M is normed and complete, we could have another generalized Slater condition for
problems with equality constraints. However, it is in general much harder to check so we do not base our
discussion in Section 2 on it.

A.2 Finite-dimensional Dual Recursion

Now we derive the finite-dimensional dual recursion for the DR-MCO (2). Recall that by the definition of
Wasserstein distance (5), the constraint Wt(p, ν̂t) ≤ ρt,0 is ensured if there exists a probability measure on
the product space πt ∈ MProb(Ξt × Ξt) with marginal probability measures P 1

∗ (πt) = p and P 2
∗ (πt) = ν̂t,

such that

ρt,0 ≥
∫
Ξt×Ξt

dt dπt =

∫
Ξt

∫
Ξt

dt(ξ, ξ
′) dπt(ξ|ξ′) dν̂t(ξ′) =

1

nt

nt∑
k=1

∫
Ξt

dt,k(ξ) dpt,k(ξ) (44)

where we define pt,k := πt(·|ξ̂t,k) ∈ Wt to be the probability measure conditioned on {ξ′ = ξ̂t,k} and

dt,k(ξ) := d(ξ, ξ̂t,k) for any ξ ∈ Ξt. Then we have p = 1
nt

∑nt
k=1 pt,k by the law of total probability. Due

to this condition, we define the following parametrized optimization problem for any ρ > 0 and any state
xt−1 ∈ Xt−1

qt(xt−1; ρ) := sup
pt,k∈Wt

1

nt

nt∑
k=1

∫
Ξt

Qt(xt−1; ξt) dpt,k(ξt) (45)

s.t.
1

nt

nt∑
k=1

∫
Ξt

dt,k dpt,k ≤ ρ,

1

nt

nt∑
k=1

∫
Ξt

gt,j dpt,k ≤ ρt,j , j = 1, . . . ,mt.
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From the discussion above, we see that Qt−1(xt−1) ≥ qt(xt−1; ρt,0). We next show that the equality holds
assuming the strict feasibility of the empirical measure ν̂t.

Let λ ∈ Rmt+1
≥0 denote a multiplier vector. Assumption 1 guarantees by Corollary 16 the strong duality

of the following Lagrangian dual problem

qt(xt−1; ρ) = min
λ≥0

ρλ0 +

mt∑
j=1

ρt,jλj +
1

nt

nt∑
k=1

sup
pt,k∈Wt

∫
Ξt

[
Qt(xt−1; ·)− λ0dt,k −

mt∑
j=1

λjgt,j

]
dpt,k


= min

λ≥0

ρλ0 +

mt∑
j=1

ρt,jλj +
1

nt

nt∑
k=1

sup
ξk∈Ξt

{
Qt(xt−1; ξk)− λ0dt,k(ξk)−

mt∑
j=1

λjgt,j(ξk)

} . (46)

where the second equality holds because each Dirac measure centered at ξ ∈ Ξt satisfies δξ ∈ Wt and each
pt,k ∈ Wt is a probability measure. We are now ready to show that Qt−1(xt−1) = qt(xt−1; ρt,0), which
implies Theorem 1.

Theorem 17. Under Assumption 1, in any stage t ≥ 2, we have qt(xt−1; ρ) is a concave function in ρ
for any fixed xt−1. Consequently, the expected cost-to-go function (2) satisfies Qt−1(xt−1) = qt(xt−1; ρt,0)
and thus can be equivalently rewritten as

Qt−1(xt−1) = min
λ≥0


mt∑
j=0

ρt,jλj +
1

nt

nt∑
k=1

sup
ξk∈Ξt

Qt(xt−1; ξk)− λ0dt,k(ξk)−
mt∑
j=1

λjgt,j(ξk)


 .

Proof. Let us fix any xt−1 ∈ Xt−1. The first assertion on the concavity of qt(xt−1; ρ) follows directly
from (46) since qt(xt−1; ·) is a minimum of affine functions. Moreover, from the definition (45) we see
that qt(xt−1; ρ) ≥ 0 for any ρ > 0 as the measures pt,k = δξ̂t,k satisfy the constraints and Qt(xt−1; ξt) ≥ 0

by the nonnegativity of the cost functions ft. If qt(xt−1; ρt,0) = +∞, then the equality holds trivially as
we already showed that Qt−1(xt−1) ≥ qt(xt−1; ρt,0). Otherwise, we must have qt(xt−1; ρ) < +∞ for any
ρ > 0 due to the concavity. Thus qt(xt−1; ·) is a continuous function on (0,+∞).

To prove the inequality Qt−1(xt−1) ≤ qt(xt−1; ρt,0), take any ε > 0. From the definition (5), the
constraint Wt(p, ν̂t) ≤ ρt,0 implies that there exists a probability measure πt ∈ MProb(Ξt × Ξt) with
marginal probability measures P 1

∗ (πt) = p and P 2
∗ (πt) = ν̂t such that

∫
dt dπt ≤ ρt,0 + ε. In other

words, we have Qt−1(xt−1) ≤ qt(xt−1; ρt,0 + ε). Now by the continuity of qt(xt−1; ·), we conclude that
Qt−1(xt−1) ≤ limε→0+ qt(xt−1; ρt,0 + ε) = qt(xt−1; ρt,0).

B Supplemental Numerical Results

In this section, we display supplemental results from our numerical experiments in Section 4.
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Figure 5: Out-of-sample Cost Quantiles for Different Radii on Multi-commodity Inventory with Uncertain
Demands, Additional Run 1
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Figure 6: Out-of-sample Cost Quantiles for Different Radii on Multi-commodity Inventory with Uncertain
Demands, Additional Run 2
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Figure 7: Comparison against Baseline Models on Multi-commodity Inventory with Uncertain Demands,
Additional Run 1
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Figure 8: Comparison against Baseline Models on Multi-commodity Inventory with Uncertain Demands,
Additional Run 2
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Figure 9: In-sample and Out-of-sample Mean Costs on Multi-commodity Inventory with Uncertain Prices,
Additional Run 1
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Figure 10: In-sample and Out-of-sample Mean Costs on Multi-commodity Inventory with Uncertain
Prices, Additional Run 2
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Figure 11: Comparison against Baseline Models on Hydro-thermal Power Planning, Additional Run 1
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Figure 12: Comparison against Baseline Models on Hydro-thermal Power Planning, Additional Run 2
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