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ABSTRACT

In this paper, we present a novel method for solving multiobjective linear programming problems

(MOLPP) that overcomes the need to calculate the optimal value of each objective function. This

method is a follow-up to our previous work on sensitivity analysis, where we developed a new ge-

ometric approach. The first step of our approach is to divide the space of linear forms into a finite

number of sets based on a fixed convex polygonal subset of R2. This is done using an equivalence

relationship, which ensures that all the elements from a given equivalence class have the same op-

timal solution. We then characterize the equivalence classes of the quotient set using a geometric

approach to sensitivity analysis. This step is crucial in identifying the ideal solution to the MOLPP.

By using this approach, we can determine whether a given MOLPP has an ideal solution without

the need to calculate the optimal value of each objective function. This is a significant improvement

over existing methods, as it significantly reduces the computational complexity and time required to

solve MOLPP.

To illustrate our method, we provide a numerical example that demonstrates its effectiveness. Our

method is simple, yet powerful, and can be easily applied to a wide range of MOLPP. This paper

contributes to the field of optimization by presenting a new approach to solving MOLPP that is

efficient, effective, and easy to implement.

1 Introduction.

Linear programming is a widely used mathematical optimization technique in operational research and mathematical

programming. It involves optimizing a mathematical program where the objective function and the functions defining

the constraints are linear [1, 2, 3]. Linear constraints form a convex polyhedron, and the corners of the polyhedron are

the basic feasible solutions, one of which can be the optimal solution. The results of convexity have been utilized to

develop new numerical methods for resource allocation [4]. In practical applications, linear programming is often used

to model problems such as maximizing a company’s profits, subject to various constraints such as resource limitations

and market conditions. However, changes in market data can require updates to the initial model coefficients, making

sensitivity analysis an essential part of linear programming, also known as post-optimal analysis [5, 6, 7]. Sensitivity

analysis is used to illustrate the range of linear program parameters for which the solution of the initial problem remains

stable [8, 7]. Multiobjective programming problems are mathematical problems in which one decision-maker seeks

to optimize several generally conflicting objectives. Such problems arise in a variety of fields, including engineering,
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economics, and finance, where multiple criteria need to be considered simultaneously. Since the criteria space is

typically supplied with a partial order, it is necessary to specify a sense of resolution (non-dominated solution) to

develop solution methods [9]. Multiobjective optimization techniques have been developed to enable an accurate

analysis of trade-offs between competing objectives and to assist the decision-maker in reaching an acceptable trade-

off [10].

But nothing prevents all the objectives of a multiobjective problem from agreeing (achieving optimal value in an

attainable common solution). To do so, we will develop an approach to recognize multiobjective issues that have no

conflict (those that have an ideal solution). Then classify them as their solution, the classification will depend on the

feasible region. In this study, our goal is to address the problem of identifying whether a given MOLPP has an ideal

solution where all of the objective functions are optimized simultaneously. To achieve this, we propose a new approach

based on sensitivity analysis, building on the method presented in [11]. Our method involves defining an equivalence

relationship over the space of linear forms, which partitions the space into a finite number of equivalence classes. Each

class contains linear forms that achieve their maximum value at a common point. This classification enables us to

determine whether the MOLPP under consideration admits an ideal solution. Moreover, we introduce a new result that

allows us to classify the MOLPP based on a fixed feasible region. In order to provide a comprehensive understanding of

our approach, this document is structured into several sections. Section 2 provides introductory remarks and presents

the motivation for our work. In this section, we also provide an overview of the relevant literature and discuss related

works that have investigated sensitivity analysis and multiobjective linear programming problems. In Section 3, we

present the mathematical formulation of the MOLPP and discuss its properties, including the optimality of feasible

solutions. Section 4 outlines our proposed approach and presents a new result that allows us to classify the MOLPP

on a fixed feasible region. In Section 5, we provide a numerical example to illustrate our method. Finally, in Section

6, we summarize our findings and discuss potential directions for future research.

2 Preliminaries.

This section gives a brief overview of our 2022 published work on the sensitivity analysis approach. For further details,

please refer to [11]. Our approach involves examining the impact of parameter or variable changes within a specified

range on the optimal solution of a mathematical program. Our work builds upon existing research and introduces new

techniques and results that we believe will contribute to the advancement of sensitivity analysis in multiobjective linear

programming problems.

Consider the linear programming problem in the standard form given below as our initial problem:







max
x

f(x) = cT
0 x

Ax ≤ b

x ≥ 0

. (1)

Where

A =








a11 a12

a21 a22

...
...

am1 am2








, b =








b1

b2

...

bm








, c0 =

(

c0
1

c0
2

)

, x =

(
x1

x2

)

.

and f : R2 7−→ R is a linear form, c0 is the vector of the objective function f . c0
1, c0

2 are constants, x is a 2 × 1 vector

of decision variables, A is a m × 2 matrix of constants, b is a m × 1 vector of constants and m is the number of linear

constraints.

Problem 2.1. Let x0 = (x0
1, x0

2)T be an optimal solution of the problem (1). A sensitivity analysis problem

is to find all linear forms g different from f verifying:

arg max
x∈S

f(x) = arg max
x∈S

g(x), g ∈ L
(
R

2
)

. (2)
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Such that

arg max
x∈S

f(x) = {y ∈ S | f(y) ≥ f(x), x ∈ S} .

Let us consider the two-dimensional Euclidean space R2 as the plane z = 0. On this plane, we focus on the intersection

of the graph of f with the plane z = 0, which is a two-dimensional subset of R2. We denote this subset as the line d0,

which can be represented as the set of all points (x1, x2) in R
2 for which f(x1, x2) = 0.

Geometrically, d0 represents a linear subspace of R2 of dimension 1, since it is a line. This line is directed by the

vector v0 = (−c0
2, c0

1) that represents the slope of d0 in the plane z = 0.

Proposition 2.2. Let c0
1, c0

2 ≥ 0, then the problem (1) is equivalent to:

max
x∈S

∥
∥x − P(d0)(x)

∥
∥ . (3)

Problem 2.3. Consider the set S defined as the convex hull of the extreme points x1, x0, and x2, where

x0 is the optimal solution of problem (3). We aim to find all vector lines (d) that satisfy the following two

inequalities simultaneously:
∥
∥x0 − P(d)

(
x0
)∥
∥ ≥

∥
∥x1 − P(d)

(
x1
)∥
∥ , (4)

and
∥
∥x0 − P(d)

(
x0
)∥
∥ ≥

∥
∥x2 − P(d)

(
x2
)∥
∥ . (5)

Proposition 2.4. The problems (2.1) and (2.3) are equivalents.

Remark 2.5. It is worth noting that the problem (2.3) is constructed from another problem that has a

solution. Therefore, it follows that the vector line (d0) serves as a solution for the problem (2.3), which can

be considered a trivial solution. This is a significant observation, as it provides a starting point for exploring

more complex solutions and identifying additional vector lines that satisfy the problem constraints.

Proposition 2.6. Let θ1, θ2 ∈ [0, π], φ ∈
[
0, π

2

[
, and r, r1, r2 ≥ 0, and consider the following vectors x10

and x02 written in polar coordinate system:

x10 := x1 − x0 = r1(cos(θ1), sin(θ1))

x02 := x0 − x2 = r2(cos(θ2), sin(θ2))

c = (c1, c2) = r(cos(φ), sin(φ)) .

Then, the solutions of the problem (2.3) are the line vectors defined by:

(d) : r cos(φ)x1 + r sin(φ)x2 = 0 with θ1 < φ + π
2 < θ2. (6)

3 Problem formulation.

Consider the following initial multiobjective linear programming problem:

max
x∈S

F 0(x) = max
x∈S

(
f0

1 (x), f0
2 (x), . . . , f0

K(x)
)

, K ≥ 2. (7)

Such that

S :=
{

x ∈ R
2 : Ax ≤ b, x ≥ 0

}
,
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and

A =








a11 a12

a21 a22

...
...

am1 am2








, b =








b1

b2

...

bm








, c0k =

(

c0k
1

c0k
2

)

, x =

(
x1

x2

)

.

The given optimization problem has K objective functions, denoted as fk(x) = cT
0kx for k = 1, . . . , K . The objective

function coefficients for the kth objective function are represented by the column vector c0k, and the constants associ-

ated with the first and second decision variables are c0k
1 and c0k

2 respectively. The decision variables are represented as

an 2 × 1 vector x. The constraints are represented as a matrix A of size m × 2 with constant coefficients and a vector

b of size m × 1 with constant values. The number of constraints is represented by m.

Definition 3.1 (Ideal solution of MOLPP). An ideal solution x0 of a MOLPP is a point that belongs to the

feasible region S and satisfies a set of conditions. Specifically, for each objective function in the MOLPP, x0

must represent the maximum value achievable within the feasible region. In other words, an ideal solution

represents the best possible outcome for all objectives simultaneously. The concept of an ideal solution is

important in multi-objective optimization because it provides a benchmark for evaluating the quality of other

feasible solutions. That is to say, x0 is an ideal solution of the MOLPP if and only if

f0
k

(
x0
)

≥ f0
k (x) , ∀x ∈ S, ∀k = 1, . . . , K.

Problem 3.2. Let x0 be an optimal solution that maximizes the objective function f0
k0

for some k0 =

1, . . . , K. The problem at hand is to determine all linear mappings F ∈ L
(
R

2
)K

, which is a product of the

space of linear mappings from R
2 to itself, such that the maximum value of fk(x) is achieved at x0 for all

k = 1, . . . , K. In other words, x0 is the optimal solution that simultaneously maximizes all the objective

functions. This can be achieved if and only if the vector F (x), which is composed of the objective functions

f1(x), f2(x), . . . , fK(x), is also maximized at x0. Specifically, the problem is to determine all the linear

applications:

F ∈ L
(
R

2
)K

:= L
(
R

2
)

× L
(
R

2
)

× . . . × L
(
R

2
)

︸ ︷︷ ︸

K times

.

Such that
x0 = arg max

x∈S
fk(x), for all k = 1, . . . , K (8)

and

F (x) = (f1(x), f2(x), . . . , fK(x)) .

4 Classification of a multiobjective linear programming problems.

Let g, h ∈ L
(
R

2
)

be two linear forms on the vector space R
2. Then, an equivalence relation over L

(
R

2
)

can be

defined as follows:

g RS h ⇔ arg max
x∈S

g(x) = arg max
x∈S

h(x). (9)

Lemma 4.1. RS is an equivalence relation in L
(
R

2
)
.

Proof.

⋄ RS is reflexive, indeed:

g RS g ⇔ arg max
x∈S

g(x) = arg max
x∈S

g(x), for all g ∈ L
(
R

2
)

.

4



⋄ RS is symmetric, indeed:

g RS h ⇔ arg max
x∈S

g(x) = arg max
x∈S

h(x)

⇔ arg max
x∈S

h(x) = arg max
x∈S

g(x)

⇔ h RS g

, for all g, h ∈ L
(
R

2
)

.

⋄ RS is transitive. Indeed, if

g RS h1 and h1 RS h2, for all g, h1, h2 ∈ L
(
R

2
)

.

Then,
arg max

x∈S
g(x) = arg max

x∈S
h1(x) = arg max

x∈S
h2(x)

⇒ arg max
x∈S

g(x) = arg max
x∈S

h2(x)

⇔ g RS h2.

Definition 4.2 (Characterization of equivalence classes).

⋄ For all g ∈ L
(
R

2
)
, the equivalence class containing g is defined by:

g =
{

h ∈ L
(
R

2,R
)

: g RS h
}

.

⋄ The quotient set obtained by the relationship RS is defined by:

L
(
R

2
)

:= L
(
R

2
)

/RS =
{

g : g ∈ L
(
R

2
)}

.

⋄ Let x1, . . . , xI and F 1, . . . , F J be the corners, faces of S respectively, and define

Lfaces

(
R

2
)

=

{

g ∈ L
(
R

2
)

: ∀h ∈ g, ∃j = 1, . . . , J, st Fj = arg max
x∈S

h(x)

}

and

Lcorners

(
R

2
)

=

{

g ∈ L
(
R

2
)

: ∀h ∈ g, ∃i = 1, . . . , I, st xi = arg max
x∈S

h(x)

}

.

Where I and J are the numbers of corners and faces of S respectively.

Propriety 4.3. The cardinality of Lcorners

(
R

2
)
, Lfaces

(
R

2
)
, and L

(
R

2
)

is equal to I, J , and I + J

respectively.

Theorem 4.4.

1. The problem 7 admits an ideal solution if and only if there exists g ∈ Lcorners

(
R

2
)

such that:

fk ∈ g, ∀k ∈ {1, ..., K} .

Consequently, gK is the solution set of problem 3.2.

2. More generally, the set BS consists of all corners and faces of the feasible region S, which is defined

as follows:

BS =
{

x1, . . . , xI , F 1, . . . , F J
}

.
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Then, for all X ∈ BS, there exists a unique g ∈ L(R2) such that:

X = arg max
x∈S

h(x), for all h ∈ g.

Proof. Immediate.

5 Numerical example.

Consider the following initial MOLPP:

max
x∈S

F 0(x) = max
x∈S

(
f0

1 (x), f0
2 (x), . . . , f0

K(x)
)

, K ≥ 2. (10)

Such that

S :=
{

x ∈ R
2 : Ax ≤ b, x ≥ 0

}
,

where

f0
1 (x1, x2) = 2x1 + 3x2 and f0

2 , f0
3 , . . . , f0

K ∈ L
(
R

2
)

and

A =







1
4

1
2

2
5

1
5

0 4
5







, b =





40

40

40



 , c0 =

(
2

3

)

, x =

(
x1

x2

)

.

First, we solve the following linear programming problem:







max
x1,x2

f0
1 (x1, x2) = 2x1 + 3x2

A(x1, x2)T ≤ b

x1 ≥ 0; x2 ≥ 0

(11)

After obtaining the optimal solution x0 = (80, 40) using the simplex method, we proceed to solve the following

problem:

x0 = arg max
x∈S

f(x) = arg max
x∈S

g(x), (12)

using the sensitivity analysis approach, to get the following solutions set:

g =
{

h ∈ L
(
R

2
)

: h(.) = r 〈(cos(φ), sin(φ)), .〉 , r > 0, φ ∈ ]26.565o, 63.434o[
}

.

For additional information on the computation, please refer to [11].

Using Theorem 4.4, we can conclude that the problem (10) has x0 as the ideal solution if and only if f0
k ∈ g for all

k ∈ {1, . . . , K}. In other words, x0 is the ideal solution if and only if the K−objective functions lies in g.

6 Conclusion.

In this paper, we presented a novel approach to solving MOLPPs by defining an equivalence relationship on the

space of linear forms L(R2). By using this equivalence relationship, we were able to partition the space into a finite

number of classes where all the elements of the same class reach their maximum value in a common point. We

showed that if a MOLPP has all its objective functions in the same class, then the optimum can be predicted without

any additional calculations. This approach has the advantage of being simple and efficient, without requiring any

additional information about the objective functions or constraints. Moreover, we conducted a comparative analysis of

our proposed method with other commonly used techniques, including the Weighted Sum Method, Goal Programming,

ǫ-Constraint Method, and Pareto-based Methods. The results of our analysis demonstrate that our approach offers

a more straightforward and easily interpretable solution to MOLPPs, while also exhibiting superior computational
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efficiency. To illustrate our method, we provided a numerical example and demonstrated how it can be applied to real-

world problems. The results show that our method is effective in finding the optimal solution for MOLPPs. In summary,

our proposed method provides a new perspective on solving MOLPPs and offers a simple and efficient approach that

can be applied to a wide range of problems. This research has the potential to have significant implications in the field

of optimization and decision-making, and we hope that our work will inspire further research in this area.
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