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Abstract

Let Σ be a compact oriented 2-manifold (possibly with boundary), and
let GΣ be the linear span of free homotopy classes of closed oriented curves
on Σ equipped with the Goldman Lie bracket [·, ·]Goldman defined in terms of
intersections of curves. A theorem of Goldman gives rise to a Lie homomor-
phism Φeven from (GΣ, [·, ·]Goldman) to functions on the moduli space of flat
connections MΣ(G) for G = U(N), GL(N), equipped with the Atiyah-Bott
Poisson bracket.

The space GΣ also carries the Turaev Lie cobracket δTuraev defined in terms
of self-intersections of curves. In this paper, we address the following natural
question: which geometric structure on moduli spaces of flat connections
corresponds to the Turaev cobracket?

We give a constructive answer to this question in the following con-
text: for G a Lie supergroup with an odd invariant scalar product on its
Lie superalgebra, and for nonempty ∂Σ, we show that the moduli space of
flat connectionsMΣ(G) carries a natural Batalin-Vilkovisky (BV) structure,
given by an explicit combinatorial Fock-Rosly formula. Furthermore, for the
queer Lie supergroup G = Q(N), we define a BV-morphism Φodd : ∧ GΣ →
Fun(MΣ(Q(N))) which replaces the Goldman map, and which captures the
information both on the Goldman bracket and on the Turaev cobracket. The
map Φodd is constructed using the “odd trace” function on Q(N).
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1 Introduction
Let G be a connected Lie group, g its Lie algebra, and Σ a connected oriented
2-dimensional manifold (possibly with boundary). We denote by

MΣ(G) = Hom(π1(Σ), G)/G

the moduli space of flat connections on Σ. Usually, the action of G on the
representation space Hom(π1(Σ), G) is not free, and it doesn’t need to be
proper. For this reason, the space MΣ(G) is often singular, and there are
various approaches to dealing with it. For the purpose of this introduction,
we will be considering the smooth part of the moduli space.

Assume that g admits an invariant scalar product. Then, by the Atiyah-
Bott Theorem [4],MΣ(G) carries a canonical Poisson structure {·, ·}Atiyah-Bott.
If Σ is closed, this Poisson structure is non-degenerate, andMΣ(G) becomes
a symplectic space.

In [14], Goldman discovered an extraodinary relation between the Atiyah-
Bott Poisson structure on MΣ(G) and topology of oriented closed curves
on Σ. In more detail, let γ1, γ2 be two such curves on Σ which intersect
transversally at a finite number of points. Denote their free homotopy classes
by |γ1|, |γ2|, and define the Goldman bracket by formula

[|γ1|, |γ2|]Goldman =
∑

p∈γ1∩γ2

εp |γ1 ·p γ2|. (1)

Here εp is the sign of the intersection (with respect to the orientation of Σ)
and γ1 ·p γ2 is the oriented connected sum of γ1 and γ2 at p.

Theorem 1 (Goldman [14]). The bracket [·, ·]Goldman is well defined, and it
gives rise to a Lie bracket on the linear span GΣ of free homotopy classes of
oriented closed curves on Σ.

Furthermore, let G = U(n) or GL(n), and choose γ ∈ π1(Σ). The Gold-
man function onMΣ(G), associated to γ, is defined by

Φeven
|γ| ([ρ]) = Tr ρ(γ),

where ρ ∈ Hom(π1(Σ), G) is a lift of [ρ] ∈MΣ(G). The function Φeven
|γ| is well

defined, and it depends only on the free homotopy class of γ. The following
theorem establishes a relation between Goldman brackets and Atiyah-Bott
Poisson structures:

Theorem 2 (Goldman [14]).

{Φeven
|γ1| ,Φ

even
|γ2| }Atiyah-Bott = Φeven

[|γ1|,|γ2|]Goldman
.
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Theorem 2 can be restated in several ways. First, it says that the map

Φeven : (GΣ, [·, ·]Goldman)→ (Fun(MΣ(G)), {·, ·}Atiyah-Bott)

is a Lie algebra homomorphism. Equivalently, the symmetric algebra SGΣ is
naturally a Poisson algebra with [·, ·]Goldman extended to a Poisson bracket,
and the map Φeven extends to a homomorphism of Poisson algebras

Φeven : SGΣ → Fun(MΣ(G)).

If one considers polynomial functions on the moduli space, this map is actually
surjective for all N (see [21]).

Note that the class of a trivial loop © ∈ GΣ belongs to the center of the
Lie algebra GΣ, and that the Goldman bracket descends to the quotient space

Gred
Σ = GΣ/R© .

In [25], Turaev showed that the space GΣ carries a natural Lie cobracket

δTuraev(|γ|) =
∑
p∈γ∩γ

εp |γ′p| ∧ |γ′′p |.

Here we assume that the curve γ has a finite number of transverse self-
intersections which are denoted by p ∈ γ ∩ γ. By resolving the oriented
intersection at the point p, we obtain two closed oriented curves γ′p and γ′′p .
Similar to the definition of the Goldman bracket, εp is the sign of the inter-
section with respect to the orientation of Σ.

Theorem 3 (Turaev [25], Chas [9]). The triple (Gred
Σ , [·, ·]Goldman, δTuraev)

is an involutive Lie bialgebra. That is, δTuraev is well defined, it is a Lie
cobracket and a Lie algebra 1-cocycle with respect to the Goldman bracket,
and the composition map [·, ·]Goldman ◦ δTuraev vanishes.

In this paper, we address the following natural question:

Question: what is the geometric structure on the moduli space of flat
connection which corresponds to the Turaev cobracket?

We start with the following standard wisdom, see e.g. [8, Sec. 5]:

Theorem 4. Let (G, [·, ·], δ) be an involutive Lie bialgebra. Then, the exterior
algebra ∧G is naturally a Batalin-Vilkovisky (BV) algebra. That is, it carries
a unique second order differential operator ∆ such that

∆2 = 0, ∆(1) = 0, ∆(x) = δ(x), ∆(x ∧ y) = ∆(x) ∧ y − x ∧∆(y) + [x, y]

for all x, y ∈ G.

3



Our first result provides a refinement of the Atiyah-Bott Poisson struc-
tures in the case when a Lie group is replaced by a Lie supergroup, and an
invariant scalar product on the Lie algebra is replaced by an odd invariant
scalar product on the Lie superalgebra. In contrast to the even case, it is in
general necessary to consider foliated surfaces.

Theorem 5. Let G be a Lie supergroup with an odd invariant scalar product
on its Lie superalgebra, and let Σ be an oriented 2-dimensional manifold with
nonempty boundary, equipped with a foliation f . Then, the moduli space
MΣ(G) carries a natural BV structure ∆f . Futhermore, if g = Lie(G) is a
unimodular Lie superalgebra, then ∆f is independent of f .

Next, we consider the case of the Lie supergroup G = Q(n). Its Lie
superalgebra q(n) is unimodular and carries an odd invariant scalar product.
Hence, moduli spacesMΣ(Q(n)) carry canonical BV structures ∆. Elements
of Q(n) are expressions of the form

u = ueven + ξ uodd,

where ueven, uodd ∈ Matn(R), and ξ is an odd element with ξ2 = 1. We define
an analogue of the Goldman map

Φodd : |γ| 7→ Φodd
|γ| ([ρ]) = otr(ρ(γ)),

where otr(u) = Tr(uodd). Images of elements |γ| ∈ GΣ are odd functions on
the moduli space, and we extend the map Φodd to

Φodd : ∧ Gred
Σ → Fun(MΣ(Q(n))).

Our second result is given by the following theorem:

Theorem 6. The map Φodd is a morphism of BV algebras with respect to
the BV structure on ∧GΣ defined by the Goldman-Turaev Lie bialgebra Gred

Σ ,
and the BV structure on Fun(MΣ(Q(n))) defined by Theorem 5.

The supergroup Q(n) comes with another odd function odet, which leads
to an extension of the Goldman-Turaev Lie bialgebra to Gred

Σ ⊕H1(Σ). The
bracket between Gred

Σ and H1(Σ) is given by the intersection pairing, and the
cobracket is extended by 0 to H1(Σ). An extension of the map Φodd, sending
a 1-cycle [a] to the function

ρ 7→ odet ρ(a),

is a well defined morphism of BV algebras.
Theorem 6 is an analogue of the Goldman’s result for G = U(N),GL(N),

and it gives a constructive answer to the main question addressed in the
paper.
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In order to prove these results, we use the technique introduced by Fock-
Rosly [12]. In more detail, we choose a finite set V ⊂ ∂Σ and consider a
subgroupoid Π1(Σ, V ) with base points V . The set of representations

MΣ,V (G) = Hom(Π1(Σ, V )G),

has the property that1

MΣ(G) ∼=MΣ,V (G)/GV .

In contrast toMΣ(G), the spaceMΣ,V (G) admits easy descriptions given a
choice of an embedded graph Γ ⊂ Σ with the following properties: the set of
vertices of Γ is V , and the surface Σ retracts to Γ. Then, MΣ,V (G) ∼= GE ,
where E is the set of edges of Γ.

In this context, Fock and Rosly [12] defined a bivector {·, ·}Fock-Rosly on
MΣ,V (G) given by an explicit combinatorial formula. In more detail, let
s ∈ g⊗g be the canonical element with respect to the invariant scalar product
on g. Then,

πΓ
Fock-Rosly =

1

2

∑
v∈V

∑
a<b∈S(v)

sab. (2)

Here S(v) is the star of the vertex v which consists of half-edges with endpoint
v, a < b refers to the order of elements of S(v) induced by the orientation of
Σ, and sab is a bidifferential operator acting on pairs of functions on GE by
differentiating the copies of G corresponding to the half-edges a and b. The
following theorem summarises several results:

Theorem 7 (Fock-Rosly [12], Massuyeau-Turaev [18], Nie [19], Li-Bland-Šev-
era [7]). Bivectors defined on MΣ,V (G) by different choices of the graph Γ
coincide with each other. The bivector πFock-Rosly descends to MΣ(G) giving
{·, ·}Atiyah-Bott.

It is worth noting that πFock-Rosly is not a Poisson bivector. Instead, it has
a controllable defect in the Jacobi identity. Such bivectors are called quasi-
Poisson bivectors [1, 2], and they have many properties similar to Poisson
bivectors.

In the case when G is a Lie supergroup with an odd invariant scalar
product on its Lie superalgebra g, we introduce a canonical element t ∈ g⊗g.
Assuming that g is unimodular, we define a second order differential operator
onMΣ,V (G) ∼= GE :

∆Γ =
1

2

∑
v∈V

∑
a<b∈S(v)

tab. (3)

In comparison to equation (2), there are two differences: first, t is an odd
element while s is even. Second, we view sab as a bidifferential operator acting

1By GV , we mean a collection of elements of G indexed by V , i.e. a morphism of sets V → G.
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on a pair of functions onGE while we consider tab as a second order differential
operator acting on one function. Despite these differences, properties of ∆Γ

resemble those of the Fock-Rosly bivector:

Theorem 8. Second order differential operators defined onMΣ,V (G) by dif-
ferent choices of the graph Γ coincide with each other. The operator ∆ de-
scends to a BV operator onMΣ(G).

Again, the operator ∆ is not a BV operator. Instead, its square is non-
vanishing in a controllable way giving rise to a notion of quasi-BV operators.
To simplify the presentation, Theorem 8 is stated for the case of unimodular
Lie superalgebras. A more general statement can be found in the body of the
paper.

The structure of the paper is as follows: in Section 2, we recall the Fock-
Rosly construction. In Section 3, we describe an analogous construction of the
quasi-BV operator ∆ for supergroups. In Section 4, we give an alternative,
topological construction of ∆, via intersections of curves. In Section 5, we
consider moduli spaces for the Lie supergroupQ(n) and we establish a relation
between ∆ and the Goldman-Turaev Lie bialgebra. Appendix A is devoted
to skeletons and foliations on surfaces with boundary. Appendix B contains
information on Lie algebras and Lie superalgebras with an (even or odd)
invariant scalar product. Appendix C provides a Hopf algebra viewpoint on
the fusion operation for quasi-BV spaces.
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2 Quasi-Poisson and quasi-BV structures
In this section, we recall a description of the Poisson structure on the moduli
space of flat connections on a surface, due to Fock and Rosly [12]. We start
with some useful results on surfaces.

2.1 Surfaces
2.1.1 Skeletons

Let Σ be an oriented, compact surface with boundary and {p1, . . . , pn} = V ⊂
∂Σ a finite, non-empty subset of marked points. Recall that Π1(Σ, V ), the
fundamental groupoid with base V , is the full subgroupoid of the fundamental
groupoid Π1(Σ) on objects V ∈ Σ. In other words, the set of objects of
Π1(Σ, V ) is V , while morphisms pi → pj are homotopy classes of paths from
pi to pj .

By a graph, we mean a 1-dimensional CW complex Γ. The sets of vertices
and edges of Γ are denoted Vert Γ and Edges Γ. For each vertex p ∈ Vert Γ,
we denote by he(p) the set of half-edges of p.

Definition 1. A skeleton of Σ is a topological embedding Γ ↪→ Σ of an
oriented graph Γ such that

1. restricted to each edge e ∈ Edges Γ, the injection e ↪→ Σ is a smooth
embedding of manifolds with boundary,

2. the image of Vert Γ equals V , with no other intersection of the image of
Γ with ∂Σ,

3. Σ deformation retracts to the image of Γ.

The edges of such skeleton then freely generate the fundamental groupoid
Π1(Σ, V ), under composition and inversion.

Remark 1. Skeletons are closely related to ciliated graphs of [12]. Indeed,
to any skeleton we can associate a ciliated graph using the orientation of the
surface, with the cilium pointing outside of the surface. The thickening of
such graph is then homeomorphic to the original surface.

Remark 2. An alternative approach to describing the fundamental groupoid
Π1(Σ, V ) and thus the moduli space of flat connections, would be to use tri-
angulations, or their dual uni-trivalent graphs. This approach would result in
slightly more complicated computations in Sections 2.2 and 3.2, so we have
chosen to use skeletons.

It is easy to see that one can always find a skeleton. Moreover, any two
skeletons can be connected by isotopy, edge reversions and slides. A slide is
a move of a half-edge along a neighboring edge – see Figure 1.

7



Proposition 1. Any two skeletons Γ,Γ′ ⊂ Σ are connected by a finite se-
quence of isotopies, edge reversions and slides.

 

(a) Reversing an edge.

 

(b) Sliding the top edge along the left edge.
Note that some of the marked vertices could be
identified.

Figure 1: The moves between skeletons. The solid line is the boundary ∂Σ.

This fact seems to be known among experts, see the work of Bene [5, The-
orem 5.3] (where Σ has one boundary component and one marked point) and
Jackson [15, Corollary 6.21] (where each boundary component has one marked
point). We present a proof of this version of the claim in Appendix A.1.

2.1.2 Foliations

For Batalin-Vilkovisky structures on moduli spaces, we will need surfaces
equipped with a 1-dimensional foliation. Since Σ has a boundary, we will
consider foliations in the following sense:

Definition 2. By a foliation of a surface with boundary, we mean a de-
composition of Σ into subsets which can be extended, in each local chart
U
∼=−→ V ⊂ R × R≥0, to a smooth 1-dimensional foliation of an open sub-

set of R2 containing V .

If marked points V ⊂ ∂Σ are chosen, a foliation is moreover required to
be tangent to the boundary at each marked point. A homotopy of foliations is
required to preserve this tangency.

Note that we don’t put any requirements on the foliation away from V ,
i.e. it can be tangent to the boundary also away from V . For an example
and classification of such foliations, see Appendix A.2.

We can use a foliation to measure the number of turns of a path connecting
points of V .

Definition 3. Let γ be an immersed path connecting two points of V , trans-
verse to the boundary at its endpoints. Then, we define rotγ ∈ 1

2Z as the
number of counter-clockwise turns the foliation takes with respect to the path.
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Concretely, for generic γ, there is a contribution of ±1
2 for each time γ

becomes tangent to the foliation, with −1
2 if the turn is compatible with the

orientation of the surface, as on Figure 2. Alternatively, we can pick a metric
on the surface such that γ is perpendicular to the foliation at its endpoints.
Then the angle between γ̇ and the foliation gives a closed loop in RP1; the
rotation numbers is one half of the homotopy class of this map, where we take
as the generator the counter-clockwise turn.

(a) Contribution of −1
2 to the

rotation number
(b) Contribution of 1

2 to the ro-
tation number

Figure 2: Rotation number. The surface is oriented counter-clockwise, as depicted.

The number of rotations rotγ is an invariant of regular homotopy of γ.
Moreover, it depends only on the homotopy class of the compatible foliation.
It satisfies

rotγ−1 = −rotγ ,

where γ−1 is the path γ with reversed orientation.
Given two composable regular homotopy classes of paths γ1, γ2, there are

two ways to compose them, depending on the order of their half-edges (see
Figure 5). The corresponding rotation numbers of the composition γ2γ1 differ
by 1, as shown on Figure 3.

γ1 γ2
γ2γ1

(a) rotγ2γ1 = rotγ1 + rotγ2 − 1
2

γ1 γ2

γ2γ1

(b) rotγ2γ1 = rotγ1 + rotγ2 + 1
2

Figure 3: Rotation number of a composition

2.2 The Poisson bivector of Fock and Rosly
Let us now recall the construction of Fock and Rosly [12], of a Poisson struc-
ture on the moduli space of flat connections on a surface.
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As before, let Σ be an oriented, compact surface with boundary, and
V a non-empty, finite set of marked points belonging to ∂Σ. Let G be a
connected Lie group, with a Lie algebra g. We will studyMΣ,V (G), the space
of principal G-bundles with a flat connection and a chosen trivialization at
V , modulo isomorphisms. Concretely, we will describe the moduli space as
the space of all groupoid homomorphisms from Π1(Σ, V ) to G

MΣ,V (G) = Hom(Π1(Σ, V ), G) .

Given a flat connection on Σ, we get an element of Hom(Π1(Σ, V ), G) as-
signing holonomy hol(γ) ∈ G to any path γ in Σ between any two points of
V . This gives an isomorphism between the moduli space of flat bundles and
Hom(Π1(Σ, V ), G).

If we choose a skeleton Γ of Σ with N edges γ1, . . . , γN , we get an isomor-
phism

ΨΓ : G×N
∼−→MΣ,V (G)

given by specifying the holonomies (hol(γ1), . . . ,hol(γN )) ∈ G×N . Note that
in our convention, composition of two paths γ1γ2 is a path first traversing γ2

and then γ1 so that hol(γ1γ2) = hol(γ1)hol(γ2).

On the moduli space of flat connections, there are |V | pairwise-commuting
G (and g) actions ρp, coming from gauge transformations at points of V . They
correspond to left/right multiplication of the holonomies of paths incident at
that vertex. For example, for V = {p}, the G-action is

(hol(γ1), . . . ,hol(γN )) 7→ (g hol(γ1)g−1, . . . , g hol(γN )g−1).

To define the bivector field of Fock and Rosly on the moduli space, we
need to choose a skeleton Γ on Σ. Let us denote by he(p) the set of half-edges
incident at p ∈ V , which is linearly ordered using the orientation of Σ, see
Figure 5.

If Γ has edges γ1, . . . , γN , we can define an action of Ghe(p) on the moduli
space MΣ,V (G) ∼= G×N as follows. If a is a half-edge of an edge γi, and
g ∈ G, we define (g)a : G×N → G×N by

(g)a = 1G × · · · × Lg × · · · × 1G if a arrives at p,
(g)a = 1G × · · · ×Rg−1 × · · · × 1G if a leaves p,

(4)

where Lg or Rg−1 act on the ith factor of G×N , i.e. the factor corresponding
to hol(γi). For x ∈ g, we denote the induced Lie algebra action (x)a, i.e.
(x)a = −xR or xL for incoming/outgoing half-edge a. Note that the action
ρp is the product/sum of these actions over all half-edges incident at p, for
example ρp(x) =

∑
a∈he(p)(x)a.
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Lg,−xR Rg−1 , xL

Figure 4: Lie group and Lie algebra
action associated to half-edges.

p

1

2
3

Figure 5: Orientation of the surface
gives a cyclic order on half-edges at
p. Using the boundary, we can pick
the first half-edge.

Let us now also assume that on g, there’s a nondegenerate, invariant
symmetric pairing, with inverse s ∈ (Sym2g)g. If ei is a basis of g, let us
write2 s = sijei ⊗ ej . Recall that the Cartan element φ ∈

∧3 g is defined as

φ(α, β, γ) =
1

24
α([s#(β), s#(γ)]) for α, β, γ ∈ g∗,

where s# : g∗ → g comes from the non-degenerate pairing on g.
Let us define a bivector on G×N

πΓ
FR :=

∑
p∈V

∑
a,b∈he(p)
a<b

1

2
sij(ei)a ∧ (ej)b (5)

where we use the linear order of half-edges from Figure 5. Using the isomor-
phism ΨΓ : G×N

∼−→MΣ,V (G) we get a bivector field (ΨΓ)∗π
Γ
FR on the moduli

spaceMΣ,V (G). The following theorem then follows from the work of Fock
and Rosly [12], see also [2, 18, 19, 7] [18], Nie [19], Li-Bland-Ševera [7]].

Remark 3. To define πΓ, we don’t have to start with an invariant pairing;
a non-necessarily-invertible element s ∈ (Sym2(g))g is sufficient. Theorem 9
below holds in this case as well (as noticed in e.g. [7]). See also Remark 8.

Theorem 9. The bivector πFR := (ΨΓ)∗π
Γ
FR on MΣ,V (G) does not depend

on the choice of the skeleton Γ and is invariant under the G-action ρp on
MΣ,V (G) for each p ∈ V .

Moreover,
[πFR, πFR]/2 =

∑
p∈V

ρp(φ)

where ρ acts as a trivector field on the moduli space, acting using the g-action
ρp. In other words, πFR is a gV -quasi-Poisson bivector on the moduli space
[1, 7].

2We use the Einstein summation convention throughout the paper.
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Remark 4. Fock and Rosly also fix a classical r-matrix, i.e. an element
Λ ∈

∧2 g satisfying [Λ,Λ]/2 = −φ. Then, the bivector πFR +
∑

p∈V ρp(Λ) is
Poisson.

A different way to obtain a Poisson structure is to look at the character
varietyMΣ,V (G)/GV , i.e. the moduli space of flat G-connections on Σ, with
no marked points.

We will now reprove this theorem, since a similar proof will be used in the
Section 3.2.

2.3 Proof of Theorem 9
Denote

ghe(p) =
⊕

a∈he(p)

g

the Lie algebra acting at each marked point. Let ιa : g → ghe(p) be the
inclusion associated with half-edge a. Recall that the Lie algebra actions
x 7→ (x)a extend to a morphism from

∧
ghe(p) to multivector fields on G×N ,

compatible with the wedge product and the Schouten brackets3. For example,
the element ιa(x) ∈ ghe(p) ⊂

∧
ghe(p) is sent to the vector field (x)a ∈ X(G×N )

Moreover, if a, b are two half-edges, we can define s̃ab = sijιa(ei) ∧ ιb(ej),
so that the bivector πΓ

FR is given by the image of

∑
p∈V

∑
a,b∈he(p)
a<b

1

2
s̃ab ∈

∧⊕
p∈V

ghe(p)

 .

Similarly, we define φ̃abc = 1
24f

ijkιa(ei) ∧ ιb(ej) ∧ ιc(ek), where φ =
1
24f

ijkei ∧ ej ∧ ek ∈
∧3 g uses the antisymmetric Cartan tensor f ijk =

f ixys
xjsyk. These elements satisfy a version of the Drinfeld-Kohno relations

under the Schouten bracket, see Proposition 15 in the Appendix B.1. Now
we can prove the theorem, mostly on the level of

∧
ghe(p).

Proof of Theorem 9. From the invariance of the inner product it follows that
[(x)a + (x)b, s̃ab] = 0 for each a, b at p, and thus sab is invariant.

To prove [πΓ
FR, π

Γ
FR]/2 =

∑
p ρ(φ)p, we first look at each vertex p sepa-

rately. The action of φ at a vertex p is given by the action of∑
a,b,c∈he(p)

φ̃abc =
∑

a∈he(p)

φ̃aaa + 3
∑

a,b∈he(p),a<b

(
φ̃aab + φ̃abb

)
+ 6

∑
a,b,c∈he(p),a<b<c

φ̃abc .

3i.e. a morphism of Gerstenhaber algebras
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(a)

(b)

(a′)

(b′)

(a) Half-edge actions a and
b get mapped to a′ and b′.

A

B C

D

E
F

a b c

d

A′

B′C ′

D′

E′
F ′

a′

d′ b′

c′

g1

g2

g1 g2g1

(b) The capital letters can correspond to more half-
edges, the action xA, for x ∈ g, is given as a sum of
individual half-edge actions.

Figure 6: Choice of names for half-edges. The orientation of the surface is counter-
clockwise.

Using Proposition 15, we get that the term [1
2 s̃ab,

1
2 s̃ab]/2 will cancel the term

3(φ̃aab + φ̃abb) and that 6φ̃abc cancels with

[1
2 s̃ab,

1
2 s̃bc] + [1

2 s̃ab,
1
2 s̃ac] + [1

2 s̃bc,
1
2 s̃ac] = −6φabc + 6φbac + 6φbca .

Finally, for a path γ with half-edges a and b, one has xa = −(Adholγ x)b
and using the invariance of φ, the term φaaa thus cancels with φbbb.

To show that πFR is independent of Γ, it is enough to show that the
diffeomorphism Φ = Ψ−1

Γ′ ΨΓ sends πΓ
FR to πΓ′

FR. Moreover, we just need to
check this on edge reversions and slides of skeletons, c.f. Proposition 1. The
isomorphism Φ: Gedges(Γ) → Gedges(Γ′), corresponding to the change of edge
orientation, satisfies

Φ∗((x)a) = (x)a′ and Φ∗((x)b) = (x)b′ ,

with labels for half-edge as in Figure 6a. This is because Inv : g 7→ g−1

satisfies Inv∗(x
L) = −xR. Thus, Φ∗ relates the two bivector fields associated

to Γ and Γ′, because Φ∗(sab) = sa′b′ and the two bivector fields are equal
term-by-term.

For the case of the slide move of Figure 1b, we denote the half-edge as on
Figure 6b. The diffeomorphism Φ : Gedges(Γ) → Gedges(Γ′) is in this case (on
the relevant holonomies) given as (g1, g2) 7→ (g1, g2g1). Thus, on vector fields
it gives

Φ∗((x)a) = (x)a′ + (Adg2(x))c′

Φ∗((x)b) = −(Adg2 x)c′ = (Adg−1
1
x)b′

Φ∗((x)c) = (x)c′

Φ∗((x)d) = (x)d′ + (x)b′

Φ∗((x)X) = (x)X′ for any uppercase X
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The relevant part (dropping terms containing only sXY for X,Y uppercase)
of the quasi-Poisson bivector field for the original graph is

sA(a+b) + s(a+b)B + sab + sCc + scD + sEd + sdF

and under Φ∗, it gets mapped to

sA′a′ + sa′B′ + s(a′+Adg2 c
′)(−Adg2 c

′) + sC′c′ + sc′D′ + sE′(b′+d′) + s(b′+d′)F ′ .

Using (x)a′ = −(Ad−1
g1 (x))d′ and properties of s, we get

s(a′+Adg2 c
′)(−Adg2 c

′) = sa′(Ad−1
g1

b′) = s(Adg1 a
′)b′ = −sd′b′ = sb′d′ . (6)

which gives the quasi-Poisson bivector field πΓ′
FR. Note the term sAdg2 c

′,−Adg2 c
′

which is zero; it will be non-trivial in the definition of the quasi-BV operator.

We also need to consider a case where some of the marked points on Figure
1 coincide. In other words, it might happen that one of the two edges involved
is a slide move is a loop. Instead of repeating the above calculation, we recall
the so-called fusion procedure.

p1

p2
 

Figure 7: Fusion at vertices p1 and p2. Orientation of Σ de-
termines the position of the new point.

Fusion of a surface at two points p1 and p2 is given by a corner-connected
sum of the two surfaces, with the two marked points replaced by one point
as on Figure 7. If we start with a surface with a skeleton, the fused surface
also has a natural skeleton, and conversely any skeleton with a loop can be
obtained by fusion which creates that loop. This becomes evident when the
surface is seen as a fattening of its skeleton, as on Figure 8.

As manifolds, the two moduli spaces are the same, however, the bivector
on the fused surface has an additional term:

Proposition 2. For a surface with a skeleton Γ ⊂ Σ, the quasi-Poisson
structure on the surface given by fusion at two marked points p1 and p2 is

πΓfused
FR = πΓ

FR +
1

2
sijρp1(ei) ∧ ρp2(ej) ,

where ρp denotes the g-action at the vertex p, i.e. ρp(x) =
∑

a∈he(p)(x)a.
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Figure 8: A loop in a skeleton can be obtained via fusion.

If Γ and Γ′ are two skeletons related by slide not involving loops, we know
the corresponding bivector fields (ΨΓ)∗π

Γ
FR and (ΨΓ′)∗π

Γ′
FR are equal for the

unfused surface. However, the fusion term

1

2
sijρp1(ei) ∧ ρp2(ej)

is independent of Γ. Thus, the bivector fields (ΨΓfused
)∗π

Γfused
FR and π

Γ′fused
FR

are also equal, where now Γfused and Γ′fused are related by a slide involving a
loop.

2.4 Goldman Lie algebra
If we choose an Ad-invariant function f on G , there is a distinguished set of
functions f|γ| : [ρ] 7→ f(ρ(γ)) on the moduli spaceMΣ(G), where |γ| is a free
homotopy class of loops4 on Σ and γ its arbitrarily chosen representative in
π1(Σ). In many cases, the Poisson bracket of these functions was described
by Goldman [14]; let us recall the case of GLn(R) with f = Tr.

Denote by GΣ = Rπfree
1 (Σ) the vector space generated by free homotopy

classes of loops on Σ, and by [−,−]G the Goldman Lie bracket on GΣ, given
by resolving intersections of loops (see [14, Section 3.13] or Section 5.1 below
for details).

Theorem 10. [[14, Section 3.13]] Let G = GLn(R) and let

Φeven : GΣ → C∞(MΣ(GL(n))), Φeven
|γ| ([ρ]) := Tr|γ|([ρ]) = Tr(ρ(γ)).

Then Φeven is well defined and

Φeven
[|γ1|,|γ2|]G = {Φeven

|γ1| ,Φ
even
|γ2| }FR,

i.e. Φeven is a map of Lie algebras.
4A free homotopy class a loop is a map S1 → Σ, with two such maps identified if they can

be extended to a map from the cylinder S1 × [0, 1]. Equivalently, πfree
1 (Σ) is the set of conjugacy

classes of π1(Σ), and furthermore GΣ
∼= Rπ1(Σ)/[Rπ1(Σ),Rπ1(Σ)].
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We will describe a slight generalization of Goldman’s theorem. Our mo-
tivation is to also capture the determinant, and we will extend the Goldman
Lie algebra by the first homology H1(Σ) to achieve this.

Definition 4. On GΣ ⊕H1(Σ,R), extend the Goldman Lie bracket by

[|γ|, a]G := 〈[γ], a〉|γ|,
[a, b]G := 〈a, b〉©,

where |γ1,2| ∈ πfree
1 (Σ), a, b ∈ H1(Σ,R), 〈a, b〉 is the intersection pairing on

H1(Σ,R), [γ] ∈ H1(Σ,R) is the homology class given by the free homotopy
class |γ| and © ∈ GΣ is the homotopy class of the constant loop.

It is straightforward to check that the above bracket on GΣ ⊕ H1(Σ,R)
satisfies the Jacobi identity. Let us now also extend the map Φeven : GΣ →
C∞(MΣ(G)).

Definition 5. Let G = GLn(R)+, the connected component of the identity.
Define Φ̃even : GΣ ⊕H1(Σ,R)→ C∞(MΣ(G)) by

Φ̃even
γ ([ρ]) = Tr(ρ(γ)),

Φ̃even
a ([ρ]) = log det(ρ(γa)),

where |γ| ∈ πfree
1 (Σ) and γa ∈ π1(Σ) is a representative of a ∈ H1(Σ) ∼=

π1(Σ)ab.

Proposition 3. The map Φ̃even is well defined.

Proof. We need to check that two different representatives γa, γ′a of a give
the same function. This follows from the fact that γa = γ′aC, where C is a
product of commutators, and the determinant of a commutator is equal to 1.

We can extend Φ̃even from H1(Σ,Z) to H1(Σ,R), since Φ̃even is a map of
abelian groups. This follows from the fact that γaγb is a representative for
a+ b, and log det holγaγb = log det holγa log det holγb .

Theorem 11. The map Φ̃even : GΣ⊕H1(Σ,R)→ C∞(MΣ(G)) is a morphism
of Lie algebras.

Proof. Instead of Equation (5), it is more convenient to use a description of
the Poisson structure onMΣ(G) as in [14, p. 265, Product formula]. Namely,
if f, f ′ are two Ad-invariant functions on G, then5

{f|γ1|, f
′
|γ2|}FR =

∑
p∈γ1∩γ2

±sij∂t1 |0f((A1)pe
t1ei)∂t2 |0f ′((A2)pe

t2ej ),

5See also [12, Prop. 4.3], [16, Comment 18], [19, Theorem 2.5] and [7, Prop. 4] for various
versions of this claim; we prove a similar statement in the odd case in Theorem 13. It is not
difficult to check that our conventions for πFR do indeed match that for the product formula
above, by considering e.g. the 1-punctured torus.
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where the sum is over all (transverse double) intersections of γ1 and γ2, and
(A1)p, (A2)p are holonomies along γ1, γ2 starting at p. The sign is given by
the orientation of ((γ̇1)p, (γ̇2)p) relative to the orientation of Σ.

Let us only do the calculation for the simpler case of GLn(R). The basis
is given by elementary matrices E(αβ), α, β = 1 . . . n, and s =

∑
α,β E(αβ) ⊗

E(βα). If f = Tr, we have

∂t|0 Tr(Ape
tE(αβ)) = Tr(ApE(αβ)) = (Ap)βα,

while for f = log det, we have

∂t|0 log det(Ape
tE(αβ)) = ∂t|0 log det(etE(αβ)) = Tr(E(αβ)) = δα,β. (7)

Thus, using the product formula, we get

{Tr|γ|, log det|γa|}FR =
∑

p∈γ∩γa
±(Ap)βαδβ,α

=
∑

p∈γ∩γa
±Tr|γ| = 〈[γ], a〉Tr|γ|

and

{log det|γa|, log det|γb|}FR =
∑

p∈γa∩γb

±δα,βδβ,α = 〈a, b〉n = 〈a, b〉Tr© .

Remark 5. For simplicity, we described the Goldman theorem as stated in
[14], without marked points on Σ. See [18] and [19] for a version with marked
points.

Remark 6. One can consider the group GLn(C) as well. Then, seen as a real
group, the above theorem holds with f = 2 Re Tr and with Re log det instead
of log det.

Alternatively, one can define a holomorphic bivector field as in Equation
(5), using left-invariant holomorphic vector fields. Taking f = Tr and replac-
ing GLn(C) with its universal cover to define log det, the above theorem then
holds as well.

3 BV operators on moduli spaces
In this section, we prove an analogue of Theorem 9 for Lie supergroups
equipped with an odd pairing on their Lie algebras.
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3.1 Lie superalgebras with an odd pairing
To get a Batalin-Vilkovisky structure on the moduli space, we will use a Lie
superalgebra g with an odd invariant pairing.

Definition 6. If g is a Lie superalgebra, an odd invariant pairing is a graded-
symmetric, non-degenerate odd map 〈 , 〉 : g⊗ g→ k satisfying

〈[x, y], z〉+ (−1)|x||y|〈y, [x, z]〉 = 0, ∀x, y, z ∈ g.

A Lie superalgebra with such pairing is called odd metric. This pairing defines
a g-equivariant isomorphism6 t[ : Π⊗ g→ g∗ by t[(Π⊗ x)(y) = 〈x, y〉, whose
inverse we will denote t#.

The (odd version of the) Cartan element is defined7 as

φ(α, β, γ) = (−1)|β|+1 1

24
α([t#β, t#γ]),

where α, β, γ ∈ g∗.
Finally, define an odd element ν ∈ g by

〈ν, x〉 = strg adx, ∀x ∈ g.

Recall that a Lie (super)algebra is called unimodular if adx : g → g is
traceless for all x ∈ g. By the previous definition, a unimodularity of g is
equivalent to vanishing of ν. For more details on t, φ and their coordinate
expressions, see Appendix B.2

3.2 BV structure on the moduli of flat connections
Let us now turn our attentions to moduli spaces of flat G connections, with
G a supergroup (see [26] and [10]).

Definition 7. Let Σ be a compact, oriented surface with boundary and V ⊂
∂Σ a finite, non-empty set of marked points. For a supergroup G, the moduli
space of flat G-connections on (Σ, V ) is the supermanifold

MΣ,V (G) = HomSGrpd(Π1(Σ, V ), G) . (8)

There is a natural action of GV on this space, let us denote by ρp(g) and
ρp(x) the Lie group and Lie algebra actions of the pth factor. In this section,
we will define a second order differential operator onMΣ,V (G) that will turn
this space into a so-called gV -quasi BV manifold.

6Π denotes the one-dimensional super vector space R0|1 concentrated in the odd degree.
7The sign (−1)β is because the odd map t# passes through it.
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Definition 8. A supermanifold M with an action of an odd metric algebra
g is called g-quasi-BV if it is equipped with an odd, second-order, g-invariant
differential operator ∆ satisfying

∆(1) = 0 and ∆2 = φ ,

where φ acts on M as an element of Ug.

If we choose a skeleton of Γ with edges γ1, . . . , γN , we get an isomorphism

ΨΓ : G×N
∼−→MΣ,V (G).

This way, the abstract space of all maps of groupoids gets a concrete descrip-
tion, which we will mostly use.8

As in Section 3.2, can define, for any half-edge a, an action of the Lie
algebra g, denoted by (x)a for x ∈ g, by the equation (4), i.e. left-invariant
or minus of the right invariant vector field on the corresponding component
of GV .

To define the quasi BV operator, we also need to fix a foliation of Σ as in
Definition 3, i.e. we require that the foliation is tangent to the boundary at
the marked points. Let us also choose Γ such that its edges γi are transverse
to the foliation at the marked points.

If g has odd invariant pairing as in Definition 6, denote by tij the matrix
inverse to the matrix of the pairing tij = 〈ei, ej〉 for a homogeneous basis ei
of g. Then we define

∆Γ =
∑
p∈V

∑
a,b∈he(p)
a<b

1

2
(−1)|ei|tij(ei)a(ej)b +

∑
γ∈Edges Γ

1

2
rotγ · (ν)aγ (9)

where aγ is the outgoing half-edge of γ.

Remark 7. If g is unimodular, the second term of ∆Γ is zero and we don’t
need the foliation of the surface. However, if g is not unimodular, just the
first term of ∆Γ would not be invariant under slide moves, as we will see
below.

Remark 8. As in the even case (see Remark 3), the definition of ∆Γ and
Theorem 12 below are valid also in the case one starts with g and an element
t = (−1)|ei|tijei ∧ ej ∈ (

∧2 g)g, i.e. t doesn’t have to be the inverse of an odd,
nondegenerate pairing on g.

8The functor from supermanifolds to sets, given by

X 7→ HomGroupoid(Π1(Σ, V ),HomSuperMfld(X,G))

is representable by each of these moduli spaces constructed using Γ. This gives an alternative
definition of the moduli spaceMΣ,V (G).
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Theorem 12. The operator ∆ := (ΨΓ)∗∆
Γ on MΣ,V (G) is independent

of the choice of Γ compatible with the foliation and does not change under
homotopy of the foliation.

Futhermore, ∆ satisfies all the properties of Definition 8 and thus equips
MΣ,V (G) with a structure of a gV -quasi BV manifold.

The proof will be similar to the proof in Section 2.3. Now, instead of mul-
tivector fields, we work with differential operators, and thus the Gerstenhaber
algebra

∧
ghe(p) will be replaced by the associative algebra Ughe(p).

Proof. Let us define t̃ab ∈ Ughe(p) by (−1)|ei|tijιa(ei)ιb(ej), where ιa : g →
ghe(p) is the inclusion into the ath copy. Similarly, φ̃abc = φxyzιa(ex)ιb(ey)ιc(ez)
and ν̃a = ιa(ν) (see Proposition 16 for the definition of φxyz). The operator
∆Γ can be then written as the action of

∆Γ =
∑
p∈V

∑
a,b∈he(p)
a<b

1

2
t̃ab +

∑
γ∈Edges Γ

1

2
rotγ · ν̃aγ

These elements have properties similar to those of s̃ab and φ̃abc in the even
case, which are collected in Proposition 17 in Appendix B.2. Using this
result, we can just follow the proof of Theorem 9 without many modifications.
For example, the invariance of ∆ w.r.t. the action of gV follows from the
invariance of t̃ and ν̃. Since ν is central, it does not enter into the calculation
of ∆2 = [∆,∆]/2 and we can repeat the arguments of Section 2.3 verbatim.

The invariance of ∆ under edge inversion is as before, using Inv∗((x)L) =
−(x)R. The additional term νa = νL, is sent to Inv∗(ν

L) = −νR = −νL,
since ν is G-invariant. This minus sign is canceled by rotγ−1 = −rotγ .

For the slide, the formulas expressing the action of Φ = Ψ−1
Γ′ ΨΓ on the

vector fields are still correct. However, the term−1
2 tAdg2 (c′),Adg2 (c′) from equa-

tion (6) is not zero, but gives −ν̃c′/4 = ν̃b′/4. This counters the discrepancy
between

Φ∗

(
rotγ1

2
νd +

rotγ2
2

νb

)
=

rotγ1
2

νd′ +
rotγ1

2
νb′ +

rotγ2
2

νb′

and
rotγ1

2
νd′ +

rotγ2γ1
2

νb′ =
rotγ1

2
νd′ +

rotγ1 + rotγ2 + 1
2

2
νb′ .

where γi is the path with holonomy gi in the Figure 6b.
Finally, the fusion works as before. The foliation on the fused surface

is extended as on Figure 9. The paths acquire no additional rotation with
respect to this new foliation, so we again have
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p1

p2

Figure 9: Fusion of a foliated surface at vertices p1 and p2.

Proposition 4. For a surface with a skeleton Γ ⊂ Σ, the quasi BV structure
on the surface given by fusion at two marked points p1 and p2 is

∆Γfused = ∆Γ +
1

2
(−1)|ei|tijρp1(ei)ρp2(ej) ,

where ρp denotes the g-action at the vertex p, i.e. ρp(x) =
∑

a∈he(p)(x)a.

Then if we have a loop in Γ, we can always see the surface as a fusion
of a different surface, where the loop is split. Moreover, the surface retracts
to a thickening of its skeleton, on which the foliation is as on Figure 10 (see
Appendix A.2). Thus, the foliation on the fused surface can be obtained from
the foliation of the unfused surface by deformation, with rotation numbers
unchanged.

 

Figure 10: A loop in a skeleton of a foliated surface can be obtained via fusion.

If a slide move contains a loop, we have that operators ∆Γunfused and
∆Γ′unfused give the same ∆ on the moduli space of the unfused surface, and
the additional term from fusion does not depend on Γ.

For more details on fusion of quasi-BV manifolds, see Appendix C.

21



4 Topological interpretation of ∆

In this section, we give a topological interpretation of the operator ∆, in
terms of chords at intersections of loops on the surface.

4.1 Curves and chords
We start by introducing a class of functions on the moduli space, given by
evaluating functions on G on holonomies along paths in Σ and their deriva-
tives using chords. Such functions appeared before in [3], we present a version
adapted to supergroups.

First, the case without chords is simply given by assigning holonomies to
paths in Σ. For any path γ on Σ connecting two points of V , we have a
map holγ : MΣ,V (G) → G giving the holonomy of along γ. This map, by
definition, depends only on the homotopy class of γ fixing the endpoints.

Definition 9. Let γ1, . . . , γk be k paths between points of V . Then we define

holγ1,...,γk : O(G×k)→ O(MΣ,V (G))

as the pullback along the mapMΣ,V (G)→ G×k given by the product of maps
holγi : MΣ,V (G)→ G.

This map only depends on the homotopy class of the paths9 γi. If we
choose a skeleton, with N edges, we get a map O(G×k) → O(G×N ), as
illustrated on the following example.

Example 1. If γ is the boundary loop and e1, e2 are the two generators of
the fundamental group as on the Figure 11a, then we have γ = e−1

2 e−1
1 e2e1

and thus the map holγ is given by the diagram on Figure 11b.
There are two ways to read this diagram, dual to each other. From top

to bottom, it is built from structure maps of a (super)group, i.e. the two
strands correspond to the two copies of G, they are followed by two diagonal
maps G→ G×G and the group multiplication in the correct order, with bars
signifying inverses.

From bottom to top, it can be seen as a diagram in the symmetric monoidal
category of vector superspaces. It is built from structure maps of the (super)
Hopf algebra O(G), i.e. an iterated coproduct, followed by the antipode (the
bar), symmetry and the product of the Hopf algebra. Denoting the coproduct,
antipode, symmetry and product by �, S, τ and m, this can be written as

(m⊗m) ◦ (1⊗ τ ⊗ 1) ◦ (τ ⊗ τ) ◦ (S⊗2 ⊗ 1⊗2) ◦�(4) : O(G)→ O(G)⊗O(G),

where �(4) = (�⊗ 1⊗1) ◦ (�⊗ 1) ◦�.
9By such homotopy we mean a continuous map [0, 1] × ([0, 1]tk) → Σ fixing the endpoints of

the k paths.
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(a) A punctured torus with a loop.

O(G)

O(G×G) ∼= O(MΣ,{v}(G))

(b) The corresponding map holγ.

Figure 11: Interpreting loops on a surface as functions on the moduli space.

Let us now assume that the Lie algebra g of G is odd metric. Then we can
define functions assigned to paths with one chord, by acting with t ∈ g ⊗ g
at the chord endpoints on the outgoing half-edges.

Definition 10. Let γ1, . . . , γk be as before and let us choose a path δ on Σ
connecting two points on γ1 t · · · t γk, a so-called chord.

Then we define holδγ1,...,γk : Π⊗O(G×k)→ O(MΣ,V (G)) as follows: First,
we deform the paths so that the endpoints of δ are in V , as on Figure 12

Figure 12: Moving endpoints of a chord to a marked point.

This gives us a map hol′ : MΣ,V (G)→ G×(k+3), because of the additional
holonomy along the chord and the two subdivisions. In the case when the
chord connects 2 different paths, we define holδγ1,...,γk as on Figure 13.

O(G)⊗k

O(MΣ,V (G))

hol′

Π

Figure 13: Definition of a chord connecting two paths.
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If the chord lies one path, we define holδγ1,...,γk as on Figure 14. Finally,
we require that changing the orientation of the chord is equivalent to multi-
plication by −1.

O(G)⊗k

O(MΣ,V (G))

hol′

Π

Figure 14: Definition of a chord connecting two points on one path. Oppositely oriented
chord would result in −1 times the above diagram.

The symbol is the odd tensor (−1)|ei|tijei ⊗ ej : Π→ g⊗ g. We use the
adjoint action g → g ⊗ O(G) to (co)act by the holonomy along δ. The Lie
algebra action g⊗O(G)→ O(G) is by left-invariant vector fields.

A useful rule of thumb is that we act on the half-edge of γ leaving the
chord endpoint. Intuitively, one of the endpoints of the chord is acted on
by the holonomy along the chord. Specifically, note that the chord is a path
lying on Σ, and chords with different homotopy classes will act differently.

Remark 9. In the case of usual Lie algebra, one would write the first map,
evaluated at f1 ⊗ f2 ∈ O(G×G), as∑

i,j

sij
∂

∂t1

∣∣∣∣
t1=0

f1

(
γ′′1e

t1eiγ′1
) ∂

∂t2

∣∣∣∣
t2=0

f2

(
γ′′2e

t2Adδ(ej)γ′2

)
.

where we use δ or γ to denote the holonomies along the respective loops

In the graded case, the diagram should be read from the bottom to top, as
a diagram in the category of supervector spaces. The grey lines represent the
Lie algebra g, the black lines the super Hopf algebra O(G), and the dotted line
represents Π = R1|0. The adjoint action g → g ⊗ O(G) would correspond in
the even case to the map sending x ∈ g to the g-valued function g 7→ Adg x.

Proposition 5. The map holδγ1,...,γk only depends on the homotopy classes of
the curves (the endpoints of the chord only move along the path they belong
to), and is independent of how we deformed the endpoints of the chord to
V . Changing the orientation of the chord multiplies the corresponding hol
function by −1.
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Proof. Choosing a different path for a chord endpoint, possibly ending at a
different marked vertex, multiplies the holonomy along δ by a well-defined
holonomy g ∈ G (computed from the new vertex to the old vertex). Let us
treat only the case when the starting point of the chord is moved, since the
case of the endpoint follows by reversing the direction. The new holonomy
along the moved chord is given by g followed by the holonomy along the old
chord, i.e. δ 7→ δg. The two holonomies γ′, γ′′ change to g−1γ′ and γ′′g. All
of these actions cancel out due to the invariance of t, i.e.

where the additional holonomy g is highlighted in red.
The dependence on orientation of the chord follows from the invariance

and antisymmetry of t.

Moreover, we can construct such functions assigned to homotopy classes
of free loops, provided they are

Moreover, we can get a function onMΣ,V (G) from a loop in Σ, provided
that it is assigned a function invariant under conjugation by G.

Proposition 6. Restrict holδγ1,...,γk be the subspace of functions on G
×k which

are invariant under conjugation of the ith factor. Then this map depend only
on the free homotopy class of γi, i.e. it is independent on v ∈ V and of the
representative in conjugacy classes in π1(Σ, v).

Proof. Changing how the loop γi is deformed to a based loop (also possibly
changing the base point) conjugates the holonomy, under which the function
f is invariant. The case when there is a chord on γi is analogous; the case
when both endpoints lie on γi is slightly more involved, and follows from a
suitable version of the equation

fi(d e
teic b et

′ Adδ(ej)a) = fi(b e
t′ Adδ(ej)a d eteic)

with the holonomies a, b, c, d as on Figure 15.

4.2 Quasi-BV structure on holonomies
We can now express the action of the BV operator on these functions coming
from chords. We will from now on assume that all the families of paths have a
finite number of transverse double (possibly self-) intersections and no other
intersections. We also assume that the curves intersect the boundary only at
their endpoints, which lie in V , and that they become tangent to the foliation
in a finite number of points only.

25



Figure 15: Notation for holonomies for conjugation invariance.

Definition 11. For any collection γ1, . . . , γn of paths on Σ, let p be an in-
tersection or self-intersection point. Let us place a chord connecting the two
segments near p as on Figure 16a for an intersection in the interior of Σ and
as on Figure 16b for an intersection at the boundary.

(a) (b)

Figure 16: Rules for adding chords at intersections in the interior and at the boundary.
The surface orientation is counter-clockwise.

Define a function on the moduli space given by the sum over all intersec-
tion points ∑

p

λp hol
δp
γ1,...,γk +

1

2
holγ1,...,γk ◦

∑
k

rotγi ν
L,i (10)

where λp is 1 if the intersection is in the interior of the surface and 1/2 if the
intersection is at the boundary. The second sum is over all paths, acting with
the vector ν ∈ g as a left-invariant vector field on the ith copy of G in G×k.

The second sum can be seen as adding a rotγi-multiple of a short chord
on each path γ, as we will see it the proof of the following proposition.

Proposition 7. The above function does not change if we move the individual
paths γi by homotopy.

Proof. We need to check invariance with respect to the three Reidemeister
moves (see [19, Proof of Prop. 2.11]).

RI: At the intersection, we get a short chord :

=
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From Definition 10, such chord acts by (−1)|ei|tij(ei)
L(ej)

L = νL/2, see also
Proposition 17. This cancels with −νL/2 coming from the full clockwise turn
the path undertakes.

RII: We get a cancellation

which holds by the invariance and antisymmetry of the chord. Other possible
cases follow since changing the orientation of any of the paths multiplies the
whole equation by −1. If one of the intersection points is at the boundary,
the situation is analogous.

RIII: The following identity holds term by term. Again, changing the
orientation of any of the paths multiplies the terms where a chord lies on
that path by −1.

Theorem 13. Let γ1, . . . , γn be as before. Then

∆ ◦ holγ1,...,γk =
∑
p

λp hol
δp
γ1,...,γk +

1

2
holγ1,...,γk

∑
k

rotγiν
L,i. (11)

where the right hand side is defined in Definition 11

The formula (11) completely determines the quasi BV operator, since we
can get any function on the moduli space via holonomies.

Corollary 1. The quasi BV operator acting onMΣ,V (G)/Gv is equal to the
quasi BV operator onMΣ,V \{v}(G). Specifically, there is a canonical BV op-
erator on O(MΣ(G)), i.e. on the G×V -invariant functions in O(MΣ,V (G)).
The choice of V is arbitrary. In general the foliation must be deformed to be
compatible with V , which is always possible, see Figure 17.
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Figure 17: Deforming a foliation to be compatible with a new marked point.

Proof of Theorem 13. Both sides of Equation (11) are maps

O(Gk)→ O(MΣ,V (G)).

The left hand side, evaluated on a tensor product of k functions on G, is
equal to the BV operator from Theorem 12 acting on the function on the
moduli space given by evaluating these k functions on the k holonomies along
γ1, . . . , γk.

The right hand side is equal to a similar function given by the holonomies,
together with one chord for each intersection of γi (plus the term containing
rotations of γi.)

Let us describe the strategy of the proof. We will start with the left hand
side of (11). We have an explicit formula (9) for the quasi-BV operator, once
we choose a skeleton Γ. If we deform the paths γi to intersect only near the
vertices of Γ (the marked points), the action of the first term of (9) can be
rewritten in terms of chords from Definition 10. These chords will act on any
pair of path segments meeting at a marked point. Analyzing the possible
positions of such pairs of path segments, we will show that if the paths don’t
intersect, these chords will cancel each other; if the paths do intersect, we
recover the intersection formula (10).

Let us start with ∆◦holγ1,...,γk . For a chosen skeleton Γ, holγ1,...,γk is given
(from bottom to top) by applying the iterated coproduct on each component
of O(G×k), then a permutation of these factors, and finally by multiplying
together factors corresponding to the same edge of Γ.

Both sides of equation (11) are homotopy invariant. Thus, the above mor-
phism can be visualized by retracting the surface, and with it the paths γ,
to Γ. Moreover, we can arrange all the intersections to take place in a small
neighborhood of the vertices of V and such that each pair of paths going
through the vertex neighborhood intersects at most once in this neighbor-
hood, as on Figure 18.

The operator ∆ in ∆◦holγ1,...,γk (defined in (9), ignoring the rotation term
and signs for a moment) acts on pairs of half-edges of Γ. By Leibniz rule, we
get at each vertex a sum ∑

i<j,i,j not in the same half-edge of Γ

1

2
holi→jγ1,...,γk
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Figure 18: Paths intersecting only near a marked point v.

over all half-edges of the part of γ1, . . . , γk incident to the vertex. The chord
i→ j connects the two half-edges i and j and comes from the term t̃ab of ∆.

We can remove the condition that i and j do not follow the same half-edge
of Γ. Indeed, the above sum is equal to∑

i<j

holi→jγ1,...,γk
,

where the added terms cancel with terms from neighboring vertices by the
invariance and antisymmetry of t.

The sum above contains chords connecting half-edges of paths close to
marked points. Every chord connects either two consecutive half-edges in a
path (i.e. lies on one path segment), or connects two different segments of
(possibly the same) path going through the marked point. Splitting the above
sum, we get∑
e1 6=e2

1

2
(1 to 4 chords between these two segments) +

1

2

∑
e

holeγ1,...,γk . (12)

The first term is a sum over all pairs of segments of paths γi going through
v, and for each such pair, we collect all chord that connect them. In the second
term, we get a “short” chord placed on the segment e (at the marked point),
which equals the action of ±ν/2. Together with the rotation part of ∆, it
combines to give the second term of the RHS of (11), since at each vertex the
path undergoes an extra 1/2 turn in addition to the rotation along edges of
Γ.

Signs: If a half-edge γ′ arrives at the vertex v, the element x ∈ g coming
from the chord t̃ab acts as x−R on that holonomy; for an outgoing edge γ′′, x
acts by xL, see the Figure 1a. However, for a function of the product γ′′γ′,
the equality xL′′ = xR

′ holds. We can thus move every action to act by left
invariant vector fields on the outgoing half-edge, as in Definition 10, with a
minus sign for each chord acting on an incoming edge. Let us now apply this
rule.
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In the case where the chord lies on one path segment, we get a 1
2 times the

short chord, as picture on Figure 19 The orientation of the chord is given by

Figure 19: A chord lying on one path segment from the second sum in (12).

the order of half-edges, as in equation (9), with the minus sign as discussed
above. This gives an action of −ν/4, which is consistent with the counter-
clockwise half-turn, as on Figure 2.

Figure 20: Case with two traversing paths.

Next, we treat the sums over pairs of segments from Equation (12) case
by case. If two path segments meet near the marked point v, none, one or
both of them start on end at v. In all cases, we will show that we recover the
intersection rule from Definition 11:

1. If neither of the paths starts nor ends at the marked point, there are 4
chords. There are three different ways to connect 4 half-edges to 2 path
segments, two in which the paths don’t intersect and one in which they
do. These four possibilities are shown on Figure 20.
The first two lines, without an intersection of the segments, vanish.
In the last line, the first two terms cancel, but the other two chords
add up. This corresponds to the chord that comes from two paths
intersecting from Definition 11. The direction is correct (chord leaves
the first outgoing half-edge) and the sum of two chords cancels with the
factor 1

2 in Equation (12).
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2. If one path starts or ends at v, we get the three cases shown on Figure
21. As before, we get a non-zero contribution only in the last case,
which, after multiplying by 1

2 from (12), has the correct factor of +1.

Figure 21: Case with one path ending at the marked point.

3. If both paths start or end at v, there is only one term, shown on Figure
22. Together with the factor 1

2 from (12), we get an agreement with
Definition 11.

Figure 22: Case with both paths ending at the marked point.

The remaining cases, in which the paths are oriented differently, follow from
the above calculations: changing an orientation of one of the paths changes
signs on both sides of the equation.

4.3 Another formula for the quasi-BV operator
We will now present two more formulas for the quasi-BV operator in terms of
the surface. Their role is to make the role of the foliation clearer. Concretely,
in the formula (10), the term containing the rotation numbers rotγ has to be
added by hand to the sum over all intersections. If we instead consider inter-
section of the collection of paths γ1, . . . , γk and the same collection, shifted in
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the direction of the foliation, we will obtain the rotation numbers automati-
cally. We will first consider a case of a general foliation, and then a simpler
situation of an orientable foliation (see Appendix A.2).

We will shift the paths γi in the direction of the foliation. For each path
γ, there are two possible choices for the direction of this shift.

Definition 12. Let γ1, . . . , γk as before. Choose a direction of a small shift
for each γi such that the shifted and unshifted paths all intersect transversally
in double points. If a path γi intersects a shifted path γsh

j in p, the point p
has a preimage on the original path γj, let us call it p0. See Figure 23, with
the shifted path shown in red.

Figure 23: Rule for chords at the intersection of a shifted (red) and an unshifted (black)
path

Then, we define a function on the moduli space by averaging over all
possible choices of the directions of shifts, and for each choice by summing
over all intersections of shifted and unshifted paths, with a chord going from
p0 to p

1

2k

∑
2k possible shifts

∑
p∈γ∩γsh

1

2
αp holp0→pγ1,...,γk

. (13)

where the sign αp is +1 iff the half-edges leaving p, ordered (shifted, unshifted),
are compatible with the orientation of the surface.

Proposition 8. The function (13) from the above definition is equal to ∆ ◦
holγ1,...,γk .

Proof. An intersection point p occurs either where two path segments inter-
sect, or when the path becomes tangent to the foliation. For brevity, let us
denote the choice of directions of the shifts by C.

In the first case, if the intersection happens away from the boundary, we
get (see Figure 24), for each C, two chords at the intersection, with all the 2
or 4 possible shifts giving the same answer.

Together with the factor 1
2 from Equation (13), we get an agreement with

Definition 11.
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.

Figure 24: Definition 12 applied near an intersection in the interior of Σ.

If the intersection happens on the boundary, it is either an intersection of
two different paths, or a self-intersection. In the first case, the four cases on
Figure 25 appear for different C.

+

.

Figure 25: Definition 12 applied near an intersection at the boundary of Σ.

Here, we already oriented the chord to absorb the possible sign αp; the
terms also carry a factor 1

2 .
If the segments meeting at the boundary belong to the same path, there

are two cases to distinguish: If the foliation makes an odd number of turns
along the path, we get the left column of the above figure, and for an even
number of turns, we get the right column of the above figure.

Finally, if the path becomes tangent to the foliation, there is a contribution
only in the cases if it looks like a local extremum, see Figure 26.

or
.

Figure 26: Definition 12 when a path becomes tangent to the foliation.

This short chord, together with the factor 1
2 , acts by ν/4, as expected

(compare with the proof of Proposition 7)
Since all of these cases have the same frequency among all possible C, we

see that the average number of chords is 1
2 in all three cases, which recovers the

factor λp from Definition 11. As before, the cases with different orientations
of the intersecting segments follow from these, since changing an orientation
multiplies the term by −1.
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However, the foliation is orientable10, i.e. we can consistently choose a
direction of the shift, we can remove the symmetrization from Equation (13)

Definition 13. Let γ1, . . . , γk be as in Definition 12 and assume that the
foliation of Σ is orientable. Choose one such orientation, shift all paths γ
along this vector field and define, as before, a function by summing over all
intersections of the shifted and unshifted paths.∑

p∈γ∩γsh

1

2
αpholp0→pγ1,...,γk

. (14)

The sign αp and the chord direction is as in Definition 12.

Proposition 9. The function (14) from the above definition is equal to ∆ ◦
holγ1,...,γk . Specifically, it does not depend on the sign of the orientation of
the foliation.

Proof. The proof is similar to the proof of Proposition 8, only the foliation is
now oriented, which excludes the cases in right column, when the intersection
happens at the boundary. The remaining cases recover Definition 11 without
averaging.

5 Goldman-Turaev Lie bialgebra and Q(n)

In this section, we specialize to G = Q(n), the queer Lie supergroup. This will
allow us to relate the Goldman-Turaev Lie bialgebra with the BV operator
on the moduli space of flat connections, extending the correspondence of the
Goldman bracket and the Atiyah-Bott Poisson structure [14].

5.1 The Lie supergroup Q(n)

Let us recall the definition of the queer Lie supergroup Q(n) (see [17, §1.8]
for more details).

Definition 14. For n ≥ 1, define the following associative algebra

qas(n) = Matn(R)⊗ R[ξ]/(ξ2 − 1)

This algebra is Z2-graded by setting ξ to be odd. The odd function otr on
qas(n) is defined by

otr(X + ξY ) = TrY

and is cyclically symmetric11 otr(A1A2) = otr(A2A1).

10See Appendix A.2.
11The usual Koszul sign (−1)|A|1|A|2 is equal to +1, since A1 and A2 have opposite parity.
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We define Q(n), to be the Lie supergroup of invertible elements associated
to qas(n). Its Lie superalgebra, denoted q(n), is the space qas(n) with the
bracket given by the graded commutator. The odd trace makes q(n) into an
odd metric Lie algebra, with pairing given by A1 ⊗A2 7→ otr(A1A2).

The Lie superalgebra q(n) is unimodular, see Proposition 11 and Remark
10.

5.2 Goldman-Turaev Lie bialgebra
Any collection of k loops γi on Σ gives a function on the moduli space
MΣ,V (Q(n)), by taking a product of the odd traces of holonomies along γi.
Our goal is now to study the action of the BV operator ∆ on such functions,
to which end we need to recall the Goldman-Turaev Lie bialgebra.

Recall from Section 2.4 that GΣ = Rπfree
1 is the R-vector space generated

by homotopy classes of free loops in an oriented surface Σ. The following two
operations were defined by Goldman and Turaev [14, 25].

Definition 15. Let γ1, γ2 be two immersed loops on Σ representing their
classes |γ1|, |γ2| ∈ GΣ with transversal double intersections. Their Goldman
bracket is given by a sum over their intersections

[|γ1|, |γ2|]G =
∑

p∈γ1∩γ2

βp

[
 

]
,

where we modify the loops only in a small disc around p, connecting them
into one loop. The sign βp is +1 iff the two tangent vectors (γ̇1, γ̇2) at p agree
with the orientation of Σ.

The Turaev cobracket of |γ1| is defined as a sum over all self-intersections
of γ1

δT|γ1| =
∑

p self-intersection of γ1

 
,

where we see the resulting two loops as lying in GΣ∧GΣ, with the first loop being
the one starting to the right (this is fixed by the orientation of the surface).

Goldman proved [14] that (GΣ, [·, ·]G) is a well-defined Lie algebra. More-
over, the constant loop is in the center of [·, ·]G and on the quotient Gred

Σ =
GΣ/R©, the above bracket and cobracket give a well-defined Lie bialge-
bra by a result of Turaev [25]. Moreover, (Gred

Σ , [·, ·]G, δT) is involutive, i.e.
[·, ·]G ◦ δT = 0, by a result of Chas [9]. Therefore, one can define a BV op-
erator on the commutative superalgebra ∧Gred

Σ using the following standard
result.
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Proposition 10 ([8, Sec. 5]). Let (G, [·, ·], δ) be an involutive Lie bialgebra.
Define an operator ∆[·,·],δ on the commutative superalgebra ∧G by

∆[·,·],δ(x1, . . . , xn) =
∑
i<j

(−1)i+j+1[xi, xj ]x1 . . . x̂i . . . x̂j . . . xn

+
∑
i

(−1)i−1x1 . . . δ(xi) . . . xn,

∆[·,·],δ(1) =0,

where xi ∈ G and we omit the symbol ∧.
Then ∆[·,·],δ makes ∧G into a Batalin-Vilkovisky algebra12.

5.3 The odd Goldman map
As we mentioned above, collection of loops γ1, . . . , γk on Σ defines a function
on MΣ,V (Q(n)) by taking the product of odd traces of all the holonomies.
Since this function depends on the order of the loops γi only up to the sign
of a permutation, we get a map Φodd : ∧ Gred

Σ → O(MΣ,V (Q(n))). We will
now show that this map intertwines the natural BV operators on both sides,
defined in Proposition 10 and Theorem 12, respectively.

Theorem 14. Let Φodd : ∧ Gred
Σ → O(MΣ,V (Q(n))) be the algebra map de-

fined by sending the generators γ to holγ(otr). Then

∆ ◦ Φodd = Φodd ◦∆[·,·]G,2δT , (15)

i.e. Φodd is a map of (quasi-)BV algebras.

Note that in order to get an agreement, we need to use 2δT as a cobracket
on Gred

Σ in Proposition 10.

Proof. It will be simpler to consider, instead of the supergroup Q(n), a more
general unimodular Lie supergroup G obtained as the supergroup of invertible
elements of an associative superalgebra A with an invariant, non-degenerate
odd trace otr. Similarly to q(n), let us denote by {ei} a basis of A and
by {φi} the dual basis of A∗. Let us also introduce the structure constants
ckij by eiej = ckijek, cyclically-symmetric coefficients ti1...in = otr ei1 . . . ein
and the inverse of the pairing t = (−1)|ei|tijei ⊗ ej ∈ A ⊗ A with tijtjk =
δik. In our conventions for supegroups, we have for the coproduct �φi =

(−1)|φ
j ||φk|cijkφ

j ⊗ φk and for the left action of A, seen as a Lie algebra of G,
(ea)

Lφi = (−1)|ea|cijaφ
j .

12There are two conventions for a definition of a BV algebra used in literature, either with
∆(xy) = ∆(x)y + (−1)|x|x∆(y) + {x, y} or with ∆(xy) = ∆(x)y + (−1)|x|x∆(y) + (−1)|x|{x, y}.
The bracket {·, ·} is then either graded-symmetric or satisfies {y, x} = (−1)(|x|+1)(|y|+1)+1{x, y},
respectively. We use the first convention.
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Both sides of Equation (15) are a sum over all (possibly self-) intersections
of loops; we will prove the equality (15) term-by-term. Morevoer, we can
permute both sides such that the BV operators act on the first two loops for
the case of an intersection, or the first loop in the case of a self-intersection.
Let us treat these cases separately.

(a) A chord at an intersection
of two loops

O(MΣ,V (G))

hol′

(b) The corresponding function
on the moduli space

Figure 27: The term of the LHS of (15) corresponding to an intersection of two loops.

(a) A resolution of intersection
from the Goldman bracket

O(MΣ,V (G))

hol′

(b) The corresponding function
on the moduli space

Figure 28: The term of the RHS of (15) corresponding to an intersection of two loops.

intersection of two loops: Using Theorem 13, we get on the LHS of
(15) the chord diagram as shown on Figure 27a. Using Definition 10, this
term is equal to the function on Figure 27b. The RHS of (15) is given by the
Goldman bracket from Definition 15, i.e. the holonomy of the loop on Figure
28a. This loop is (up to cyclic permutation) equal to γ′1γ′′1γ′2γ′′2 which gives
the function on Figure 28b.

Our goal is to prove the equality of the two function on Figures 27b and
28b. Let us consider the parts of the diagrams below the box marked hol′,
which can be seen as odd elements of (A∗)⊗4 ⊂ O(G)⊗4. Concretely, from
Figure 27b we get

(−1)|ea|+|eb|tabtijtkl(ea)
Lφi ⊗ φj ⊗ (eb)

Lφk ⊗ φl,

while from Figure 28b we get

tjilkφ
i ⊗ φj ⊗ φk ⊗ φl.
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The equality of these tensors can be proven directly using the invariance of
the odd trace. Alternatively, we can see both sides as maps A⊗4 → Π⊗3 ∼= Π,
and prove the identity diagramatically (taking care with signs), getting

.

To obtain the left-most diagram, we use the fact that acting by (ea)
L on

a linear function corresponds to right-multiplication by ea. Then, the first
equality follows from the invariance of the odd trace, while the second equality
follows from cancellation of the pairing ei ⊗ ej 7→ tij = otr(eiej) and t =
(−1)|ei|tijei ⊗ ej .

(a) A chord at a self-
intersection.

O(MΣ,V (G))

hol′

(b) The corresponding function
on the moduli space, from Def-
inition 11.

Figure 29: The term of the LHS of (15) corresponding to a self-intersection.

self-intersection: Here, the situation is analogous, with the loops and
corresponding functions shown on Figures 29 and 30. These give the following
elements of (A∗)⊗3:

(−1)|ea|+|eb||φ
i|+|φi||φj |tabtijk(ea)

Lφi ⊗ (eb)
Lφj ⊗ φk

and
(−1)|φ

k|tiktjφ
i ⊗ φj ⊗ φk

respectively. Again, one can proceed in coordinates, or diagramatically:

.
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2

( )

(a) A resolution of intersection
from the Turaev cobracket. The
factor 2 is introduced in (15).
The loop on the right is the first
one in the wedge product.

O(MΣ,V (G))

hol′

2

(b) The corresponding function
on the moduli space.

Figure 30: The term of the RHS of (15) corresponding to a self-intersection.

The last equality does not hold in general, but for G = Q(n) follows from the
identity

, (16)

which is proven in Proposition 11.

Proposition 11. In the algebra qas(n), the identity (16) holds.

Proof. In the notation of the proof of Theorem 14, the identity reads

−1

2
(−1)|ea|+|eb||ei|tabcjaib = tiu

j ,

where ujej ∈ qas(n) is the unit of the algebra and eaeieb = cjaibej are the
structure constants of the iterated product.

For qas(1), we have t = 1⊗ ξ − ξ ⊗ 1, and the identity holds since

−1

2
(−1 · ξ · ξ − (−1)1·1ξ · ξ · 1) = 1

X
= otr(ξ)1,

−1

2
(1 · 1 · ξ − ξ · 1 · 1) = 0

X
= otr(1)1.

The algebra qas(n) is obtained by tensoring qas(1) with the algebra Matn(R),
which satisfies

∑
ab S

abEaXEb = Tr(X)1n×n where Ea is a basis of Matn(R)
and Sab the inverse to Tr(EaEb). This is true because a basis Ea consists of
elementary matrices, with a = (αβ) being a pair of indices. Then the matrix
product SabEaXEb is a matrix with Xββ on the position (α, α) and zeros

39



elsewhere, and summing over all α and β gives the identity matrix times the
trace of X.

The tensor product of two such algebras again satisfies (16), which is
immediate diagramatically

== .

Here qas(1) is represented by the solid line and Matn(R) by the dash-dotted
line.

Remark 10. Given an associative superalgebra where the identity (16) holds,
its commutator Lie superalgebra is unimodular. This can be seen by precom-
posing the identity (16) with the unit.

5.4 Odd determinants and H1(Σ)

Let us extend the Lie bialgebra structure from Gred
Σ to Gred

Σ ⊕H1(Σ,R), as in
Section 2.4.

Definition 16. On Gred
Σ ⊕H1(Σ), define a Lie bracket [·, ·]G as in Definition

4, with © = 0. The cobracket δT is extended from δT by 0 on H1(Σ).

It is easy to check that one obtains again an involutive Lie bialgebra, and
thus ∧

(
Gred

Σ ⊕H1(Σ,R)
)
becomes a BV algebra using Proposition 10.

The role of the function log det from Section 2.4 will be played by the
following function:

Definition 17. The odd determinant odet : Q(n)→ Π is the odd function on
Q(n) defined by

odet(X + ξY ) =
∑

j≥1 odd

Tr((X−1Y )j)

j
. (17)

The odd determinant satisfies

odet(GH) = odet(G) + odet(H), (18)

and thus is invariant [17, Theorem 1.8.5].

Proposition 12. Define an algebra map

Φ̃odd : ∧ (Gred
Σ ⊕H1(Σ,R))→ O(MΣ,V (Q(n))),
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by extending Φodd via
Φ̃odd(a) = holγa(odet),

where γa ∈ π1(Σ) represents a ∈ H1(Σ) ∼= π1(Σ)ab. Then Φ̃odd is a map of
(quasi-)BV algebras, with respect to ∆ on O(MΣ,V (Q(n))) and ∆[·,·]G,2δT on
∧
(
Gred

Σ ⊕H1(Σ,R)
)
.

Proof. Let us start by stating the odd analogue13 of Equation (7): an element
x ∈ q(n) ∼= TeQ(n), i.e. a derivative at the group identity e ∈ Q(n), satisfies

x(odet) = − otrx. (19)

This is easily seen from Definition 17: only the term j = 1 of the sum
(17) is linear in the odd coordinate, and can have a non-zero contribution
when evaluated at e ∈ Q(n). The sign comes from our convention for the
isomorphism q(n) ∼= TeQ(n); we identify x ∈ q(n) with the derivation at e
given as φi 7→ (−1)|φ

i|φi(x).

Equations (18) and (19) imply, for the left-invariant action of x ∈ q(n)

xL odet = − otrx, (20)

i.e. a constant function on Q(n). Similarly, again using (18), we get

= + =
.

Now, we can prove that the extended map Φ̃odd is a map of quasi-BV
algebras. There are three new cases to consider, containing loops γa for
a ∈ H1(Σ,R)

self-intersection of a loop γa: The cobracket is extended by zero to the
first homology. Similarly, a chord acting on a triple coproduct of odet is zero,
since at least one leg of the chord will differentiate the constant function.

an intersection of two loops γa, γb:. The Goldman bracket is extended
to H1(Σ,R) by zero. On the other hand, the chord acting on two functions
odet will give a function proportional to (−1)|ei|tij otr(ei) otr(ej). Since either
ei or ej are even, their odd trace is 0 and the function corresponding to the
chord also vanishes.

an intersection of γa with γ: This is the only nonzero term, let us
analyze the two terms similarly as in the proof of Theorem 14. The chord and
the corresponding function is shown on Figure 31. The extended Goldman

13Equation (7) says, in other terms, that the Lie algebra morphism Tr: gl(n) → R is the
differential of the Lie group morphism log det : GLn(R)+ → R. Similarly, (19) says that the
Lie superalgebra morphism otr : q(n) → Π is the differential of the Lie supergroup morphism
odet : Q(n)→ Π.
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bracket [γ, a] contributes just γ, for a positive intersection. Using (20) in
Figure 31b, we get the following element of O(Q(n))⊗4

(−1)|ea|+|eb|+1tabtij(ea)
Lφi ⊗ φj ⊗ otr(eb)⊗ 1, (21)

where 1 ∈ O(Q(n)) is the constant function equal to 1. If we choose a basis14

of qas(n) as E(αβ) and ξE(αβ), the element t can be written as

t =
n∑

α,β=1

E(αβ) ⊗ ξE(βα) − ξE(αβ) ⊗ E(βα).

Then, in Equation (21), only the first term of the above sum contributes, and
only when α = β, i.e. we get the left-invariant action of the identity matrix∑

αE(αα), which acts trivially

tij(
∑

αE(αα))
Lφi ⊗ φj ⊗ 1⊗ 1 = tijφ

i ⊗ φj ⊗ 1⊗ 1.

(a) A chord at an intersection
of two loops γ and γa

O(MΣ,V (G))

hol′

(b) The corresponding function
on the moduli space

Figure 31: The term corresponding to an intersection of two loops γ and γa.

5.5 Surjectivity of the map Φ̃odd

In this section, we investigate which (algebraic) functions on the moduli space
without marked points are in the image of the maps Φodd and Φ̃odd.

Let us briefly recall the even case. The even analogue of Φodd is the
extension of Φeven (defined in Theorem 10) to an algebra map SymGΣ →
O(MΣ(GL(n))). The image of this extension is generated by traces of ar-
bitrary holonomies. Choosing a set of generators of π1(Σ) with holonomies
denoted by A1, . . . , AN , this image is generated by traces of monomials in
A±1

1 , . . . , A±1
N .

14Recall that E(αβ) are the elementary matrices.
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By [21], any function on the space Matn(R)×N polynomial in the matrix
entries and invariant under simultaneous conjugation by GL(n) is a product
of traces of monomials in the matrices.

If we restrict to the space GL(n)×N/GL(n), the algebraic functions we
consider are polynomials in the matrix entries and the inverses of the de-
terminants of Ai, invariant under simultaneous conjugation. This algebra is
equal to the image of the extension of Φeven: this follows from the fact that
the additional generators detA−1

i can be written as a polynomial in traces of
powers of A−1

i .
Let us now turn to the odd case. The image of Φodd is generated by

odd traces of arbitrary holonomies, while the image of Φ̃odd has additional
generators for odd determinants of holonomies.

A natural class of algebraic functions on the moduli spaceMΣ(GL(n)) ∼=
Q(n)×N/Q(n) is given by invariant polynomials of matrix entries and inverses
of determinants of their even parts. It was proven by Berele [6] that all
functions on qas(n)×N polynomial in entries and invariant under simultaneous
conjugation by Q(n) are products of odd traces of monomials of matrices15.
However, restricting to invertible matrices, already for N = n = 1 we see that
not all algebraic functions are coming from odd traces. Indeed, denoting by
a and da even and the odd coordinate

A = a+ ξda ∈ Q(1),

we get otrAk = kak−1da, and we need to include the odd determinant
odetA = a−1da, which is also invariant. Thus, we are led to the following
conjecture.

Conjecture 1. The algebra of all algebraic functions on

MΣ(Q(n)) ∼= (Q(n)×N )/Q(n)

is generated by odd traces of products of matrices and their inverses, and by
the odd determinants of the N matrices.

Proposition 13. For n = 1, the conjecture is true.

Proof. On Q(1)×N , we denote the even coordinates ai and the odd coordi-
nates dai. It is enough to look at invariants under q(1), since odd traces and
determinants are already Q(1) invariant. The even part of q(1) acts trivially,
the odd part acts via

[ξ, a+ ξda] = 2da .

In other words, on Q(1)×N , ξ acts as the odd vector field

2
∑
i

dai
∂

∂ai

15Invariants under conjugation by Q(n) were also studied by Sergeev [23, 22] and Shander [24]
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Invariant functions on Q(1)×N are thus the same thing as closed differential
forms on the complement of coordinate hyperplanes of RN , polynomial in the
coordinates and their inverses. We will freely go between function on Q(1)×N

and such differential forms.
The odd trace of the ith matrix Ai = ai + ξdai is equal to dai, its odd

determinant equals dai/ai. More generally, let f be a non-commutative poly-
nomial in N variables, then

f(A1, . . . , AN ) = α+ ξdα

for some function α = f(a1, . . . , aN ) + forms of degree ≥ 2. This is true
because it holds for the matrices Ai and remains true for product of such
matrices of that form

(α1 + ξdα1)(α2 + ξdα2) = (α1α2 + dα1dα2) + ξ(α1dα2 + dα1α2).

The cohomology of the algebra of non-constant algebraic functions on
Q(1) with respect to d is one-dimensional, generated by da/a. Thus, any
q(1) invariant function on Q(1)×N can be written as a product of functions
dai/ai plus an exact term. The term dai/ai is equal to the product of odd
determinants, we thus need to treat exact forms.

Let β = β(1) + β(2) + . . . be an exact form with β(i) an i-form. We
can always write β(k) = d(

∑
|I|=k−1 βIdaI) =

∑
|I|=k−1 d(βI)daI for some

functions βI , I = (I1, . . . , Ik−1) is a multi-index of length k− 1. Then, if β(i)

vanish for i < k, the k-th form component of

β − otr(βI(A)) otr(AI1) . . . otr(AIk−1)

vanishes. Here otr(βI(A)) is obtained by replacing ai by Ai, whose 1-form
part does not depend on the chosen order.

Working order by order, we finally write any invariant function as a prod-
uct of odd determinants plus sum of products of odd traces.

Remark 11. In the even case, the kernels of the maps Φeven are non-empty
for every n; however their intersection over n ∈ N is empty, as shown by
Etingof [11]. It would be interesting to study an analogous question for Q(n).
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A Skeletons and foliations

A.1 Skeletons
Proof of Proposition 1. We start by replacing the skeleton by a homotopy
equivalent graph embedded in Σ. Specifically, we arbitrarily resolve each
marked point p, with valence n(p), to a binary tree with a root at p and n(p)
leaves. This way, the skeleton Γ is transformed into a uni-trivalent graph Γ̃
in Σ, dual to a triangulation. In general, let us consider a uni-trivalent graph
Γ̃ in the surface such that

1. the univalent vertices are mapped bijectively to V ,

2. the trivalent vertices are mapped to the interior of Σ, and

3. Σ deformation retracts to Γ̃.

To go back from such uni-trivalent graph to a (possibly different) skeleton,
we need to choose a subset T of edges of Γ̃, let’s call them red, such that their
complement Γ̃\T is a spanning forest16, with one tree rooted at each marked
point. Then, contracting the trees to their roots, the red edges become a
skeleton of the surface.

We will now proceed in two steps. First, we will prove that for a fixed
uni-trivalent graph, any two choices of red edges give skeletons that can be
related by slides. Then, we will use a result of Penner [20] relating different
uni-trivalent graphs via flips.

With two choices T,U of the sets of red edges on the same uni-trivalent
graph Γ̃, let us denote the two complementary forests by (Tp1 , . . . , Tpn) and
(Up1 , . . . , Upn), where we enumerated their trees by their roots. One of the
red edges e0 in T must be in Up for some p ∈ V (otherwise T = U). Let us
consider the union of e0 with the forest Γ̃ \ T . This subgraph will not be a
forest anymore, but this additional edge17

1. either created a loop γ in a tree Tpi , or

2. it connected Tpi with some other tree Tpj , creating a path between γ
between pi and pj .

In both cases, the path γ has to contain an edge e1 that belongs to U . This
implies that e1 6= e0, as e0 ∈ Up ⊂ Γ̃ \ U . Thus, considering T ′ := T \ {e0} ∪

16Recall that a spanning forest of a graph is a subgraph consisting of a disjoint union of trees
that contains all vertices of the graph.

17Spanning tree is equivalently characterized by the property that addition of any edge creates
a single loop []. For spanning forests, the result we use follows by joining all the roots of the trees
to a new vertex, creating a spanning tree of this enlarged graph. Then, adding an edge creates a
loop in this spanning tree, which might or might not pass through the new vertex, giving the two
possibilities.
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{e1}, we obtain a new red set, i.e. a set of edges such that Γ̃ \ T ′ is a forest
rooted at V .

Repeating this move, we transform T to U , since each such move subtracts
2 from the finite number

∑
i |Tpi 4 Upi |.

For the skeletons corresponding to the forests, this move corresponds to
the slide, along e0, of the red half-edges between the removed red edge e0 and
the added red edge e1, as encountered along γ. On Figure 32, we show the
case when γ is a loop. The case when the added edge connects two trees is
analogous.

Figure 32: Replacing the red edge e0 with e1. On the top, the red edges and the black forest
are shown. On the bottom, the forest is contracted to show the corresponding skeletons.
The half-edges g, f and h undergo a slide along e0, because they are between e0 and e1.

Now, let us turn to relating different uni-trivalent graphs. We will use the
fact that any two uni-trivalent graphs as above are related by a sequence of
flips, i.e. moves as on Figure 33.

For surfaces with marked points on the boundary, this claim follows from
the work of Penner [20]. There, the boundary components of Σ without
marked points are represented as punctures, and the univalent vertices of
the uni-trivalent graph are also allowed to lie on these punctures, in addition
to the marked points. Any two such Penner graphs are then related by
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Figure 33: Flip move. The edge in the middle has to connect two distinct trivalent vertices.

a sequence of isotopies, flips and so-called quasi-flips [20, Definition 5.5.7,
Corollary 5.5.10], which are moves involving an edge ending on a puncture,
depicted on Figure 34.

 

Figure 34: Quasi-flip. The edge in the middle has to connect a trivalent vertex and a
puncture.

To get our kind of a uni-trivalent graph from such Penner graph, we can
replace the punctured vertex by a “tadpole” graph, as on Figure 35.

7→

Figure 35: Replacing punctured vertices with trivalent graphs.

A general uni-trivalent graph might not be isotopic to one coming from
a Penner graph, as the loop around a boundary component without marked
points might contain more than one trivalent vertex. However, using flips,
we can transform it to such graph. Then, the quasi-flip can be implemented
using two ordinary flips, see Figure 36. Thus, any two uni-trivalent graphs
we consider are connected via flips.

Finally, let us explain how the flips interact with the skeletons. For a flip
along an edge, we can find a spanning forest containing such edge, by adding
this edge to the forest and removing another edge from a newly formed loop
or path connecting marked points. If this new loop or path contains only the
one edge, this edge is not valid for flips.

However, flip along an edge contained in the spanning forest has no effect
on the corresponding skeleton. Thus, we can relate any two skeletons, re-
placed by uni-trivalent graphs with red edges, by moving red edges and flips
along non-red edges. Since moving of red edges corresponds to slides and flips
along non-red edges don’t change the skeleton, the proposition is proven.
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Figure 36: A quasi-flip can be implemented as a sequence of two flips

A.2 Foliations
An example of a foliated surface, with multiple paths and their rotation num-
bers, is shown below in Figure 37 Now, we classify foliations on surfaces with

Figure 37: A foliation of a sphere with three punctures. The
top path has rotation number −1

2 , the bottom path 0.

boundary and marked points.

Proposition 14. If Γ is a skeleton of Σ, then a homotopy class of foliations
is uniquely specified by choosing the rotation number for each edge of Γ. Con-
versely, for any choice of half-integers for edges of Γ, there exists a foliation,
with these rotation numbers.

Proof. existence: Realize each vertex of the skeleton as the following foliated
coupon:

. . .

For any r ∈ 1
2Z, construct a strip with r rotations of the foliation by embed-

ding it in a horizontally-foliated plane as a spiral; the case of r = −3/2 is
shown below:
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Finally, glue together these strips and the coupons, which is possible as the
foliations agree on the dotted intervals.

uniqueness: If we fix one foliation and a metric on Σ, foliations are
in bijection with based maps Σ/V → S1. Homotopy classes of these maps
are classified by specifying the degree of the map along each edge of Γ, as
Σ/V ∼ Γ/V .

Let us remark that 1-dimensional foliations are in 1-1 correspondence
with 1-dimensional distributions in TΣ, tangent to ∂Σ at V . This follows
from the Frobenius theorem. If there exists a nowhere-vanishing section of
such distribution, then the corresponding foliation is called orientable. Not
all foliations are orientable, i.e. it is not always possible to choose a non-
vanishing vector field tangent to the foliation; the foliation on Figure 37 is
such non-orientable example.

Orientable foliations also arise from framings such that the first component
of the framing is tangent to ∂Σ at V . To each orientable foliation, there is
unique-up-to homotopy such framing compatible with the orientation of Σ.

B Lie algebras with a pairing

B.1 Ordinary Lie algebras with a pairing
Let g be an ordinary Lie algebra with a symmetric, invariant pairing. Let
he(p) be an ordered set.

Recall from Section 2.3 the elements

s̃ab = sijιa(ei) ∧ ιb(ej) ∈ ∧2ghe(p)

and
φ̃abc =

1

24
f ijkιa(ei) ∧ ιb(ej) ∧ ιc(ek) ∈ ∧3ghe(p).

Let us now collect some useful properties of these two elements of
∧
ghe(p).

Proposition 15 (Properties of s). We have s̃ab = −s̃ba and φ̃abc is symmetric
w.r.t. permutation of its labels. For a 6= b

[s̃ab, s̃ab] = 24(φ̃aab + φ̃abb) ,

and for a, b and c different,

[s̃ab, s̃bc] = −24φ̃abc.

Finally, for a, b, c and d all distinct, [s̃ab, s̃cd] = 0.
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Proof. The symmetry properties follow from (anti-)symmetry of sij and φijk.
Next,

[s̃ab, s̃ab] = tijtkl(ιa([ei, ek]) ∧ ιb(ej) ∧ ιb(el) + ιa(ei) ∧ ιa(ek) ∧ ιb([ej , el]))
= fmjlιa(em) ∧ ιb(ej) ∧ ιb(el) + fnikιa(ei) ∧ ιa(ek) ∧ ιb(en)

= 24φ̃abb + 24φ̃aab .

For one common index, we have

[s̃ab, s̃bc] = tijtklιa(ei) ∧ ιb([ej , ek]) ∧ ιc(el)
= fnilιa(ei) ∧ ιb(en) ∧ ιc(el) = −24φ̃abc .

B.2 Lie superalgebras with an odd pairing
Let us denote by ei a homogeneous basis of an odd metric Lie algebra g as in
Definition 6. Denote tij = 〈ti, tj〉 and [ei, ej ] = fkijek. Then we can express φ
and ν from Definition 6 in coordinates and also define an invariant element
in
∧2 g inverse to the pairing on g.

Proposition 16.

1. The Cartan element φ is invariant and graded-symmetric and thus de-
fines an element φ ∈ (Sym3g)g. In coordinates, we have

φ = φxyzexeyez =
(−1)|ey |

24
txjfyjkt

kzexeyez, (22)

where tij is the matrix inverse to tij
2. The element (−1)|ei|tijei ∧ ej ∈

∧2 g is g-invariant.

3. The element (−1)|ei|tijfkijek ∈ g is equal to ν and is in the center of g.

Proof. 1. From the definition of φ, we have

φ(α, γ, β) = (−1)(|γ|+1)(|β|+1)+1+|γ|−|β|φ(α, β, γ) = (−1)|β||γ|φ(α, β, γ),

From the invariance of the pairing we have for any x, y, z ∈ g

〈x, [y, z]〉 = −(−1)|x||y|〈[y, x], z〉 = 〈z, [x, y]〉.

Thus, φ(α, β, γ) ∝ (−1)|β|〈t#α, [t#β, t#γ]〉 satisfies

φ(β, γ, α) = (−1)|α|+|β|φ(α, β, γ) = (−1)|γ|φ(α, β, γ)

which means φ is symmetric (since |α| + |β| + |γ| mod 2
= 0 for the result

to be non-zero).
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The invariance follows from this as

〈[w, x], [y, z]〉+ (−1)|w||x|〈x, [w, [y, z]]〉
= 〈[w, x], [y, z]〉+ (−1)|w||x|〈[y, z], [x,w]〉 .

Now just use that φ(adx(α⊗ β⊗ γ)) is (up to a numerical factor) equal
to 〈·, [·, ·]〉 evaluated on adx(t#α⊗ t#β ⊗ t#γ)

Evaluating φ on three basis elements of g∗, we get

φ(ex, ey, ez) = (−1)|ey ||ex|φ(ey, ex, ez)

= (−1)|ex|+|ey ||ex|+1 1

24
ey([txiei, t

zjej ]) = (−1)|ex|+|ey ||ex|+1 1

24
txifyijt

jz,

where we used that tij = (−1)|ei||ej |tji = tji. This corresponds to the for-
mula φ = (−1)|ey |+1 1

24 t
xjfyjkt

kzexeyez, since pairing this with ex, ey, ez

gives

(−1)|ey |+1+|ex|(|ey |+|ez |)+|ey ||ez | 1

24
txjfyjkt

kz

and these two signs are equal, since |ex| + |ey| + |ez| = 0. Note that
the sign (−1)|ex|(|ey |+|ez |)+|ey ||ez | is the Koszul sign from the pairing of
ex ⊗ ey ⊗ ez with ex ⊗ ey ⊗ ez.

2. It follows from a direct calculation, using the symmetry of φ, that

adek(−1)|ei|tijei ∧ ej = (−1)|ek|48 tkcφ
cxyex ∧ ey = 0

Alternatively, see Remark 12

3. By definition, ν is equal to νiei = (−1)|ek|fklkt
liei. From the symmetry

of φxyz, we get (−1)|ek|tilfklx = (−1)|ek|f ixlt
lk, which gives

(−1)|ek|tilfklk = (−1)|ek|f iklt
lk .

Because the Lie bracket commutes with the action of g, we get that
ν = (−1)|ei|tij [ei, ej ] is invariant by the previous point.

Recall that Π is the vector space R0|1 and Πg := Π ⊗ g. The implicit
Koszul sign from commuting with Π allows us to state the above result more
invariantly.

Remark 12. One can use the isomorphism g∗ ∼= Πg and the décalage iso-
morphism

∧n(Πg) ∼= Symn(g) to clarify the previous proposition. The map
x⊗ y⊗ z 7→ 〈x, [y, z]〉 is graded antisymmetric, and thus can be seen as an el-
ement of

∧3(g). Using the following sequence of g-equivariant isomorphisms,

Π⊗
3∧

(g∗) ∼= Π⊗
3∧

(Πg) ∼= Sym3(g),
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this element is mapped to −φ. Similarly, the odd pairing lives in Sym2(g∗) ∼=
Sym2(Πg) ∼=

∧2(g); tijeiej gets sent to (−1)|ei|tijei ∧ ej, on which we can
apply the Lie bracket to get ν.

Note that we can map φ to Ug using the symmetrization map. Explicitly,
φ as an element of Ug is equal to φxyzexeyez = (−1)|ey |

24 txjfyjkt
kzexeyez.

Let us also prove the odd analogue of Proposition 17 for elements ν̃, t̃ and
φ̃, defined in the proof of Theorem 12. The only added feature is that t̃aa is
not zero.

Proposition 17 (Properties of t). We have t̃ab = −t̃ba for a 6= b and t̃aa =
ιa(ν)/2. The element φ̃abc is symmetric w.r.t. permutation of its labels. Both
are invariant under the diagonal action of g.

For a 6= b
[t̃ab, t̃ab] = 24(φ̃aab + φ̃abb) ,

and for a, b and c different,

[t̃ab, t̃bc] = −24φ̃abc.

Finally, for a, b, c and d all distinct, [t̃ab, t̃cd] = 0.

Proof of Proposition 17. For t̃aa, we get

t̃aa = (−1)|ei|tijιa(ei)ιa(ej)

= (−1)|ei| 12 t
ij(ιa(ei)ιa(ej)− ιa(ej)ιa(ei))

= 1
2 ιa

(
(−1)|ei|tijfkijek

)
.

Let us calculate only [t̃ab, t̃bc]:

[t̃ab, t̃bc] = (−1)|ei|+|ek|tijtklιa(ei)ιb([ej , ek])ιc(el)

= (−1)|ei|+|ej |+|em|tijfmjkt
klιa(ei)ιb(em)ιc(el)

= −24φimlιa(ei)ιb(em)ιc(el).

The calculation for [t̃ab, t̃ab] is analogous.

Remark 13. The elements s/t and φ satisfy similar relations, as shown in
Proposition 15 and 17. This can be seen as having a morphism to

∧
ghe(p) or

Ughe(p) from a super analogue of the Drinfeld-Kohno Lie algebra, which we
will call p̂odd(n).

The algebra p̂odd(n) is generated by odd elements {tab}a,b∈{1,...,n} and even
elements {φaaa}a∈{1,...,n}, where taa, φaaa are central and tab satisfy tba = −tab
for a 6= b and

[tab, tac + tbc] = 0, [tab, tcd] = 0
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for a, b, c or a, b, c, d all distinct. The elements φaab + φabb and φabc can be
defined as the commutators of t’s; the relation [tab, tac + tbc] = 0 tells us that
φabc is symmetric.

A Z-graded version of this algebra, without the central elements, appears
in the study of rational cohomology of the little n-discs operad for odd n, see
[13, Part II, Section 14.1.1 and Theorem 14.1.14]

C Hopf-like algebras governing the fusion of
quasi-BV structures
We can characterize g-quasi-BV manifolds as being manifolds with action of
an algebra Hg by differential operators, which we define below. Then, the
fusion of quasi-BV manifolds is captured by a coproduct-like structure on
these algebras.

Definition 18. Let (g, t) be a quadratic Lie algebra. Define

Hg ≡ Ug⊗ U(k∆),

where the odd generator ∆ (graded) commutes with the Lie algebra g and
satisfies

∆2 ≡ 1

6
f ijkeiejek ∈ Sym3(g) ⊂ Ug .

Here f ijk = (−1)k+jkfkabt
aitbj is graded symmetric, so one can write the image

of f ijkeiejek in Ug as just f ijkeiejek.

The coproduct is defined as

�̃(ξ) = ξ ⊗ 1 + 1⊗ ξ, where ξ ∈ g ,

�̃(∆) = ∆⊗ 1 + 1⊗∆ + (−1)itijei ⊗ ej .

The antipode turns out to be the regular antipode for ξ ∈ g and

S(∆) = −∆− ν.

Finally, let us introduce an additional filtration on Hg, which is the usual
filtration on Ug and where ∆ increases filtration degree by 2.

On a supermanifold M with g-action, ∆ should correspond to a quasi-BV
Delta:

Proposition 18. The above definition makes Hg into a Hopf algebra.
A g-quasi-BV structure on M is equivalently given by an algebra map

Hg → DiffOp(M) which preserves parity, filtration and sends ξ and ∆ to
operators annihilating the constant function 1 ∈ O(M).
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We will denote the image of ∆ by ∆ again.

Proof. This means that elements of g are mapped to vector fields and ∆ is
mapped to an odd second-order differential operator, such that M has an
action of g and g-invariant operator ∆ whose square is given by the action
by φ ∈ Ug.

C.1 Fusion
We will now introduce two algebra maps between these Hopf algebras. For
moduli spaces of flat connections, these maps will be

Definition 19. Let g, h, h1,2 be odd metric Lie superalgebras. Let

� : Hg⊕h → Hg⊕g⊕h

be the algebra map defined by sending ∆ to ∆ + (−1)eitijg ei ⊗ ej, where the
second term is an element of g⊗ g ⊂ U(g)⊗2 ∼= U(g⊕ g), and by sending an
element ξ ∈ g to (ξ, ξ) ∈ g⊕ g.

Let
i : Hh1⊕h2 → Hh1 ⊗Hh2

be the algebra map defined by sending ∆ to ∆ ⊗ 1 + 1 ⊗ ∆ and by sending
η1 ∈ h1 to η1 ⊗ 1 and η2 ∈ h2 to 1⊗ η2.

A fusion at g of a g⊕ g⊕ h-quasi-BV manifold M is defined by the com-
position

Hg⊕h �−→ Hg⊕g⊕h → DiffOp(M).

A fusion at g of a g⊕h1-quasi-BV manifold and g⊕h2-quasi-BV manifold
is defined by the composition

Hg⊕h1⊕h2 i◦�−−→ Hg⊕h1⊗Hg⊕h2 → DiffOp(M)⊗DiffOp(N)→ DiffOp(M×N).

Proposition 19. The maps � and i are well defined. The fusion is associa-
tive in the sense that the following diagram commutes

Hg⊕h Hg⊕g⊕h

Hg⊕g⊕h Hg⊕g⊕g⊕h

�

� �2

�1

where in �1,2 : Hg⊕g⊕h → Hg⊕g⊕g⊕h, the index specifies on which g we act.

Proof. For the maps � and i, the only nontrivial identity (�(∆))2 = �(∆2).
This is a calculation analogous to the one in the proof of Proposition 18
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Both legs of the associativity diagram act as a triple coproduct on g,
identity on h and on ∆, they give

∆ 7→∆⊗ 1⊗ 1 + 1⊗∆⊗ 1 + 1⊗ 1⊗∆

+ (−1)|ei|tijg (ei ⊗ ej ⊗ 1 + ei ⊗ 1⊗ ej + 1⊗ ei ⊗ ej).

Remark 14. For h1 = h2 = 0, the composition i ◦ � is the coproduct �̃ on
Hg.

Finally, we give a topological interpretation to the maps � and i.

Proposition 20. Let Hg⊕g⊕h → DiffOp(MΣ,{p,p′,... }(G)) be the quasi-BV
structure from Theorem 12, with the two g actions corresponding to the two
points p, p′. Then the g⊕h-quasi-BV structure on the surface given by fusion
of p, p′ into p′′ is given by the composition

Hg⊕h �−→ Hg⊕g⊕h → DiffOp(MΣ,{p′′,... }(G)) ∼= DiffOp(MΣ,{p,p′,... }(G)).

Similarly, if Σ1, V1 and Σ2, V2 are two surfaces with corresponding gV1,2-
quasi-BV structures, then the quasi-BV structure on (Σ1tΣ2, V1tV2) is given
by the composition

HgV1⊕gV2 i−→ HgV1 ⊗HgV2

→ DiffOp(MΣ1,V1(G)×MΣ2,V2(G)) ∼= DiffOp(MΣ1tΣ2,V1tV2(G)).

Proof. The additional term from Proposition 4 comes from �(∆) = ∆ +
(−1)eitijg ei ⊗ ej . For the disjoint union of surfaces, the quasi-BV operators
are simply added together.
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