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A NOTE ON THE CAPACITY ESTIMATE IN

METASTABILITY FOR GENERIC CONFIGURATIONS

BENNY AVELIN AND VESA JULIN

Abstract. In this paper we further develop the ideas from Geometric
Function Theory initially introduced in [1], to derive capacity estimate
in metastability for arbitrary configurations. The novelty of this paper
is twofold. First, the graph theoretical connection enables us to exactly
compute the pre-factor in the capacity. Second, we complete the method
from [1] by providing an upper bound using Geometric Function Theory
together with Thompson’s principle, avoiding explicit constructions of
test functions.

1. Introduction

In this paper we continue the study of the capacity estimate from [1],
where we introduce a geometric characterization of the Eyring-Kramers for-
mula. To introduce our setting, we begin by considering the Kolmogorov
process

dXt = −∇F (Xt)dt +√2εdBt

where F is a non-convex potential and ε is a small positive number. A
formula for the expected transition time from one local minimum point to
another was proposed independently by Eyring [7] and Kramers [11] in the
context of metastability of chemical processes, and can be stated as follows.
Assume that x and y are quadratic local minima of F , separated by a unique
saddle z which is such that the Hessian has a single negative eigenvalue
λ1(z). Then the expected transition time from x to y satisfies

E
x[τ] ≃ 2π∣λ1(z)∣

¿ÁÁÀ∣det(∇2F (z))∣
det(∇2F (x)) e(F (z)−F (x))/ε,

where ≃ denotes that the comparison constant tends to 1 as ε → 0. The
validity of the above formula has been studied extensively, references can be
found in for instance [1, 4, 8, 12]. The first rigorous proof of the Eyring-
Kramers formula above, is by [5] using potential theory and this approach
has turned out to be fruitful.

Our main motivation to study this phenomenon, comes from non-convex
optimization, for instance, optimization of neural networks. In this setting,
the minima/saddles are in general degenerate and/or non-smooth.
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Figure 1. Left picture is the parallel case and the right is
the series case, xu, xw are local minimum points and zi are
saddle points.

In [1] we use the potential theoretic formulation and extend the results
of [5, 2] to more general cases, which in particular includes non-smooth crit-
ical points. As in [5], the main technical issue is to provide sharp capacity
estimates and the main result in [1] is a geometric characterization of New-

tonian capacity w.r.t. the measure e−F (x)/εdx inspired by the corresponding
characterization for conformal capacity originally proved by Gehring, [9].
In [1] we observe that the capacity depends on the configuration of the
saddle points which connect the two local minima, but we computed the
capacity only in the simple cases when the saddles are either parallel or in
series, see Fig. 1. However, for an arbitrary smooth potential the situa-
tion can be more complex and the configuration of the saddle points can
be a combination of both parallel and series cases with essentially arbitrary
complexity.

The novelty in [1] was the use of Geometric Function Theory to provide
a lower bound for the capacity. In this paper we complete this method by
providing an upper bound using Geometric Function Theory together with
Thompson’s principle, see the proof of the upper bound in Section 3.4, Proof
of Theorem 1. Our goal is to extend the capacity estimate from [1] to the
case of arbitrary configurations of critical points. We do this by discretizing
the problem where the ‘valleys’/‘islands’ around the local minimum points
are the vertices and the regions around the saddle points which we call
‘bridges’ are the edges. The local capacity of a bridge can be geometrically
characterized using the results from [1] and this defines the weights of the
edges, thus turning the problem into a capacitary problem on a graph. Con-
necting problems of this type to graphs is similar to [14], however, we did
not find this particular problem in the literature. We note that the result
in [5] covers only the case of the parallel configuration, see Fig. 1. Moreover,
the framework of geometric function theory (see [1]) makes this construction
straightforward and natural.

The capacitary problem on the graph is equivalent to the notion of an
electrical network, which was originally defined by Kirchhoff in the 1840s in
his elegant solution to the problem of replacement resistance for a network
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of resistors [10]. For a modern presentation of electrical networks and its
connection to Markov chains and Kirchhoff’s theorem, we refer to [3, 13, 15].

1.1. Assumptions and definitions. In order to state our main results we
first need to introduce our assumptions on the potential F . We remark that
our assumptions cover the case where F is a Morse function as defined in [4,
Assumption 10.3], i.e. a C2 function in which all critical points are non-
degenerate (non-degenerate Hessian with at most one negative eigenvalue).
We further remark that our assumptions cover the degenerate case studied
in [2], but we also allow for non-smooth (Lipschitz) potentials.

Let us first introduce some general terminology. Recall that a Lipschitz
function h ∶ R→ R has a critical point at t, if 0 is in the generalized gradient
of h at t in the following sense,

lim sup
s→t±

f(s) − f(t)
s − t ≥ 0 or lim inf

s→t±

f(s) − f(t)
s − t ≤ 0,

where in the above we mean that both the left and the right limit satisfies
the conditions. We say that a point z of a Lipschitz function f ∶ Rn → R is
a critical point, if for every e ∈ Rn, ∥e∥ = 1, the function he(t) = f(z + te) has
a critical point at 0.

Given a continuous function f ∶ Rn → R, we say that a local minimum of
f at z is proper if there exists a δ̂ > 0 such that for every 0 < δ < δ̂ there is a
ρ such that

f(x) ≥ ⎧⎪⎪⎨⎪⎪⎩
f(z), x ∈ Bρ(z),
f(z) + δ, x ∈ ∂Bρ(z),

where Bρ(z) denotes an open ball with radius ρ centered at z (proper max-
imum is defined analogously). When the center is at the origin we use the
short notation Bρ. We say that a critical point z of f is a saddle point if it
is not a proper local minimum nor maximum point.

Let us then proceed to our assumption on the potential.

Definition 1.1. Let F ∈ C0,1(Rn) satisfy the following quadratic growth
condition

F (x) ≥ ∣x∣2
C0

−C0

for a constant C0 ≥ 1. We assume that every local minimum point z of F is
proper.

We say that F is admissible if for every saddle point z ∈ Rn of F there are
convex functions gz ∶ R→ R and Gz ∶ Rn−1 → R which have proper minimum
at 0, such that gz(0) = Gz(0) = 0, and an isometry1 Tz ∶ Rn → R

n such that,
denoting x = (x1, x′) ∈ R ×Rn−1, it holds

∣(F ○ Tz)(x) −F (z) + gz(x1) −Gz(x′)∣ ≤ ω(gz(x1)) + ω(Gz(x′)), (1.1)

where ω ∶ [0,∞) → [0,∞) is a continuous and increasing function with

lims→0
ω(s)
s
= 0.

1Recall that a mapping T is an isometry if ∣T (x) − T (y)∣ = ∣x − y∣. In R
n, this implies

that T (x) = Ax + b, where A is an orthogonal matrix. That is, T consists of translation b

and a rotation A.
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Figure 2. The neighborhood Oz,δ of the saddle point z

(bridge) connects the sets Uxu and Uxw , components of{F < F (z) − δ/3}.
The assumption (1.1) allows the saddle point to be degenerate, but we

do not allow branching saddles, in the sense that {f(x) < f(z)}∩Bρ(z) can
have at most two components for small ρ. Note that the convex functions
gz,Gz and the isometry Tz depend on z, while the function ω is the same
for all saddle points. As such, we denote by δ0 the largest number for which
ω(δ) ≤ δ

100
for all δ ≤ 4δ0.

Definition 1.2. Let F ∈ C0,1(Rn) be admissible, then for every saddle point
z and δ > 0, we define the bridge at z as

Oz,δ ∶= Tz ({x1 ∈ R ∶ gz(x1) < δ} × {x′ ∈ Rn−1 ∶ Gz(x′) < δ}) ,
where Tz is the isometry from Definition 1.1. See Fig. 2.

Note that, since the saddle may be flat, we should talk about sets rather
than points. However, we adopt the convention that we always choose a
representative point from each saddle (set) and thus we may label the saddles
by points z1, z2, . . . . Moreover, we assume that there is a δ1 ≤ δ0 such that
for δ < δ1 we have that if z1 and z2 are two different saddle points, then
their neighborhoods Oz1,3δ and Oz2,3δ defined in Definition 1.2 are disjoint.
Furthermore, we also assume that ε0 is small enough that for any local
minimum point x, the ball Bε0(x) does not intersect any bridge or any ε0
ball around any other local minimum.

We use the definitions of a geodesic length and a minimal cut originally
defined in [1], inspired by [9].

Definition 1.3. Let A,B ⊂ Ω ⊂ Rn where Ω is a domain and A∩B = ∅. We
denote the curve family

C(A,B;Ω) ∶= {γ ∶ γ ∈ C1([0,1];Ω), γ(0) ∈ A,γ(1) ∈ B}
and the family of separating sets as S(A,B;Ω), where a smooth hypersurface
S ⊂ R

n (possibly with boundary) is in S(A,B;Ω) if every γ ∈ C(A,B;Ω)
intersects S. We define the geodesic distance between A and B in Ω as

dε(A,B;Ω) ∶= inf (∫
γ
∣γ′∣eF (γ)

ε dt ∶ γ ∈ C(A,B;Ω))
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and the minimal cut by

Vε(A,B;Ω) ∶= inf (∫
S
e−

F (x)
ε dHn−1(x) ∶ S ∈ S(A,B;Ω)) .

We define some topological quantities.

Definition 1.4. Let xu, xw be two local minima of an admissible F . The
communication height between xu, xw is defined as

F (xu;xw) = inf
γ∈C(Bε(xu),Bε(xw);Rn)

sup
t∈[0,1]

F (γ(t)).
Fixing δ < δ1, we denote the component of the sub-levelset {F < F (xu;xw)+
δ/3} which contains the points xu and xw by Uδ/3, and we denote

U−δ/3 ∶= {F < F (xu;xw) − δ/3} ∩Uδ/3. (1.2)

Furthermore, we remark that F (xu;xw) does not depend on ε if ε < ε0. We
call the components of U−δ/3 islands. For each island U we select a proper
minimum point x satisfying F (x) = minU F , and we will in the following
denote Ux as the island which contains x, see Fig. 2. We denote all saddle
points in Uδ/3 ∖U−δ/3 by Z.

Finally we recall that the capacity of two disjoint sets A,B is defined as

cap(A,B) = inf (ε∫
Rn
∣∇h∣2e−F

ε dx ∶ h = 1 in A, h ∈W 1,2
0 (Rn ∖B)) .

1.2. Construction of the electrical network.

Definition 1.5. An electrical network is a pair (G,y), where G = (V,E) is
a graph, where V are the vertices and E are the edges, the vector y ∈ R∣E∣
is called the admittances.

We will now construct an electrical network based on the islands and
bridges from Definitions 1.2 and 1.4. We associate the vertices with the
islands and for every vertex v we denote the corresponding island by Uv.
The set of all vertices is V . Furthermore, we associate the edges with the
bridges from Definition 1.2, specifically, for every saddle point z ∈ Z in
Definition 1.4 we associate the edge ez with the bridge Oez = Oz,δ. The
set of all edges is E, vice versa we associate with e ∈ E the corresponding
saddle point ze ∈ Z. We say that vertices v, v′ ∈ V are incident with an edge
e, and vice versa, if they are the ends of the edge, or in other words, the
associated islands Uv,U

′
v intersect the bridge Oe (there are at most two since

F is admissible). An edge which is incident with only one vertex is called
a loop. We also define a cycle of the graph G to be any non-trivial closed
path for which only the first and last vertices are equal.

We thus have a graphG = (V,E), and we orient it arbitrarily (i.e. we orient
each edge of G arbitrarily by assigning an arrow on it pointing towards one
of its two ends). In order to have an electrical network we need to define
admittance ye for e ∈ E. Now, let e ∈ E, which is not a loop, and let v−, v+ ∈ V
be its incident vertices. Define the connected set Ωe = Oze,δ ∪Uv− ∪Uv+ and
the admittance

ye ∶= εVε(Bε(xv−),Bε(xv+);Ωe)
dε(Bε(xv−),Bε(xv+);Ωe)e

F (ze)
ε . (1.3)
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From the geometric characterization of capacity in [1], we see that the ad-
mittance of the edge e is the pre-factor of the capacity of (Bε(xv−),Bε(xv+))
in Ωe. If e is a loop we set ye = 0. We have thus constructed our electrical
network (G,y) which consists of the graph G and the admittance vector

y ∈ R∣E∣.
1.3. The Main Result. We begin with some notation and recalling some
results from [1].

For functions f and g, which depend continuously on ε > 0, we adopt the
notation

f(ε) ≃ g(ε)
when there exists a constant C depending only on the data of the problem
such that (1 −Cη̂(ε))f(ε) ≤ g(ε) ≤ (1 +Cη̂(ε))f(ε),
where η̂(⋅) is an increasing and continuous function η̂(⋅) ∶ [0,∞) → [0,∞)
with lims→0 η̂(⋅) = 0. We remark that in the following the function η̂ is the
one from Proposition 1.6 and Lemma 3.4. For us the explicit form will not
be important but can be found in [1] and we merely note that η̂ is sublinear
and depends on the Lipschitz constant of F inside Uδ, the dimension and
the function ω from (1.1).

We need the above notation in order to relate the geodesic distance and
the minimal cut from Definition 1.3 to the convex functions gz,Gz from
Definition 1.2, which is stated in the following proposition (for the proof
see [1, Proposition 4.1–4.2]):

Proposition 1.6. Let v−, v+ ∈ V be incident vertices connected with edge

e ∈ E and let 0 < ε < ε0. Denote xv− , xv+ the corresponding proper local

minimum points and let ze be the corresponding saddle, then

dε(Bε(xv−),Bε(xv+);Ωe) ≃ eF (ze)
ε ∫

R

e−
gze (y1)

ε dy1,

and

Vε(Bε(xv),Bε(xv′);Ωe) ≃ e−F (ze)
ε ∫

Rn−1
e−

Gze (y
′)

ε dy′,

where gze ,Gze are the functions in Definition 1.2.

We need the definition of a spanning tree for Kirchhoff’s formula.

Definition 1.7. Let G = (V,E) be a graph. We say that G′ is a spanning

subgraph of G if V (G′) = V (G) and E(G′) ⊂ E(G) (i.e. the same vertices
but only a subset of the edges). A tree is a connected graph which does not
contain cycles and a spanning tree of G is a spanning subgraph of G that
is a tree. We denote the set of all spanning trees of G by T (G). Finally,
for two vertices v,w ∈ V we let G/vw denote the graph obtained by merging
the vertices v and w together into a single vertex.

We are now ready to state our main theorem.

Theorem 1. Let F be admissible as in Definition 1.1, let xu and xw be

local minimum points of F and let (G,y) be the electrical network as in
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Section 1.2. Let u,w be the associated vertices in V . Then the capacity is

given by

cap(Bε(xu),Bε(xw)) ≃ T (G;y)
T (G/uw;y) ,

where

T (G;y) = ∑
G′∈T (G)

(∏
e∈G′

ye). (1.4)

Theorem 1, together with the formula (1.3), provide the characterization
of the capacity in the general case where the critical points may have any
configuration.

2. Preliminaries on graph theory and electrical networks

In this section we recall some basic results in graph theory. For an intro-
duction to the topic we refer to [3, 13, 15].

The signed incidence matrix D of the oriented graph G = (V,E) is the∣V ∣ × ∣E∣ matrix with entries

Dve =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+1 if e points into v but not out

−1 if e points out of v but not in

0 otherwise.

Let y be a vector of admittances defined in Section 1.2. Let Y be the ∣E∣×∣E∣
diagonal matrix that has y as its entries, i.e., Y = diag(ye ∶ e ∈ E). We also
define the weighted Laplacian matrix as L =DYDT .

We begin by recalling the weighted Matrix-Tree theorem, see [15, Theo-
rem 5], which relates the quantity (1.4) to the weighted Laplacian matrix.

Proposition 2.1. Let G = (V,E) be an oriented graph and let D,Y and L

be as above. Then, for any v ∈ V
T (G;y) = detL(v ∣ v)

where L(v ∣ v) is L with the row and column corresponding to v removed

and T (G;y) is defined in (1.4).

Let us recall Kirchhoff’s theorem, see [15, Theorem 8], which relates
the right-hand side of the formula in Theorem 1 to the solution of a linear
system.

Proposition 2.2. Let G = (V,E) be an oriented graph, (G,y) the electrical

network, and let L be the corresponding weighted Laplacian matrix. Fix

u,w ∈ V and let the vector ϕ ∈ R∣V ∣, with the component ϕu = 0, be the

solution to the system

Lϕ = δw,
where δw is a vector with 1 in the position of w and 0 otherwise. Then the

component ϕw is given by

ϕw = T (G/uw;y)
T (G;y) .
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The classical interpretation of Kirchhoff’s theorem is that of a network
of resistors (the admittance is the inverse of the resistance), where we have
grounded one end of the network (ϕu = 0) and let 1 Ampere of current flow
through it (right-hand side δw). Then the voltage at the exiting node ϕw

is given by the formula above. This allowed Kirchhoff ([10]) to solve the
problem of replacement resistance which in this case is just ϕw.

Given an electrical network (G,y) we may define a discrete Dirichlet
capacity between two vertices v1, vm ∈ V as

min
ϕ∈Rm;ϕ1=1;ϕm=0

⟨Lϕ,ϕ⟩
where L is the weighted Laplacian matrix. Then the minimizer of the above
problem is inversely related to Kirchhoff’s theorem, Proposition 2.2. For
more information, see [3].

Lemma 2.3. Let (G,y) be the electrical network from Section 1.2 and let

L be the Laplacian matrix. Then it holds

min
ϕ∈Rm;ϕ1=1;ϕm=0

⟨Lϕ,ϕ⟩ = T (G;y)
T (G/v1vm;y) .

The minimizer is given by the unique solution with the boundary conditions

ϕm = 0, ϕ1 = 1 to the linear system

Lϕ = λ(δ1 − δm)
where δ1 = (1,0, . . . ,0) and δm = (0, . . . ,0,1) are vectors of length m and λ

is the value of the minimum problem.

Proof. Recall that L = DYDT , where D is the signed incidence matrix and
Y is the admittance matrix. Let us first reduce the problem. Note that the
constraint ϕm = 0 implies that we may remove the last row of D (call it
D−) and the last entry of ϕ (call it ϕ−) and note that DT

−ϕ− = DTϕ. Let
L− =D−Y DT

− = L(vm ∣ vm) and note that similar reasoning gives that

⟨L−ϕ−,ϕ−⟩ = ⟨Lϕ,ϕ⟩.
By the Lagrange multiplier method we get⎧⎪⎪⎨⎪⎪⎩

L−ϕ− = λδ1(ϕ−)1 = 1,
where δ1 = (1,0, . . .). Note that by Proposition 2.1 we know that det(L−) =
T (G;y) ≠ 0 which gives that the above system has a unique solution. From
the above we get that the value of the minimum is given as

⟨Lϕ,ϕ⟩ = ⟨L−ϕ−,ϕ−⟩ = λ. (2.1)

Next, we note that ϕ/λ is a solution to the linear system in Proposition 2.2,
as such we get

T (G/uw;y)
T (G;y) = ϕ1

λ
= 1

λ
,

which together with (2.1) finishes the proof. �

We also need the following dual formulation of the minimization problem
in Lemma 2.3.
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Lemma 2.4. Let G = (V,E) be an oriented graph, where V = (v1, . . . , vm),
let D be the signed incidence matrix, L the Laplacian matrix, and let Y be

the admittance matrix. Then it holds

min (⟨Y −1j, j⟩ ∶ j ∈ R∣E∣, Dj = δ1 − δm) = 1

λ
, (2.2)

where λ is the value of the minimization problem from Lemma 2.3, i.e.,

λ = min
ϕ∈Rm;ϕ1=1;ϕm=0

⟨Lϕ,ϕ⟩.
We point out that one may interpret the minimization problem (2.2) as

a discrete version of Thompson’s principle.

Proof. Let j ∈ R∣E∣ be the minimizer of (2.2). The first variation of the

minimization problem implies that ⟨Y −1j,e⟩ = 0 for all e ∈ R∣E∣ with De = 0,
i.e.,

Y −1j ∈ Ker⊥(D). (2.3)

Recall that the solution to the minimization problem in Lemma 2.3 satisfies

δ1 − δm = λ−1Lϕ = λ−1DYDTϕ =D(λ−1Y DTϕ)
as such j̃ = λ−1Y DTϕ will according to the above satisfy the constraint
Dj̃ = δ1 − δm. Then, j̃ − j =∶ α ∈ Ker(D) and it holds trivially ⟨DTϕ, α⟩ = 0
since, DTϕ ∈ Ker⊥(D). Moreover, by (2.3) it holds ⟨Y −1j, α⟩ = 0, thus

⟨Y −1α,α⟩ = ⟨λ−1DTϕ, α⟩ − ⟨Y −1j, α⟩ = 0.
Since Y −1 is positive definite we obtain α = 0, that is

λ−1Y DTϕ = j.
The result then follows from Lemma 2.3 as

⟨Y −1j, j⟩ = ⟨Y −1Y DTϕ, Y DTϕ⟩
λ2

= ⟨DYDTϕ,ϕ⟩
λ2

= 1

λ
.

�

2.1. Simplification of the electrical network. The formula in the state-
ment of Theorem 1 given by Kirchhoff’s formula is precise, but if the graph
contains many cycles and loops, it may be unnecessarily cumbersome to cal-
culate. In the next two lemmas we consider the case when the formula in
Theorem 1 can be simplified.

Consider a graph G = (V,E). A cut vertex is a vertex, that when removed
from G will increase the number of components. A biconnected graph is a
graph with no cut vertices. A biconnected component of a graph G is a
maximal biconnected subgraph.

Lemma 2.5. Let G = (V,E) be a graph with a biconnected component G1 =(V1,E1) and let G2 = (V2,E2) be a subgraph of G such that they intersect in

one cut vertex v ∈ V and G = G1 ∪G2. Then if y ∈ R∣E∣ is the admittance

vector, y1 = y∣E1
and y2 = y∣E2

, it holds

T (G;y) = T (G1;y1)T (G2;y2).
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a b

Figure 3. Example of the graph decomposition in Proposi-
tion 2.6. Here the subgraph corresponding to the blue edges
is the biconnected component and the red edges correspond
to the graph G1.

Proof. By the definition of biconnected components, and since G1,G2 in-
tersect only in v, we can by reordering the vertices write the Laplacian
matrix L = DYDT such that the first rows/columns correspond to the ver-
tices in G1. Then L with the column and row corresponding to v removed
(L(v ∣ v)) has a block diagonal structure with the blocks L1 = LG1

(v ∣ v)
and L2 = LG2

(v ∣ v). Now, since det(L) = det(L1)det(L2) the claim follows
by applying Proposition 2.1 on all matrices. �

We can use the above lemma to simplify the computation of Kirchhoff’s
theorem in the presence of irrelevant biconnected components, see Fig. 3.

Proposition 2.6. Consider the graph G = (V,E) and let Y be the admit-

tance matrix. Assume that G = G1 ∪ G2, where G1 is a biconnected com-

ponent and G1,G2 intersect in a cut vertex v ∈ V . Then if u,w ∈ V2, it

holds

T (G;y)
T (G/uw;y) = T (G2;y2)

T (G2/uw;y2) .
The main consequence of Proposition 2.6 is that, using the terminology

from [1], only the vertices in V2 are relevant. We also point out that this is
related to the definition of a gate in [5]. In particular, referring to Kirchhoff’s
theorem, a consequence of the above is that the voltage ϕ is constant on the
biconnected components and is thus redundant.

A consequence of Lemma 2.3 is that edges with small admittance does
not contribute total capacity unless they significantly alter the topology of
the graph:

Lemma 2.7 (Deletion of edge). Let (G,y) be the electrical network as in

Lemma 2.3. Let e ∈ E and define G′ = (V,E ∖ {e}), then it holds

T (G′;y)
T (G′/(v1vm);y) ≤

T (G;y)
T (G/(v1vm);y) ≤

T (G′;y)
T (G′/(v1vm);y) + ye

Proof. Let Y ′ be the diagonal matrix Y with the entry corresponding to ye

replaced by 0. Then we immediately have

min
ϕ∈Rm;ϕ1=1;ϕm=0

⟨DY ′DTϕ,ϕ⟩ ≤ min
ϕ∈Rm;ϕ1=1;ϕm=0

⟨DYDTϕ,ϕ⟩
which proves the first inequality. For the second, note that for any edge
e ∈ E, let v−, v+ ∈ V be the incident vertices, then ∣ϕ(v−) −ϕ(v+)∣ ≤ 1, hence
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for any y having each component bounded by 1 satisfies

⟨DYDTϕ,ϕ⟩ ≤ ⟨DY ′DTϕ,ϕ⟩ + ye

which proves the last inequality. �

3. Proof of the main theorem

The proof of the main theorem consists of an upper and a lower bound
of the capacity. The lower bound uses the electrical network defined in Sec-
tion 1.2 and the variational definition of capacity, similar to the proof in [1].
For simple networks the lower bound follows from the variational character-
ization of capacity together with the fundamental theorem of calculus.

For the upper bound, we provide a novel proof using ideas from Geometric
Function Theory together with Thompson’s principle which is in a sense dual
to the lower bound. In this case, for simple networks the upper bound follows
from Thompson’s principle together with the divergence theorem. For the
general case we need an alternative construction of the electrical network.

3.1. Alternative construction of the electrical network. We will con-
struct the alternative electrical network using the domain Uδ/3 (see Defini-
tion 1.4), instead of using the components of U−δ/3 as in Section 1.2. To this
aim, for a saddle point z ∈ Z, we define the surface

Sz ∶= Tz ({0} × {x′ ∈ Rn−1
∶ Gz(x′) < δ}) , (3.1)

where Tz is from Definition 1.1. The set Uδ/3 is connected, but the surfaces
Sz in (3.1) divide it into different components, which we will associate with
vertices, see Fig. 5. Define

Ωδ/3 ∶= Uδ/3 ∖ ⋃
z∈Z

Sz. (3.2)

We will now provide two technical lemmas. The first says that any path
connecting two local minimum points in U−δ/3 necessarily passes through a
surface Sz for some z in the set of saddles Z, where we recall that Z denotes
the saddle points inside Uδ/3 ∖ U−δ/3. The second lemma states that U−δ/3
and Ωδ/3 have the same number of components and Ωδ/3 defines exactly the
same graph G = (V,E) as in Section 1.2.

Lemma 3.1. Let Uv and Uv′ be two different components of U−δ/3 and

let γ ∈ C(Uv,Uv′ ;Uδ/3). Then there is a critical point z ∈ Z such that the

intersection γ([0,1]) ∩ Sz is non-empty.

Proof. W.L.O.G. we assume F (xu;xw) = 0. Fix γ0 ∈ C(Uv ,Uv′ ;Uδ/3) and
denote γ ∼ γ0 when γ is homotopy equivalent to γ0 in Uδ/3. Define

Fγ0 ∶= inf
γ∼γ0

sup
t∈[0,1]

F (γ(t)).
Then there is a critical point z of F such that F (z) = Fγ0 and a continuous
path γ1 ∼ γ0 such that γ1(t) = z for some t ∈ (0,1). We may choose the
coordinates in R

n such that z = 0 and Sz = S0 = {0}×{x′ ∈ Rn−1
∶ G(x′) < δ}.

Note that S0 is a convex hypersurface with boundary ∂S0 = {0} × {x′ ∈
R
n−1
∶ G(x′) = δ}, and note that ∂S0 is homeomorphic to S

n−2. Since F

is admissible it follows from (1.1) that F (x) ≥ F (0) + 2δ/3 on x ∈ ∂S0 and
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therefore since F (0) > −δ/3 we have ∂S0 ⊂ Rn
∖ Uδ/3. In particular, if γ is

a path in Uδ/3 then it does not intersect ∂S0, and if γ ∼ γ0 then γ has to
intersect S0. The claim then follows from γ1 ∼ γ0. �

Lemma 3.2. The set Ωδ/3 defined in (3.2) has the same components as

U−δ/3 defined in (1.2). To be more precise, if Ω′ is a component of Ωδ/3 then

there is exactly one component, say U ′, of U−δ/3 such that U ′ ⊂ Ω′.

Proof. W.L.O.G. we assume F (xu;xw) = 0. Let us fix a component Ω′ of
Ωδ/3. Since F is admissible, then for any z ∈ Z, we see from the definition of
Sz in (3.1) that F (x) ≥ F (z) for all x ∈ Sz, and hence Sz ∩U−δ/3 = ∅. Thus,
there is a component U ′ of U−δ/3 such that U ′ ⊂ Ω′. Let us also note that

U ′ is the only component of U−δ/3 which is in Ω′, since if there was another

component U ′′ then a curve γ ∈ C(U ′,U ′′;Ω′) ⊂ C(U ′,U ′′;Uδ/3) necessarily
intersects one Sz by Lemma 3.1. �

We will localize the capacity of the sets A = Bε(xu) and B = Bε(xw) in
Uδ/3 by defining

cap(A,B;Uδ/3) ∶= inf (ε∫
Uδ/3

∣∇h∣2e−F
ε dx ∶ h = 1 in A,h ∈W 1,2

0 (Rn
∖B)) .

(3.3)
In the above minimization problem we do not have any boundary condition
on ∂Uδ/3. Thus, it follows from a classical result of calculus of variations

(see [6, Sec 2.4]) that the minimizer ĥA,B of (3.3) satisfies the natural bound-

ary condition, ∇ĥA,B ⋅ n = 0 on the smooth part of ∂Uδ/3.
It is easy to see that for the localization (3.3) it holds

cap(A,B) ≥ cap(A,B;Uδ/3) ≥ (1 −Cη̂(ε)) cap(A,B), (3.4)

where η̂ is as in Section 1.3. Indeed, the first inequality in (3.4) is trivial.

For the second we take ĥA,B to be the minimizer of (3.3) and we recall
the rough capacity bound from [1, Lemma 3.2], i.e., there exists constants
c1, c2, q1, q2 such that

c1ε
q1e−F (xu;xw)/ε ≤ cap(A,B) ≤ c2εq2e−F (xu;xw)/ε. (3.5)

We choose a cut-off function 0 ≤ ζ ≤ 1 such that ζ = 1 in Uδ/6, ζ = 0 outside
Uδ/3 and ∣∇ζ ∣ ≤ C, where C depends on δ and on the Lipschitz constant of
the potential F . Then, using Young’s inequality, the maximum principle
and (3.5) we get

cap(A,B;Uδ/3) ≥ ε∫
Uδ/3

∣∇hA,B ∣2ζ2e−F
ε dx

≥ ε

1 + ε ∫Uδ/3

∣∇(ĥA,Bζ)∣2e−F
ε dx −

2

ε
∫
Uδ/3

∣∇ζ ∣2ĥ2A,Be
−F

ε dx

≥ ε(1 − 2ε)∫
Rn
∣∇(ĥA,Bζ)∣2e−F

ε dx −
C

ε
e−

δ
6ε e−F (xu,xw)/ε

≥ (1 −Cη̂(ε)) cap(A,B),
where the last inequality follows from the sub-linearity of η̂.
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3.2. Thompson’s principle. The construction of the network via (3.2)
is suitable for the dual definition of the capacity via Thompson’s principle.
This is done by defining a class of vector fields, denoted byM, where X ∈M
if X ∈W 1,∞(Uδ/3 ∖ (Ā ∪ B̄);Rn) and satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
divX = 0 in Uδ/3 ∖ (Ā ∪ B̄),
X ⋅ n = 0 on ∂Uδ/3

∫∂AX ⋅ n = 1.
(3.6)

We note that the setM is non-empty, since the vector fieldX = Ce−V /ε∇ĥA,B,
where C = (cap(A,B;Uδ/3))−1, belongs to M. Then we have the following
(see e.g. [12])

1

cap(A,B;Uδ/3) = inf (ε∫Uδ/3∖(Ā∪B̄)
∣X ∣2eF

ε dx ∶ X ∈M) . (3.7)

Let G = (V,E) be the graph constructed as above using the domain Ωδ/3

defined in (3.2) and let X ∈M. We construct a current j ∶ E → R associated

with X as follows. Let us fix a vertex v ∈ V ∖ {u,w} and let Ũv be the
associated component of the domain Ωδ/3. Denote the edges incident with
v by e ∈ Ev ⊂ E and the associated surface defined in (3.1) by Se = Sze .

The boundary ∂Ũv is contained in ∂Uδ/3 ∪ (⋃e∈Ev
Se). Recall that v ≠ u,w,

therefore divX = 0 in Ũv, and we have by the divergence theorem and by
X ⋅ n = 0 on ∂Uδ/3 that

0 = −∫
Ũv

div(X)dx = ∫
∂Ũv

X ⋅ ndHn−1 = ∑
e∈Ev

∫
Se

X ⋅ ndHn−1. (3.8)

We define the value of j at e ∈ Ev as

j(e) ∶= ⎧⎪⎪⎨⎪⎪⎩
ε ∫Se

X ⋅ ndHn−1, if e points into v,

− ε ∫Se
X ⋅ ndHn−1, if e points out of v.

(3.9)

We define the current similarly also at edges incident with u and w. If we
label the edges as e1, . . . , el we have a vector j ∈ R∣E∣ which has components
jk = j(ek). By construction and by (3.8) j satisfies the so-called Kirchhoff’s
current law, which means that at every vertex the current flowing in equals
the current flowing out. We may write this simply as (see [15])

Dj = δ1 − δm
where we have labeled the vertices as v1, . . . , vm with v1 = u and vm = w,
and δ1 and δm are as in Lemma 2.3.

3.3. Technical lemmas. Before we prove the main theorem we recall the
following lemma from [1].

Lemma 3.3. Let F be admissible. Let xu, xw be as in Definition 1.4 and as-

sume that communication height from Definition 1.4 is zero, i.e., F (xu;xw) =
0. If Ûv is a component of U−δ/2 = {F < −δ/2}, then

osc
Ûv

hBε(xu),Bε(xw) ≤ Ce−
3δ
16ε ,

for small enough ε ≤ ε0.
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Proof. The proof is almost the same as in [1, Lemma 3.5], but we repeat it
for the reader’s convenience. Let us denote u ∶= hBε(xu),Bε(xw) for short.

Recall that Ûv is a component of U−δ/2 = {F < −δ/2}. Since F is Lipschitz
continuous, we find a Lipschitz domain Dv such that

Ûv ⊂Dv ⊂ U− 4δ
9

= {F < −4δ
9
}

and the Poincaré inequality holds in Dv with a constant that depends on∥F ∥C0,1 , i.e.,

∫
Dv

∣u − uDv ∣2 dx ≤ C ∫
Dv

∣∇u∣2 dx,
where uDv denotes the average of u in Dv. We use the rough capacity bound
(3.5) and Dv ⊂ U−4δ/9 to deduce

∫
Dv

∣∇u∣2 dx ≤ e− 4δ
9ε ∫

Dv

∣∇u∣2e−F
ε dx

≤ ε−1e− 4δ
9ε cap(Bε(xu),Bε(xw)) ≤ Cεq−1e−

4δ
9ε .

Fix a point x0 ∈ Ûv. Then by Harnack’s inequality [1, Lemma 2.7] it holds

sup
Bε(x0)

∣u − uDv ∣ ≤ (⨏
2Bε(x0)

∣u − uDv ∣2 dx)1/2 ≤ Cε−
n
2 (∫

Di

∣u − uDv ∣2 dx)1/2 .
In conclusion, we have (since ε ≤ ε0)

sup
Bε(x0)

∣u − uDv ∣ ≤ ε q−1−n
2 e−

2δ
9ε ≤ Ce−

3δ
16ε .

The claim follows from the fact that x0 is arbitrary point in Ûv. �

We also need the following lemma which relates the function η̂ to ω in
the assumption (1.1). This lemma can be found in [1, Lemma 3.9].

Lemma 3.4. Assume that G ∶ Rk → R is a convex function which has a

proper minimum at the origin and let ω be the increasing function from

(1.1). Then for a fixed δ ≤ δ0 and for any ε ≤ ε0 it holds

(1− η̂(ε))∫
Rk

e−
G(x)

ε dx ≤ ∫
{G<δ}

e−
G(x)

ε e±
ω(G(x))

ε dx ≤ (1+ η̂(ε))∫
Rk

e−
G(x)

ε dx,

for a continuous an increasing function η̂ with η̂(0) = 0, which depends on

ω and on the dimension.

3.4. Proof of the main theorem. We prove the main theorem by provid-
ing sharp lower bounds for the variation definition of the capacity and for
(3.7), which is in some sense the dual of the argument in [12].

Proof of Theorem 1. Consider two local minima xu, xw, let A = Bε(xu)
and B = Bε(xw), and let hA,B be the capacitary potential for the capaci-
tor (A,B). By rescaling we may assume that communication height from
Definition 1.4 is zero, i.e., F (xu;xw) = 0.
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Ûv− Ûv+

v− v+

Oe

Oe

Ôe

Figure 4. The bridge Oe connects the sets Ûv+ and Ûv− .

The smaller cylindrical bridge Ôe has its lateral boundaries
inside Ûv+ ∪ Ûv− .

Lower bound: Let (G,y) be the electrical network from Section 1.2, and
label the vertices as V = {v1, . . . , vm}, where v1 = u, vm = w. We need to
show that

cap(A,B) ≥ (1 −Cη̂(ε)) T (G;y)
T (G/uw;y) ,

where η̂ is as in Section 1.3.
Let ϕ ∶ V → R be a function such that ϕ(v) = hA,B(xv) where v ∈ V and

xv is the associated minimum point. Let Ûv be the component of {F < −δ/2}
which contains xv. By Lemma 3.3 we have

osc
Ûv
(hA,B) ≤ Ce−

3δ
16ε for all v ∈ V .

Therefore, ϕ satisfies

∣hA,B − ϕ(v)∣ ≤ Ce−
3δ
16ε in Ûv for v ∈ V . (3.10)

Consider an edge e ∈ E, which is not a loop, and let v−, v+ be the two
incident vertices in V . Denote the associated minimum points as x−, x+, the
associated islands as U−,U+ respectively and the saddle point as ze. We may
assume that ze = 0 and that the bridge is given by

Oe = Oze,δ = {y1 ∶ g(y1) < δ} × {y′ ∶ G(y′) < δ}.
Let us consider a domain (see Fig. 4)

Ôe ∶= {y1 ∶ g(y1) < δ} × {y′ ∶ G(y′) < δ/100}
and denote for τ ≥ 0 the surface

Sτ ∶= {τ} × {y′ ∶ G(y′) < δ/100}.
We denote the lateral boundary of Ôe by Γe ∶= {y1 ∶ g(y1) = δ} × {y′ ∶

G(y′) < δ/100} and note that Γe = Sτ1 ∪ Sτ2 for τ1 < 0 < τ2 which satisfy
g(τ1) = g(τ2) = δ. Recall that we assume F (ze) = F (0) < δ/3 and therefore

by the definition of Ôe and assumption (1.1) it holds for all y ∈ Γe that

F (y) ≤
<δ/3³·¹µ
F (0)−

=δ³¹·¹¹µ
g(y1)+

<δ/100³¹¹¹·¹¹¹µ
G(y′)+

<δ/100³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ω(g(y1))+

<δ/100³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ω(G(y′)) < −δ

2
.

(3.11)
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In other words, the lateral boundary Γe is contained in the sublevel-set{F < −δ/2} and the inequality in (3.10) holds there.
Let us next prove that it holds

(1 −Cη̂(ε))(ϕ(v−) −ϕ(v+))2ye ≤ ε∫
Oe

∣∇hA,B ∣2e−F (y)
ε dy +Ce−

δ
24ε , (3.12)

where the admittance ye is defined in (1.3). To this aim we fix y′ ∈ {y′ ∶
G(y′) < δ/100}, let τ1 < 0 < τ2 be such that g(τ1) = g(τ2) = δ and notice that(τi, y′) ∈ Γe, for i = 1,2. Using the fundamental theorem of calculus and
(3.10) we get

∣ϕ(v−) −ϕ(v+)∣ −Ce−
3δ
16ε ≤ ∣hA,B(τ2, y′) − hA,B(τ1, y′)∣
≤ ∫
{g<δ}

∣∂y1hA,B(y1, y′)∣dy1
= ∫
{g<δ}

∣∇hA,B(y1, y′)∣e−F (y)
2ε e

F (y)
2ε dy1.

By Cauchy-Schwarz inequality we have

(ϕ(v−) −ϕ(v+))2 − 2Ce−
3δ
8ε ≤ (∫

{g<δ}
∣∇hA,B(y)∣2e−F (y)

ε dy1)(∫
{g<δ}

e
F (y)

ε dy1)
for (y1, y′) ∈ {g < δ} × {G < δ/100}. The assumption (1.1) implies

F (y) ≤ F (0) − g(y1) + ω(g(y1)) +G(y′) + ω(G(y′)).
Dividing the above estimate by e

G(y′)
ε e

ω(G(y′))
ε and integrating over y′ yields

(∫
{G<δ/100}

e−
G(y′)

ε e−
ω(G(y′))

ε dy′)((ϕ(v−) − ϕ(v+))2 − 2Ce−
3δ
8ε )

≤ (∫
Ôe

∣∇hA,B(y)∣2e−F (y)
ε dy)(∫

{g<δ}
e−

g(y1)

ε e
ω(g(y1))

ε dy1) eF (0)
ε .

Using Lemma 3.4 and Proposition 1.6 it holds

e
F (0)

ε ∫
{g<δ}

e
−g(y1)

ε e
ω(g(y1))

ε dy1 ≤ (1 + η̂(ε))eF (0)
ε ∫

R

e
−g(y1)

ε dy1

≤ (1 +Cη̂(ε))dε(Bε(x−),Bε(x+);Ωe),
and, trivially

∫
{g<δ}

e
−g(y1)

ε e
ω(g(y1))

ε dy1 ≥ ∫
{g<ε}

e
−ε
2ε dy1 ≥ c∣{g < ε}∣.

Since g is Lipschitz and g(0) = 0 we have (−cε, cε) ⊂ {g < ε} for some c, and
therefore ∣{g < ε}∣ ≥ cε. Again, by Lemma 3.4 and Proposition 1.6 we get

e−
F (0)

ε ∫
{G<δ/100}

e−
G(y′)

ε e−
ω(G(y′))

ε dy′ ≥ (1 − η̂(ε))e−F (0)
ε ∫

Rn−1
e
−G(y′)

ε dy′

≥ (1 −Cη̂(ε))Vε(Bε(x−),Bε(x+);Ωe),
and trivially we also get

∫
{G<δ/100}

e
−G(y′)

ε e
−ω(G(y′))

ε dy′ ≤ ∣{G < δ}∣.
Recalling that F (0) ≤ δ/3, this together with the above estimates and the
definition of the admittance ye (1.3) imply the inequality (3.12).
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Since (3.12) holds for all e ∈ E we can sum the inequalities over e and
rephrase the sum using the signed incidence matrix D and the admittance
matrix Y . To this aim, let ϕ be the vector (ϕ(v1), . . . , ϕ(vm)), where v1 = u
and vm = w, and for an edge e ∈ E, let ve−, ve+ be the incident vertices.
Then since D is the ∣V ∣× ∣E∣ signed incidence matrix, we have for the edges(e1, . . . , ek)

DTϕ = (ϕ(ve+
1
) − ϕ(ve−

1
), . . . , ϕ(ve+

k
) −ϕ(ve−

k
)).

Furthermore, by the definition of the admittance matrix Y we have that

Y DTϕ = ((ϕ(ve+
1
) − ϕ(ve−

1
))ye1 , . . . , (ϕ(ve+k) − ϕ(ve−k))yek).

Recalling that (3.12) holds for every edge e ∈ E, we get since sets Oei are
disjoint, that

(1 −Cη̂(ε))⟨DY DTϕ,ϕ⟩ ≤ε∫
Rn
∣∇hA,B ∣2e−F (y)

ε dy +Ce−
δ

24ε

≤ cap(A,B) +Ce−
δ

24ε .

Now note that, the rough capacity bound (3.5) implies that cap(A,B) ≥
c1ε

q1 . By construction, it holds ϕ1 = ϕ(u) = 1 and ϕm = ϕ(w) = 0, therefore
Lemma 2.3 completes the proof of the lower bound.
Upper bound: We prove the upper bound by a similar argument by provid-
ing a lower bound in the dual characterization (3.7). Indeed, by the second
inequality in (3.4) this provides an upper bound for the global capacity. Let
us fix a vector field X ∈M, where M is defined via conditions (3.6), and

construct the associated current j ∈ R∣E∣ as in Section 3.1. The construction
implies that j satisfies Kirchhoff’s current law Dj = δ1 − δm, and therefore
it holds by Lemma 2.3 and Lemma 2.4 that

⟨Y −1j, j⟩ ≥ T (G/uw;y)
T (G;y) .

In order to conclude the proof, it is enough to show that at every edge
e ∈ E it holds

ε∫
Oe∩Uδ/3

∣X ∣2eF
ε dx ≥ (1 −Cη̂(ε))j2e

ye

, (3.13)

where Oe = Oze,δ denotes the associated bridge. To this aim we may choose
the coordinates in R

n such that

Oe = {x1 ∶ g(x1) < δ} × {x′ ∶ G(x′) < δ}.
For every ∣τ ∣ < δ/100 redefine

Sτ ∶= {τ} × {x′ ∶ G(x′) ≤ δ}, (3.14)

and note that by the definition of j in (3.9) it holds

ε ∣∫
S0

X ⋅ ê1 dH
n−1∣ = ∣je∣, (3.15)

where ê1 is the first coordinate vector of Rn. Let us fix 0 < τ < δ/100 and
consider the domain (see Fig. 5)

Ôτ = {x1 ∶ 0 < g(x1) < τ} × {x′ ∶ G(x′) < δ}
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Uδ/3 Uδ/3

Sze

Oe

Ôτ

ze

Figure 5. The set Sze and the domain Ôτ separate the do-
main Uδ/3 into different components.

and denote the ‘cylindrical’ boundary by

Στ = {x1 ∶ 0 ≤ g(x1) ≤ τ} × {x′ ∶ G(x′) = δ}.
Arguing as in (3.11) we deduce that F > δ/3 on Στ and therefore Στ ⊂(U δ/3)c. Note that the ‘lateral’ boundary of Ôτ is the union of S0 and Sτ

defined in (3.14). By (3.6) X is divergence free, and thus we obtain by the
divergence theorem that

0 =∫
Ôe∩Uδ/3

div(X)dx
=∫

∂Uδ/3∩Ôe

X ⋅ ndHn−1
+∫

S0

X ⋅ ndHn−1
+∫

Sτ

X ⋅ ndHn−1.

Again by (3.6) we have X ⋅ n = 0 on ∂Uδ/3, and since the normal on the
lateral boundary, S0 and Sτ , points in direction of ê1, we have by (3.15)

ε ∣∫
Sτ

X ⋅ ê1 dH
n−1∣ = ε ∣∫

S0

X ⋅ ê1 dH
n−1∣ = ∣je∣.

We may apply the same argument to τ < 0 to deduce the above equality for
all ∣τ ∣ < δ/100.

We proceed by the Cauchy-Schwarz inequality

∣je∣ = ε ∣∫
Sτ

X ⋅ ê1 dH
n−1∣ ≤ ε (∫

Sτ

∣X ∣2eF
ε dHn−1) 1

2 (∫
Sτ

e−
F
ε dHn−1)1

2

.

By assumption (1.1) we have

F (y) ≥ F (0) − g(y1) − ω(g(y1)) +G(y′) − ω(G(y′))
thus by Lemma 3.4 and Proposition 1.6 it holds

∫
Sτ

e−
F
ε dHn−1 ≤ e g(τ)

ε e
ω(g(τ))

ε e−
F (0)

ε ∫
{G<δ}

e−
G(x′)

ε e
ω(G(x′))

ε dx′

≤ (1 + η̂(ε))e g(τ)
ε e

ω(g(τ))
ε e−

F (0)
ε ∫

Rn−1
e−

G(x′)
ε dx′

≤ (1 +Cη̂(ε))e g(τ)
ε e

ω(g(τ))
ε Vε(Bε(x−),Bε(x+);Ωe).
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Hence, by the three previous inequalities we have

j2e
Vε(Bε(x−),Bε(x+);Ωe)e−

g(τ)
ε e−

ω(g(τ))
ε ≤ (1 +Cη̂(ε))ε2 ∫

Sτ

∣X ∣2eF
ε dHn−1.

Integrating over τ ∈ (−δ/100, δ/100) and using Lemma 3.4 and Proposi-
tion 1.6 we get

j2ee
−

F (0)
ε

dε(Bε(x−),Bε(x+);Ωe)
Vε(Bε(x−),Bε(x+);Ωe) ≤ (1 +Cη̂(ε))ε2 ∫

Oe

∣X ∣2eF
ε dx.

Inequality (3.13) then follows from the definition of ye in (1.3). �
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