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BOUNDARY APPROXIMATE CONTROLLABILITY UNDER POSITIVITY

CONSTRAINTS OF LINEAR SYSTEMS

YASSINE EL GANTOUH

Abstract. This paper focuses on boundary approximate controllability under positivity constraints

of a wide range of infinite-dimensional control systems. We develop frequency domain controllability

criteria. Firstly, we derive a controllability result under positivity constraints on the control for such

systems. Then, and more importantly, we provide a necessary and sufficient condition for controllability

under positivity constraints on the control and the state.

The obtained results are applied to the controllability of transportation and heat conduction net-

works. In particular, provided that the underlying graph is strongly connected, the controllability

under positivity constraints on the control/state of transport network systems is fully characterized by

a Kalman-type rank condition. For a system of heat equations with Robin boundary conditions on

a path-like network, we establish approximate controllability under positivity state-constraint with a

single positive input through the starting node. However, we prove the lack of controllability under

unilateral control-constraint.

1. Introduction

In this paper, we are concerned with boundary approximate controllability under positivity constraints

of infinite-dimensional linear systems described as






ż(t) = Amz(t), t > 0,

z(0) = x,

(G− Γ)z(t) = Ku(t), t > 0,

(1)

where the state variable z(.) takes values in a Banach space X and the control function u(·) is given

in the Banach space Lp([0,+∞);U). The maximal (differential) operator Am : D(Am) ⊂ X → X is

closed and densely defined, K is a bounded linear operator from U into ∂X (both are Banach space),

and G,Γ : D(Am) → ∂X are linear continuous trace operators. Such a system arises naturally as

abstract formulation of structured population models, and systems of linear partial differential and/or

delay differential equations on networks. In particular, over the past few decades, there has been a

growing interest in studying qualitative and quantitative properties of (1) (see e.g. [8, 10, 11, 12, 13, 16,

18, 19, 23, 27] and references therein). Before going further in our exposition, let us recall some basic

facts about this kind of systems and their controllability properties:

1. System (1) is well-posed in the following sense: for every x ∈ X and u ∈ Lp([0,+∞);U) there

exists a unique solution z ∈ C([0,+∞);X) that depends continuously on the initial data x and

the control u.

2. System (1) is positively well-posed if it is well-posed and for every positive initial state x and

positive input u the state of (1) remains positive for all t ≥ 0.
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3. System (1) is said to be approximately controllable with respect to positive controls if it can be

steered from any initial data to a state arbitrarily close to a target by choosing a suitable positive

control.

4. System (1) is said to be approximately positive controllable if it can be steered from any positive

initial data to a positive state arbitrarily close to a target by choosing a suitable positive control.

The well-posedness of (1) has been investigated in several works (see, e.g., [10, 13, 16, 18, 19, 23]).

Moreover, boundary approximate positive controllability for the unperturbed system (1) (i.e., Γ = 0) has

been addressed in [8]. In this latter, the authors proved a necessary and sufficient condition for this system

to be approximate positive controllable by developing the solution into an implicit variation of constant

formula [8, Eq. 3.2]. In this setting, it is clearly pointed out that some bounds on the trace operator G

lead unavoidably to non-reflexive Banach spaces. More recently in [12], the authors also addressed the

question of boundary approximate controllability with respect to positive controls for a linearized Saint-

Venant equation and a heat equation. There, the authors established that the resulting problem can be

reduced to a classic constrained controllability problem for distributed systems [26]. Note, however, that,

in this paper, the analyticity of the semigroup were necessary to obtain controllability results. Finally,

for the sake of completeness, we mention that a controllability problem under positivity constraints for

the heat equation was recently addressed in [20]. There, the authors showed that the heat equation is

controllable to any positive steady state by means of positive boundary controls, provided the control

time is large enough. Moreover, it is also proved that controllability by positive controls fails if the time

is too short, whenever the initial datum differs from the final target.

In this paper, we investigate boundary approximate controllability under positivity constraints of (1)

within the framework of positive Lp-well-posed and regular linear systems introduced in [13]. Our aim is

to derive controllability criteria for (1) and to generalize and unify some previous results available in the

literature [8, 9, 17, 25, 26]. To this end, we derive necessary and sufficient conditions for the boundary

approximate controllability with respect to positive controls of the non-homogeneous boundary control

system (1). More precisely, we provide frequency domain criteria for boundary approximate controllability

under positivity constraints on the control and/or the state. This latter effort is motivated by the fact

that transfer functions of infinite-dimensional control systems provide a very clear characterization of the

qualitative and quantitative properties of boundary control systems and time-delay systems.

In particular, we have obtained the following controllability results:

(i) Firstly, we show in Theorem 2.1 that boundary approximate controllability under positivity

constraints on the control is fully characterized by a frequency domain-type test.

(ii) Secondly, in Theorem 2.2 we establish that boundary approximate controllability under positivity

constraints on the control and the state (also called boundary approximate positive controllability)

is equivalent to a frequency domain test (inequality-type test).

+ ż(t) = Amz(t)

“v=y“

yKu

Figure 1. A closed-loop representation of (1).

The set-up of the proof of Theorems 2.1 and 2.2 is relatively simple. First, we assume that the

homogeneous system is positively well-posed (rep. well-posed). Using a perturbation result in [13] (resp.

[16]), we have that the generator of the homogeneous system coincides with the generator of the closed-

loop system associated to (1) (see Figure 1). Therefore, we express the control map of (1) in terms of the
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input-maps of the closed-loop system. This allows us to use Laplace transform arguments ([29]) and thus

obtain frequency domain tests for boundary approximate controllability under positivity constraints.

The rest of this paper is organized as follows: we state the main results of the paper in Section 2. In

Section 3, we give a brief exposition of the concept of positive Lp-well-posed and regular linear systems.

Moreover, we show in this section the existence of positive mild solution of (1) (Theorem 3.1). Section

4 is devoted to the proof of the main results. The fourth section deals with the application of the

results obtained in the previous sections to specific partial differential equations (PDEs) on networks

including transport network systems with controls at internal and/or external vertices, and a system

of heat equations on a directed network with controls in Robin boundary conditions. For transport

networks, if the underlying graph is strongly connected, boundary approximate positive controllability

is fully characterized by a Kalman-type rank condition (Corollary 5.1). In particular, we obtain that

transport processes on directed cycles are approximately positive controllable with a control acting on

the starting node (Example 5.1). For a system of heat equations with Robin boundary conditions on a

path-like network, we establish approximate controllability under positivity state-constraint with a single

positive input through the starting node (Lemma 5.6). However, we prove the lack of controllability

under unilateral control-constraint (Lemma 5.5). Finally, we include in the Appendix two technical

lemmas needed for proving the Kalman-type rank characterization of boundary approximate positive

controllability of transportation networks.

2. Main results

Before stating the main results of this paper, we need to introduce some notations and concepts. Let

X be a real vector space and ≤ be a partial order on this space. Then X is said to be an ordered vector

space if it satisfies the following properties:

(i) If f, g ∈ X and f ≤ g, then f + h ≤ g + h for all h ∈ X .

(ii) If f, g ∈ X and f ≤ g, then αf ≤ αg for all α ≥ 0.

If, in addition, X is lattice with respect to the partial ordered, that is, sup{f, g} and inf{f, g} exist for

all f, g ∈ X , then X is said to be a vector lattice. For an element f of a vector lattice X , the positive part

of f is defined by f+ := sup{f, 0}, the negative part of f by f− := sup{−f, 0} and the absolute value of

f by |f | := sup{f,−f}, where 0 is the zero element of X . The set of all positive elements of X , denoted

by X+, is a convex cone with vertex 0. In particular, it generates a canonical ordering ≤ on X which is

given by: f ≤ g if and only if g− f ∈ X+. A linear subspace B of a vector lattice X is said to be ideal, if

f ∈ X, g ∈ B, and |f | ≤ |g| implies g ∈ B. A norm complete vector lattice X such that its norm satisfies

the following property

|f | ≤ |g| =⇒ ‖f‖ ≤ ‖g‖,

for f, g ∈ X , is called Banach lattice. If X is a Banach lattice, its topological dual X ′, endowed with the

dual norm and the dual order, is also a Banach lattice. We define the polar cone of a subset M ⊆ X by

M◦ = {ϕ ∈ X ′, 〈ϕ , f〉 ≤ 0, ∀f ∈ M} .

We have the following density result, see [26, Proposition 2.3].

Lemma 2.1. Let X be a Banach space and M a convex cone in X with vertex at the origin. Then

M = X if and only if M◦ = {0}.

We denote by L(E,F ) the Banach algebra of all linear bounded operators from a Banach space E to a

Banach space F . If Z is a subspace of a Banach space E, then by P|Z we denote the restriction operator

of P ∈ L(E,F ). An operator P ∈ L(E,F ) is positive if and only if PE+ ⊂ F+ or, equivalently, if f ≤ g

implies Pf ≤ Pg. An everywhere defined positive operator from a Banach lattice to a normed vector

lattice is bounded, see e.g. [24, Theorem II.5.3]. The set of all positive operators from a Banach lattice

E to another Banach lattice Y , denoted by L+(E,F ), is a convex cone in the space L(E,F ).
3



Let X be a real Banach lattice and (A,D(A)) be the generator of a C0-semigroup T := (T (t))t≥0 on X .

The type of T is defined by ω0(A) := inf{t−1 log ‖T (t)‖ : t > 0}. We denote by ρ(A) the resolvent set of

A, i.e., the set of all µ ∈ C such that µIX −A is invertible with IX denote the identity operator in X . By

R(µ,A) := (µIX−A)−1 the resolvent operator ofA. The complement of ρ(A), is called the spectrum and is

denoted by σ(A) := C\ρ(A). The so-called spectral radius of A is defined by r(A) := sup{|µ| : µ ∈ σ(A)}.

Also, recall that the spectral bound s(A) of A is defined by s(A) := sup{Reµ : µ ∈ σ(A)}. A linear

operator A on a Banach lattice X is called resolvent positive if there exists ω ∈ R such that (ω,∞) ⊆ ρ(A)

and R(µ,A) ≥ 0 for each µ > ω. Moreover, by [4, Corollary 2.3] a C0-semigroups on a Banach lattice

is positive if and only if the corresponding generator A is resolvent positive. On the other hand, by

X1 we denote the order Banach space D(A) endowed with the norm ‖x‖1 := ‖(µIX − A)x‖ for some

µ ∈ ρ(A). The extrapolation space associated with X and A, denoted by X−1, is the completion of X

with respect to the norm ‖x‖−1 := ‖R(µ,A)x‖ for x ∈ X and some µ ∈ ρ(A). Note that the choice of

µ is not important, since by the resolvent equation different choices lead to equivalent norms on X1 and

X−1. Moreover, we have X1 ⊂ X ⊂ X−1. The unique extension of T on X−1 is a C0-semigroup which

we denote by T−1 := (T−1(t))t≥0 and whose generator is denoted by A−1. For more details on positive

semigroups, see for instance [7] or [6].

Let X, ∂X,U be Banach lattices called the sate space, boundary space and input space, respectively.

We rewrite (1) as the following boundary input-output system






ż(t) = Amz(t), t > 0, z(0) = x,

Gz(t)− v(t) = Ku(t), t > 0,

y(t) = Γz(t), t > 0,

(2)

with the feedback law

“v=y”. (3)

Moreover, let us assume that the trace operator G satisfies:

(H1) A = Am with domain D(A) := kerG generates a C0-semigroups T on X ;

(H2) G is surjective.

According to [15, Lemma 1.2], the assumptions (H1)-(H2) imply that the domain of Am can be decom-

posed and related to A as

D(Am) = D(A) ⊕ ker(µIX −Am), µ ∈ ρ(A).

Moreover, the restriction operator G|ker(µIX−Am)
is invertible and the operator

Dµ :=
(

G|ker(µIX−Am)

)−1

,

called the Dirichlet operator, exists and is bounded. Thus,

Am = A−1 +BG, (4)

since µDµv = AmDµv, v ∈ ∂X , where B : ∂X → X−1 is defined by

B = (µIX −A−1)Dµ, µ ∈ ρ(A).

Note that B does not depends on µ, due to the resolvent equation.

We are now ready to state the main controllability results of this paper. The first one highlights

boundary approximate controllability under positivity control-constraint.

Theorem 2.1. Let X, ∂X,U be order Banach spaces and let the assumptions (H1)–(H2) be satisfied.

Furthermore, assume that:

(H3) (A,B,Γ|D(A)
) is an Lp-well-posed regular triplet (with feedthrough zero) on X, ∂X, ∂X with the

identity I∂X as an admissible feedback operator.
4



Then, the system (1) is boundary approximately controllable with respect to positive controls if and only

if there exists ω ∈ R such that, for all µ ≥ ω, we have 1 ∈ ρ(ΓDµ) and
(

Dµ(IX − ΓDµ)
−1KU+

)◦
= {0}. (5)

The second and most important result of the present paper provides a complete description of control-

lability under positivity constraints on the control and the state.

Theorem 2.2. Let X, ∂X,U be Banach lattices and let the assumptions (H1)–(H2) be satisfied. Fur-

thermore, assume that K ∈ L(U, ∂X) is positive and

(H3’) (A,B,Γ|D(A)
) is a positive Lp-well-posed regular triplet (with feedthrough zero) on X, ∂X, ∂X with

I∂X as a positive admissible feedback operator.

Then, the system (1) is boundary approximately positive controllable if and only if there exits ω > s(A)

such that r(ΓDω) < 1 and for all µ ≥ ω we have
⋂

{

(

Dµ(ΓDµ)
nKU+

)◦
, n ∈ N

}

= X◦
+. (6)

Remark 2.1. The two theorems above provide frequency-domain characterizations of the boundary ap-

proximate controllability under positivity constraints of (1). These characterizations are given in terms

of transfer functions of the input-output system (2). On the one hand, Theorem 2.1 shows that the

perturbed boundary control system (1) is boundary approximately controllable with respect to positive

controls if and only if there exists ω ∈ R such that, for all µ ≥ ω, 1 ∈ ρ(ΓDµ) and the following implication

holds for all ϕ ∈ X ′:

〈Dµ(IX − ΓDµ)
−1Ku,ϕ〉 ≤ 0, ∀u ∈ U+, µ ≥ ω =⇒ ϕ = 0.

On the other hand, Theorem 2.2 shows that, under the positivity of the operators Γ, Dµ,K, (1) is

boundary approximately positive controllable if and only if there exits ω > s(A) such that r(ΓDω) < 1

and the following implication holds for all µ > ω and ϕ ∈ X ′:

〈Dµ(ΓDµ)
nKu,ϕ〉 ≤ 0, ∀u ∈ U+, n ∈ N, µ ≥ ω =⇒ ϕ ≤ 0.

It is to be noted that if for some ω > s(A), r(ΓDω) < 1, then r(ΓDµ) < 1 for all µ ≥ ω as the family

(ΓDµ)µ>s(A) is positive and monotonically decreasing. Finally, let us point out that in this work we

do not request any spectral properties on the operators A, in contrast to the papers [12, 26] where the

existence of a Riesz basis of generalized eigenvectors or related spectral properties are required.

3. Well-posedness

In this section we investigate the well-posedness and positivity property for the solution of (1). To

this end, we shall use the feedback theory of positive Lp-well-posed and regular linear systems developed

in [13]. In fact, let X, ∂X, U be Banach lattices. For α > s(A), let Lp
α(R+;U) denote the space of all

functions of the form v(t) = eαtu(t), where u ∈ Lp(R+;U). Moreover, let L
p
loc,+(R+;U) denote the set

of positive control functions u in L
p
loc(R+;U) such that u(t) ∈ U+ almost everywhere in R+, where we

regard L
p
loc(R+;U) as a lattice ordered Fréchet space with the seminorms being the Lp norms on the

intervals [0, n], n ∈ N.

We select the following definition.

Definition 3.1. Let X, ∂X, U be Banach spaces and let the assumptions (H1)–(H2) be satisfied. The

input-output system (2) is called well-posed if for some τ > 0 (hence all) there exists cτ > 0 such that the

following inequality holds for all solutions of (2):

‖z(τ)‖pX + ‖y(·)‖p
Lp([0,τ ];∂X) ≤ cτ

(

‖x‖pX + ‖v(·)‖p
Lp([0,τ ];∂X) + ‖u(·)‖p

Lp([0,τ ];U)

)

. (7)

In view of the above definition, we then obtain the following simple characterization of well-posed

boundary input-output positive systems.
5



Proposition 3.1. Let X, ∂X,U be Banach lattices and let the assumption (H1)-(H2) be satisfied. Fur-

thermore, assume that T, Γ, K are positive and Dµ is positive for every µ > s(A). Then, the system (2)

is well-posed if:

(i) B is a positive Lp-admissible control operator for A, i.e., for some (hence all) τ > 0,

ΦA
τ v :=

∫ τ

0

T−1(τ − s)Bv(s)ds ∈ X+,

for all v ∈ L
p
+(R+; ∂X).

(ii) C := Γ|D(A) is a positive Lp-admissible observation operator for A, i.e., for some (hence all)

α > 0,
∫ α

0

‖CT (t)x‖pdt ≤ γp‖x‖p,

for all 0 ≤ x ∈ D(A) and a constant γ := γ(α) > 0.

(iii) For τ > 0, there exits a constant κ := κ(τ) > 0 such that

‖Fv‖Lp([0,τ ];∂X) ≤ κ‖v‖Lp([0,τ ];∂X), (8)

for 0 ≤ v ∈ W
1,p
0 ([0, τ ]; ∂X) :=

{

v ∈ W 1,p([0, τ ]; ∂X) : v(0) = 0
}

, where

(Fv)(t) := ΓΦtv, 0 ≤ v ∈ W
1,p
0 ([0, τ ], ∂X), a.e. t ∈ [0, τ ]. (9)

To proof the above proposition, we need the following lemma.

Lemma 3.1. Let X, ∂X be Banach lattices, let A be a densely defined resolvent positive operator and

B ∈ L(∂X,X−1). Define the vector space Z ⊂ X by

Z := R(µ,A) (X +B ∂X) , µ > s(A).

If B ∈ L(U,X−1) is a positive control operator, then Z1 endowed with the norm

‖z‖2Z = inf
{

‖x‖2 + ‖v‖2 : x ∈ X, v ∈ ∂X, z = R(µ,A)(x +Bv)
}

,

is a Banach Lattice.

Proof It is clear that the definition of Z is independent of the choice of µ > s(A). Moreover, according

to Lemma 4.3.12 (ii) of [27], (Z, ‖ · ‖Z) is a Banach space satisfying

Z →֒ X.

Then, it remains to prove that Z is a vector lattice and ‖ · ‖Z is a lattice norm. Indeed, let µ >

s(A), let x ∈ X and z ∈ Z such that |x| ≤ |z|. Then |x| ≤ R(µ,A)|z1| + R(µ,A−1)B|v1|, since

z = R(µ,A)z1 +R(µ,A−1)Bv1 for some z1 ∈ X and v1 ∈ ∂X . By virtue of the decomposition property

(see e.g [24, Proposition II.1.6]), there exist x1 ∈ R(µ,A)([−z1, z1]) and x2 ∈ R(µ,A−1)B([−v1, v1])

satisfying x = x1 + x2. Therefore there exist y1 ∈ [−z1, z1] and y2 ∈ [−v1, v1] such that x1 = R(µ,A)y1
and x2 = R(µ,A)By2. It follows that x ∈ Z and hence Z is a vector sublattice (as ideals are automatically

lattice subspaces). Moreover, the fact that B is positive and the norm on X, ∂X are lattice norms yield

that ‖ · ‖Z is a lattice norm. �

Proof of Proposition 3.1 Let A := (Am)| kerG generate a positive C0-semigroup T on X and assume that

the operators G,Γ,K are positive such that the operator G is surjective. In view of Definition 3.1, we

have to verify that the estimate (7) holds. According to [13, Section 4], this is the same as characterizing

the operators Am, G,Γ for which (A,B,C) is a positive Lp-well-posed triplet on X, ∂X, ∂X . Since B is a

positive Lp-admissible control operator for A, then ΦA
τ L

p
+([0,∞); ∂X) ⊂ X+ for all τ ≥ 0. So, assuming

that (without loss of generality) 0 ∈ ρ(A) and using an integration by parts argument, one can show that

ΦA
τ v = D0v(τ) − Φτ v̇ ∈ Z+,

for all 0 ≤ v ∈ W
1,p
0 ([0, τ ], ∂X) and τ ≥ 0. In particular, we get that for every τ ≥ 0 we have

RangeΦA
τ ⊂ Z, since Z is a Banach lattice (Lemma 3.1). Therefore, the operator F is well-defined. Now,

6



using a reasoning analog to [13, Proposition 2.2], we show that the estimate (8) yields that (A,B,C) is

a positive Lp-well-posed triplet on X, ∂X, ∂X . This ends the proof. �

Remark 3.1. We underline that the extended operator F is positive and bounded on L(Lp([0, τ ]; ∂X)) for

each τ ≥ 0. In particular, the extended output function y of the system (2) satisfies

0 ≤ y(t;x, v) = CΛT (t)x+ (Fv)(t), and a.e. t ≥ 0.

for all (x, v) ∈ X+ × L
p
loc,+([0,∞); ∂X), where CΛ is the Yosida extension of C with respect to A and

its domain denoted by D(CΛ), consists of all x ∈ X for which lim
µ7→∞

CµR(µ,A)x exists. The operator F

is called the extended input-output control operator of (A,B,C). Moreover, there exist α > s(A) and a

unique bounded analytic function H : Cα → L(U, Y ) such that

ŷ(µ) = CR(µ,A)x +H(µ)v̂(µ), (10)

for any (x, v) ∈ X × L
p
loc(R+; ∂X) ∩ Lp

µ(R+; ∂X) and µ ∈ Cα := {µ ∈ C : Reµ > α}. Here H denotes

the transfer function of (A,B,C) (or F), see [27, Chap. 4] for more details. If, in addition, we have

(i) limReµ→+∞ y∗H(µ)v = 0 for all v ∈ ∂X and y∗ ∈ (∂X)′, then (A,B,C) is a positive Lp-well-posed

weakly regular triplet (with feedthrough zero), where (∂X)∗ is the dual of ∂X ;

(ii) limReµ→+∞ H(µ)v = 0 in ∂X for all v ∈ ∂X , then (A,B,C) is a positive Lp-well-posed strongly

regular triplet (with feedthrough zero).

According to [13, Theorem 4.9], we have strong regularity and weak regularity of a positive Lp-well-posed

triplet are equivalent. In particular, we simply say that (A,B,C) is a positive regular triplet. In this

case, we have 0 ≤ Φtv ∈ D(CΛ) and 0 ≤ (Fv)(t) = CΛΦtv for any v ∈ L
p
loc,+(R+, ∂X) and a.e. t ≥ 0. In

particular, we have that the state trajectory and the output function of (2) satisfy 0 ≤ z(t;x, v) ∈ D(CΛ)

and 0 ≤ y(t;x, v) = CΛz(t;x, v) for any x ∈ X+, v ∈ L
p
loc,+(R+, ∂X) and a.e. t ≥ 0, see [13, Section 4].

We also recall the following concept of positive admissible feedback operator, see [13, Lemma 4.1].

Definition 3.2. Let X, ∂X be Banach lattices, let (A,B,C) be a positive Lp-well-posed regular triplet on

X, ∂X, ∂X. We say that the identity I∂X is a positive admissible feedback operator for (A,B,C) if and

only if r(F) < 1.

We end this section by the well-posedness of (1) when the operators involved in (1) are positive.

Theorem 3.1. Let X, ∂X, U be Banach lattices and let the assumptions (H1), (H2) and (H3′) be

satisfied. Then the operator A : D(A) → X defined by

A = Am, D(A) = {x ∈ D(Am) : Gx = Γx},

generates a positive C0-semigroup T on X. Moreover, if K ∈ L+(U, ∂X), then the system (1) has a

unique mild solution z satisfying

0 ≤ z(t) = T (t)x+

∫ t

0

T−1(t− s)BKu(s)ds

:= T (t)x+ ΦA
t Ku,

(11)

for all t ≥ 0, x ∈ X+ and u ∈ L
p
+(R+;U). In particular, the perturbed boundary value control system (1)

is positively well-posed. Furthermore, for µ > s(A),

ẑ(µ) = R(µ,A)x + (̂ΦA
· u)(µ), with (̂ΦA

· u)(µ) = R(µ,A−1)BKû(µ),

for all u ∈ Lp
µ(R+;U), where û denote the Laplace transform of u.

Proof By using the representation (4), the boundary input-output system (2) can be reformulated as

the following distributed-parameter system
{

ż(t) = A−1z(t) +Bv(t) +BKu(t), t > 0, z(0) = x,

y(t) = Cz(t), t > 0,
(12)

7



where we recall that C := Γ|D(A)
and B := (µ − A−1)Dµ (µ > s(A)). Therefore, according to [13,

Theorem 4.2], the system (12) with the feedback law (3) is equivalent to the following open-loop system
{

ż(t) = (A−1 +BCΛ)z(t) +BKu(t), t > 0,

z(0) = x,

since (A,B,C) is a positive Lp-well-posed regular triplet with the identity I∂X as a positive admissible

feedback operator. In view of [13, Theorem 4.2], the perturbed boundary control system (1) has a unique

mild solution z satisfying

0 ≤ z(t) ∈ D(CΛ), ∀x ∈ X+, and a.e t ≥ 0;

0 ≤ z(t) = T (t)x+
∫ t

0 T−1(t− s)BKu(s)ds,
(13)

for all t ≥ 0, x ∈ X+ and u ∈ L
p
+(R+;U), where T is the positive C0-semigroup generated by (A−1+BCΛ).

Moreover, according to [13, Theorem 4.3], we have A = (A−1+BCΛ). The last claim follows by applying

Laplace transform to both side of (11). This completes the proof. �

4. Proof of the main results

In this section, we give the proof of the main results of this paper. Firstly, we recall that the system

(1) is given by






ż(t) = Amz(t), t > 0,

z(0) = x,

(G− Γ)z(t) = Ku(t), t > 0.

Moreover, to (1) we associate the following linear (differential) operator

A := Am, D(A) = {x ∈ D(Am) : Gx = Γx} .

4.1. Proof of Theorem 2.1. Under the assumptions (A1)-(A3) and according to [16, Theorem 4.3],

the operator A generate a C0-semigroup T on X and the state trajectory of (1) satisfies the following

variation of constant formula

z(t;x, u) = T (t)x+ΦA
t Ku, t ≥ 0,

for all x ∈ X and u ∈ L
p
loc(R+;U), where we recall that

ΦA
t Ku =

∫ t

0

T−1(t− s)BKu(s)ds.

So, given a prescribed time τ > 0, we shall be concerned with the final state

z(τ ;x, u) = T (τ)x +ΦA
τ Ku,

and the following space of reachable states from the origin with respect to positive controls in time τ

RU+
τ :=

{

z(τ ; 0, u) : u ∈ L
p
+([0, τ ];U)

}

.

Then, the concept of boundary approximate controllability with respect to positive controls in finite time

is defined as follows.

Definition 4.1. Let the assumptions of Theorem 2.1 be satisfied. We say that the system (1) is boundary

approximately controllable with respect to positive controls if the reachable set from the origin in finite

time

RU+ :=
⋃

τ>0

RU+
τ

=
{

z ∈ X |∃ τ0 > 0 and u ∈ L
p
+([0, τ0];U) such that z = ΦA

τ0
Ku

}

,

is dense in X.
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Proof Theorem 2.1 In view of Definition 4.1 the system (1) is boundary approximately controllable

with respect to positive controls if and only if RU+ is dense in X . Notice that RU+ is a convex cone with

0 ∈ RU+ .

Let µ ≥ ω > ω0(A) and ϕ ∈ X ′. Assume that RU+ = X and

〈(IX −DµΓ)
−1DµKû(µ), ϕ〉 ≤ 0, ∀u ∈ L

p
µ,+(R+;U). (14)

By the uniqueness of the Laplace transform ([5, Theorem 1.7.3]), one can see that (14) implies that

〈

∫ τ

0

T−1(τ − s)BKu(s)ds, ϕ〉 ≤ 0, ∀u ∈ L
p
µ,+(R+;U), τ > 0, (15)

since

R(µ,A−1)z = (IX −DµΓ)
−1R(µ,A−1)z, ∀ z ∈ X−1.

Therefore, by virtue of Lemma 2.1, we get that ϕ = 0 (as RU+ = X).

Conversely, let us assume that there exists ω ∈ R such that 1 ∈ ρ(ΓDµ) and (5) holds for all µ ≥ ω.

Furthermore, we assume that RU+ 6= X . Then, according to Lemma 2.1, there exists 0 6= ϕ ∈ X ′ such

that (15) holds. Taking the Laplace transform in (15), we get

〈R(µ,A−1)BKû(µ), ϕ〉 ≤ 0,

or equivalently,
〈

(IX −DµΓ)
−1R(µ,A−1)BKû(µ), ϕ

〉

≤ 0.

It follows that ϕ ∈
(

(IX −DµΓ)
−1DµKU+

)◦
– contradiction–. Furthermore, for ω ∈ R such that 1 ∈

ρ(ΓDµ) for all µ ≥ ω, we have

(IX −DµΓ)
−1R(µ,A−1)BKu = (IX −DµΓ)

−1DµKu

= Dµ(I∂X − ΓDµ)
−1Ku,

for all u ∈ U+ and µ ≥ ω. This completes the proof. �

4.2. Proof of Theorem 2.2. Here, we assume that the operators involved in (1) are all positive. As

such, we focus our attention on its boundary approximate controllability with respect to positive controls.

As the states are confined to the positive orthant, one need to consider another concept of approximate

controllability of (1), namely approximate positive controllability introduced in [25]. Indeed, let us

consider the following space of reachable positive states from the origin in time τ with respect to positive

controls

R+
τ :=

{

z(τ ; 0, u) : u ∈ L
p
+([0, τ ];U)

}

.

Then the concept of boundary approximate positive controllability in finite time is defined as follows.

Definition 4.2. Let the assumptions of Theorem 2.2 be satisfied. We say that the system (1) is boundary

approximately positive controllable if the reachable set from the origin in finite time

R+ :=
⋃

τ>0

R+
τ

=
{

z ∈ X+ | ∃ τ0 > 0 and u ∈ L
p
+([0, τ0];U) such that z = ΦA

τ0
Ku

}

,

is dense in X+.

Proof of Theorem 2.2 It follows from Theorem 3.1 that the system (1) has a unique positive mild

solution z satisfying the following variation of constant formula

0 ≤ z(t) = T (t)x+ΦA
t Ku,

for all t ≥ 0, x ∈ X+ and u ∈ L
p
+(R+;U), where we recall that T is the C0-semigroup generated by A.
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Now, let µ > max{ω, s(A)} and ϕ ∈ X ′. Assume that (1) is boundary approximately positive con-

trollable and 〈(I∂X −DµΓ)
−1DµKû(µ), ϕ〉 ≤ 0 for all u ∈ L

p
µ,+(R+;U). The uniqueness of the Laplace

transform yields that
〈∫ τ

0

T−1(τ − s)BKu(s)ds, ϕ

〉

≤ 0,

for all u ∈ L
p
µ,+([0,∞);U) and τ > 0, since

R(µ,A−1)z = (IX −DµΓ)
−1R(µ,A−1)z, ∀ z ∈ X−1,+ (:= X+ ∩X−1).

It follows that ϕ ≤ 0 as R+ = X+).

Conversely, let us assume that there exits ω > s(A) such that r(ΓDω) < 1 and the following implication

holds for all ϕ ∈ X ′:

〈(IX −DµΓ)
−1DµKu,ϕ〉 ≤ 0, ∀u ∈ U+, µ > max{ω, s(A)} =⇒ ϕ ≤ 0.

Moreover, assume that R+ 6= X+. Then, by Hahn-Banach Theorem there exist z1 ∈ X+\R+, 0 6= ϕ ∈ X ′

and β ∈ R such that

〈ΦA
τ Ku,ϕ〉 < β < 〈z1, ϕ〉, (16)

for all u ∈ L
p
µ,+(R+;U) and τ > 0. On the other hand, let v ∈ U+ and define the following sequence of

functions:

un(t) :=

{

0, if 0 ≤ t ≤ 1
n
,

nv, if 1
n
< t.

Clearly, we have un ∈ L
p
µ,+(R+;U). So, for µ > max{ω, s(A)} and taking Laplace transform in (16),

〈(IX −DµΓ)
−1DµKûn(µ), ϕ〉 < β < 〈z1, ϕ〉.

Thus,
〈

(IX −DµΓ)
−1DµKn

∫ ∞

1
n

e−µtvdt, ϕ

〉

< β

and hence,
〈

(IX −DµΓ)
−1DµK

∫ ∞

1
n

e−µtvdt, ϕ

〉

<
1

n
β,

with the right-hand side converging to 0 as n → ∞. Then,

〈(IX −DµΓ)
−1DµKv,ϕ〉 < 0.

Therefore, ϕ ∈
(

(IX −DµΓ)
−1DµKU+

)◦
and 0 < 〈z1, ϕ〉 (as 0 ∈ R+), a contradiction. Finally, for

ω > s(A) such that r(ΓDω) < 1, we have

(IX −DµΓ)
−1R(µ,A−1)BKu = Dµ(I∂X − ΓDµ)

−1Ku

= Dµ

∑∞
n=0(DµΓ)

nKu,

for all u ∈ U+ and µ ≥ ω, where we have used the Neumann series representation of (I∂X − ΓDµ)
−1.

Thus,
(

(IX −DµΓ)
−1DµKU+

)◦
=

⋂

{

(

Dµ(ΓDµ)
nKU+

)◦
, n ∈ N

}

,

and this ends the proof. �

5. Application

In this section we illustrate our abstract results through two relevant applications of PDEs on networks.

Such evolutionary systems on networks have been studied by many authors, in particular we refer to the

monograph [21] and the proceedings [1].
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5.1. Flows on closed networks. Let us consider the following system of transport equations on a

network:

(ΣTN)















∂
∂t
zj(t, x, v) = v ∂

∂x
zj(t, x, v) + qj(x, v).zj(t, x, v), t ≥ 0, (x, v) ∈ Ωj ,

zj(0, x, v) = fj(x, v) ≥ 0, (x, v) ∈ Ωj , (IC)

ıoutij zj(t, 1, ·) = wij

∑

k∈M

ıinikJk(zk)(t, 0, ·) +
∑

l∈Nc

bilul(t, .), t ≥ 0, (BC)

for i ∈ {1, . . . , N} := N , j ∈ {1, . . . ,M} := M and l ∈ {1, . . . , n} := Nc with M ≥ N ≥ n, where we

set Ωj := [0, 1]× [vmin, vmax]. The corresponding transport equations are defined on the edges of a finite

graph G, whose edges are normalized and identified with the interval [0, 1] with endpoints ”glued” to the

graph structure. The connection of such edges being described by the coefficients ıoutij , ıinik ∈ {0, 1}. The

flow velocity along the edges is determined by the function v, whereas its absorption is determined by the

functions qj(·, ·). The boundary condition (BC) determines the propagation of the flow along the various

components of the network. The weights 0 ≤ wij ≤ 1 express the proportion of mass being redistributed

into the edges and the non-local operators Jk describe the scattering at the vertices. Moreover, for

i, l ∈ N ×Nc, the coefficients bil ≥ 0 denotes the entries of the input matrix K and ul ≥ 0 denotes the

input functions at the vertices. The system (ΣTN) is a generalization of the transport network in ([14]).

Next, we are concerned with the well-posedness and boundary approximate controllability with respect

to positive controls of (ΣTN). To this end, we need to recall some notation from graph theory. Here and

in the following, we consider a finite connected metric graph G = (V,E) and a flow on it (the latter is

described by (ΣTN)). The graph G is composed by N ∈ N vertices α1, . . . , αN , and by m ∈ N edges

e1, . . . , eM which are normalized so as to be identified with the interval [0, 1]. Each edge is parameterized

contrary to the direction of the flow on them, i.e., the material flows from 1 to 0. The topology of

the graph G is described by the incidence matrix I = Iout − Iin, where Iout and Iin are the outgoing

incidence matrix and the incoming incidence matrix of G having entries

ıoutij :=







1, if vi
ej

,

0, if not,
ıinij :=







1, if
ej

vi ,

0, if not,

respectively. Replacing 1 by wij ≥ 0 in the definition of ıoutij , we obtain the so-called weighted outgoing

incidence matrix Iout
w := (wijı

out
ij ). In this cases, G is called a weighted graph and its topology is described

via the weighted transposed adjacency matrix A := Iin(Iout
w )⊤ given by, for i, k ∈ N ,

(A)ik :=

{

wkj , if ∃ ej
viejvk

,

0, if not.
(17)

In the rest of this section, for 1 ≤ p < +∞, let us consider the Banach spaces (Yp, ‖ · ‖Yp
), (Xp, ‖ · ‖Xp

)

and (Wp, ‖ · ‖Wp
) defined by

Yp := Lp([vmin, vmax])
M , ‖f‖pYp

:=
∑M

j=1 ‖fj‖
p

Lp([vmin,vmax])
,

Xp := Lp([0, 1], Yp), ‖ϕ‖p
p
:=

∫ 1

0
‖ϕ(x, ·)‖pYp

dx,

∂Xp := Lp([vmin, vmax])
N ‖g‖p∂Xp

:=
∑N

j=1 ‖fj‖
p

Lp([vmin,vmax])
,

Wp := W 1,p([0, 1];Yp), ‖f‖p
Wp

= ‖f‖pXp
+ ‖∂xf‖

p
Xp

.

Moreover, let us consider the following operators

Amf = v∂xf + q(·, ·)f,

D(Am) =
{

f = (fj)j∈M ∈ Wp : f(1, v) ∈ Range (Iout
w )⊤

}

,
(18)

where q(·, ·) := diag (q(·, ·))j∈M. Moreover, we set J = diag(Jk)k∈M where the scattering operators Jk

are given by

Jk(fk)(x, v) =

∫ vmax

vmin

ℓk(x, v, v
′)fk(x, v

′)dv′, (x, v) ∈ Ωk, f ∈ Xp, (19)
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where ℓk ∈ L∞
+ (Ωk × [vmin, vmax]) for every k ∈ M. We select

Gf := Ioutf(1, ·), Γf := Iin(Jf)(0, ·), v ∈ [vmin, vmax], f ∈ Wp. (20)

We also introduce the input space U := Lp([vmin, vmax])
n and the control operator K is given by

(Ku)i(t, ·) =
∑

l∈Nc

bilul(t, ·), ∀ i ∈ N , t ≥ 0,

where bil ≥ 0 for all i, l ∈ N ×Nc.

With the above notation, one can rewrite the system (ΣTN) as







ż(t) = Amz(t), t > 0,

z(0) = x,

(G− Γ)z(t) = Ku(t), t > 0,

where z(t) = (zj(t, ·, ·))j∈M, f = (fj(·, ·))j∈M and u(t) = (ul(t, ·))l∈Nc
.

In order to apply the results of the previous sections, let us introduce the following assumptions:

(A1) 0 < vmin ≤ v ≤ vmax and qj(·, ·) ∈ L∞(Ωj) for every j ∈ M.

(A2) Each vertex has at least one outgoing edge.

(A3) The weights wij satisfy
∑

j∈M wij = 1, ∀ i ∈ N .

In the above, (A1) specifies the transport process along each edges, (A2) is equivalent to the statement

that Iout is surjective, while (A3) implies that the free delay boundary condition (BC) exhibits standard

Kirchhoff conditions and the matrix A is column stochastic. Note also that, under the condition (A1) it

is not difficult to prove that the operator (A, kerG) generates a strongly continuous positive semigroup

(T (t))t>0 on Xp given by

(T (t)f)j(x, v) =

{

e
∫

t
0
qj(x+vσ,v)dσfj(x+ vt, v), if x+ vt ≤ 1,

0, if not.
(21)

for all f ∈ Xp, (x, v) ∈ Ωj and j ∈ M.

Lemma 5.1. Let the assumptions (A1)-(A3) be satisfied. Then the operator

A = Am, D(A) =
{

f ∈ D(Am) : Iout(Jf)(1, v) = Iin(Jf)(0, v)
}

. (22)

generates a positive C0-semigroup T on Xp. Moreover, for µ0 > s(A) such that r(A(µ0)) < 1, we have

R(µ,A) = (IXp
+Dµ(I∂Xp

− A(µ))−1Γ)R(µ,A), (23)

for all µ ≥ µ0, where we set A(µ) := ΓDµ with

(Dµg)(x, v) = e
∫

1
x

qj(σ,v)−µ

v
dσ

∑

i∈N

wijgi(v),

(R(µ,A)f)j(x, v) =
∫ 1

x
e
∫

y
0

qj(σ,v)−µ

v
dσvfj(y, v)dy,

for all g ∈ ∂Xp, (x, v) ∈ Ωj and j ∈ M.

Proof First, observe that J ≥ 0 as ℓj ∈ L∞
+ (Ωj × [vmin, vmax]) for all j ∈ M. To prove the generation

of (A, D(A)) on Xp we shall use [13, Theorem 4.3]. In fact, let A be the restriction operator of Am on

kerG, i.e. A = (Am)| kerG. Then, by (21), the operator A is clearly densely defined resolvent positive.

On the other hand, in view of the assumption (A1), the operator G is surjective. Moreover, by a simple

computation we get that the Dirichlet operator Dµ associated to G is given by

Dµ = diag(e
∫ 1
·

qj(σ,v)−µ

v
dσ)j∈M ⊗ (Iout

w )⊤, Reµ > q̃ := − inf ‖qj‖∞,
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where ⊗ denotes the tensor product. Now, let us define the operators C := Γ| kerG and B = (µ−Am)Dµ

for µ > q̃. Using the injectivity of Laplace transform one can show

(ΦA
t g)j(x, v) :=

(

∫ t

0
T−1(t− s)Bg(s)ds

)

(x, v)

=
∑

i∈N e
∫ 1
x

qj (σ,v)

v
dσ
wjigi(

tv−1+x
v

)1[ 1−x
v

,∞)(t)

for all g ∈ Lp(R+; ∂Xp), t ≥ 0, (x, v) ∈ Ωj and j ∈ M. So, for every t ≥ 0 we have ΦA
t ∈

L+(L
p(R+; ∂Xp), Xp) and hence B is a positive Lp-admissible control operator for A. Moreover, for

0 < α < 1
vmax

we have
∫ α

0

‖CT (t)f‖p∂Xp
dt ≤ cpN(vmax − vmin)

p sup
j∈M

‖ℓj‖
p
∞e(p supj∈M ‖qj‖∞)‖f‖pXp

,

for all 0 ≤ f ∈ D(A), where we have used Hölder’s inequality for 1
p
+ 1

q
= 1. Then, C is a positive

Lp-admissible observation operator for A. Furthermore, for g ∈ W 1,p(R+, ∂Xp) with g(0) = 0 = ġ(0), we

have
(Fg)k(t) = (CΦA

t g)k

=

M
∑

j=1

N
∑

i=1

ıinkj

∫ vmax

vmin

ℓj(0, v, v
′)e
∫ 1
0

qj(σ,v′)

v′
dσ
wjigi(

tv′ − 1

v′
)1[ 1

v′
,∞)(t)dv

′,

for t ≥ 0 and k ∈ N . With this explicit expression of the input-output control operator F and according

to [13, Proposition 4.3], it is not difficult to see that (A,B,C) is a positive Lp-well-posed triplet on

Xp, ∂Xp, ∂Xp. In addition, for λ > 0 and µ > q̃ such that µ 6= λ, using a computation involving the

resolvent identity (we omit the details) we obtain

lim
λ7→+∞

λCR(λ,A)Dµg = ΓDµg, ∀ g ∈ ∂Xp.

It follows that Dµ ⊂ D(CΛ) and (CΛ)|D(Am) = Γ, where CΛ is the Yosida extension of C := Γ|D(A) with

respect to A. In particular, (A,B,C) is a positive Lp-well-posed regular triplet. On the other hand, for

t < 1
vmax

we have I∂Xp
− F = I∂Xp

. Thus, according to [13, Lemma 4.1.], I∂Xp
: ∂Xp → ∂Xp is a positive

admissible feedback operator for (A,B,C). Therefore, according to [13, Theorem 4.3], A generates a

positive C0-semigroup T on Xp. �

Under the assumptions of Lemma 5.1 and according to Theorem 3.1, we get that the transport network

system (ΣTN) is positively well-posed and hence it has a unique positive mild solution z(·) : R+ → Xp

satisfying

0 ≤ z(t) ∈ D(CΛ) , for a.e. t ≥ 0,

0 ≤ z(t; f, u) = T (t)f +
∫ t

0
T−1(t)(t − s)BKu(s) ds := T (t)f +ΦA

t u,

for all t ≥ 0, f ∈ (Xp)+ and u ∈ L
p
+(R+, U). Moreover, for ω > 0 (large enough), we have r(A(ω)) < 1.

Then, according to Theorem 2.2, the system (ΣTN) is boundary approximately positive controllable if

and only if,
⋂

{

(DµA
m(µ)KU+)

◦
, m ∈ N

}

= (Xp)
◦
+, ∀µ ≥ ω. (24)

Furthermore, if qj ≡ 0, we obtain a more compact criteria as follows.

Theorem 5.1. Assume that qj ≡ 0 for all j ∈ M and let the assumptions (A1)-(A3) be satisfied. Then,

the system (ΣTN) is boundary approximately positive controllable if and only if
⋂

{

(

(Iout
w )⊤Am(µ)KU+

)◦
, m ∈ N

}

= (Yp)
◦
+, ∀µ ≥ µ0, (25)

for some µ0 > 0 sufficiently large. Here, the operator A(µ) is given by

(A(µ)g)k(v) =
∑

j∈M

∑

i∈N

ıinkj

∫ vmax

vmin

ℓj(0, v, v
′)e−

µ

v′
(1−x)

wjig(v
′) dv′,

for all k ∈ N and g ∈ ∂Xp.
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Proof Note that, for p, q ∈ [1,+∞), we have

Lp([0, 1], Yp) = Lp([0, 1])⊗ Yp and Lq([0, 1], Yq) = Lq([0, 1])⊗ (Yq)′,

see e.g. [22, Section 2.2.3]. Then, for 1
p
+ 1

q
= 1, we have

(Xp)
◦
+ := −(Xp)

′
+ = L

q
+([0, 1])⊗ (Yp)◦+. (26)

To prove our claim we will use Theorem 2.2. Indeed, using the explicit expression of A(µ) we get

‖A(µ)‖ ≤ κe
− µ

vmin ,

where κ is a generic constant depending on vmin, vmax, ℓ and the exponent p. Thus, ‖A(µ)‖ → 0 as

µ 7→ ∞. So, there exists µ0 > 0 large enough such that ‖A(µ)‖ < 1 for all µ ≥ µ0.

Now, let µ ≥ µ0 and v ∈ [vmin, vmax] be fixed. It follows from (24) and (26) that (ΣTN) is boundary

approximately positive controllable if and only if
⋂

{

(DµA
m(µ)KU+)

◦
, m ∈ N

}

=
(

L
q
+([0, 1])⊗ (Yp)

◦
+

)

, ∀µ ≥ µ0. (27)

The explicit expression of Dµ together with Lemma .2 further yield that (ΣTN) is boundary approximately

positive controllable if and only if the condition (25) holds. This ends the proof. �

In particular, for a simple transport process we have the following Kalman-type rank condition.

Corollary 5.1. Let the assumptions (A2)-(A3) be satisfied and let assume that qj ≡ 0, ℓj ≡ 1 for all

j ∈ M. If the underlying graph G is strongly connected, then (ΣTN) is boundary boundary approximately

positive controllable if and only if

co
(

(Iout
w )⊤AmKU+, m = 0, 1, . . . ,M − 1

)

= RM
+ , (28)

where A is the weighted transposed adjacency matrix of G, see (17).

Proof Observe that, in this case, we have A(µ) = e−
µ
v A. Then,

‖A(µ)‖ ≤ e−
µ
v ‖A‖ < 1,

for all µ ≥ 0. Therefore, according to Theorem 5.1, (ΣTN) is boundary boundary approximately positive

controllable if and only if the following implication holds for all ϕ ∈ Lq((0, 1),RM ):

〈(Iout
w )⊤e−mµ

v AmKu,ϕ〉 ≤ 0, ∀u ∈ Rn
+, m ∈ N, µ ≥ 0 =⇒ ϕ ≤ 0,

or, equivalently, if

〈(Iout
w )⊤AmKu,ϕ〉 ≤ 0, ∀u ∈ Rn

+, m ∈ N, µ ≥ 0 =⇒ ϕ ≤ 0.

On the other hand, by virtue of Cayley-Hamilton theorem, the power of Am for all m ≥ M are linear

combinations of the lower power, i.e., there exist real coefficients am, m ∈ {0, 1, . . . ,M − 1} such that

AM =

M−1
∑

m=0

amAm.

Moreover, the fact that the graph G is strongly connected yields that the matrix A is positive irreducible

and hence the coefficients am are nonegative. It follows that, the transport network systems (ΣTN) is

boundary approximately positive controllable if and only if the condition (28) holds. �

Example 5.1. Here we consider a transport process on an (N,N)-directed cycle with a control acting on

the starting node described as

(ΣNP)







∂
∂t
z(t, x) = c ∂

∂x
z(t, x), t ≥ 0, x ∈ (0, 1),

z(0, x) = f(x) ≥ 0, x ∈ (0, 1), (IC)

z(t, 1) = Az(t, 0) +Ku(t), t ≥ 0, (BC)
14



uv1

v2v3

v
N−1 vN

Figure 2. The system of transport equations (ΣNP) on a cycle with a single input

(represented by the read circle) acting on the starting node v1.

where c := diag(cj)j∈M with cj > 0 for all j ∈ M ∈ {1, . . . , N}, K ∈ L(RN ) with (K)11 = b > 0 and

(K)ij = 0 otherwise, and A is the transposed adjacency matrix of the (N,N)-directed cycle.

Let X = L1([0, 1])N , ∂X = RN , U = R and let us consider the operator Am : D(Am) → X defined by

Amf := c∂xf, D(Am) := W 1,1([0, 1])N . (29)

Moreover, we define the boundary operators G and Γ as follow

Gf := f(1), Γf := Af(0), f ∈ W 1,1([0, 1])N .

It follows from Lemma 5.1 that the system (ΣNP) is positively well-posed. In addition, we have that an

(N,N)-directed cycle is strongly connected and

co (AmKR+, m = 0, 1, . . . , N − 1) = RN
+ .

Therefore, according to Corollary 5.1, the system (ΣNP) is boundary approximately positive controllable.

5.2. Heat conduction networks. We consider the following system of M ≥ 2 coupled heat equations

with controls in Robin boundary conditions,

(ΣH)



































∂

∂t
z(t, x) = c

∂2

∂x2
z(t, x)− qz(t, x), t ≥ 0, x ∈ (0, 1),

z(0, x) = h(x) ≥ 0, x ∈ (0, 1), (IC)
∂

∂x
z(t, 1) = Bz(t, 0) +Ku(t), t ≥ 0, (BC)

∂

∂x
z(t, 0) = 0.

Here, zj(t, x) represents the heat distribution at time t ≥ 0 and location x ∈ (0, 1) on an edge ej, where

c := diag(cj)j∈M, q := diag(qj)j∈M with cj , qj > 0 for all j ∈ M := {1, . . . ,M}. The coupling between

the M heat equations is determined by the matrix B ∈ L(RM ,RM ), where we impose K ∈ L(Rn,RM )

with n ≤ M and 0 ≤ u ∈ L2
loc denotes the control matrix and the control vector, respectively.

In order to apply the results of the previous sections, let X = L2([0, 1])M , ∂X = RM , U = Rn and

define the operator Am as

Amh := c∂xxh− qh, D(Am) := {h ∈ W 2,2([0, 1])M : ∂xh(0) = 0 }, (30)

where c := diag(cj)j∈M and q := diag(qj)j∈M. Moreover, the boundary operators are given by

Gh := ∂xh(1), Γh := Bh(0), h ∈ W 2,2([0, 1])M .

With the above notation, the system (ΣH) is rewritten in the form (1).
15



Lemma 5.2. Let assume that cj , qj > 0 for j ∈ M. Then the operator

A = Am, D(A) := {h ∈ W 2,2([0, 1])M : ∂xh(1) = 0, ∂xh(0) = 0}, (31)

generates a uniformly exponentially stable positive C0-semigroup T on X given by

(T (t)h)j =
+∞
∑

k=0

eλj,kt〈hj , ϕk〉ϕk, (32)

for all j ∈ M, where λj,k = −qj − cjk
2π2 and ϕj,k(x) = cos(kπx) for x ∈ [0, 1].

Proof To prove our claim we shall consider only one index j ∈ M and in a similar way we deduce that

of any j ∈ M. Indeed, let j ∈ M be fixed and let hj ∈ D(Aj) such that (Ah)j = 0, then we have
{

cj∂xxhj(x)− (qj + λj)hj(x) = 0, x ∈ (0, 1),

ḣj(1) = ḣj(0) = 0.

So, solving the above eigenvalue problem, we get eigenvalues

λj,k = −qj − cjk
2π2, k ∈ N, (33)

and eigenfunctions ϕj,k(x) = cos(kπx) for x ∈ (0, 1). Then (ϕj,k)k∈N is an orthonormal basis in L2([0, 1]).

Moreover, for every g ∈ L2([0, 1]) such that (Ah)j = g, we have
{

cj∂xxhj(x)− qjhj(x) = g(x), x ∈ (0, 1),

ḣj(1) = ḣj(0) = 0.

which has the unique solution

hj(x) =

∫ 1

0 sinh
(
√

qj
cj
(1− y)

)

c−1
j g(y)dy

−
√

qj
cj

sinh
(
√

qj
cj

) cosh(
√

qj
cj
)

+
(√

qj
cj

)−1
∫ x

0

sinh
(√

qj
cj
(x − y)

)

c−1
j g(y)dy.

Thus, 0 ∈ ρ(Aj) and hence Aj is diagonalizable, see [28, Proposition 2.6.2]. Therefore, we get

R(µ,Aj)hj =
∑

k∈N

1

µ− λj,k

〈hj , ϕj,k〉 ≥ 0

for all hj ∈ L2
+([0, 1]) and Reµ > −qj. Moreover, from (33), we have

sup
k

Reλj,k ≤ −qj , ∀ j ∈ M.

Hence, according to [28, Proposition 2.6.5], the operator (A, kerG) generates a positive C0-semigroup T

on (L2([0, 1]))M given by (32) and ω0(A) = supj supk Reλj,k. In addition, from (33) we have

ω0(A) ≤ − sup
j∈M

qj < 0.

Therefore, T is an uniformly exponentially stable positive semigroup. This completes the proof. �

Lemma 5.3. Let assume that cj , qj > 0 for j ∈ M. Then the operator

A = Am, D(A) =
{

f ∈ D(Am) : ∂xf(1) = Bf(0)
}

, (34)

generates a positive C0-semigroup T := (T(t))t≥0 on (L2([0, 1]))M . Moreover, the system (ΣH) has a

unique mild solution satisfying

z(t) = T(t)h+

∫ t

0

T−1(t− s)BKu(s)ds, t ≥ 0, (35)

16



for all h ∈ X and u ∈ L2(R+, U). In addition, if K is positive, then z ∈ X+ for every initial data h ∈ X+

and every input u ∈ L2
+(R+, U).

Proof To prove that A as defined in (34) generates a positive C0-semigroup on (L2([0, 1]))M , we shall

use Theorem 3.1. In fact, it is clear that the operator G (:= δ1 ⊗ ∂x) is surjective and by a simple

computation we obtain that the Dirichlet operator Dµ associated to G is given by

(Dµd)(x) = diag (ξj(x))j∈M d, Reµ > − sup
j∈M

qj := µ̃ (36)

ξj(x) :=
cosh

(

√

µ+qj
cj

x

)

√

µ+qj
cj

sinh

(

√

µ+qj
cj

) . (37)

for all d ∈ RM and x ∈ [0, 1]. Obviously, Dµ is positive for all Reµ > µ̃. On the other hand, according to

Lemma 5.2, we have the operator (A, kerG) generates a positive C0-semigroup T on (L2([0, 1]))M given

by (32). So, in view of Theorem 3.1, it remains to show that (A,B,Γ| kerG) is a positive L2-well-posed

regular triplet on (L2([0, 1]))M ,RM ,RM . In fact, let C := Γ| kerG, let α > 0 and 0 ≤ h ∈ D(A). Then,
∫ α

0

‖CT (t)h‖2
RMdt =

∫ α

0

‖B(T (t)h)(0)‖2
RMdt

≤

∫ α

0

N
∑

j=1

∣

∣

∣

∣

∣

+∞
∑

k=0

eλj,kt〈hj , ϕk〉

∣

∣

∣

∣

∣

2

dt

≤
M
∑

j=1

+∞
∑

k=0

∫ α

0

e−2(qj+cjk
2π2)tdt

+∞
∑

k=0

|〈hj , ϕk〉|
2

≤
+∞
∑

k=0

sup
j∈M

α

2(qj + cjk2π2)

M
∑

j=1

+∞
∑

k=0

|〈hj , ϕk〉|
2
.

Since
+∞
∑

k=0

1

2(qj + cjk2π2)
< +∞, ∀ j ∈ M,

then there exists γ(α) > 0 such that
∫ α

0

‖CT (t)h‖2
RMdt ≤ γ(α)‖h‖2,

for all 0 ≤ h ∈ D(A)(:= kerG). Thus, C is a positive L2-admissible observation operator for A. On the

other hand, it is easy to see that the operator A (see (31)) is self adjoint and the operator B∗, the adjoint

operator of B := −A−1D0, is given by

B∗h = h(1), ∀h ∈ (D(A))′.

Similar argument to the admissiblity of C, it can be verified that B∗ is positive L2-admissible observation

operator for A. Hence, by duality (see e.g, [28, Theorem 4.4.3]), we get that B is a positive L2-admissible

control operator for A. The explicit expression of the operator Dµ (see (36)) further yields that the

transfer function of (A,B,Γ| kerG) is given by

A(µ) := ΓDµ = Bdiag (ξj(0))j∈M , ∀Reµ > µ̃. (38)

Thus, A is analytic, bounded and positive for all Reµ > µ̃. Moreover, we have limReµ7→+∞ A(µ) =

0, and hence according to Remark 3.1 (A,B,Γ| kerG) is a positive L2-well-posed regular triplet on

(L2([0, 1]))M ,RM ,RM . It follows that there exists µ0 > 0 large enough such that ‖A(µ0)‖ < 1 and

hence r(A(µ0)) < 1. Then, in view of [13, Lemma 4.1] the identity IRN is a positive admissible feedback

operator for (A,B,Γ| kerG). Therefore, according to Theorem 3.1, the operator A from (34) generates
17



a positive C0-semigroup T := (T(t))t≥0 on X and the system of heat equations (ΣH) has a unique mild

solution on X given by the variation of constant formula (35), which is positive if K is positive. �

Lemma 5.4. Let assume that cj , qj > 0 for j ∈ M. Then, the system of heat equations (ΣH) is

approximately controllable with respect to positive controls if and only if
⋂

{

(

DµA
m(µ)KRn

+

)◦
, m ∈ N

}

= {0}, ∀µ ≥ µ0, (39)

for some µ0 > 0 large enough.

Proof According to the proof of Lemma 5.3, there exists µ0 > 0 large enough such that r(A(µ0)) < 1.

Thus, for all µ ≥ µ0 we have r(A(µ)) < 1, since the family (A(µ))µ>µ0 is positive and monotonically

decreasing. By using Theorem 2.1 together with the Neumann series representation of (I − A(µ))−1 we

obtain that the system (ΣH) is approximately controllable with respect to positive controls if and only if

the condition (39) holds for all µ ≥ µ0. �

Example 5.2. Here we consider a system of heat equations on a (3, 3)-directed path (i.e., constituting of

3-directed edges connecting 3-vertices) with a control acting on the starting node described as

(ΣHpath
)



































∂

∂t
z(t, x) = c

∂2

∂x2
z(t, x)− qz(t, x), t ≥ 0, x ∈ (0, 1),

z(0, x) = h(x) ≥ 0, x ∈ (0, 1), (IC)
∂

∂x
z(t, 1) = Bz(t, 0) +Ku(t), t ≥ 0, (BC)

∂

∂x
z(t, 0) = 0,

where the coupling matrix B and the control matrix K are given by, respectively,

B =





0 0 0

1 0 0

0 1 0



 , K =





b 0 0

0 0 0

0 0 0



 , b ∈ R∗.

Heat 1 Heat 2 Heat 3
z1(0, t) z2(0, t)u(t)

Figure 3. The line graph representation of the system of heat equations (ΣHpath
).

We have the following negative controllability result.

Lemma 5.5. Let assume that cj , qj > 0 for j ∈ M := {1, 2, 3}. Then, the system heat equations (ΣHpath
)

is not approximately controllable with respect to a positive control acting on the starting node.

Proof In view of Lemma 5.4, (ΣHpath
) is boundary approximately controllable with respect to positive

controls if and only if
⋂

{

(DµA
m(µ)KR+)

◦
, m ∈ N

}

= {0}, ∀µ ≥ µ0, (40)

for some µ0 > 0 large enough, where

A(µ) := ΓDµ = Bdiag (ξj(0))j=1,2,3 , (41)

for any d ∈ R3 , x ∈ [0, 1] and Reµ > − sup
j∈M

qj . Let µ ≥ µ0, then by a direct computation we obtain

A2(µ) =





0 0 0

0 0 0

ξ2(0)ξ1(0) 0 0



 , and Am(µ) = 0, ∀m ≥ 3.
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Therefore, the condition (40) is equivalent to the following implication:

〈Hu, h〉 ≤ 0, ∀u ∈ R+ =⇒ h = 0, (42)

where the operator H is given by

(Hu)(x) =





ξ1(x)bu

ξ2(x)ξ1(0)bu

ξ3(x)ξ2(0)ξ1(0)bu



 , ∀u ∈ R+, x ∈ (0, 1). (43)

Therefore, (ΣHpath
) is boundary approximately controllable with respect to positive controls if and only

if, for all µ > µ0,

〈ξ1(·)b, ϕ1,k〉 < 0, 〈ξ2(·)ξ1(0)b, ϕ2,k〉 < 0, and 〈ξ3(·)ξ2(0)ξ1(0)b, ϕ3,k〉 < 0, (44)

for k ∈ N, where ϕj,k (for j = 1, 2, 3) is a Riesz basis in (L2(0, 1))3 (see Lemma 5.2). Moreover, a simple

computation using the explicit expression of the function ξ1(·) yields

〈ξ1(·)b, ϕ1,k〉 =
(−1)k

µ+qj
cj

+ (kπ)2
b, k ∈ N. (45)

Therefore,

〈ξ1(·)b, ϕ1,k〉 < 0, ∀ k ∈ N, µ > µ0,

which is impossible as b ∈ R∗. This indicates that the heat equation on a path-like network is not

approximately controllable with respect to a positive control acting on the starting node. �

However, for positive input matrices, the following result shows that the system of heat equations

(ΣHpath
) is boundary approximately positive controllable.

Lemma 5.6. Let assume that cj , qj > 0 and b > 0 for j ∈ M. Then the system (ΣHpath
) is boundary

approximately positive controllable.

Proof Let µ ≥ µ0 with µ0 > 0 large enough as in Lemma 5.5. Then, according to Theorem 2.2 and

using the Neumann series representation of (I −A(µ))−1 together with the computations from the proof

of Lemma 5.5, we get that the system (ΣH) is approximate positive controllable if and only if

〈Hu, h〉 ≤ 0, ∀u ∈ R+ =⇒ h ≤ 0, (46)

where H is given by (43).

To prove the claim of the lemma, we will argue by contradiction. In fact, let us assume that 〈Hu, h〉 ≤ 0

for all u ∈ R+ and h > 0. Then, according to the calculations in the proof of Lemma 5.5, we obtain

〈ξ1(·)b, ϕ1,k〉〈h1, ϕ1,k〉 ≤ 0, ∀ k ∈ N and 〈h1, ϕ1,k〉 > 0, ∀ k ∈ N.

Thus, for even k ∈ N we obtain that:

b
µ+qj
cj

+ (kπ)2
〈h1, ϕ1,k〉 = 〈ξ1(·)b, ϕ1,k〉〈h1, ϕ1,k〉 ≤ 0.

As b > 0 we get 〈h1, ϕ1,k〉 ≤ 0 which is a contradiction. Therefore, the implication (46) holds and hence

the system of heat equations (ΣHpath
) is approximately positive controllable. �

Remark 5.1. Note that the results of Lemmas 5.5 and 5.6 seem to be natural. Indeed, in Lemma 5.5,

we want to achieve a dense subspace of the entire state space (L2(0, 1))3 by means of a positive control

input through the leading (first) heat equation so that the boundary temperature of the first heat is fed

into the boundary heat flux of the next one and so on. Therefore, the latter controllability property

seems impossible, because the solutions of the heat equation (ΣHpath
) remain positive for any positive

initial heat distribution. On the other hand, Lemma 5.6 yields that if we start with positive initial heat

distributions, we can reach approximately all positive heat distributions of (ΣHpath
) by a positive control

input through the leading heat equation.
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6. Conclusions

In this paper, we obtained some general boundary approximate controllability criteria of infinite-

dimensional control systems under positivity constraints . These results unify and extend some existing

results to more general cases. Moreover, it has been shown that from our general results, some computable

formulas can be derived easily. For instance, assuming that the underlying graph is strongly connected,

we obtained a Kalman-type rank condition for the boundary approximate controllability under positivity

constraints on the control and state of transportation networks. An example of a system of transport

equations on a cycle-like network with a single positive input acting on the starting node is also given.

Furthermore, we proved the positivity of a coupled heat equations with controls in Robin boundary

conditions. In particular, for a system of heat equations on a path-like network with a control acting on

the leading heat equation, we established the approximate controllability under positivity constraints on

the control and state. However, we showed the lack of controllability under unilateral control-constraint.

Despite the fact that the applications have been focused on transport and heat systems, we conjecture

that other potential candidates to these applications are more general parabolic equations and systems,

hyperbolic systems and delayed systems.

Appendix

Here, we provide an appendix on technical lemmas needed for the proof of Corollary 5.1.

The following result introduce a modification of the so called Szász-Mirakjan operator, cf. [3].

Lemma .1. Let f ∈ Cb([0,+∞)) := {f ∈ C([0,+∞)) : ∃α ≥ 0, δ ≥ 0 such that |f(x)| ≤ δeαx} and

define

Mn(f ;x) := e−nϕ(x)
∞
∑

k=0

f(ϕ−1( k
n
))
nk

k!
(ϕ(x))k , n ≥ 1, x ≥ 0, (47)

where ϕ(x) = 1
v
(1 − x) for x ∈ [0, 1] and ϕ(x) = 0 for x ≥ 1. Then the operators Mn are linear positive

and for every f ∈ Cb([0,+∞)) we have

lim
n→+∞

Mnf = f, uniformly on [0, 1].

Proof To prove our claim we will use the Korovkin theorem, see e.g. [3]. To this end, we have to prove

that the operators Mn preserve the functions 1, ϕ(x), (ϕ(x))2. Indeed, a simple computation shows

Mn(1;x) = 1, Mn(ϕ(x);x) = ϕ(x),

and

Mn((ϕ(x))
2;x) = e−nϕ(x)

∞
∑

k=0

k2

n2

nk

k!
(ϕ(x))k

= (ϕ(x))2 +
1

n
ϕ(x),

where we have used the fact that ϕ2(ϕ−1(x)) = x2. Therefore, from [3, Theorem 4.1], we get that

lim
n→+∞

Mnf = f

uniformly on [0, 1]. �

The last lemma at the hand, one can derive the following density result.

Lemma .2. Let p ∈ [1,∞) and v > 0 be fixed. Then we have

co
(

e−
n
v
(1−.), n ∈ N

)

= L
p
+([0, 1]. (48)
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Proof Let p, q ∈ [1,∞) with 1
p
+ 1

q
= 1 and let g ∈ Lq([0, 1]) such that

∫ 1

0 e−
n
v
(1−x)g(x) dx ≥ 0 for all

n ∈ N. Let 0 ≤ f ∈ C([0, 1]) and define the function

h(x) :=

{

f(x), x ∈ [0, 1],

f(1), t ≥ 1.

Then 0 ≤ h ∈ Cb([0,+∞)) and
∫ 1

0

(Mnh)(x)g(x) dx ≥ 0.

The continuity of f , Lemma .1 and the dominated convergence theorem further yield
∫ 1

0

f(x)g(x) dx ≥ 0, ∀ 0 ≤ f ∈ C([0, 1]).

Moreover, since the positive cone in C([0, 1]) is dense in L
p
+([0, 1]), we get that

∫ 1

0

f(x)g(x) dx ≥ 0, ∀f ∈ L
p
+([0, 1]),

and hence g ≥ 0. �
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