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Abstract

We prove Bogomolov’s inequality on a normal projective variety in pos-

itive characteristic and we use it to show some new restriction theorems and

a new boundedness result. Then we redefine Higgs sheaves on normal va-

rieties and we prove restriction theorems and Bogomolov type inequalities

for semistable logarithmic Higgs sheaves on some normal varieties in an

arbitrary characteristic.

Introduction

Let X be a smooth projective variety of dimension n defined over an algebraically

closed field k and let H be an ample line bundle on X . Let E be a coherent torsion

free OX -module of rank r and let us set ∆(E ) := 2rc2(E )− (r−1)c1(E )2.

A well known Bogomolov’s theorem says that if k has characteristic zero and

E is slope H-semistable then
∫

X
∆(E )Hn−2 ≥ 0.

This theorem was first proven by F. Bogomolov in the surface case. The higher

dimensional case follows from restriction theorems for semistability (e.g., one can

1

http://arxiv.org/abs/2210.08767v3


use the Mehta–Ramanathan restriction theorem). An analogue of this theorem for

slope H-stable Higgs bundles was proven by C. Simpson in [Si] using analytic

methods. Simpson’s paper contains also applications of this result to uniformiza-

tion and the Miyaoka –Yau inequality in higher dimensions (although only in the

non-logarithmic case). Later, T. Mochizuki in [Mo] generalized this inequality

to the logarithmic case (he also used analytic methods). An algebraic proof of

Bogomolov’s inequality for Higgs sheaves appeared in [La5] and in the logarith-

mic case in [La6]. These papers contained also generalization of these results to

positive characteristic.

More recently, in characteristic zero the above results have been generalized

in [GKPT1] to projective varieties with klt singularities (but not in the logarithmic

case). In the mildly singular logarithmic case one also knows the Miyaoka–Yau

inequality (see [Ko, Chapter 10] and [La1] for the 2-dimensional case and [GT]

for higher dimensions).

One of the main motivations behind this paper is generalization of the above

results to positive characteristic and strengthening of the results known in the char-

acteristic zero. We also deal with semistability defined by a collection of nef line

bundles instead of one ample line bundle. An importance of considering this

generalized situation was first recognized by Y. Miyaoka in [Mi], who proved Bo-

gomolov’s inequality for torsion free sheaves on normal varieties smooth in codi-

mension 2 in case of collections of ample and one nef line bundles. However, it

is not completely clear to the author if the original proof of Mehta–Ramanathan’s

restriction theorem works so easily for multipolarizations on normal varieties as

claimed in [Mi, Corollary 3.13]. In case of one ample line bundle on a normal

projective variety defined over an algebraically closed field of characteristic zero,

restriction theorem for semistable sheaves has been proven by H. Flenner in [Fl].

However, it seems that his proof cannot be generalized to multipolarizations.

In case of smooth projective varieties the corresponding Bogomolov’s inequal-

ity in any characteristic was proven in [La2] (however, the proof uses a different,

new restriction theorem). Using resolution of singularities one can use this to

obtain Mehta–Ramanathan’s restriction theorem for multipolarizations on normal

varieties in characteristic zero. In case of Higgs sheaves on smooth projective va-

rieties, restriction theorem and Bogomolov’s inequality for multipolarizations has

been proven in [La5] and in the logarithmic case in [La6].

Our first main result is a strong restriction theorem for multipolarized normal

varieties in positive characteristic, analogous to [La2, Theorem 5.2 and Corollary

5.4]. One of the problems here is with the definition of Chern classes. Below we
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use Chern classes of reflexive sheaves defined in [La9] (see Subsection 1.3 for a

few basic properties).

Let X be a normal projective variety of dimension n defined over an alge-

braically closed field k of characteristic p > 0. Let us fix a collection (L1, ...,Ln−1)
of ample line bundles on X (in fact, we usually need weaker assumptions on this

collection). Let us set d = L2
1L2...Ln−1. Then we have the following result (see

Subsection 3.1 for the definition of βr).

THEOREM 0.1. Let E be a coherent reflexive OX -module of rank r ≥ 2. Let m be

an integer such that

m >

⌊
r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

dr(r−1)
+

(r−1)βr

dr

⌋

and let H ∈ |L⊗m
1 | be a normal hypersurface. If E is slope (L1, ...,Ln−1)-stable

then E |H is slope (L2|H, . . . ,Ln−1|H)-stable.

The above theorem implies the following boundedness result.

THEOREM 0.2. Let us fix some positive integer r, integer ch 1 and some real num-

bers ch 2 and µmax. Then the set of reflexive coherent OX -modules E of rank r with∫
X ch 1(E )L1...Ln−1 = ch 1,

∫
X ch 2(E )L1...L̂i...Ln−1 ≥ ch 2 for i = 1, ...,n−1, and

µmax(E )≤ µmax is bounded.

In the statement above it is not even clear that the number of Hilbert polynomi-

als of sheaves in the considered family is finite. In case L1 = ...= Ln−1 the above

theorem follows from [La2, Theorem 4.4]. If X is smooth then the above theo-

rem follows from [La2, Corollary 5.4]. But it is no longer the case if we consider

multipolarizations on normal varieties.

We also prove an analogue of Theorem 0.1 for (semi)stable Higgs sheaves on

normal varieties (see Theorem 5.4 for a more precise version).

THEOREM 0.3. Let D ⊂ X be an effective reduced Weil divisor and let (E ,θ) be

a reflexive logarithmic Higgs sheaf of rank r ≥ 2 on (X ,D). Let m0 be a non-

negative integer such that TX(log D)⊗L
⊗m0

1 is globally generated. Let m be an

integer such that

m > max

(⌊
r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

dr(r−1)
+

(r−1)βr

dr

⌋
,2(r−1)m2

0

)
.

and let H ∈ |L⊗m
1 | be a general divisor. If (E ,θ) is slope (L1, ...,Ln−1)-stable then

the logarithmic Higgs sheaf (E ,θ)|H on (H,D∩H) is slope (L2|H , . . . ,Ln−1|H)-
stable.
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This theorem generalizes [La5, Theorem 10] that works for smooth varieties

liftable to W2(k).

Finally, we use the above results to prove the following Bogomolov’s inequal-

ity for reflexive Higgs sheaves on mildly singular normal varieties. Note that,

unlike previously known results for singular varieties in characteristic zero, our

theorem holds for log pairs.

THEOREM 0.4. Let D ⊂ X be an effective reduced Weil divisor such that the pair

(X ,D) is almost liftable to W2(k) and it has F-liftable singularities in codimension

2. Then for any slope (L1, ...,Ln−1)-semistable logarithmic reflexive Higgs sheaf

(E ,θ) of rank r ≤ p we have
∫

X
∆(E )L2...Ln−1 ≥ 0.

For the meaning of almost liftable log pair and F-liftable singularities we refer

the reader to Definitions 1.3 and 1.5. If X is liftable to W2(k) then it is almost

liftable to W2(k) and almost all reductions of varieties from characteristic zero

satisfy this condition. To understand the second notion we note that a reduction

of quotient surface singularity is F-liftable in large characteristics (see Subsection

1.2). In fact, for a dense set of primes, reductions of surfaces with log canonical

singularities have F-liftable singularities (we do not prove this non-trivial fact as

we will not need it in the following).

Now let X be a normal projective variety of dimension n defined over an al-

gebraically closed field k of characteristic 0. Assume that X has at most quotient

singularities in codimension 2. Let us fix a collection (L1, ...,Ln−1) of ample line

bundles on X and set d = L2
1L2...Ln−1. Then Theorem 0.1 implies the following

restriction theorem:

THEOREM 0.5. Let E be a coherent reflexive OX -module of rank r ≥ 2. Let m be

an integer such that

m >

⌊
r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

dr(r−1)

⌋

and let H ∈ |L⊗m
1 | be a normal hypersurface. If E is slope (L1, ...,Ln−1)-stable

then E |H is slope (L2|H, . . . ,Ln−1|H)-stable.

Now let us also fix an effective reduced Weil divisor D ⊂ X such that the

pair (X ,D) is log canonical in codimension 2. Theorem 0.3 implies the following

result:
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THEOREM 0.6. Let (E ,θ) be a reflexive logarithmic Higgs sheaf of rank r ≥ 2 on

(X ,D). Let m0 be a non-negative integer such that TX(log D)⊗L
⊗m0

1 is globally

generated. Let m be an integer such that

m > max

(⌊
r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

dr(r−1)

⌋
,2(r−1)m2

0

)
.

and let H ∈ |L⊗m
1 | be a general divisor. If (E ,θ) is slope (L1, ...,Ln−1)-stable then

the logarithmic Higgs sheaf (E ,θ)|H on (H,D∩H) is slope (L2|H , . . . ,Ln−1|H)-
stable.

Theorem 0.6 generalizes [GKPT1, Theorem 5.22] and [GKPT2, Theorem

6.1], which are non-effective. In fact, we prove a stronger version of Theorem

0.6 (see Theorem 7.2) that works for all normal divisors H for which restriction

of (E ,θ) to H gives a logarithmic Higgs sheaf on (H,D∩H).
Similarly, Theorem 0.4 can be used to prove the following inequality general-

izing [GKPT1, Theorem 6.1].

THEOREM 0.7. For any slope (L1, ...,Ln−1)-semistable logarithmic reflexive Higgs

sheaf (E ,θ) we have ∫

X
∆(E )L2...Ln−1 ≥ 0.

Note that Bogomolov’s inequality for logarithmic Higgs sheaves has not been

known so far even on klt pairs. As in [Si] and [GKPT1] the above theorem implies

Miyaoka–Yau inequalities for singular log pairs. Here we show only some sim-

ple applications of Theorem 0.4 to general Miyaoka–Yau inequalities in positive

characteristic (see Section 6), leaving statement of general results in character-

istic zero to the interested reader. Let us remark that unlike previous works on

Chern number inequalities in higher dimensions (e.g., [GKPT1] and [GT]) our

method should work in much more general situations in characteristic zero, the

only obstacle being unknown behaviour of Chern classes of reflexive sheaves un-

der tensor operations on normal surfaces (see [La9]). In particular, an analogue

of Theorems 0.1, 0.2 and 0.3 should hold on any normal variety in characteristic

zero and an analogue of Theorem 0.4 should hold for any pair (X ,D) which is

log canonical in codimension 2. Appropriate versions are also expected if D is an

arbitrary effective Weil Q-divisor.

Here we should warn the reader that our definition of a reflexive Higgs sheaf

is weaker than the one used in [GKPT1] and [GKPT2]. More precisely, a loga-

rithmic reflexive Higgs sheaf (E ,θ) in our sense is a pair consisting of a coherent
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reflexive OX -module E and an OX -linear map TX(logD)⊗OX
E → E satisfying

additional integrability condition. In the situation of [GKPT1] this would corre-

spond to considering E → (E ⊗OX
ΩX)

∗∗ instead of E → E ⊗OX
(ΩX)

∗∗. This

is why in Section 4 we carefully explain differences between our approach and

[GKPT1]. D. Greb et al. use a different definition as they need to pullback Higgs

sheaves by birational morphisms to pass to a resolution of singularities. On the

other hand, they cannot take duals or pushforward Higgs sheaves by open em-

beddings as is allowed in our approach. In this paper we do not use Kebekus’s

pullback functor for reflexive differentials on klt pairs (see [Ke]) and we do not

pullback Higgs sheaves by birational morphisms (cf. Subsection 4.8). This allows

us to obtain stronger results, e.g., Bogomolov’s inequality for reflexive extensions

of semistable Higgs sheaves on the regular locus (cf. [GKPT1, Theorem 6.1]).

Further applications of the obtained results to non-abelian Hodge theory and

Simpson’s correspondence are postponed to [La10].

The structure of the paper is as follows. In the first section we gather some

auxiliary results and introduce some notation. In Section 2 we prove a few results

on Chern classes of reflexive sheaves on normal varieties in positive characteristic.

These resuts are used in Section 3 to prove generalized versions of Theorems

0.1 and 0.2. In Section 4 we study modules over Lie algebroids and generalized

Higgs sheaves on normal varieties. In Section 5 we prove generalized versions of

Theorems 0.3 and 0.4. In Section 6 we apply these results to obtain the Miyaoka–

Yau inequality for some normal varieties in positive characteristic. In Section 7

we show some applications of the obtained results in characteristic zero, proving

Theorems 0.5, 0.6 and 0.7. Section 8 contains an appendix in which we recall

construction of the inverse Cartier transform used in Section 5.

Notation

If f : X →Y is a morphism between normal schemes and E is a coherent reflexive

OY -module then we set

f [∗]E = ( f ∗E )∗∗.

If f is flat then we have f [∗]E = f ∗E . But if f is not flat then usually the canonical

map f ∗E → f [∗]E is not an isomorphism.

If X is a normal scheme of characteristic p then we denote by FX its absolute

Frobenius morphism. If E is a coherent reflexive OX -module then for any positive

integer m we set

F
[m]
X E = (Fm

X )[∗]E .
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1 Preliminaries

1.1 Reflexive sheaves

In this subsection X is an integral normal scheme, which is locally of finite type

over a field k. By Ref (OX) we denote the category of coherent reflexive OX -

modules. It is a full subcategory of the category Coh(OX) of coherent OX -

modules. The inclusion functor Ref (OX)→ Coh(OX) comes with a left adjoint

(·)∗∗ : Coh (OX)→ Ref (OX) given by the reflexive hull. The category Ref (OX)
comes with an associative and symmetric tensor product ⊗̂ given by

E ⊗̂F := (E ⊗OX
F )∗∗.

An open subset U ⊂X is called big if its complement X\U has codimension≥ 2 in

X . If we consider U as a subscheme of X then we talk about a big open subscheme.

The following well-known lemma can be found in [SP, Lemma 0EBJ].

LEMMA 1.1. Let j : U →֒ X be a big open subscheme. Then j∗ and j∗ define

adjoint equivalences of categories Ref (OX) and Ref (OU).

Since X is normal, its regular locus Xreg ⊂ X is a big open subset.

LEMMA 1.2. Let f : X → Y be a finite dominant morphism of integral locally

Noetherian normal schemes. If E is a coherent OY -module then we have a canon-

ical isomorphism

f [∗](E ∗)≃ ( f ∗E )∗.

Proof. We have a natural map

f ∗(E ∗) = f ∗H omOY
(E ,OY )→ H omOX

( f ∗E , f ∗OY ) = ( f ∗E )∗.

If E is torsion free then there exists a big open subset V ⊂Y such that EV is finite

locally free. Then the above map is an isomorphism on U = f−1(V ). This subset

of X is big because f is finite and dominant. Since ( f ∗E )∗ is reflexive, this induces

an isomorphism f [∗](E ∗)≃ ( f ∗E )∗.
If E is not torsion free, then the pullback of the quotient map E → Ẽ :=

E /Torsion is surjective. Hence the dual map ( f ∗Ẽ )∗ → ( f ∗E )∗ is an isomor-

phism. But if we apply the lemma to Ẽ then we get f [∗](E ∗) ≃ ( f ∗Ẽ )∗, which

proves the required assertion.
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1.2 F-liftable schemes

A Weil divisor on a locally Noetherian integral scheme X is a formal sum ∑aiDi,

where ai ∈ Z and Di are prime divisors. However, if all nonzero ai are equal

to 1 then we can consider an effective reduced Weil divisor as a reduced in-

duced scheme structure on D :=
⋃

{i:ai 6=0} Di ⊂ X . If f : X → S is a morphism

of schemes and X is an integral locally Noetherian normal scheme then we say

that a subscheme D ⊂ X is a relative effective reduced Weil divisor on X/S if D is

an effective reduced Weil divisor and D → S is a flat morphism.

A log pair (X ,D) is a pair consisting of a normal variety X defined over a

perfect field k and an effective reduced Weil divisor D on X (we allow D = 0). We

say that (X ,D) is log smooth if X is smooth and D is a normal crossing divisor.

In this subsection we assume that k has positive characteristic p. We also set

S = Speck and S̃ = SpecW2(k).

Definition 1.3. Let (X ,D) be a log pair and let us write D = ∑Di, where Di are

irreducible. We say that (X ,D) is

1. liftable to W2(k) if there exists a flat morphism X̃ → S̃ and a relative effective

Weil divisor D̃ = ∑ D̃i on X̃/S̃ such that (X ,Di) = (X̃ ×S̃ S, D̃i ×S̃ S) for all

i. Such a pair (X̃ , D̃) is called a lifting of (X ,D) to W2(k).

2. F-liftable if there exists a lifting (X̃ , D̃) of (X ,D) to W2(k) and a morphism

F̃X : X̃ → X̃ restricting to FX modulo p such that for each Di the image of

F̃∗
X ID̃i

→ OX̃ is contained in I
p

D̃i
. In this case we say that F̃X is compatible

with D̃ and we call F̃X an F-lifting of (X ,D) (compatible with (X̃, D̃)).

3. almost liftable to W2(k) if there exists a big open subset U ⊂ X such that

the pair (U,DU = D∩U) is liftable to W2(k). The corresponding lifting of

(U,DU) is called an almost lifting of (X ,D).

4. almost F-liftable if there exists a big open subset U ⊂ X such that the pair

(U,DU) is F-liftable. The corresponding lifting is called an almost F-lifting

of (X ,D).

Remark 1.4. 1. If U ⊂ X as in (3)-(4) exists then we can always find a big

open subset V ⊂ X such that (V,DV ) is log smooth and the corresponding

condition is satisfied.
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2. If (X ,D) is almost F-liftable and D=
⋃

Di, where Di ⊂X are prime divisors

then (Di,(
⋃

j 6=i D j)∩Di) is also almost F-liftable. This observation follows

from the corresponding fact for F-liftable log smooth pairs (see [AWZ2,

Lemma 3.2] for a simple proof).

We also need to introduce some notions of singularities in presence of liftings:

Definition 1.5. 1. If (X ,D) is liftable to W2(k) then we say that it is locally

F-liftable if there exists a lifting (X̃ , D̃) of (X ,D) such that every x ∈ X has

an open neighbourhood V ⊂ X for which there exists an F-lifting of (V,DV )
compatible with the lifting induced from (X̃ , D̃).

2. If (X ,D) is almost liftable to W2(k) then we say that it is locally F-liftable if

there exists a big open subset U ⊂ X and a lifting (Ũ , D̃U) of a (U,DU) such

that every point of x ∈ X has an open neighbourhood V ⊂ X for which there

exists an F-lifting of (V,DV ) compatible with the lifting of (V ∩U,DV∩U)
induced from (Ũ, D̃U).

3. If (X ,D) is almost liftable to W2(k) then we say that (X ,D) has F-liftable

singularities in codimension 2 if there exists a closed subset Z ⊂ X of codi-

mension ≥ 3 such that (X\Z,D\Z) is locally F-liftable.

Remark 1.6. 1. If (X ,D) is log smooth and (almost) liftable to W2(k) then it is

also locally F-liftable.

2. Note that if there exists a big open subset U ⊂ X such that the pair (U,DU =
D ∩U) is liftable to W2(k) and locally F-liftable then (X ,D) is almost

liftable to W2(k) but it does not need to be locally F-liftable.

A characteristic p scheme X is called F-split if there exists an OX -linear map

ϕ : (FX)∗OX → OX splitting F
♯

X : OX → (FX)∗OX . If Y1, ...,Ys are closed sub-

schemes of X then we say that they are compatibly F-split by ϕ if ϕ((FX)∗IY j
)⊂

IY j
for all j. For the basic facts about these notions we refer the reader to [BK].

In the proof of the next proposition we need the following generalization of the

second part of [BK, Proposition 1.3.11].

LEMMA 1.7. Let X be a smooth variety defined over an algebraically closed field

of characteristic p> 0. Let us assume that ϕ ∈H0(X ,ω
1−p
X )≃HomOX

((FX)∗OX ,OX)
splits X. Let Z(ϕ) = (p− 1)D+D′ be the divisor of zeroes of ϕ , where D and

D′ are effective divisors. Then D is reduced and ϕ splits X compatibly with all

irreducible components of D.
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Proof. Let Y be an irreducible component of D and let x be a smooth point of

the support of Z(ϕ) that belongs to Y . Then we can choose a system of local

coordinates (t1, ..., tn) at x such that the local equation of Y is given by t1 = 0.

Note that by assumption the local expansion of ϕ at x is given by

t
m(p−1)
1 g(t1, ..., tn)(dt1∧ ...∧dtn)

1−p,

where g(t1, ..., tn) is not divisible by t1 and m ≥ 1 is the multiplicity of Y in

D. Since ϕ splits X by [BK, Theorem 1.3.8] the coefficient of the monomial

(t1...tn)
p−1 in t

m(p−1)
1 g(t1, ..., tn) is nonzero. Hence m = 1 and the splitting ϕ is

compatible with Y at x. It follows that ϕ is compatible with Y at smooth points of

the support of Z(ϕ). So the required assertion follows from [BK, Lemma 1.1.7,

(ii)].

PROPOSITION 1.8. Let (X ,D) be a log pair.

1. If X is F-split compatibly with all irreducible components of D then (X ,D)
is liftable to W2(k).

2. If (X ,D) is almost F-liftable then X is F-split compatibly with all irre-

ducible components of D.

Proof. In case D = 0 the first part is contained in [La5, Proposition 4] and the

second one follows from [BTLM, Theorem 2] (see also [AWZ2, Section 2]). In

general, the first part follows from [AZ, Lemma 5.2.1]. By [BK, Lemma 1.1.7,

(ii) and (iii)] to prove the second part it is sufficient to prove that if (X ,D) is

log smooth and F-liftable then irreducible components of D are compatibly F-

split. Note that the F-splitting induced by a lifting F̃X that is compatible with D̃

vanishes to order (p−1) along D (see the proof of [AWZ2, Lemma 3.1]). So we

can conclude by Lemma 1.7.

Remark 1.9. If (X ,D) is log smooth then the fact that D is compatibly F-split is

claimed in [AWZ2, Lemma 3.1] but the proof there contains a gap. The problem

is that the Frobenius splitting coming from the lifting of the Frobenius morphism

to W2(k) does not need to come from (p−1)-th power of a section of H0(X ,ω−1
X ).

See below for an explicit example.

Example 1.10. Let us consider divisor D := (x1 = 0)⊂ X := Speck[x1,x2], where

k is a perfect field of characteristic p > 2. Let X̃ := SpecW2(k)[x1,x2] be a lifting
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of X to W2(k) and let D̃ := (x1 = 0)⊂ X̃ be a lifting of D ⊂ X . Let us consider a

lifting F̃X of FX given by x1 → x
p
1 and x2 → x

p
2 + px2

2. This lifting is compatible

with D̃. However, it is easy to see that the Frobenius splitting associated to F̃X is

given by

ϕ = x
p−1
1 x2(x

p−2
2 +2)(dx1 ∧dx2)

1−p ∈ H0(X ,ω1−p
X ),

so ϕ is not a (p− 1)-th power of a section of H0(X ,ω−1
X ). In fact, in this case

one cannot find any open subset U ⊂ X such that ϕ|U is a (p−1)-th power of a

section of H0(U,ω−1
U ). On U = {x2(x

p−2
2 + 2) 6= 0} one can multiply ϕ by an

invertible u ∈ Γ(U,O∗
U) so that u · ϕ|U = ψ p−1 for some ψ ∈ H0(U,ω−1

U ) and

apply [BK, Proposition 1.3.11] to this new splitting. This shows that u ·ϕ|U splits

U compatibly with D∩U . However, this is not sufficient to apply [BK, Lemma

1.1.7, (ii)] to conclude that ϕ splits X compatibly with D.

Example 1.11. The following example is motivated by [Zd, Example 5.1] (note

that the argument showing F-liftability works for p > 2; for p = 2 F-liftability

needs to be proven using [Zd, Corollary 4.12]).

Let us consider divisor D := (x1x2(x1 + x2) = 0) ⊂ X := Speck[x1,x2], where

k is a perfect field of characteristic p > 0. Then X̃ := SpecW2(k)[x1,x2] is a lifting

of X to W2(k) and it has a natural lifting F̃X of FX given by xi → x
p
i for i = 1,2.

Let D̃ := (x1x2(x1 + x2) = 0)⊂ X̃ be a lifting of D ⊂ X . If p > 2 then F̃X induces

a compatible lifting F̃X |D̃ : D̃ → D̃ of FD. However, F̃X is not compatible with D̃

as F̃∗
X D̃ = (x

p
1x

p
2(x

p
1 + x

p
2) = 0) is not equal to pD̃ = (x

p
1x

p
2(x1 + x2)

p = 0). In fact,

an explicit computation shows that (X ,D) is not F-liftable. Note however that

there exist splittings of X that are compatible with D. For example, one can take

splitting of X corresponding to

ϕ = x
p−1
1 x

p−1
2 (x1 + x2)

p−1(dx1 ∧dx2)
1−p ∈ H0(X ,ω

1−p
X ).

We need also the following logarithmic version of [AWZ, Theorem 3.3.6 (a),

(iii)]. The proof is analogous to the one from [AWZ] and we leave it to the reader.

LEMMA 1.12. Let (X ,D) be a log scheme and let U ⊂ X be a big open subset of X.

Let (X̃ , D̃) be a W2(k)-lifting of (X ,D) and let FŨ be an F-lifting of (Ũ, D̃U), where

Ũ = (U,OX̃ |U) and D̃U = (DU ,OD̃|DU
). Then there exists an F-lifting F̃X : X̃ → X̃

compatible with D̃.

The following theorem shows that an almost liftable log pair, which is locally

almost F-liftable is already liftable to W2 and locally F-liftable.
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THEOREM 1.13. Let (X ,D) be a log pair. Then the following conditions are

equivalent:

1. (X ,D) is liftable to W2(k) and it is locally F-liftable.

2. (X ,D) is almost liftable to W2(k) and it is locally F-liftable.

3. There exists a big open subset U ⊂ X and a lifting (Ũ , D̃U) of (U,DU =
D∩U) such that every x ∈ X has an open neighbourhood V ⊂ X for which

there exists an almost F-lifting of (V,DV ) compatible with the almost lifting

induced from (Ũ, D̃U).

Proof. Implications (1) ⇒ (2) and (2) ⇒ (3) are clear. So let us assume (3).

Then every point x ∈ X has an open neighbourhood V ⊂ X and a big open sub-

set V ′ ⊂ V ∩U with a compatible F-lifting FṼ ′ : (Ṽ ′, D̃′)→ (Ṽ ′, D̃′), where Ṽ ′ =
(V ′,OŨ |V ′) and D̃′ = (D′,OD̃|D′). By Lemma 1.12 we can extend FṼ ′ to F

Ṽ∩U
,

where Ṽ ∩U := (V ∩U,OŨ |V∩U). Moreover, F
Ṽ∩U

is compatible with D̃U∩V :=
(V ∩DU ,OD̃U

|V∩DU
).

By Proposition 1.8 we know that V is F-split compatibly with irreducible com-

ponents of DV and hence we have a canonical lifting of (V,DV ) to W2. Moreover,

this lifting extends lifting (Ṽ ∩U , D̃U∩V ). So again using Lemma 1.12 we can

extend F
Ṽ∩U

to an F-lifting of (V,DV ). This shows (2).

Now let us remark that for all x we can glue the obtained canonical liftings

(Ṽ , D̃V ) to (Ũ, D̃U), obtaining a lifting of (X ,D) to W2(k), which is locally F-

liftable. One can do that since an F-lifting is uniquely determined up to a canoni-

cal isomorphism (this is a log version of [AWZ2, Theorem 2.7]).

The above theorem immediately implies the following corollary:

COROLLARY 1.14. If (X ,D) is almost liftable to W2(k) and it has F-liftable sin-

gularities in codimension 2 then there exists a closed subset Z ⊂ X of codimension

≥ 3 such that (X\Z,D\Z) is liftable to W2(k) and it is locally F-liftable.

Remark 1.15. Note that it is usually much easier to lift to W2(k) a big open subset

of X than the whole X . For example, if X is a smooth projective surface then

any open subset U ( X is liftable to W2(k). This follows from the fact that the ob-

struction to lifting of U to W2(k) lies in H2(TU), which vanishes by Lichtenbaum’s

theorem (see [SP, Theorem 0G5F]). Theorem 1.13 says that if X is not liftable to

W2(k) then it is not locally (almost) F-liftable with respect to any lifting of U .
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Remark 1.16. If X is F-liftable then it does not need to have rational singularities.

In fact, [Zd, Example 5.2] shows that the cone over an ordinary elliptic curve is

F-liftable. This singularity is log canonical but not klt. Let us also recall that by

[AWZ2, Theorem 2.10, (c)] if X is F-liftable and G is a linearly reductive group

acting on X then the quotient X //G is also F-liftable.

Finally, note that by [Zd, Theorem 4.15] ordinary double points of the form

(x2
1 + ...+ x2

n = 0) ⊂ An
k for n ≥ 5 in characteristic p ≥ 3 are F-split but they are

not (locally) F-liftable. These singularities are not only log canonical but even

terminal. The hypersurface (x2
1 + ...+ x2

n = 0) ⊂ An
k is almost liftable to W2(k)

and it has F-liftable singularities in codimension 2 (since for n ≥ 4 it is regular in

codimension 2).

1.3 Intersection theory on normal varieties

Let X be a normal projective variety of dimension n defined over an algebraically

closed field k. In the following we write A1(X) for the class group of X , i.e., the

group of Weil divisors modulo rational equivalence on X . If E is a coherent OX -

module of rank r ≥ 1 then the sheaf detE = (
∧r

E )∗∗ is reflexive of rank 1 and

we can consider the associated class c1(E ) ∈ A1(X) of Weil divisors on X .

More generally, we write Am(X) for the group of m-cycles modulo rational

equivalence on X . Chern classes of vector bundles on X are considered as in [Fu]

as operations on A∗(X).
We say that two line bundles L and M on X are numerically equivalent if for

every proper curve C ⊂ X we have
∫

X
c1(L)∩ [C] =

∫

X
c1(M)∩ [C].

If L is numerically equivalent to OX then we say that L is numerically trivial. The

group of line bundles modulo numerical equivalence is denoted by N1(X). This

is a torsion free quotient of the Néron–Severi group of X . So by theorem of the

base, N1(X) is a free Z-module of finite rank.

Below we recall some results from [La9].

THEOREM 1.17. For any Weil divisors D1 and D2 on X there exists aZ-multilinear

symmetric form N1(X)×(n−2) →Q, (L1, ...,Ln−2)→ D1.D2.L1...Ln−2 such that:

1. If both D1 anf D2 are Cartier then

D1.D2.L1...Ln−2 =
∫

X
c1(OX(D1))∩c1(OX(D2))∩c1(L1)∩...∩c1(Ln−1)∩[X ].
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2. If D2 is a Cartier divisor then

D1.D2.L1...Ln−2 =

∫

X
c1(OX(D2))∩ c1(L1)∩ ...∩ c1(Ln−2)∩ [D1] ∈ Z.

3. If L1, ...,Ln−2 are very ample then for a general complete intersection sur-

face S ∈ |L1| ∩ ...∩|Ln−2| we have

D1.D2.L1...Ln−2 = D1|S.D2|S,

where on the right hand side we have Mumford’s intersection of Weil divi-

sors on a normal surface.

THEOREM 1.18. Assume that k has positive characteristic. For any normal pro-

jective variety X/k and for any coherent reflexive OX -module E on X there exists

a Z-multilinear symmetric form
∫

X ch 2(E ) : N1(X)×(n−2) → R such that:

1. If E is a vector bundle on X then

∫

X
ch 2(E )L1...Ln−2 =

∫

X
ch 2(E )∩ c1(L1)∩ ...∩ c1(Ln−2)∩ [X ].

2. If k ⊂ K is an algebraically closed field extension then

∫

XK

ch 2(EK)(L1)K...(Ln−2)K =
∫

X
ch 2(E )L1...Ln−2.

3. If n > 2 and L1 is very ample then for a very general hypersurface H ∈ |L1|
we have

∫

X
ch 2(E )L1...Ln−2 =

∫

H
ch 2(E |H)L2|H ...Ln−2|H .

4. If X is a surface then

∫

X
ch 2(E ) = lim

m→∞

χ(X ,F
[m]
X E )

p2m
.

5. We have
∫

X
ch 2(F

[∗]
X E )L1...Ln−2 = p2

∫

X
ch 2(E )L1...Ln−2.
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Once we have the above theorems we can define some other Chern numbers

as follows.

Definition 1.19. For any reflexive coherent OX -module E of rank r and any line

bundles L1, ...,Ln−2 on X we define the following Chern numbers:

∫

X
c2

1(E )L1...Ln−2 := c1(E )2.L1...Ln−2,

∫

X
c2(E )L1...Ln−2 :=

1

2

∫

X
c2

1(E )L1...Ln−2 −

∫

X
ch 2(E )L1...Ln−2,

∫

X
∆(E )L1...Ln−2 = 2r

∫

X
c2(E )L1...Ln−2 − (r−1)

∫

X
c2

1(E )L1...Ln−2.

By linearity we can also extend obtained forms to Q-line bundles. In this

way we get symmetric Q-multilinear forms N1(X)n−2
Q → R, where N1(X)Q =

N1(X)⊗Q.

1.4 Numerical groups of divisors

Let X be an irreducible normal scheme defined over an algebraically closed field

k. We say that a Weil divisor D is algebraically equivalent to zero if there exists

a smooth variety T , a Weil divisor G on X ×k T and k-points t1, t2 ∈ T such that

D = Gt1 −Gt2 in A1(X) (see [Fu, 10.3]). Then we write D ∼alg 0. The group

of algebraic equivalence classes of Weil divisors on X is denoted by B1(X). By

B̄1(X) we denote the quotient of B1(X) by torsion.

Let us recall that if X is proper then N1(X)≃ PicX/Pic τX . If X is also smooth

then N1(X)≃ B̄1(X) (see [Kl, Theorem 9.6.3]). We will need the following variant

of theorem of the base. It is a special case of [Ka, Théorème 3] but we provide a

different simple proof in the case used in the paper.

LEMMA 1.20. Let X be an irreducible, normal, proper scheme defined over an

algebraically closed field k. Then B̄1(X) is a free Z-module of finite rank.

Proof. By definition B̄1(X) is torsion free. So it is sufficient to prove that B̄1(X)
is finitely generated as a Z-module. By [dJ] there exists an alteration Ỹ → X

from a smooth projective variety Ỹ . Taking Stein’s factorization we get a proper

birational map g : Ỹ → Y to normal variety and a finite surjective morphism π :

Y → X .

15



Let E be the exceptional locus of g. Then using the localization sequence (see

[Fu, Example 10.3.4]) we get a surjective map

B1(Ỹ )։ B1(Ỹ\E)≃ B1(Y\g(E))≃ B1(Y ),

showing that B̄1(Y ) is finitely generated.

There exists a big open subset U ⊂ X such that π : V := π−1(U)→U is flat.

Then using flat pullback and the localization sequence (see [Fu, Proposition 10.3

and Example 10.3.4]) we have a well defined map

B1(X)≃ B1(U)
π∗

−→B1(V )≃ B1(Y )

induced by pullback of Weil divisors. Since π∗π∗ is multiplication by the degree

of π on A1(U) (and hence also on B1(U)), the induced map B̄1(X) → B̄1(Y ) is

injective. This implies that B̄1(X) is also finitely generated.

From now one in this subsection X is a normal projective variety of dimension

n defined over an algebraically closed field k.

LEMMA 1.21. If a Weil divisor D1 is algebraically equivalent to zero then for

every Weil divisor D2 and all line bundles L1, ...,Ln−2 we have

D1.D2.L1...Ln−2 = 0.

Proof. Let us first assume that X is a surface and let f : X̃ → X be a resolution of

singularities. By assumption there exists a smooth variety T , a Weil divisor G on

X ×k T and k-points t1, t2 ∈ T such that D = Gt1 −Gt2 in A1(X). Let us consider

the map g := f × Id : X̃ ×k T → X ×k T . One can use Mumford’s construction of

pullback to define g∗G that restricts to f ∗(Gt) on X̃ ×{t} for every t ∈ T (k). Then

we have f ∗D = (g∗G)t1 − (g∗G)t2 in A1(X̃)⊗Q. This implies that some multiple

of f ∗D1 is algebraically equivalent to zero and hence f ∗D1. f
∗D2 = D1.D2 = 0.

In general, by linearity of the intersection product it is sufficient to prove that

D1.D2.L1...Ln−2 = 0 assuming that L1, ...,Ln−2 are very ample. Let S ∈ |L1| ∩
...∩ |Ln−2| be a general complete intersection surface. Since cycles algebraically

equivalent to zero are preserved by Gysin homomorphisms (see [Fu, Proposition

10.3]) the restriction D1|S is algebraically equivalent to zero. So by Theorem 1.17

we have

D1.D2.L1...Ln−2 = D1|S.D2|S = 0.
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The above lemma shows that the intersection pairing (D1,D2,L1, ...,Ln−2)→
D1.D2.L1...Ln−2 induces a Z-multilinear map

B1(X)×B1(X)×N1(X)×(n−2) →Q.

Let us fix a collection L = (L2, ...,Ln−1) of nef line bundles on X . Assume that

there exists a nef line bundle L1 such that L1L2....Ln−1 is numerically non-trivial,

i.e., there exists some Weil divisor D such that D.L1...Ln−1 6= 0. Let us consider a

Q-valued intersection pairing 〈·, ·〉L : B1(X)×B1(X)→Q defined by

〈D1,D2〉L := D1.D2.L2...Ln−1.

Let us write NL(X) for the quotient of B1(X)modulo the radical of this intersection

pairing. Then we have an induced non-degenerate intersection pairing

〈·, ·〉L : NL(X)×NL(X)→Q.

LEMMA 1.22. Let us assume that L2
1L2...Ln−1 > 0. If D1.L1L2...Ln−1 = 0 then

D2
1L2...Ln−1 ≤ 0 with equality if and only if the class [D1] ∈ NL(X) is zero.

Proof. Let us fix some ample line bundle A. Then the Q-line bundles Li + εA are

ample for ε ∈Q>0. So by [La9, Lemma 2.6] we have inequalities

D2
1(L2+εA)...(Ln−1+εA) ·(L1+εA)2(L2+εA)...(Ln−1+εA)≤ (D1.(L1 + εA)...(Ln−1+ εA))2 .

Taking the limit when ε → 0, we get D2
1L2...Ln−1 ≤ 0. Now let us assume that

D2
1L2...Ln−1 = 0 but D1.D2.L2...Ln−1 6= 0 for some Weil divisor D2. Replacing

D2 by (L2
1L2...Ln−1)D2− (D2.L1...Ln−1)L1 we can assume that D2.L1...Ln−1 = 0.

Therefore we have

0 ≥ (tD1+D2)
2.L2...Ln−1 = 2tD1.D2.L2...Ln−1 +D2

2.L2...Ln−1,

which gives a contradiction with some t ∈ Z.

The following lemma generalizes [La9, Lemma 2.6].

LEMMA 1.23. NL(X) is a free Z-module of finite rank. If rkZNL(X) = s then the

intersection pairing 〈·, ·〉L has signature (1,s−1).
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Proof. By definition NL(X) is torsion free and it is a quotient of B1(X). So by

Lemma 1.20 NL(X) is also a free Z-module of finite rank. If L2
1L2...Ln−1 > 0 then

the second assertion follows from Lemma 1.22. In general, there exists some

Weil divisor D such that D.L1...Ln−1 6= 0. Without loss of generality we can

assume that D.L1...Ln−1 > 0. Then for every ample Cartier divisor H we have

H0(X ,OX(mH −D)) 6= 0 for m ≫ 0. So mHL1...Ln−1 ≥ D.L1...Ln−1 > 0. Then

M = (L1 +H) is ample and M2L2....Ln−1 > 0. Since the definition of NL(X) does

not depend on L1, we get the required assertion from the previous case.

As in [La8, Lemma 2.1] the above lemma implies the following result (in fact,

the first part follows from the proof of Lemma 1.23).

COROLLARY 1.24. If H is an ample line bundle then HL1L2...Ln−1 > 0. More-

over, if D.L1L2...Ln−1 = 0 for some Weil divisor D then then D2.L2...Ln−1 ≤ 0.

2 Several auxiliary results on Chern classes

In this section we prove several results on Chern classes of reflexive sheaves that

will be needed throughout the paper. We assume that X is a normal projective

variety of dimension n defined over an algebraically closed field k of characteristic

p > 0. We also fix a collection (L1, ...,Ln−1) of nef line bundles on X .

LEMMA 2.1. Let

0 → E1 → E → E2 → 0

be a left exact sequence of reflexive sheaves on X, which is also right exact on

some big open subset of X. Then we have

∫

X
ch 2(E )L1...Ln−2 ≤

∫

X
ch 2(E1)L1...Ln−2 +

∫

X
ch 2(E2)L1...Ln−2.

Moreover, if the above sequence is exact on X and locally split in codimension 2

then we have equality

∫

X
ch 2(E )L1...Ln−2 =

∫

X
ch 2(E1)L1...Ln−2 +

∫

X
ch 2(E2)L1...Ln−2.

Proof. Since numerical equivalence classes of nef line bundles are limits of classes

of ample Q-line bundles, we can by continuity assume that all Li are ample Q-line
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bundles. Passing to their multiples we can also assume that all Li are very ample

line bundles. By Theorem 1.18, (2) and (3), we can assume that the base field

k is uncountable and then by restricting to a very general complete intersection

surface S ∈ |L1| ∩ ...∩|Ln−2| we can assume that X is a surface.

Let U be a big open subset on which all E , E1 and E2 are locally free and let

j : U →֒ X denote the open embedding. Since X is normal, we can also assume

that U is contained in the regular locus Xreg of X . Since F∗
U is exact, the sequences

0 → (Fm
U )∗E1 → (Fm

U )∗E → (Fm
U )∗E2 → 0

are exact. This implies that sequences

0 → F
[m]
X E1 → F

[m]
X E → F

[m]
X E2

are exact and the cokernel of the last map is supported on the closed subset X\U

of codimension ≥ 2. So we get inequalities

χ(X ,F
[m]
X E ))≤ χ(X ,F

[m]
X E1)+χ(X ,F

[m]
X E2).

Dividing by p2m, passing to the limit and using Theorem 1.18, (3), we get the

required inequality. Equality follows from the fact that the above mentioned left

exact sequence becomes right exact if the sequence

0 → E1 → E → E2 → 0

is locally split.

Example 2.2. If the short exact sequence in the above lemma is not locally split,

then it is well known that the inequality can be strict. For example, if X ⊂ P3 is

the cone over a smooth quadric curve in P2 and D is its generator, then we have a

short exact sequence

0 → OX(−D)→ OX ⊕OX → OX(D)→ 0

with
∫

X
ch 2(OX ⊕OX) = 0 <

∫

X
ch 2(OX(−D))+

∫

X
ch 2(OX(D)) = D2 =

1

2
.

This example shows also that Chern classes of reflexive sheaves on a normal pro-

jective surface are not deformation invariant, i.e., they can change in flat families.
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Remark 2.3. Equality in Lemma 2.1 is one of the results that is not known for

general normal surfaces defined over an algebraically closed field of characteristic

0 (see [La9]).

LEMMA 2.4. Let E be a reflexive coherent OX -module and let E = N0 ⊃ N1 ⊃
...⊃ Ns = 0 be a filtration such that the associated graded GrN(E ) =

⊕
i Ni/Ni+1

is torsion free. Let F be the reflexive hull of GrN(E ). Then the following condi-

tions are satisfied:

1. c1(E ) = c1(F ),

2.
∫

X ch 2(E )L1...Ln−2 ≤
∫

X ch 2(F )L1...Ln−2,

3.
∫

X ∆(E )L1...Ln−2 ≥
∫

X ∆(F )L1...Ln−2.

Proof. The first condition is clear as c1(E ) = c1(GrN(E )) = c1(F ). We prove

the second condition by induction on the length s of the filtration. If s > 1 then N1

is reflexive as N0/N1 is torsion free. So by Lemma 2.1 we have

∫

X
ch 2(E )L1...Ln−2 ≤

∫

X
ch 2(N

1)L1...Ln−2 +
∫

X
ch 2((N

0/N1)∗∗)L1...Ln−2.

Applying the induction assumption to the filtration N1 ⊃ N2 ⊃ ...⊃ Ns = 0 of N1,

we get the required inequality. The last condition follows from (1) and (2).

LEMMA 2.5. Let E be a rank r reflexive coherent OX -module and let E = N0 ⊃
N1 ⊃ ... ⊃ Ns = 0 be a filtration such that all Ni/Ni+1 are torsion free. Let us

assume that L is numerically nontrivial and let us set Fi := (Ni/Ni+1)∗∗, ri :=
rkFi and µi := µL(Fi).

1. If d := L2
1L2....Ln−1 > 0 then

∫
X ∆(E )L2...Ln−1

r
≥ ∑

i

∫
X ∆(Fi)L2...Ln−1

ri
−

1

rd
∑
i< j

rir j

(
µi −µ j

)2
.

2. If µi = µL(E ) for all i then

∫
X ∆(E )L2...Ln−1

r
≥ ∑

i

∫
X ∆(Fi)L2...Ln−1

ri
.
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Proof. Passing to an algebraically closed and uncountable field extension of k we

can assume that k is uncountable. If we set F :=
⊕

Fi then Lemma 2.1 gives
∫

X
ch 2(F )L1...Ln−2 = ∑

i

∫

X
ch 2(Fi)L1...Ln−2.

After rewriting this gives

∫
X ∆(F )L2...Ln−1

r
=∑

i

∫
X ∆(Fi)L2...Ln−1

ri

−
1

r
∑
i< j

rir j

(
c1Fi

ri

−
c1F j

r j

)2

.L2...Ln−1.

But by the Hodge index theorem (see Lemma 1.23) we have

(
µi −µ j

)2
=

((
c1Fi

ri

−
c1F j

r j

)
.L1...Ln−1

)2

≥ d ·

(
c1Fi

ri

−
c1F j

r j

)2

.L2...Ln−1.

So (1) follows from Lemma 2.4, (3). Under assumption (2), Corollary 1.24 im-

plies that (
c1Fi

ri
−

c1F j

r j

)2

.L2...Ln−1 ≤ 0,

so again the inequality follows from Lemma 2.4, (3).

LEMMA 2.6. Let H ∈ |L1| be a normal variety and let T be a rank τ torsion free

OD-module and let i : H →֒ X be the closed embedding. Let

0 → G → E → i∗T → 0

be a short exact sequence of coherent OX -modules, where E is reflexive. Then
∫

X
∆(G )L2 . . .Ln−1 =

∫

X
∆(E )L2 . . .Ln−1 − τ(r− τ)L2

1L2 . . .Ln−1

+2(rc1(T )− τc1(i
∗
E )).i∗L2 . . . i

∗Ln−1.

Proof. Note that G is a coherent reflexive OX -module. Since both sides of our

inequality depend continuously on L2, ...,Ln−1 when considered as functions on

N1(X)Q, and the inequality does not change when we pass to multiples, we can

assume that L2, ...,Ln−1 are very ample. By Theorems 1.17 and 1.18 we can as-

sume that the base field k is uncountable and then we can restrict to a very general

complete intersection surface in |L2| ∩ ...∩ |Ln−1| to reduce the assertion to the

surface case. An exact sequence

(Fm
X )∗G → (Fm

X )∗E → (Fm
X )∗(i∗T )→ 0
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leads to

0 → F
[m]
X G → F

[m]
X E → Tm → 0,

where Tm is set-theoretically supported on H. Moreover, we have a canonical

map (Fm
X )∗(i∗T )→Tm, which is an isomorphism on the set where FX is flat, i.e.,

on Xreg. But X is a surface and H is a smooth curve, which is also a Cartier divisor.

So H is contained in Xreg and hence Tm ≃ (Fm
X )∗(i∗T ). This gives

∫

X
ch 2(E ) = lim

m→∞

χ(X ,F
[m]
X E )

p2m
= lim

m→∞

χ(X ,F
[m]
X G )

p2m
+ lim

m→∞

χ(X ,(Fm
X )∗(i∗T ))

p2m

=
∫

X
ch 2(G )+ lim

m→∞

χ(X ,(Fm
X )∗(i∗T ))

p2m
.

To compute the last limit, let us consider a resolution of singularities f : X̃ → X ,

which is an isomorphism on Xreg. So we have a closed embedding ĩ : H →֒ X̃ such

that f ◦ ĩ = i. Then we have a short exact sequence

0 → G̃ → f [∗]E → ĩ∗T → 0,

where G̃ is a rank r vector bundle. Then by the same arguments as above we have

lim
m→∞

χ(X ,(Fm
X )∗(i∗T ))

p2m
= lim

m→∞

χ(X̃ ,(Fm
X̃
)∗(ĩ∗T ))

p2m
=

∫

X̃
ch 2( f [∗]E )−

∫

X̃
ch 2(G̃ )

=

∫

X̃
ch 2(ĩ∗T ).

To compute
∫

X̃ ch 2(ĩ∗T ) one can use the Riemann–Roch theorem on X̃ and on H

to get

degH T + τχ(OH) = χ(H,T ) = χ(X , ĩ∗T ) =

∫

X̃
ch 2(ĩ∗T̃ )−

1

2
c1(ĩ∗T̃ )KX̃

Since c1(ĩ∗T )= τH and χ(OH)=−1
2
H(KX̃ +H) (e.g, because KH = (KX̃ +H)|H

and degKH =−2χ(OH)), we get
∫

X̃
ch 2(ĩ∗T ) = degH T −

τ

2
H2.

Summing up, we get
∫

X
ch 2(E ) =

∫

X
ch 2(G )+degH T −

τ

2
L2

1.

After rewriting, using 2r
∫

X ch 2(E ) = c2
1(E )−

∫
X ∆(E ), 2r

∫
X ch 2(G ) = c2

1(G )−∫
X ∆(G ) and c1(G ) = c1(E )− τH, we get the required formula.
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3 Boundedness on normal varieties in positive char-

acteristic

In this section we prove strong restriction theorems for semistable sheaves and we

show some boundedness results. In particular we prove Theorems 0.1 and 0.2.

Let X be a normal projective variety of dimension n defined over an alge-

braically closed field k of characteristic p > 0 and let L = (L1, ...,Ln−1) be a col-

lection of nef line bundles on X .

3.1 Slope semistability and its behaviour under pullbacks

For a coherent OX -module E of positive rank r we define its slope with respect to

the collection L by

µL(E ) :=
c1(E ).L1...Ln−1

r
.

Note that by definition µL(E
∗∗) = µL(E ).

We say that a coherent OX -module E is slope L-semistable if either it is torsion

or for every coherent OX -submodule F ⊂ E of positive rank we have µL(F ) ≤
µL(E ). We say that E is strongly slope L-semistable if for all m ≥ 0 the Frobenius

pullbacks (Fm
X )∗E are slope L-semistable. In this section we usually consider

slope semistability with respect to our fixed collection L (unless explicitly stated).

So for simplicity of notation we usually ignore dependence of slopes on L.

Every coherent OX -module E of positive rank admits the Harder–Narasimhan

filtration 0 ⊂ E0 ⊂ E1 ⊂ ... ⊂ Es = E . It is a unique filtration by coherent OX -

submodules such that E0 is torsion, quotients E i := Ei/Ei−1 are torsion free and

slope L-semistable for i = 1, ...,s and we have µ1 = µ(E 1)> ... > µs = µ(E s). In

the following we write µmax(E ) for µ1 and µmin(E ) for µs.

The proof of [La2, Theorem 2.7] works on normal varieties and it gives the

following result:

THEOREM 3.1. Let E be a coherent OX -module of positive rank. Then there exists

m0 such that for all m ≥ m0 all quotients in the Harder–Narasimhan filtration of

(Fm
X )∗E are strongly slope L-semistable.

For a coherent reflexive OX -module E we set

Lmax(E ) = lim
m→∞

µmax(F
[m]
X E )

pm
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and

Lmin(E ) = lim
k→∞

µmin(F
[m]
X E )

pm
.

By the above theorem these numbers are well defined rational numbers.

Now choose a nef Cartier divisor A on X such that TX(A) is globally generated.

Then [La2, Corollary 2.5] still holds and it implies the following lemma.

LEMMA 3.2. For any coherent reflexive OX -module E of rank r we have

max(Lmax(E )−µ(E ),µ(E )−Lmin(E ))≤ AL1...Ln−1.

As in [La2] we also set

βr :=

(
r(r−1)

p−1
AL1 . . .Ln−1

)2

.

3.2 Restriction theorem and Bogomolov’s inequality

We define an open cone in NL(X)

K+
L = {D ∈ NL(X) : D2.L2 . . .Ln−1 > 0 and D.L1L2 . . .Ln−1 ≥ 0}.

As in the smooth case, by Lemma 1.23 this cone is “self-dual” in the following

sense:

D ∈ K+
L if and only if D.D′.L2 . . .Ln−1 > 0 for all D′ ∈ K+

L \{0}.

Let us fix a coherent reflexive OX -module E . Using Lemma 2.5 one can follow

the proofs of [La2, Theorems 3.1, 3.2, 3.3 and 3.4] and get the following results:

THEOREM 3.3. Assume that L1 is very ample and the restriction of E to a general

divisor H ∈ |L1| is not slope (L2|H , . . . ,Ln−1|H)-semistable. Let ri and µi denote

ranks and slopes (with respect to (L2|H , . . . ,Ln−1|H)) of the Harder–Narasimhan

filtration of E |H . Then

∑
i< j

rir j(µi−µ j)
2 ≤ d ·

∫

X
∆(E )L2 . . .Ln−1+2r2(Lmax(E )−µ(E ))(µ(E )−Lmin(E )),

where d = L2
1L2....Ln−1.
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THEOREM 3.4. If E is strongly slope (L1, . . . ,Ln−1)-semistable then
∫

X
∆(E )L2 . . .Ln−1 ≥ 0.

THEOREM 3.5. If E is slope (L1, . . . ,Ln−1)-semistable then

L2
1L2 . . .Ln−1 ·

∫

X
∆(E )L2 . . .Ln−1 +βr ≥ 0.

THEOREM 3.6. If L2
1L2 . . .Ln−1 ·

∫
X ∆(E )L2 . . .Ln−1 + βr < 0 then there exists a

rank 1 ≤ r′ < r saturated reflexive subsheaf E ′ ⊂ E such that
(

c1(E
′)

r′
− c1(E )

r

)
lies

in K+
L .

The only difference in proofs with respect to [La2] is that one should con-

sider F
[m]

X E instead of (Fm
X )∗E . Also in the surface case one needs to use [La9,

Corollary 6.6] instead of using the arguments of [La2] that do not work for normal

surfaces.

3.3 Strong restriction theorems

In this subsection we assume that d = L2
1L2...Ln−1 > 0. As in [La2, Theorem

5.1], Lemma 2.5 and Theorems 3.4 and 3.5 imply the following Bogomolov’s

inequality for all reflexive sheaves.

THEOREM 3.7. If E is a coherent reflexive OX -module then

L2
1L2 . . .Ln−1 ·

∫

X
∆(E )L2 . . .Ln−1 + r2(Lmax(E )−µ(E ))(µ(E )−Lmin(E ))≥ 0

and

L2
1L2 . . .Ln−1 ·

∫

X
∆(E )L2 . . .Ln−1+r2(µmax(E )−µ(E ))(µ(E )−µmin(E ))+βr ≥ 0.

This immediately implies the following corollary.

COROLLARY 3.8. Let us fix some positive integer r and some non-negative ratio-

nal number α . There exists some constant C = C(X ,L,r,α) depending only on

X, L, r and α such that for every coherent reflexive OX -module E of rank r with

µmax,L(E )−µL(E )≤ α we have
∫

X
∆(E )L2...Ln−1 ≥C.
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As in [La2] we can use Theorem 3.7 to prove strong restriction theorems for

reflexive sheaves on normal varieties. We take this opportunity to show proof of a

stronger result that combines [La2, Theorem 5.2] with [La8, Theorem 3.7].

THEOREM 3.9. Let E be a coherent reflexive OX -module of rank r ≥ 2. Assume

that E is slope (L1, ...,Ln−1)-stable. Let H ∈ |L⊗m
1 | be an irreducible normal

divisor.

1. If

m >

⌊
r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

dr(r−1)
+

(r−1)βr

dr

⌋

then E |H is slope (L2|H , ...,Ln−1|H)-stable.

2. If

m ≤

⌊
r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

dr(r−1)
+

(r−1)βr

dr

⌋

then

µmax,L2|H ,...,Ln−1|H (E |H)−µL2|H ,...,Ln−1|H (E |H)≤

1

2r

(
d

(∫

X
∆(E )L2 . . .Ln−1 −

r

r−1
m

)
+

1

(r−1)2
+βr

)
.

Proof. Let i : H →֒ X denote the closed embedding. Since E is reflexive, i∗E is

a torsion free OH-module. Let S be a saturated subsheaf of i∗E of rank ρ . Set

T := (i∗E )/S and let E ′ be the kernel of the composition E → i∗(i
∗E )→ i∗T .

Since T is a torsion free OH-module, E ′ is a coherent reflexive OX -module and

we have two short exact sequences:

0 → E
′ → E → i∗T → 0

and

0 → E (−H)→ E
′ → i∗S → 0.

Lemma 2.6 implies that

∫

X
∆(E ′)L2 . . .Ln−1 =

∫

X
∆(E )L2 . . .Ln−1 −ρ(r−ρ)H2L2 . . .Ln−1

+2(rc1(T )− (r−ρ)c1(i
∗
E )).L2|H . . .Ln−1|H .
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Since E ′ ⊂ E and E is slope (L1, ...,Ln−1)-stable we have

µmax(E
′)−µ(E ′) =

r−ρ

r
HL1...Ln−1+µmax(E

′)−µ(E )≤
r−ρ

r
md−

1

r(r−1)
.

Similarly, since E (−H)⊂ E ′ we have

µ(E ′)−µmin(E
′) =

ρ

r
HL1...Ln−1 +µ(E (−H))−µmin(E

′)≤
ρ

r
md −

1

r(r−1)
.

So Theorem 3.7 gives

0 ≤d ·
∫

X
∆(E ′)L2 . . .Ln−1 + r2(µmax(E

′)−µ(E ′))(µ(E ′)−µmin(E
′))+βr

≤d ·
∫

X
∆(E )L2 . . .Ln−1 −ρ(r−ρ)m2d2 −2rρ(µ(S )−µ(i∗E ))

+

(
ρmd −

1

r−1

)(
(r−ρ)md−

1

r−1

)
+βr.

If µ(S )≥ µ(i∗E ) then we get

2(r−1)

d
(µ(S )−µ(i∗E ))+m ≤

r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

dr(r−1)
+

(r−1)βr

dr
,

which implies the required assertions.

Remark 3.10. The above proof works also for an arbitrary irreducible normal di-

visor D ⊂ X , which is nef and Cartier. In this way one gets restriction theorems

taking into account the difference of directions of lines given by classes of D and

L1 in NL(X). We leave the details of proof to the interested reader.

As in [La2, Corollary 5.4] the above theorem together with Lemma 2.5 implies

the following result:

COROLLARY 3.11. Let E be a coherent reflexive OX -module of rank r ≥ 2. As-

sume that E is slope (L1, ...,Ln−1)-semistable and let H ∈ |L⊗m
1 | be an irreducible

normal divisor. Let 0 = E0 ⊂ E1 ⊂ ... ⊂ Es = E be a Jordan–Hölder filtration of

E and let us assume that all (Ei/Ei−1)|H are torsion free.
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1. If

m >

⌊
r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

dr(r−1)
+

(r−1)βr

dr

⌋

then E |H is slope (L2|H , ...,Ln−1|H)-semistable.

2. If

m ≤

⌊
r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

dr(r−1)
+

(r−1)βr

dr

⌋

then

µmax(E |H)≤ µ(E )+
1

2r

(
d

(∫

X
∆(E )L2 . . .Ln−1 −

r

r−1
m

)
+

1

(r−1)2
+βr

)
.

Proof. Note that all Ei are reflexive as they are saturated in E . Let us set Fi :=
(Ei/Ei−1)

∗∗ and ri = rkFi. By Lemma 2.5 we have

∫
X ∆(E )L2...Ln−1

r
≥ ∑

i

∫
X ∆(Fi)L2...Ln−1

ri
.

In the first case either ri = 1 or ri ≥ 2 and

m >

⌊
ri −1

ri

∫

X
∆(Fi)L2 . . .Ln−1 +

1

dri(ri −1)
+

(ri −1)βri

dri

⌋
.

Note that in the above inequality we need to worry about the term 1
dri(ri−1) , which

can be larger than 1
dr(r−1) . However, the difference is compensated by the other

terms unless both of them are 0 in which case ⌊ 1
dri(ri−1)⌋= 0. Applying Theorem

3.9 we see that Fi|H is stable with the same slope as E |H . Since (Ei/Ei−1)|H are

torsion free, the sequences

0 → Ei−1|H → Ei|H → Fi|H

are exact. Now a simple induction show that all Ei|H are slope (L2|H, ...,Ln−1|H)-
semistable.

The second case is completely analogous. We just need to use the fact that

µmax(E |H)≤ max
i

µmax(Fi|H).
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Remark 3.12. The above results give also restriction theorems for torsion free

sheaves. More precisely, let E be a coherent torsion free OX -module, which is

slope (L1, ...,Ln−1)-(semi)stable. Then its reflexive hull E ∗∗ is also slope (L1, ...,Ln−1)-
(semi)stable, so we can apply Theorem 3.9 and Corollary 3.11 to E ∗∗. If E |H is

torsion free then it is slope (L2|H, ...,Ln−1|H)-(semi)stable if (and only if) E ∗∗|H
is slope (L2|H , ...,Ln−1|H)-(semi)stable.

3.4 Boundedness

In this subsection we assume that n≥ 2 and all line bundles L1, ...,Ln−1 are ample.

For α ∈ B1(X) we write α ∼ 0 if α.L1...Ln−1 = 0 and

α2.L1...L̂i...Ln−1 = 0

for i = 1, ...,n− 1. Note that the subset S := {α ∈ B1(X) : α ∼ 0} forms a Z-

submodule of B1(X). Indeed, Lemma 1.22 implies that α ∈ S if and only if the

class of α in N(L1...L̂i...Ln−1)
(X) vanishes for i = 1, ...,n−1. So S is the intersection

of kernels of quotient maps

B1(X)→ N(L1...L̂i...Ln−1)
(X).

In the following we set C1(X ;L1, ...,Ln−1) := B1(X)/S.

LEMMA 3.13. C1(X ;L1, ...,Ln−1) is a free Z-module of finite rank. Moreover, for

a general divisor H ∈ |L1| we have a well-defined Gysin homomorphism

C1(X ;L1, ...,Ln−1)→C1(H;L2|H , ...,Ln−1|H).

Proof. The first assertion follows from the definition and Lemma 1.20. By [Fu,

Proposition 10.3] we have a Gysin homomorphism B1(X)→ B1(H). Let us de-

note the image of α ∈ B1(X) in B1(H) by α|H . It is sufficient to show that if

α ∼ 0 in B1(X) then α|H ∼ 0 in B1(H). Since S ⊂ B1(X) is a finitely gener-

ated Z-submodule, it is sufficient to check this condition for finitely finitely many

generators of S. But for a general divisor H ∈ |L1| we have

α|2H .L2|H ...L̂i|H ...Ln−1|H = α2.L1...L̂i...Ln−1 = 0

for i = 1, ...,n− 1. We also have α|H .L1|H ...Ln−1|H = α.L1...Ln−1 = 0, which

proves that the class of α|H in C1(H;L2|H, ...,Ln−1|H) vanishes.
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Corollary 3.11 can be used to prove the following boundedness result, which

does not immediately follow from Kleiman’s criterion. Part of the proof follows

the idea of proof of [La3, Theorem 3.4].

THEOREM 3.14. Let us fix some classes c1 ∈C1(X ;L1, ...,Ln−1), a positive integer

r and some real numbers c2 and µmax. Let A be the set of reflexive coherent OX -

modules E such that

1. E has rank r,

2. the class of c1(E ) in C1(X ;L1, ...,Ln−1) is equal to c1,

3.
∫

X c2(E )L1...L̂i...Ln−1 ≤ c2 for i = 1, ...,n−1,

4. µmax(E )≤ µmax.

Then the set A is bounded.

Proof. For n = 2 the assertion is well-known (see, e.g., [La2, Theorem 4.4]), so

we can assume that n ≥ 3. Without loss of generality we can also assume that all

Li are very ample. Note that if k ⊂ K is an algebraically closed field extension

then the set A is bounded if and only if the set AK := {EK : E ∈ A } of sheaves

on XK is bounded. This follows from [HL, Lemma 1.7.6] and the fact that the

Castelnuovo–Mumford regularity of E (with respect to some fixed very ample line

bundle OX(1)) coincides with the Castelnuovo–Mumford regularity of E (here we

use the fact that H i(XK,E ( j)K)=H i(X ,E ( j))⊗k K). So by Theorem 1.18, (2) and

an analogue of [HL, Theorem 1.3.7] for slope semistability, we can assume that

the base field k is uncountable.

For fixed E ∈ A and for a very general divisor H ∈ |L1|, the following condi-

tions are satisfied:

1. E |H is reflexive as an OH-module (by [HL, Corollary 1.1.14]),

2. for i = 2, ...,n−1 we have
∫

H
c1(E |H)

2L2|H ...L̂i|H...Ln−1|H =

∫

X
c1(E )2L1...L̂i...Ln−1 = c2

1.L1...L̂i...Ln−1

(by Theorem 1.17),

3. for i = 2, ...,n−1 we have
∫

H
c2(E |H)L2|H ...L̂i|H ...Ln−1|H =

∫

X
c2(E )L1...L̂i...Ln−1 ≤ c2

(by Theorem 1.18),
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4. if 0 = E0 ⊂ E1 ⊂ ... ⊂ Es = E be the Harder–Narasimhan filtration of of

E then all (Ei/Ei−1)|H are torsion free and restriction of any quotient of

a Jordan–Hölder filtration of Fi := (Ei/Ei−1)
∗∗ to H is torsion free as an

OH-module (by [HL, Corollary 1.1.14]).

Let us fix a normal hypersurface H ∈ |L1| such that the Gysin homomorphism

C1(X ;L1, ...,Ln−1) → C1(H;L2|H , ...,Ln−1|H) is well defined (see Lemma 3.13).

Let us consider the set AH of all sheaves E ∈ A that satisfy the above conditions

(1)–(4). By Corollary 3.8 there exists C such that for every slope (L1, ...,Ln−1)-
semistable reflexive OX -module F of rank ≤ r we have

∫

X
∆(F )L2...Ln−1 ≥C.

Let us set ri = rkFi and µi := µL(Fi). By Lemma 2.5 and [La2, Lemma 1.4] we

have∫
X ∆(Fi)L2...Ln−1

ri

≤ ∑
j

∫
X ∆(F j)L2...Ln−1

r j

− (s−1)C

≤

∫
X ∆(E )L2...Ln−1

r
+

1

rd
∑
i< j

rir j

(
µi −µ j

)2
− (s−1)C

≤
2rc2 − (r−1)c2

1.L2...Ln−1

r
+

r

d
(µmax(E )−µ(E ))(µ(E )−µmin(E ))− (s−1)C

Since

µ(E )−µmin(E )≤ (s−1)(µmax(E )−µ(E ))≤ (s−1)

(
µmax −

1

r
c1.L1...Ln−1

)
,

Corollary 3.11 and condition (4) imply that for all i we have µmax(Fi|H)≤C1 for

some C1 that depends only on r, c1, c2 and µmax. Condition (4) implies also that

the sequences

0 → Ei−1|H → Ei|H → Fi|H

are exact, so

µmax(E |H)≤ max
i

µmax(Fi|H)≤C1.

For any E ∈ A the class of c1(E |H) in C1(H;L2|H, ...,Ln−1|H) coincides with

c1|H . This follows from the fact that E |H is torsion free, so also locally free on a

big open subset of H. So already the class of c1(E |H) coincides with c1(E )|H ∈
A1(H). By the induction assumption this implies that the set of sheaves {E |H}E∈AH

is bounded. To simplify notation we write OX(1)= L1. There exists some integers

a, b and c such that for all E ∈ AH the following conditions are satisfied:
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1. H i(H,E |H(m)) = 0 for all m ≥ a and all i > 0,

2. H1(H,E |H(−m)) = 0 for m ≥ b,

3. h1(H,E |H(m))≤ c for all m.

The second condition above follows from the well-known Enriques–Severi–Zariski

lemma for reflexive sheaves on normal varieties (see [SP, Lemma 0FD8]). Let us

fix E ∈ AH . For all m ∈ Z we have short exact sequences

0 → E (m−1)→ E (m)→ E (m)|H → 0.

Let us take i ≥ 2. Then for all m ≥ a we have H i(X ,E (m− 1)) = H i(X ,E (m)).
So by Serre’s vanishing theorem we get H i(X ,E (m− 1)) = 0 for m ≥ a. We

also know that h1(X ,E (m))≤ h1(X ,E (m−1)) for all m ≥ a. Let us consider the

embedding X →֒ PN given by the linear system |OX(1)| and let H̃ ⊂ PN be the

hyperplane defining H. For any m ∈ Z we have a commutative diagram

H0(PN,E (m))⊗H0(PN,OPN(1))

β1
��

α1
// H0(PN,E (m+1))

β2
��

H0(H̃,E |H(m))⊗H0(H̃,OH̃(1))
α2

// H0(H̃,E |H(m+1)).

Assume that h1(X ,E (m)) = h1(X ,E (m− 1)) for some m ≥ a+ n− 1. Then the

map β1 in the above diagram is surjective. Since m ≥ a+ n− 1, we also know

that H i(H,E |H(m− i)) = 0 for i > 0 so by the Castelnuovo–Mumford theorem

the map α2 is also surjective. It follows that β2 is surjective. This implies that

h1(X ,E (m+ 1)) = h1(X ,E (m)). So by Serre’s vanishing theorem we see that

h1(X ,E (m)) = 0. This shows that for m ≥ a+n−2 the sequence {h1(X ,E (m))}
is strictly decreasing until it reaches 0. So h1(X ,E (l))= 0 for l ≥ h1(X ,E (a+n−
2))+a+n−2. Since E is reflexive and X is normal we know that h1(X ,E (−l))=
0 for l ≫ 0 (here we again use [SP, Lemma 0FD8]). So for all m ∈ Z we have

h1(X ,E (m))≤ h1(X ,E (m−1))+h1(H,E |H(m))≤ h1(X ,E (m−2))+h1(H,E |H(m))

+h1(H,E |H(m−1))≤ ...≤ ∑
l≥0

h1(H,E |H(m− l))≤ (m+b)c.

In particular, h1(X ,E (a+n−2)) ≤ (a+n−2+b)c. Therefore h1(X ,E (m)) = 0

for m ≥ (a+n−2)(c+1)+bc. This shows that there exists a constant m0 such

that all E ∈ AH are m-regular for all m ≥ m0 and hence AH is a bounded family

(see [HL, Lemma 1.7.6]). Since the family of divisors H ∈ |L1| is bounded, this

also gives boundedness of the family A .
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Remark 3.15. If L1 = ...= Ln−1 then the above theorem follows from [La2, The-

orem 4.4] (see [La9, Theorem 6.4]). In general, the problem is that we need

restriction theorems for multipolarizations on normal varieties and the method

of proof of [La2, Theorem 4.4] for singular varieties depends on the projection

method that works only if we have one polarization. In case of characteristic zero,

restriction theorems needed for multipolarizations follow easily from the results

of [La2] by passing to the resolution of singularities and using Bertini’s theorem.

Unfortunately, this method also does not work for varieties defined over a field of

positive characteristic. However, even in this case Theorem 3.14 is new.

As in [La9, Corollary 6.7], Corollary 3.8 and the above theorem imply the

following result.

COROLLARY 3.16. Let us fix some positive integer r, integer ch 1 and some real

numbers ch 2 and µmax. Let B be the set of reflexive coherent OX -modules E such

that

1. E has rank r,

2.
∫

X ch 1(E )L1...Ln−1 = ch 1,

3.
∫

X ch 2(E )L1...L̂i...Ln−1 ≥ ch 2 for i = 1, ...,n−1,

4. µmax,L(E )≤ µmax.

Then the set B is bounded.

Proof. By Corollary 3.8 there exists a constant C such that for all E ∈ B we have

C ≤
∫

X
∆(E )L1...L̂i...Ln−1 = c1(E )2.L1...L̂i...Ln−1 −2r

∫

X
ch 2(E ).L1...L̂i...Ln−1

for i = 1, ...,n− 1. Therefore c1(E )2.L1...L̂i...Ln−1 ≥ C + 2r ch 2. Let us write

[c1(E )] =αi[Li]+Di ∈N1

(L1,...,L̂i,...,Ln−1)
(X), where αi =

ch 1

L1...L
2
i ...Ln−1

. Then Di.L1...Ln−1 =

0 and

c1(E )2.L1...L̂i...Ln−1 = α2
i +D2

i .L1...L̂i...Ln−1.

Therefore

D2
i .L1...L̂i...Ln−1 ≥C+2r ch 2 −α2

i ·L1...L
2
i ...Ln−1.
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But by the Hodge index theorem (see Lemma 1.22) the intersection form is nega-

tive definite on L⊥
i ⊂ N1

(L1,...,L̂i,...,Ln−1)
(X), so there are only finitely many possibil-

ities for Di ∈ N1

(L1,...,L̂i,...,Ln−1)
(X). Since the canonical map

C1(X ;L1, ...,Ln−1)→
n−1⊕

i=1

N1

(L1,...,L̂i,...,Ln−1)
(X)

is injective, there are also only finitely many possibilities for the classes [c1(E )]∈
C1(X ;L1, ...,Ln−1). Now the assertion follows from Theorem 3.14.

The above corollary has some nontrivial implications even in the rank one

case:

COROLLARY 3.17. The canonical map B̄1(X)→C1(X ;L1, ...,Ln−1) is an isomor-

phism.

Proof. Let D be a Weil divisor representing the class in the kernel of B1(X) →
C1(X ;L1, ...,Ln−1). Corollary 3.16 implies that the set {OX(mD)}m∈Z is bounded.

So the set {[mD]}m∈Z of the corresponding classes in B1(X) is finite. Therefore

[D] = 0 ∈ B̄1(X).

Remark 3.18. The above corollary implies that some multiple of a Weil divisor D

on X is algebraically equivalent to 0 if and only if D.Ln−1 = D2.Ln−2 = 0 for some

ample line bundle L. This allows to give generalization of [Kl, Theorem 9.6.3] to

rank 1 reflexive sheaves on normal projective varieties.

4 Modules over Lie algebroids and Higgs sheaves

In this section we show various definitions and simple results on modules over Lie

algebroids and on generalized Higgs sheaves. We also compare our notion with

the one used in [GKPT1]. We finish the section with definition of semistability

and with a restriction theorem for generalized Higgs sheaves. In the whole section

X is a scheme over some fixed field k.

4.1 Basic definitions

Let us recall that a tangent sheaf TX/k is defined as H omOX
(ΩX/k,OX). For every

open subset U ⊂ X we have a canonical isomorphism

TX/k(U) = HomOU
(ΩX/k|U ,OU)→ Der k(OU ,OU), δ → δ ◦dX/k.
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So in the following we will identify sections of TX/k with k-derivations of the

structure sheaf without mentioning it. Now let us recall the following definitions

(see [La4, Sections 2 and 3]).

Definition 4.1. A Lie algebroid on X/k is a triple (L, [·, ·]L,α) consisting of

1. a quasi-coherent OX -module L,

2. a morphism of sheaves of k-vector spaces [·, ·]L : L⊗k L → L,

3. an OX -linear map α : L → TX/k, x → αx, called anchor map,

such that the following conditions are satisfied:

1. (L, [·, ·]L) is a sheaf of k-Lie algebras,

2. α is a homomorphism of sheaves of k-Lie algebras,

3. We have

[x, f y]L = αx( f )y+ f [x,y]L

for all local sections f ∈ OX and x,y ∈ L.

Definition 4.2. Let L be a Lie algebroid on X/k. An L-module is a pair (E ,∇)
consisting of a quasi-coherent OX -module E and an OX -linear map of left OX -

modules ∇ : L → E ndkE , which is also a map of sheaves of k-Lie algebras and

which satisfies Leibniz’s rule

∇(x)( f e) = αx( f )e+∇( f x)(e)

for all local sections f ∈ OX , x ∈ L and e ∈ E .

In the above definition (and also below) we use the following identifications.

For every open subset U ⊂ X we have a map ∇(U) : L(U) → (E ndkE )(U) =
Homk(E |U ,E |U). So every x ∈ L(U) gives a k-linear map E |U → E |U that is

denoted by ∇(x). Now the above Leibniz’s rule should be interpreted as equality

for all open V ⊂U ⊂ X for x ∈ L(U), f ∈OX(V ) and e ∈ E (V ), where f x denotes

f (x|V ).
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Definition 4.3. Let (E1,∇1) and (E2,∇2) be L-modules for some Lie algebroid L.

A morphism of L-modules ϕ : (E1,∇1)→ (E2,∇2) is an OX -linear map ϕ : E1 →E2

such that for every open subset U ⊂ X and every x ∈ L(U) the diagram

E1|U
∇1(x)

//

ϕ|U
��

E1|U

ϕ|U
��

E2|U
∇2(x)

// E2|U

is commutative.

The above definitions allow us to talk about the category L-Mod(X) of L-

modules.

4.2 Extensions of modules over Lie algebroids

Let X be an integral normal locally Noetherian scheme over some field k and

let L be a Lie algebroid on X/k, whose underlying OX -module is coherent and

reflexive. By abuse we will call such Lie algebroid reflexive.

Let j : U →֒ X be a big open subscheme X . Let (E ,∇ : LU → E ndkE ) be

an LU -module. By assumption L = j∗LU , so we can set j∗(E ,∇) := ( j∗E , j∗∇),
where j∗∇ acts as ∇ on the sections of j∗E (which are the same as sections of E ).

In this way we can define the functor j∗ : LU-Mod(U)→ L-Mod(X).
We say that an L-module (E ,∇) is reflexive if E is coherent and reflexive as

an OX -module. By L-Modref (X) we denote the full subcategory of L-Mod(X),
whose objects are reflexive L-modules. Note that after restricting to reflexive

modules j∗ and j∗ define adjoint equivalences of categories LU-Modref (U) and

L-Modref (X).

4.3 Tensor operations on modules over Lie algebroids

If E1 and E2 are L-modules then we can define natural L-module structures on

E1⊗OX
E2 and on H omOX

(E1,E2). In particular, if E is an L-module then E ∗ has

a canonical L-module structure.

If ∇1 : L → E ndkE1 and ∇2 : L → E ndkE2 are L-module structures on E1 and

E2 then we define an L-module structure ∇ : L → E ndk(E1 ⊗OX
E2) on E1 ⊗OX

E2

by the formula

∇(x) = ∇1(x)⊗ Id+ Id⊗∇2(x).

36



Similarly, we define the L-module structure ∇ : L → E ndk(H omOX
(E1,E2))

on H omOX
(E1,E2) by the formula

(∇(x))(ψ) = (∇2(x))◦ψ −ψ ◦ (∇1(x)).

This shows that for any L-module E we can define a natural L-module struc-

ture on E ∗ = H omOX
(E ,OX). So we can also define a reflexive hull E ∗∗ of an

L-module. As in the case of OX -modules (see Subsection 1.1) the inclusion func-

tor L-Modref (X) → L-Mod(X) comes with a left adjoint (·)∗∗ : L-Mod(X) →
L-Modref (X) given by the reflexive hull. In particular, we have a natural map

E → E ∗∗ of L-modules coming from the adjoint map to the identity on E ∗∗.

Remark 4.4. Note that if we have two Higgs sheaves (E1,θ1 : E1 → E1⊗Ω
[1]
X ) and

(E2,θ2 : E2 → E2⊗Ω
[1]
X ) in the sense of [GKPT1] then we can define the Higgs

sheaf structure on E1 ⊗OX
E2 but not on H omOX

(E1,E2). In particular, if Ω
[1]
X is

not locally free one cannot define the dual of a Higgs sheaf as a Higgs sheaf. So

we cannot also take a reflexivization of a (torsion free) Higgs sheaf in the sense

of [GKPT1]. This is one of the main reasons why we need to use a different

definition of a Higgs sheaf.

4.4 Generalized Higgs sheaves

Let X be a scheme and let L be a quasi-coherent OX -module. We can equip L with

a trival Lie algebroid structure with zero Lie bracket and zero anchor map.

Definition 4.5. An L-Higgs sheaf is an L-module for the trivial Lie algebroid

structure on L. In other words, it is a pair (E ,θ) consisting of a quasi-coherent

sheaf E of OX -modules and an OX -linear map θ : L → E ndOX
(E ) of sheaves of

Lie rings, where L is equipped with the trivial Lie bracket. An L-Higgs sheaf

(E ,θ) is reflexive if E is a coherent reflexive OX -module.

On any scheme X , if E , F , G are sheaves of OX -modules then we have a

functorial isomorphism of Γ(X ,OX)-modules

HomOX
(E ⊗OX

F ,G )
≃

−→HomOX
(E ,H omOX

(F ,G )).

In particular, we have an isomorphism

α : HomOX
(L⊗OX

E ,E )
≃

−→HomOX
(L,E ndOX

(E )).
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This shows that we can replace θ by an OX -linear map L⊗OX
E → E that by abuse

of notation will also be denoted by θ .

Note that we have a map L⊗OX
L → L⊗OX

L given by sending x⊗y to x⊗y−
y⊗ x. Since it maps x⊗ x to 0, this map factors through the canonical projection

L⊗OX
L →

∧2L. Hence we get the map ι :
∧2L → L⊗OX

L fitting into an exact

sequence ∧2
L → L⊗OX

L → Sym2L → 0,

where the second map is the canonical projection.

The following lemma explains how to check when an OX -linear map L⊗OX

E → E gives rise to an L-Higgs sheaf.

LEMMA 4.6. Let us fix an OX -linear map θ : L⊗OX
E → E . Then the following

conditions are equivalent:

1. The composition

∧2L⊗OX
E

ι⊗Id
// L⊗OX

L⊗OX
E

Id⊗θ
// L⊗OX

E
θ

// E

vanishes.

2. The map θ̄ := α(θ) : L → E ndOX
(E ) is a homomorphism of sheaves of Lie

rings.

3. The map θ extends to a Sym•L-module structure on E , i.e., there exists an

OX -linear map θ̃ : Sym•L⊗OX
E → E such that θ̃ |OX

: OX ⊗OX
E → E is

the identity, θ̃ |L = θ and the diagram

Sym•L⊗OX
Sym•L⊗OX

E
Id⊗θ̃

//

µ⊗Id

��

Sym•L⊗OX
E

θ̃
��

Sym•L⊗OX
E

θ̃
// E ,

where µ is the multiplication in Sym•L, is commutative.

Proof. Let x,y be local sections of L and e a local section of E . Then the first

conditions means that

θ(x⊗θ(y⊗ e)) = θ(y⊗θ(x⊗ e)),
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which can be rewritten as θ̄ (x)θ̄(y) = θ̄(y)θ̄(x), i.e., [θ̄(x), θ̄(y)] = 0 = θ̄ ([x,y]).
This shows equivalence of the first two conditions.

If these conditions are satisfied then there exists a homomorphism of sheaves

of OX -algebras Sym•L → E ndOX
(E ) extending α(θ). This follows from the def-

inition of Sym•L as the quotient of the tensor algebra of L by the two-sided ideal

generated by local sections of the form x⊗ y− y⊗ x.

This map provides E with a Sym•L-module structure. Clearly, if we have such

a structure then also the second condition is satisfied.

Interpretation of a Higgs field as an OX -linear map θ : L⊗OX
E → E is some-

times more convenient. For example, we can use it to introduce the following

definition that will play an important role in the paper.

Definition 4.7. A system of L-Hodge sheaves is an L-Higgs sheaf (E ,θ : L⊗OX

E → E ) for which E splits into a direct sum
⊕

E i so that θ maps L⊗OX
E i to

E i−1.

4.5 Morphisms of generalized Higgs sheaves

Let X be a scheme over a field k and let L be a quasi-coherent OX -module.

Lemma 4.6 shows that we can treat an L-Higgs sheaf as a pair (E ,θ), where

θ : L⊗OX
E → E is an OX -linear map satisfying certain additional conditions (e.g.,

condition 1 from Lemma 4.6). This point of view is convenient when one wants

to consider morphisms between L-Higgs sheaves, because giving a morphism of

L-Higgs sheaves ϕ : (E1,θ1)→ (E2,θ2) is equivalent to giving an OX -linear map

ϕ : E1 → E2 such that the diagram

L⊗OX
E1

θ1
//

Id⊗ϕ
��

E1

ϕ

��

L⊗OX
E2

θ2
// E2

is commutative. In the following we denote the category of L-Higgs sheaves on

X by HIG L(OX). By HIG
re f
L (OX) we denote the category of reflexive L-Higgs

sheaves on X .
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4.6 Reflexive Higgs sheaves

In this subsection we assume that X is integral locally Noetherian and L is a co-

herent OX -module. We set Ω
[m]
L = (

∧mL)∗ for m ≥ 1. So in particular we have

Ω
[1]
L := L∗. We also fix a reflexive coherent OX -module E .

By [SP, Lemma 0AY4] the sheaf H omOX
(L,E ) is also reflexive. In particular,

if X is normal then H omOX
(L,E )≃ E ⊗̂Ω

[1]
L . Since

HomOX
(L⊗OX

E ,E ) = HomOX
(E ⊗OX

L,E )
≃

−→HomOX
(E ,H omOX

(L,E )),

we have a canonical isomorphism

HomOX
(L⊗OX

E ,E )
≃

−→HomOX
(E ,E ⊗̂Ω

[1]
L ).

LEMMA 4.8. Assume that X is normal. If θ : L⊗OX
E → E and θ̄ : E → E ⊗̂Ω

[1]
L

are OX -linear maps corresponding to each other under the above isomorphism

then (E ,θ) is an L-Higgs sheaf if and only if the composition

E
θ̄

// E ⊗̂Ω
[1]
L

θ̄ ⊗̂ Id
// E ⊗̂Ω

[1]
L ⊗̂Ω

[1]
L

Id⊗̂∧
// E ⊗̂Ω

[2]
L .

vanishes.

Proof. Note that we have a canonical isomorphism

HomOX
(
∧2

L⊗OX
E ,E )

≃
−→HomOX

(E ,E ⊗̂Ω
[2]
L ).

So the required assertion follows from Lemma 4.6 and the fact that the above

defined composition E → E ⊗̂Ω
[2]
L corresponds to the composition

∧2L⊗OX
E

ι⊗Id
// L⊗OX

L⊗OX
E

Id⊗θ
// L⊗OX

E
θ

// E .

We need to change the sign in the last map to make it compatible with de

Rham sequences for modules over Lie algebroids.

The above lemma and Lemma 1.1 give a different proof of the following corol-

lary (cf. Subsection 4.2).
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COROLLARY 4.9. Assume that X is normal and L is reflexive. If j : U →֒ X is a

big open subscheme X then j∗ and j∗ define adjoint equivalences of categories

HIG
re f
L (OX) and HIG

re f
LU

(OU).

COROLLARY 4.10. If X is normal and θ : L⊗OX
E → E is an L-Higgs field on E

then we have a canonical structure of an L∗∗-Higgs sheaf on E .

Proof. The assertion follows immediately from the previous lemma and the re-

mark that Ω
[1]
L∗∗ = Ω

[1]
L and Ω

[2]
L∗∗ = Ω

[2]
L .

Lemma 4.8 allows us to compare our definition of a Higgs sheaf to that pro-

vided in [GKPT1, Definition 5.1].

COROLLARY 4.11. Let E be a reflexive coherent OX -module on a normal k-

variety X. Let θ̄ : E → E⊗Ω
[1]
X be an OX -linear map such that the composition

E
θ̄

// E⊗Ω
[1]
X

θ̄⊗ Id
// E⊗Ω

[1]
X ⊗Ω

[1]
X

Id⊗[∧]
// E⊗Ω

[2]
X

vanishes. Then after composing θ̄ with the reflexivization map E⊗Ω
[1]
X → E ⊗̂Ω

[1]
X

we can consider the corresponding OX -linear map θ : TX/k ⊗OX
E → E . Then

(E ,θ) is a Higgs sheaf.

Proof. Let U ⊂ X be the maximal open subset of the regular locus of X on which

E is locally free. Note that this open subset is big. By assumption the composition

E
θ̄

// E⊗Ω
[1]
X

θ̄⊗ Id
// E⊗Ω

[1]
X ⊗Ω

[1]
X

Id⊗[∧]
// E⊗Ω

[2]
X

vanishes on U . Taking the pushforward of the restriction of this sequence under

the open embedding j : U →֒ X gives the sequence from the previous lemma.

Remark 4.12. Note that not all reflexive Higgs sheaves in our sense come from

reflexive Higgs sheaves as defined in [GKPT1]. More precisely, if (E ,θ) is a

reflexive Higgs sheaf then we get the corresponding map θ̄ : E → E ⊗̂Ω
[1]
X . How-

ever, this map does not need to factor through E → E⊗Ω
[1]
X . Even if the above θ̄

factors through E → E⊗Ω
[1]
X then the composition

E
θ̄

// E⊗Ω
[1]
X

θ̄⊗ Id
// E⊗Ω

[1]
X ⊗Ω

[1]
X

Id⊗[∧]
// E⊗Ω

[2]
X
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vanishes only after composing with the reflexivization E⊗Ω
[2]
X → E ⊗̂Ω

[2]
X . In this

case the induced map E → Torsion(E⊗Ω
[2]
X ) can be non-zero, so even in this case

we do not get a Higgs sheaf in the sense of [GKPT1, Definition 5.1].

4.7 Pullback of generalized Higgs sheaves

If f : X → Y is a morphism of schemes and L is a quasi-coherent OY -module

then we can easily define the pullback of L-Higgs sheaves. Namely, if (E ,θ :

L⊗OY
E → E ) is an L-Higgs sheaf then it is easy to see that

( f ∗E , f ∗θ : f ∗L⊗OX
f ∗E = f ∗(L⊗OY

E )→ f ∗E )

is an f ∗L-Higgs sheaf (for example one can check condition 1 from Lemma 4.6).

This defines the pullback functor on the corresponding categories of generalized

Higgs sheaves, which is functorial with respect to morphisms between schemes.

4.8 Pullback of Higgs sheaves in characteristic zero

Let (X ,D) be a klt pair in the characteristic zero case. Then [Ke, Theorems 1.3

and 5.2] constructs pullback functor for reflexive differentials on klt pairs that

is compatible with the usual pullback of Kähler differentials. More precisely, if

f : Y → X is a morphism from a normal variety Y then we get an OY -linear map

dre f f : f ∗Ω
[1]
X → Ω

[1]
Y . This gives rise to the dual map TY/k → ( f ∗Ω

[1]
X )∗.

If (E ,θ) is a Higgs sheaf then the above construction gives a structure of

f ∗TX/k-Higgs sheaf on f ∗E . By Corollary 4.10 this induces a f [∗]TX/k-Higgs

sheaf structure on f ∗E . Unfortunately, the canonical map f [∗]TX/k → ( f ∗Ω
[1]
X )∗

is not an isomorphism in general and we do not have any canonical map TY →
f [∗]TX/k. So we cannot pullback general Higgs sheaves on X to Higgs sheaves on

Y . However, if (E ,θ) is a Higgs bundle then we can define its pullback by taking

the composition

f ∗E = f [∗]E → f [∗](E ⊗̂ΩX) = f ∗E ⊗ f [∗]ΩX → f ∗E ⊗̂Ω
[1]
Y .

This construction should be compared to [GKPT1, 5.3] and the last sentence in

[GKPT1, 5.2].

Remark 4.13. TX/k has a canonical Lie algebroid structure with the standard Lie

bracket and identity anchor map. A module with an integrable connection is a
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TX/k-module for the above Lie algebroid structure. Note that one cannot define

reflexive pullback for reflexive modules with an integrable connection even if Y is

smooth. The problem is that the pullback would give a reflexive module with an

integrable connection. Such modules are locally free and have vanishing Chern

classes. However, one can show explicit examples where the reflexive pullback of

a reflexive sheaf underlying a module with an integrable connection does not have

vanishing Chern classes.

4.9 Reflexive pullback for Higgs sheaves under finite morphisms

Let f : X → Y be a finite dominant morphism of integral normal schemes, locally

of finite type over k.

4.9.1 Pullback in the separable case

Lemma 1.2 implies that f [∗]TY/k = ( f ∗ΩY/k)
∗. So we have a canonical map

TX/k → f [∗]TY/k dual to d f : f ∗ΩY/k → ΩX/k. Since this map is non-interesting

for purely inseparable morphisms, from now on we assume that the induced field

extension k(Y ) →֒ k(X) is separable. In this case the map TX/k → f [∗]TY/k is in-

jective and it uniquely extends to a homomorphism of sheaves of OX -algebras

Sym•TX/k → Sym• f [∗]TY/k.

If (E ,θ) be a Higgs sheaf on Y then ( f ∗E , f ∗θ) is an f ∗TX/k-Higgs sheaf.

Assume that E is reflexive. Taking reflexivization we get an f ∗TX/k-Higgs module

structure on f [∗]E . By Corollary 4.10 we also have an induced f [∗]TX/k-Higgs

module structure on f [∗]E . Then the homomorphism Sym•TX/k → Sym• f [∗]TY/k

provides f [∗]E with a canonical Higgs module structure. This Higgs module will

be denoted by f [∗](E ,θ) = ( f [∗]E , f [∗]θ).

One can also describe the above construction explicitly in the following way

(this will be useful in the next construction). Namely, let (E ,θ : E → E ⊗̂Ω
[1]
Y ) be

a reflexive Higgs sheaf on Y (see Lemma 4.8). Then there exists a big open subset

V ⊂ Y such that (E ,θ) is (log) smooth on V . Since f is finite, U = f−1(V ) is a

big open subset of X . Let j : U →֒ X be the corresponding open embedding. Then

we can define the map

( f ∗E )U = f ∗(EV )
f ∗θ
−→ f ∗(EV ⊗OV

ΩV )= f ∗(EV )⊗OU
f ∗ΩV

Id⊗d f
−→ ( f ∗E )U ⊗OU

ΩU .
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This gives the map TU ⊗ ( f ∗E )U → ( f ∗E )U , which leads to

TX ⊗OX
f [∗]E = j∗(TU)⊗OX

j∗(( f ∗E )U)→ j∗(TU ⊗OU
( f ∗E )U)→ j∗(( f ∗E )U)= f [∗]E .

So we get the induced map f [∗]θ : f [∗]E → f [∗]E ⊗̂OX
Ω

[1]
X . One can easily check

that ( f [∗]E , f [∗]θ) is a reflexive Higgs sheaf on X .

4.9.2 Pullback in the inseparable case

Unfortunately, the above construction is rather useless in case f is purely insep-

arable as then d f = 0 and f [∗]θ always vanishes. However, if f = FX and the

big open subset U is F-liftable (see Definition 1.3) then we have an induced map

ξ : F∗
U ΩU → ΩU . Now if in the above construction we replace d f by ξ , then for

any reflexive Higgs sheaf (E ,θ) on X we can define

F
[∗]
X θ : F

[∗]
X E → F

[∗]
X E ⊗̂OX

Ω
[1]
X .

This construction is used in the proof of Lemma 5.10. Note that this map depends

on the choice of the lifting.

Similar constructions as above work also for log pairs.

4.10 Semistability for L-modules

Let X be a normal projective variety of dimension n defined over an algebraically

closed field k. Let (L1, ...,Ln−1) be a collection of nef line bundles on X and let L

be a Lie algebroid on X/k such that L is coherent as an OX -module.

Definition 4.14. Let (E ,∇) be an L-module such that E is coherent and torsion

free as an OX -module. We say that (E ,∇) is slope (L1, ...,Ln−1)-semistable if for

any L-submodule (F ,∇F )⊂ (E ,∇) we have µ(F )≤ µ(E ). We say that (E ,∇)
is slope (L1, ...,Ln−1)-stable if for any L-submodule (F ,∇F )⊂ (E ,∇) such that

1 ≤ rkF < rkE we have µ(F )< µ(E ).

In further part of this subsection we consider slope semistability with respect

to a fixed collection of nef line bundles and we omit it from the notation.

If (E ,θ : L ⊗OX
E → E ) is an L-Higgs sheaf then it is slope semistable if

and only if for every OX -submodule F ⊂ E such that the image of L⊗OX
F →

L⊗OX
E → E is contained in F , we have µ(F )≤ µ(E ) (and similarly for slope

stability). This should be compared with [GKPT1, Definition 4.13] that considers
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semistability using so called generically θ -invariant subsheaves. It is easy to see

that for reflexive Higgs sheaves in the sense of [GKPT1] the obtained notions of

semistability coincide.

Let us also remark that if (E ,θ) is a system of L-Hodge sheaves then we can

define notion of semistability using only subsystems of L-Hodge sheaves. It is

easy to see that this is equivalent to semistability of (E ,θ) as an L-Higgs sheaf.

We will use this fact in Section 6.

We have the following general lemma allowing to bound instability of slope

semistable L-modules. It is a weak form of [La5, Lemma 5] but it works also for

nef polarizations

LEMMA 4.15. Let A be an ample Cartier divisor A such that L(A) is globally

generated. Let (E ,∇) be an L-module such that E is coherent and torsion free of

rank r as an OX -module. If (E ,∇) is slope semistable then

µmax(E )−µmin(E )≤ (r−1)AL1...Ln−1.

Proof. If F ⊂ E is an OX -submodule then an L-module structure on (E ,∇) in-

duces an OX -linear map L⊗OX
F → E /F . If this map vanishes then F has a

natural structure of an L-submodule of (E ,∇).
Let E0 = 0 ⊂ E1 ⊂ ...⊂ Es = E be the Harder–Narasimhan filtration of E and

let us set E i := Ei/Ei−1 for i = 1, ...,s. Then we have non-zero OX -linear maps

L⊗OX
Ei → E /Ei

for i = 1, ...,s−1. Since for some N > 0 we have a surjective map O
⊕N
X (−A)→ L

there exists for every i = 1, ...,s a non-zero map Ei(−A) → E /Ei. So we have

µ(E i)−AL1...Ln−1 ≤ µ(E i+1). Summing these inequalities we get

µmax(E )−µmin(E )≤ (s−1)AL1...Ln−1 ≤ (r−1)AL1...Ln−1.

4.11 Strong restriction theorem for generalized Higgs sheaves

We keep the notation from the previous subsection but we assume that L has trivial

Lie algebroid structure. The same proofs as that of Theorem 3.9 and Corollary

3.11 give the following theorem (cf. [La5, Theorem 9] in the smooth case). See

Subsection 4.7 for the definition of pullback used in the statement.
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THEOREM 4.16. Let (E ,θ) be a reflexive L-Higgs sheaf of rank r ≥ 2. Let us

assume that d = L2
1L2...Ln−1 > 0 and let m be an integer such that

m >

⌊
r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

dr(r−1)
+

(r−1)βr

dr

⌋
.

Let H ∈ |L⊗m
1 | be an irreducible normal divisor and let i : H →֒ X denote the

corresponding embedding.

1. If (E ,θ) is slope (L1, ...,Ln−1)-stable then the i∗L-Higgs sheaf (i∗E , i∗θ) is

slope (i∗L2, . . . , i
∗Ln−1)-stable.

2. If (E ,θ) is slope (L1, ...,Ln−1)-semistable and restrictions of all quotients of

a Jordan–Hölder filtration of (E ,θ) to H are torsion free then the i∗L-Higgs

sheaf (i∗E , i∗θ) is slope (i∗L2, . . . , i
∗Ln−1)-semistable.

Note that the above theorem should be thought of as a restriction theorem for

sheaves with operators and not a genuine restriction theorem for Higgs sheaves

(cf. Theorem 5.4).

5 Bogomolov’s inequality for logarithmic Higgs sheaves

on singular varieties

This section contains proofs of Theorems 0.3 and 0.4. The main idea is to use

Ogus–Vologodsky’s correspondence and suitably generalized Higgs–de Rham se-

quences.

5.1 Ogus–Vologodsky’s correspondence on normal varieties

Let X be a normal variety defined over an algebraically closed field k of positive

characteristic p. Let D be an effective reduced Weil divisor on X .

Let us consider a (reflexive) Lie algebroid L, whose underlying OX -module

is TX(logD) with the anchor map TX(logD) →֒ TX/k and the Lie bracket induced

from TX/k. An L-module for this Lie algebroid is called an OX -module with an

integrable logarithmic connection on (X ,D). In fact, L carries a restricted Lie

algebroid structure (see [La4, Section 4]) given by raising logarithmic derivations

to the p-th power. This allows us to talk about logarithmic p-curvature F∗
X L →

E ndOX
E of an OX -module with an integrable logarithmic connection.
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If (E ,∇ : TX(logD) → E ndkE ) is a reflexive OX -module with an integrable

logarithmic connection then we can also define its residues in the following way.

For every open subset U ⊂ X an element δ ∈ (TX(logD))(U) can be considered

as a logarithmic k-derivation of OU . Let J be the ideal subsheaf of OU generated

by the image of δ . Then

E |U
∇(δ )
−→E |U → (E |U)/(JE |U)

induces an endomorphism ρδ of (E |U)/(JE |U) called the residue associated to δ .

We say that the residues of (E ,∇) are nilpotent of order ≤ p if for every U ⊂ X

and δ ∈ (TX(logD))(U) we have ρ p

δ = 0.

Similarly, one can consider TX(logD) with the trivial Lie bracket and zero an-

chor map. Modules over this reflexive Lie algebroid are called logarithmic Higgs

sheaves on (X ,D). We say that a logarithmic Higgs sheaf (E ,θ : TX(logD) →
E ndOX

E ) has a nilpotent Higgs field of level ≤ (p−1) if for every open subset

U ⊂ X and every δ ∈ (TX(logD))(U) we have θ(δ )p = 0, where θ(δ ) is consid-

ered as an OU -linear endomorphism of E |U .

The following theorem generalizes Ogus–Vologodsky’s correspondence to nor-

mal varieties:

THEOREM 5.1. Let us assume that there exists a big open subset U ⊂ X such

that the pair (U,DU = D∩U) is log smooth and liftable to W2(k). Let us fix a

lifting (Ũ , D̃U) of (U,DU). Then there exists a Cartier transform C(Ũ ,D̃U ), which

defines an equivalence of categories of reflexive OX -modules with an integrable

logarithmic connection whose logarithmic p-curvature is nilpotent of level less or

equal to p−1 and the residues are nilpotent of order less than or equal to p on U,

and reflexive logarithmic Higgs OX -modules with a nilpotent Higgs field of level

less or equal to p−1.

Proof. As remarked in Subsection 4.2, for any reflexive Lie algebroid L and any

big open subset U ⊂ X , we have an equivalence of categories of reflexive L-

modules on X and reflexive LU -modules on U . So the results of Ogus and Volo-

godsky in the usual case (see [OV]) and Schepler in the logarithmic one (see [Sc];

see also [La5, Theorem 2.5] and [LSYZ, Appendix]) give the above correspon-

dence on U . One needs only to check that extension to X preserves the remaining

conditions. For Higgs modules it is clear that having a nilpotent Higgs field of

level ≤ (p−1) on U gives the same condition on X . Similarly, for modules with

logarithmic connections checking nilpotency of the logarithmic p-curvature on U

implies the one on X .
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A quasi-inverse to C(Ũ ,D̃U ) is denoted by C
[−1]

(Ũ ,D̃U )
(or simply C[−1]) and it is

called the reflexivized inverse Cartier transform.

5.2 Strong restriction theorem for logarithmic Higgs sheaves

We keep the notation from the previous subsection.

Definition 5.2. Let j : H →֒ X be a locally principal closed subscheme of X (i.e.,

a scheme associated to an effective Cartier divisor). We say that H is good for the

pair (X ,D) if the following conditions are satisfied:

1. H is irreducible and normal,

2. H is not contained in any irreducible component of D,

3. If U ⊂ X is the maximal open subset on which (U,D∩U) is log smooth

then H ∩U is big in H,

4. The pair (H ∩U,DH ∩U), where DH = H ∩D, is log smooth.

If H is good for (X ,D) then we have a canonical map

TH(logDH)→ ( j∗TX(logD))∗∗

obtained by extension of the canonical map TH∩U (logDH∩U)→ j∗TX(logD)|H∩U .

In particular, if H is good for (X ,D) then Corollary 4.10 shows that any logarith-

mic Higgs sheaf (E ,θ) on (X ,D) gives rise to a reflexive logarithmic Higgs sheaf

structure

j[∗](E ,θ) := ( j[∗]E ,TH(logDH)⊗OH
j[∗]E → ( j∗TX(logD))∗∗⊗OH

j[∗]E → j[∗]E )

on j[∗]E := ( j∗E )∗∗ over (H,DH).

Remark 5.3. If L is a very ample line bundle then Bertini’s theorem implies that

for all m ≥ 1 a general hypersurface H ∈ |L⊗m| is good for (X ,D).

THEOREM 5.4. Let (E ,θ) be a reflexive logarithmic Higgs sheaf of rank r ≥ 2 on

(X ,D). Let us assume that L1 is ample and let m0 be a non-negative integer such
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that TX(log D)⊗L
⊗m0

1 is globally generated. Assume also that d = L2
1L2...Ln−1 >

0 and let m be an integer such that

m > max

(⌊
r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

dr(r−1)
+

(r−1)βr

dr

⌋
,2(r−1)m2

0

)
.

Let H ∈ |L⊗m
1 | be good for (X ,D) with closed embedding j : H →֒ X.

1. If (E ,θ) is slope (L1, ...,Ln−1)-stable then j[∗](E ,θ) on (H,DH) is slope

( j∗L2, . . . , j∗Ln−1)-stable.

2. If (E ,θ) is slope (L1, ...,Ln−1)-semistable and restrictions of all quotients

of a Jordan–Hölder filtration of (E ,θ) to H are torsion free then j[∗](E ,θ)
is slope ( j∗L2, . . . , j∗Ln−1)-semistable.

Proof. Using Theorem 4.16, one can follow the proof of [La5, Theorem 10] to

obtain the first part of the theorem.

Now let us remark that if 0 = (E0,θ0) ⊂ (E1,θ1) ⊂ ... ⊂ (Es,θs) = (E ,θ) is

a Jordan–Hölder filtration of E and (Fi, θ̃i) := ((Ei,θi)/(Ei−1,θi−1))
∗∗ then by

Lemma 2.5 we have
∫

X ∆(E )L2...Ln−1

r
≥ ∑

i

∫
X ∆(Fi)L2...Ln−1

ri

,

where ri = rkFi. So by the first part all j[∗](Fi, θ̃i) are slope ( j∗L2, . . . , j∗Ln−1)-
semistable. Since H is good for (X ,D), there exists a big open subset U ⊂ X

such that (U,D∩U) is log smooth and H ∩U is big in H. Now a logarithmic

Higgs subsheaf destabilizing j[∗](E ,θ) would destabilize it on H ∩U . This would

show that one of the restrictions j∗(Ei,θi)|H∩U is not slope ( j∗L2, . . . , j∗Ln−1)-
semistable. But this contradicts the fact that the reflexivization of its extension to

H (which is equal to j[∗](Fi, θ̃i)) is slope ( j∗L2, . . . , j∗Ln−1)-stable.

For r = 2 the assumptions of this theorem can be slightly relaxed (cf. [La5,

Theorem 10]). Note that unlike in [La5] we do not have any assumptions on lifting

on X . These assumptions were added in [La5] only to avoid the term containing

βr so that the results could hold uniformly in all characteristics (including 0). The

above result is restricted to the positive characteristic and it was not known in the

characteristic zero case even if one assumes that D = 0 and X has klt singularities

(cf. [GKPT1, Theorem 5.22] for a non-effective restriction theorem for general

hypersurfaces). The above theorem will be used to obtain a strong restriction

theorem for Higgs sheaves in characteristic zero in Section 7.
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5.3 Deformations to systems of Hodge sheaves

Let X be a normal projective variety defined over an algebraically closed field k

and let L be a Lie algebroid on X , which is coherent as an OX -module.

It is convenient to consider L-modules as modules over the universal envelop-

ing algebra ΛL of differential operators associated to L (see [La4, Section 2.2]).

So we consider an L-module as a pair (E ,∇), where E is a quasi-coherent OX -

module and ∇ : ΛL ⊗OX
E → E is a ΛL-module structure. If the underlying sheaf

of an L-module is coherent as an OX -module, we say (at the risk of abusing the no-

tation) that (E ,∇) is a coherent L-module. If the underlying sheaf of an L-module

is coherent and torsion free as an OX -module, we say (again abusing the notation)

that (E ,∇) is a torsion free L-module.

If (E ,∇) is a coherent L-module then we say that a filtration E = N0 ⊃ N1 ⊃
... ⊃ Nm = 0 satisfies Griffiths transversality if it is a filtration of E by coherent

OX -submodules and ∇(ΛL ⊗OX
Ni) ⊂ Ni−1. For every such filtration the associ-

ated graded object GrN(E ) :=
⊕

i Ni/Ni+1 carries a canonical coherent L-Higgs

module structure θ : L⊗OX
GrN(E )→ GrN(E ) defined by ∇. This can be seen by

considering the following commutative diagram:

Λ0 ⊗OX
Ni+1 //

��

Λ0 ⊗OX
Ni //

��

Ni

��

Λ1 ⊗OX
Ni+1 //

��

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

Λ1 ⊗OX
Ni //

��

Ni−1

��

Λ1/Λ0 ⊗OX
Ni+1 //

��

Λ1/Λ0 ⊗OX
Ni //

��

Ni−1/Ni

��

0 0 0

where Λ0 ⊂ Λ1 ⊂ ... ⊂ ΛL is the standard filtration on ΛL. It follows from the

above diagram that the map Λ1 ⊗OX
Ni+1 → Ni−1/Ni is zero and hence the map

Λ1/Λ0⊗OX
Ni+1 → Ni−1/Ni is also zero. So we have an induced map Λ1/Λ0⊗OX

Ni/Ni+1 → Ni−1/Ni. But Λ1/Λ0 = L and one can easily check that the obtained

map gives an L-Higgs module structure on GrN(E ). Note also that by construction

the obtained pair (GrN(E ),θ) is a system of L-Hodge sheaves on X .

In the remainder of this section to define semistability we fix a collection

(L1, ...,Ln−1) of nef line bundles on X such that L1L2....Ln−1 is numerically non-

trivial.
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We say that a Griffiths transverse filtration N• on (E ,∇) is slope gr-semistable

if the associated L-Higgs sheaf (GrN(E ),θ) is (torsion free and) slope semistable.

A partial L-oper is a triple (E ,∇,N•) consisting of a torsion free coherent OX -

module E with a ΛL-module structure ∇ and a Griffiths transverse filtration N•,

which is slope gr-semistable.

Remark 5.5. Note that analogous definitions in [La4, Section 5.2] work only for

smooth Lie algebroids. The above definitions allow us to deal with general Lie

algebroids and they are equivalent to those in [La4, Section 5.2] in case of smooth

Lie algebroids.

The following theorem can be proven in the same way as [La6, Theorem 5.5].

The only difference is that in the proof one needs to consider L-modules as ΛL-

modules.

THEOREM 5.6. If (E ,∇) is slope semistable then there exists a canonically de-

fined slope gr-semistable Griffiths transverse filtration S• on (E ,∇) providing it

with a partial L-oper structure. This filtration is preserved by the automorphisms

of (E ,∇).

The above filtration S• is called Simpson’s filtration. Even in the case of a

trivial Lie algebroid structure on L the above theorem gives a non-trivial corollary:

COROLLARY 5.7. Let (E ,θ : L⊗OX
E → E ) be a slope semistable L-Higgs sheaf.

Then there exists a decreasing filtration E = N0 ⊃ N1 ⊃ ... ⊃ Nm = 0 such that

θ(L⊗OX
Ni) ⊂ Ni−1 and the associated graded is a slope semistable system of

L-Hodge sheaves.

5.4 Higgs–de Rham sequences on normal varieties

Let X be a normal projective variety defined over an algebraically closed field k

of positive characteristic p. Let D be an effective reduced Weil divisor on X .

Let us assume that (X ,D) is almost liftable to W2(k). Then we can find a big

open subset U ⊂ X such that the pair (U,DU = D∩U) is log smooth and liftable

to W2(k). Let us fix a lifting (Ũ , D̃U) of (U,DU).

Let (E ,θ : TX(logD)⊗E → E ) be a reflexive logarithmic Higgs OX -module

of rank r ≤ p. Let us assume that (E ,θ) is slope semistable. Then by Corollary

5.7 there exists a canonical filtration N• on E such that the associated graded

(Ē0, θ̄0) is a slope semistable system of logarithmic Hodge sheaves. Let (E0,θ0)
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be the reflexive hull of (Ē0, θ̄0). By construction, it is a slope semistable reflexive

logarithmic system of Hodge sheaves. In particular, since its rank r is ≤ p, it is

also a reflexive logarithmic Higgs OX -module with a nilpotent Higgs field of level

less or equal to p− 1. So we can define (V0,∇0) := C
[−1]

(Ũ ,D̃U )
(E0,θ0). Let S•0 be

(decreasing) Simpson’s filtration on (V0,∇0) and let (Ē1 = GrS0
(V0), θ̄1) be the

associated system of Hodge sheaves. Then we set (E1,θ1) := ((Ē1)
∗∗, θ̄∗∗

1 ) and

repeat the procedure. In this way we get the following sequence

(E ,θ)
(GrN)

∗∗

$$❏
❏❏

❏❏
❏❏

❏❏
(V0,∇0)

(GrS0
)∗∗

%%❑
❑❑

❑❑
❑❑

❑❑
❑

(V1,∇1)
(GrS1

)∗∗

##❋
❋❋

❋❋
❋❋

❋❋
❋❋

(E0,θ0)

C[−1]
99ssssssssss

(E1,θ1)

C[−1]
99ssssssssss

...

in which each logarithmic Higgs sheaf (E j,θ j) is reflexive rank r ≤ p and slope

semistable. We call this sequence a canonical Higgs–de Rham sequence of (E ,θ).

Remark 5.8. Higgs de Rham sequences were invented by G. Lan. M. Sheng and

K. Zuo in [LSZ2] and their existence was proven in [LSZ2] and [La4]. Canon-

ical Higgs–de Rham sequences in the above sense first appeared in the proof of

[La7, Lemma 3.10]. They are better suited to dealing with normal varieties as one

cannot define suitable Chern classes for torsion free sheaves on normal varieties.

Remark 5.9. Although the above construction is very general, it does not seem

easy to compare numerical invariants of the sheaves Ei without some further as-

sumptions on the singularities of the pair (X ,D).

5.5 Inverse Cartier transform on log varieties with locally F-

liftable singularities.

Let X be a normal variety defined over an algebraically closed field k of positive

characteristic p. We define the Grothendieck group Kref(X) of reflexive sheaves on

X as the free abelian group on the isomorphism classes [E ] of coherent reflexive

OX -modules modulo the relations [E2] = [E1] + [E3] for each locally split short

exact sequence

0 → E1 → E2 → E3 → 0

of coherent reflexive OX -modules.

For a coherent OX -module F we denote by ∇F
can the canonical connection on

F∗
X F given by differentiating along the fibers of the Frobenius morphism.
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LEMMA 5.10. Let D be an effective reduced Weil divisor on X such that (X ,D)
is liftable to W2(k) and it is locally F-liftable. If (E ,θ) = (

⊕
E i,θ) is a reflexive

system of logarithmic Hodge sheaves on (X ,D) and we set E j =
⊕

j≤i E
i with

induced θ j then for every j we have a short exact sequence

0 →C[−1](E j,θ j)→C[−1](E j+1,θ j+1)→ (F
[∗]
X E

j+1,∇
E j+1
can )→ 0

of reflexive OX -modules with a logarithmic connection, which is locally split as a

sequence of OX -modules. In particular, we have [C[−1]E ] = [F
[∗]
X E ] in Kref(X).

Proof. By construction we have a short exact sequence of Higgs sheaves

0 → (E j,θ j)→ (E j+1,θ j+1)→ (E j+1,0)→ 0,

which is split as a sequence of OX -modules. Applying C[−1] to this sequence we

get

0 →C[−1](E j,θ j)→C[−1](E j+1,θ j+1)→ (F
[∗]
X E

j+1,∇
E j+1
can )→ 0,

because C[−1](E j+1,0) = (F
[∗]
X E j+1,∇

E j+1
can ). So it is sufficient to show that this se-

quence is locally split. To do so we fix a point x ∈ X and an open neighbourhood

x∈U ⊂X , which is F-liftable. Let V be a big open subset of U , which is contained

in the log smooth locus of (X ,D). The pair (V,D∩V ) has an F-lifting F̃V : Ṽ → Ṽ

compatible with the W2(k)-lifting (Ṽ , D̃) induced from the given W2(k)-lifting of

(X ,D). On V we have a short exact sequence of modules with integrable connec-

tions

0 → (F∗
V E j,∇

E j
can)→ (F∗

V E j+1,∇
E j+1
can )→ (F∗

V E
j+1,∇E j+1

can )→ 0,

which is split as a sequence of OV -modules. Extending the above sequence to U ,

we get a short exact sequence of reflexive TU -modules

0 → F
[∗]

U E j → F
[∗]

U E j+1 → F
[∗]

U E
j+1 → 0,

which is split as a sequence of OU -modules. By construction (see Section 8)

C[−1](E j)|U ≃ F
[∗]

U E j and C[−1](θ j)|U is obtained by extension of the logarithmic

connection ∇
E j
can +ζV (F

∗
V θ j), where ζV := p−1F̃V : F∗

V ΩV → ΩV (see Subsection

8.1). Since the above isomorphisms are compatible with restrictions to V , we see

that the sequence

0 →C[−1](E j,θ j)→C[−1](E j+1,θ j+1)→ (F
[∗]
X E

j+1,∇
E j+1
can )→ 0

is split as a sequence of OU -modules.
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COROLLARY 5.11. Let X be a normal projective variety with a collection (L1, ...,Ln−2)
of nef line bundles. Let D be an effective reduced Weil divisor on X such that

(X ,D) is almost liftable to W2(k) and it has F-liftable singularities in codimen-

sion 2. Then we have
∫

X
ch 2(C

[−1]
E )L1...Ln−2 = p2

∫

X
ch 2(E )L1...Ln−2.

Proof. By Theorem 1.18 we can reduce the assertion to the surface case. Then

Theorem 1.13 says that (X ,D) satisfies assumptions of Lemma 2.1 and hence we

get
∫

X
ch 2(C

[−1]
E )L1...Ln−2 = ∑

j

∫

X
ch 2(F

[∗]
X E

j)L1...Ln−2 = p2 ∑
j

∫

X
ch 2(E

j)L1...Ln−2

= p2
∫

X
ch 2(E )L1...Ln−2.

5.6 Bogomolov’s inequality for Higgs sheaves

In this subsection we give the first version of Bogomolov’s inequality for loga-

rithmic Higgs sheaves on singular varieties. The following theorem generalizes

Bogomolov’s inequality for logarithmic Higgs sheaves to singular varieties (see

[La5, Theorem 8] in case X is smooth and [La6, Theorem 3.3] for the log smooth

case).

THEOREM 5.12. Let (L1, ...,Ln−1) be a collection of nef line bundles on X such

that L1L2....Ln−1 is numerically non-trivial. Assume that the pair (X ,D) is almost

liftable to W2(k) and and it has F-liftable singularities in codimension 2. Then

for any slope (L1, ...,Ln−1)-semistable logarithmic reflexive Higgs sheaf (E ,θ) of

rank r ≤ p we have ∫

X
∆(E )L2...Ln−1 ≥ 0.

Proof. Let (E ,θ : TX(logD)⊗OX
E → E ) be a reflexive logarithmic Higgs OX -

module of rank r ≤ p. Let us assume that (E ,θ) is slope semistable. Let

(E ,θ)
(GrN)

∗∗

$$❏
❏❏

❏❏
❏❏

❏❏
(V0,∇0)

(GrS0
)∗∗

%%❑
❑❑

❑❑
❑❑

❑❑
❑

(V1,∇1)
(GrS1

)∗∗

##❋
❋❋

❋❋
❋❋

❋❋
❋❋

(E0,θ0)

C[−1]
99ssssssssss

(E1,θ1)

C[−1]
99ssssssssss

...
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be the canonical Higgs–de Rham sequence of (E ,θ).
By Lemma 4.15 there exists α such that µmax,L(Em)− µL(Em) ≤ α for all

m ≥ 0. So by Corollary 3.8 there exists some constant C such that for every non-

negative integer m we have

∫

X
∆(Em)L2...Ln−1 ≥C.

Lemma 2.4 implies that

∫

X
∆(E )L2...Ln−1 ≥

∫

X
∆(E0)L2...Ln−1

and ∫

X
∆(Vm)L2...Ln−1 ≥

∫

X
∆(Em+1)L2...Ln−1.

By Corollary 5.11 we have

∫

X
∆(Vm)L2...Ln−1 = p2

∫

X
∆(Em)L2...Ln−1.

Therefore

C ≤

∫

X
∆(Em)L2...Ln−1 ≤ p2m

∫

X
∆(E )L2...Ln−1.

Dividing by p2m and passing with m to infinity, we get
∫

X ∆(E )L2...Ln−1 ≥ 0.

Remark 5.13. The above theorem holds also for reflexive sheaves with an inte-

grable logarithmic connection. Indeed, if (E ,∇) is a rank r ≤ p slope L-semistable

reflexive sheaf with an integrable logarithmic connection and S• is its Simpson’s

filtration then by the above theorem and Lemma 2.4 we have

∫

X
∆(E )L2...Ln−1 ≥

∫

X
∆((GrSE )∗∗)L2...Ln−1 ≥ 0.

6 The Miyaoka–Yau inequality on singular varieties

in positive characteristic

In this section we prove the Miyaoka–Yau inequality on some mildly singular

varieties in positive characteristic. The ideas are similar to that from [Si] and

[La6] but we show full proofs to show where they need additional facts related to

the use of our Chern classes.
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We fix a log pair (X ,D) defined over an algebraically closed field of char-

acteristic p > 0. We assume that (X ,D) is almost liftable to W2(k) and it has

F-liftable singularities in codimension 2. Let n = dimX and let us fix a collec-

tion L = (L1, ...,Ln−1) of nef line bundles on X such that L2
1L2....Ln−1 > 0. As in

Subsection 3.2 we consider a positive open cone K+
L ⊂ NL(X).

The proof of the following proposition is essentially the same as that of [La6,

Proposition 4.1].

PROPOSITION 6.1. Let L be a rank 1 reflexive sheaf contained in Ω
[1]
X (logD).

Then c1(L ) 6∈ K+
L .

Proof. Assume that c1(L ) ∈ K+
L and consider a system of logarithmic Hodge

sheaves (E :=E 1⊕E 0,θ) with E 1 =L , E 0 =OX and θ : E 1 → E 0⊗̂Ω
[1]
X (logD)=

Ω
[1]
X (logD) given by the inclusion. Then (E ,θ) is slope L-stable since the only

rank 1 logarithmic subsystem of Hodge sheaves of (E ,θ) is of the form (OX ,0).
Therefore by Lemma 2.1 and Theorem 5.12 we have

0 = 4

∫

X
c2(E )L2...Ln−1 ≥

∫

X
c2

1(E )L2...Ln−1 = c1(L )2.L2...Ln−1,

a contradiction.

Similarly as [La6, Theorem 4.4] one can also get the following theorem gen-

eralizing the Miyaoka–Yau inequality in the surface case:

THEOREM 6.2. Let us assume that p ≥ 3 and let F ⊂ Ω
[1]
X (logD) be a rank 2

reflexive subsheaf with c1(F ) ∈ K+
L . Then

3

∫

X
c2(F )L2...Ln−1 ≥

∫

X
c1(F )2L2...Ln−1.

Proof. Let us consider the system of logarithmic Hodge sheaves (E := E 1 ⊕

E 0,θ) given by E 1 =F , E 0 =OX and θ : E 1 =E →֒Ω
[1]
X (logD)=E 0⊗̂Ω

[1]
X (logD).

If (E ,θ) is slope L-semistable, then by Lemma 2.1 and Theorem 5.12 we have

3

∫

X
c2(F )L2...Ln−1 = 3

∫

X
c2(E )L2...Ln−1 ≥

∫

X
c1(E )2L2...Ln−1 =

∫

X
c1(F )2L2...Ln−1.

So we can assume that (E ,θ) is not slope L-semistable. Let (E ′,θ ′) be its max-

imal destabilizing subsystem of logarithmic Hodge subsheaves. (E ,θ) contains
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only one saturated rank 1 system of logarithmic Hodge subsheaves, namely (OX ,0).
Since this subsystem does not destabilize (E ,θ), the sheaf E ′ has rank 2. Note

that (E ′,θ ′) is slope L-stable so c1(M ).L1...Ln−1 > 0. We can decompose E ′ into

a direct sum OX ⊕M , where M is a saturated rank 1 reflexive sheaf contained in

F . By assumption (E ′,θ ′) destabilizes (E ,θ) so

µL(E
′) =

c1(M ).L1...Ln−1

2
> µL(E ) =

c1(F ).L1...Ln−1

3
.

Therefore (3c1(M )−2c1(F )).L1...Ln−1 > 0. If (3c1(M )−2c1(F )) ∈ K+
L then

3c1(M ) = (3c1(M )− 2c1(F ))+ 2c1(F ) ∈ K+
L , which contradicts Proposition

6.1. This shows that

(3c1(M )−2c1(F ))2.L2...Ln−1 ≤ 0.

Let us set L := (F/M )∗∗. Then the sequence

0 → M → F → L

satisfies assumptions of Lemma 2.1 and hence

∫

X
ch 2(F )L2...Ln−1 ≤

1

2
c1(M )2.L2...Ln−1 +

1

2
c1(L )2.L2...Ln−1,

which after rewriting gives

∫

X
(3c2(F )− c1(F )2)L2...Ln−1 +

3

4
c1(M )2.L2...Ln−1

≥−
1

4
(3c1(M )−2c1(F ))2.L2...Ln−1 ≥ 0.

Since by Proposition 6.1 we have c1(M )2.L2...Ln−1 ≤ 0, this implies the required

inequality.

7 Applications to characteristic zero

Here we show a few applications of our results to study varieties defined in char-

acteristic zero. In particular, we prove Theorems 0.5, 0.6 and 0.7.

First we recall the following lemma that follows from Lemma 3.19 in the

preprint version of [GKPT1] (note that any normal surface with quotient singular-

ities is klt).
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LEMMA 7.1. Let X be a normal projective surface with at most quotient singu-

larities defined over an algebraically closed field k of characteristic 0. Let E be

a coherent reflexive OX -module. Then there exists a normal projective surface Y

and a finite morphism π : Y → X such that π [∗]E is locally free. In this case we

have ∫

X
∆(E ) =

1

degπ

∫

Y
∆(π [∗]

E )

and ∫

X
ch 2(E ) =

1

degπ

∫

Y
ch 2(π

[∗]
E ).

From now on we fix the following notation in this section. Let X be a normal

projective variety of dimension n defined over an algebraically closed field k of

characteristic 0. We assume that X has quotient singularities in codimension 2

and we fix a reduced divisor D ⊂ X such that the pair (X ,D) is log canonical in

codimension 2. For sheaves on such a variety we use Chern classes defined in

[La9, 5.3]. They coincide with classical Mumford’s Q-Chern classes considered

in [Ko, Chapter 10] and in [GKPT1, Theorem 3.13] (see [La9, Remark 5.9]).

7.1 Strong restriction theorems

Let us fix a collection (L1, ...,Ln−1) of ample line bundles and let us set d =
L2

1L2...Ln−1. The proof of the following theorem is based on a standard spreading

out argument.

THEOREM 7.2. Let (E ,θ) be a reflexive logarithmic Higgs sheaf of rank r ≥ 2 on

(X ,D). Let m0 be a non-negative integer such that TX(log D)⊗L
⊗m0

1 is globally

generated. Let m be an integer such that

m > max

(⌊
r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

r(r−1)d

⌋
,2(r−1)m2

0

)
.

Let H ∈ |L⊗m
1 | be good for (X ,D).

1. If (E ,θ) is slope (L1, ...,Ln−1)-stable then the logarithmic Higgs sheaf (E ,θ)|H
on (H,D∩H) is slope (L2|H , . . . ,Ln−1|H)-stable.

2. If (E ,θ) is slope (L1, ...,Ln−1)-semistable and restrictions of all quotients

of a Jordan–Hölder filtration of (E ,θ) to H are torsion free then (E ,θ)|H
is slope (L2|H , . . . ,Ln−1|H)-semistable.
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Proof. We can find a subring R ⊂ k, which is finitely generated over Z and there

exists a flat projective morphism X → S = SpecR with a relative reduced Weil

divisor D on X /S such that (X ,D) ≃ (X ×S Speck,D ×S Speck). We can as-

sume that there exist line bundles L1, ...,Ln on X lifting L1, ...,Ln−1, a relative

logarithmic Higgs sheaf (Ẽ , θ̃ : TX /S(logD)⊗OX
Ẽ → Ẽ ) lifting (E ,θ) and a rel-

ative effective Cartier divisor H ∈ |L ⊗m
1 | lifting H (in particular, H → S is flat).

Shrinking S if necessary we can assume that the following conditions are satisfied:

1. S is regular,

2. all fibers of X → S and H → S are geometrically integral and geometri-

cally normal,

3. L1, ...,Ln are relatively ample,

4. TX /S(log D)⊗L
⊗m0

1 is relatively globally generated,

5. for all closed points s ∈ S the fiber Xs is liftable modulo W2(κ(s)) (see the

proof of [La5, Theorem 7]),

6. for all geometric points s̄ of S, Hs̄ is good for (Xs̄,Ds̄),

7. for all geometric points s̄ of S the sheaf Ẽs̄ is a coherent reflexive OXs̄
-

module,

8. a fixed Jordan–Hölder filtration E• of (E ,θ) extends to a filtration Ẽ• of

(Ẽ , θ̃).

Following the proof of [Ma, Theorem 4.2] (see also [HL, Proposition 2.3.1]),

one can see that geometric slope (semi)stability of logarithmic Higgs sheaves is

an open condition in flat families. It is sufficient to prove that there exists some

geometric point s̄ of S, the logarithmic Higgs sheaf (Ẽ , θ̃)|Hs̄
on (Xs̄,Hs̄) is slope

(L2|Hs̄
, . . . ,Ln−1|Hs̄

)-(semi)stable. Then the restriction of (Ẽ , θ̃)|H to the fiber

of H → S over the generic geometric point of S is also slope (semi)stable, proving

the theorem.

By the above openness of semistability, we can assume that for all geometric

points s̄ of S the logarithmic Higgs sheaf (Ẽs̄, θ̃s̄) is slope (semi)stable. By the

same argument the restriction of the filtration Ẽ• to Xs̄ gives a Jordan–H”older

filtration of (Ẽs̄, θ̃s̄). Note also that restrictions of quotients of this filtration to

Hs̄ are torsion free for s̄ over an open subset of S. We need to check that there
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exists some non-empty open subset U ⊂ S such that for all geometric points s̄ over

closed points of U we have

∫

Xs̄

∆(Ẽs̄)L2|Xs̄
. . .Ln−1|Xs̄

=

∫

X
∆(E )L2 . . .Ln−1.

This is not obvious as Ẽ is not locally free and Chern numbers of reflexive sheaves

do not remain constant in flat families (see Example 2.2). Using Theorems 1.17,

1.18 and [La9, Theorem 5.8] we can reduce to the surface case. By Lemma 7.1

we can find a normal projective surface Y and a finite covering π : Y → X such

such that π [∗]E is locally free. Then, shrinking S if necessary, we can find a flat

projective morphism π̃ : Y → S and a morphism Y → X lifting π : Y → X .

We can also assume that all fibers of g : Y → S are geometrically integral and

geometrically normal. Since S is normal, the schemes X and Y are also normal.

So we can consider π̃ [∗]Ẽ , which is reflexive on Y . This sheaf is locally free

outside of a closed subscheme Z ⊂ Y of codimension ≥ 2. Since Z does not

intersect the generic fiber of Y → S, π̃ [∗]Ẽ is locally free over a non-empty open

subset S′ = S\g(Z)⊂ S. Now let us consider a commutative diagram

Ys
js

//

π̃s

��

Y

π̃
��

Xs
is

// X .

Since j∗s (π̃
[∗]Ẽ ) is locally free for s ∈ S′ we have an induced map ϕs that fits into

a commutative diagram

π̃∗
s i∗s (Ẽ ) //

≃
��

π̃
[∗]
s (i∗s (Ẽ ))

ϕs

��

j∗s (π̃
∗Ẽ ) // j∗s (π̃

[∗]Ẽ ).

Let us set U := {x ∈ X : Ẽx is a free OX ,x-module}. Since ϕs is an isomorphism

over a big open subset Ys ∩ π̃−1(U) of YS and π̃
[∗]
s (i∗s (Ẽ )) is reflexive, ϕs is an

isomorphism. So by Theorem 1.18 and Lemma 7.1 we have

∫

Xs

∆(Es) =
1

deg π̃s

∫

Ys

∆(π̃
[∗]
s Es) =

1

degπ

∫

Y
∆(π [∗]

E ) =

∫

X
∆(E )
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as claimed. Now the required assertion follows by applying Theorem 5.4 to fibers

over geometric points s̄ of S with large characteristic of the residue field (then

βr(s̄)→ 0).

The same argument as above show also that Theorem 0.1 implies the following

strong restriction theorem of Bogomolov’s type:

THEOREM 7.3. Let E be a coherent reflexive OX -module of rank r ≥ 2. Let m be

an integer such that

m >

⌊
r−1

r

∫

X
∆(E )L2 . . .Ln−1 +

1

r(r−1)d

⌋

and let H ∈ |L⊗m
1 | be a normal hypersurface.

1. If E is slope (L1, ...,Ln−1)-stable then E |H is slope (L2|H , . . . ,Ln−1|H)-stable.

2. If E is slope (L1, ...,Ln−1)-semistable and restrictions of all quotients of

a Jordan–Hölder filtration of E to H are torsion free then E |H is slope

(L2|H , . . . ,Ln−1|H)-semistable.

Remark 7.4. Although Theorem 0.1 works for any normal varieties in positive

characteristic, it does not seem easy to use a similar spreading out argument to ob-

tain even the usual Mehta–Ramanathan theorem for ample multipolarizations on

a general normal projective variety in characteristic zero. The problem is that the

choice of spreading out depends on m as we need to spread out divisors H ∈ |L⊗m
1 |.

But since Chern numbers of reflexive sheaves are in general not well behaved in

families of normal varieties, we cannot choose one m so that Theorem 0.1 works

for this fixed m on even one geometric fiber Xs̄. However, using Corollary 3.11

one can show bounds on the maximal destabilizing slope of E |H on any normal

variety in terms of numerical invariants of reductions of E .

7.2 Bogomolov’s inequality for logarithmic Higgs sheaves

We will need an analogue of the first part of Lemma 2.1 in the characteristic zero

case (the analogue of the second part also holds but we will not need it):

LEMMA 7.5. Let L = (L1, ...,Ln−2) be a collection of nef line bundles on X. If

0 → E1 → E → E2 → 0
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is a left exact sequence of reflexive sheaves on X, which is also right exact on some

big open subset of X then

∫

X
ch 2(E )L1...Ln−2 ≤

∫

X
ch 2(E1)L1...Ln−2 +

∫

X
ch 2(E2)L1...Ln−2.

Proof. As in the proof of Lemma 2.1 we first reduce to the surface case. Then

by Lemma 7.1 there exists a normal projective surface Y and a finite morphism

π : Y → X such that π [∗]E , π [∗]E1 and π [∗]E2 are locally free. As in the proof of

Lemma 2.1 we see that the sequence

0 → π [∗]
E1 → π [∗]

E → π [∗]
E2 → 0

is left exact on Y and right exact on some big open subset of Y . Therefore

χ(Y,π [∗]
E )≤ χ(Y,π [∗]

E1)+χ(Y,π [∗]
E2).

Using the Riemann–Roch theorem for locally free sheaves on normal projective

surfaces this can be rewritten as
∫

Y
ch 2(π

[∗]
E )≤

∫

Y
ch 2(π

[∗]
E1)+

∫

Y
ch 2(π

[∗]
E2).

Dividing by the degree of π , we get the required inequality from the second part

of Lemma 7.1.

THEOREM 7.6. Let L = (L1, ...,Ln−1) be a collection of nef line bundles on X

such that L2
1L2....Ln−1 > 0. For any slope (L1, ...,Ln−1)-semistable logarithmic

reflexive Higgs sheaf (E ,θ) we have

∫

X
∆(E )L2...Ln−1 ≥ 0.

Proof. First assume that L1, ...,Ln−1 are ample. Then by the above theorem we

can restrict to the surface case. Since finite quotients of smooth affine log surface

pairs are F-liftable in large characteristics (cf. [Zd, Lemma 4.21]), we can apply

Theorem 5.12 and an easy spreading out argument.

In general, we reduce to the above case by an argument analogous to that from

the proof of [La2, 3.6]. Namely, we fix an ample line bundle A and consider the

classes Li(t) = c1(Li)+ tc1(A) in NL(X)⊗Q for t ∈Q>0. These classes are ample

and the Harder–Narasimhan filtration of (E ,θ) with respect to (L1(t), ...,Ln−1(t))
is independent of t for small t ∈ Q>0. We have an analogue of Lemma 2.5 for
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normal projective varieties in characteristic zero that have quotient singularities

in codimension 2 (this follows from Lemma 7.5 in the same way as Lemma 2.5

follows from Lemma 2.1). Applying this result to the above filtration, using the

inequality for ample collections of line bundles and taking the limit as t → 0 gives

the required inequality.

8 Appendix: inverse Cartier transform after Lan–

Sheng–Zuo

In this section we recall the construction of inverse Cartier transform from Ogus–

Vologodsky’s correspondence [OV], following [LSZ]. For simplicity of notation

we consider only the non-logarithmic case. The logarithmic case is essentially the

same.

8.1 Results of Deligne and Illusie

Below we recall the construction from [DI] of a canonical splitting of the Cartier

operator that is associated to a fixed lifting of Frobenius of a smooth F-liftable

variety.

Let k be a perfect field of characteristic p > 0 and let us set S = Speck and

S̃ = SpecW2(k). Let X be a smooth k-variety with a fixed lifting X̃/S̃. Let X ′

be the fiber product of X over the absolute Frobenius morphism of S. Then we

have an induced relative Frobenius morphism FX/S : X → X ′. Note that X ′ has a

natural lifting X̃ ′ to S̃, which is defined as the base change of X̃ → S̃ via S̃ → S̃

coming from σ2 : W2(k)→W2(k). Let us assume that FX/S : X → X ′ has a lifting

F̃X/S : X̃ → X̃ ′ so that we have a commutative diagram

X //

��

FX/S

��❄
❄❄

❄❄
❄❄

❄ X̃

��

F̃X/S

��❄
❄❄

❄❄
❄❄

❄

X ′ //

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

X̃ ′

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S // S̃

Since the map F̃∗ : F̃∗
X/S

Ω1
X̃ ′/S̃

→ Ω1
X̃/S̃

vanishes after pulling back to X , we can
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define

ζ = p−1F̃∗ : F∗
X/SΩ1

X ′/S → Ω1
X/S

Since dζ = 0 we can consider ζ as the map of sheaves of abelian groups F∗
X/S

Ω1
X ′/S

→

Z1
X/S

, where Z1
X/S

is the kernel of d : Ω1
X/S

→ Ω2
X/S

. Its adjoint ζ ad : Ω1
X ′/S

→

FX/S,∗Z1
X/S

is OX ′-linear and it splits the composition

FX/S,∗Z1
X/S −→ H

1(FX/S,∗Ω•
X/S)

CX/S
−→Ω1

X ′/S

of the Cartier operator with the canonical projection.

8.2 Inverse Cartier transform

Assume that X is smooth and there exists a global lifting X̃ of X to W2(k).
Let (E ,θ) be a Higgs OX ′-modules with a nilpotent Higgs field of level ≤

(p−1). We want to construct an OX -module V with an integrable connection ∇,

whose p-curvature is nilpotent of level ≤ (p−1). The pair (V,∇) will be denoted

by C−1
X̃/W2(k)

(E ,θ) and called the inverse Cartier transform of (E,θ). Let us fix

a W2(k)-lifting X̃ ′ of X ′/k and take a covering {Ũα}α∈I of X̃ such that for each

α ∈ I there exists F̃α : Ũα → Ũ ′
α lifting the relative Frobenius morphism Fα : Uα →

U ′
α . By previous subsection, the lifting F̃α allows us to construct ζα = p−1F̃∗

α :

F∗
α Ω1

U ′
α/k

→ Ω1
Uα/k

. Therefore over each Uα we can define (Vα ,∇α) by setting

Vα := F∗
α (E |Uα ) and ∇α := ∇can + ζα(F

∗
α θ |U ′

α
). To glue (Vα ,∇α) and (Vβ ,∇β )

over Uαβ = Uα ∩Uβ one uses the following lemma due to Deligne and Illusie

(see [DI]):

LEMMA 8.1. There exist OU ′
αβ

-linear maps hαβ : ΩU ′
αβ

→ (FU ′
αβ
)∗Oαβ such that

1. for all α,β we have

ζ ad
α −ζ ad

β = dhαβ ,

2. for all α,β ,γ we have over Uαβγ =Uα ∩Uβ ∩Uγ

hαβ +hβγ = hαγ .

Let h′αβ : F∗
U ′

αβ
ΩU ′

αβ
→ Oαβ be adjoint to hαβ . Now we define gluing maps

gαβ : Vα |Uαβ
→ Vβ |Uαβ

using h′αβ (F
∗θ |Uαβ

) : F∗E |Uαβ
→ F∗E |Uαβ

⊗F∗ΩU ′
αβ

→
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F∗E |Uαβ
by setting

gαβ := exp(hαβ (F
∗θ |Uαβ

)) =
p−1

∑
i=0

(hαβ (F
∗θ |Uαβ

))i

i!
.

The maps gαβ allow us to glue (Vα ,∇α) and (Vβ ,∇β ) over Uαβ to a global object

(V,∇) ∈ MIC p−1(X/k).
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