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Abstract

It is shown every nonnegative solution of the heat equation in a bounded

cylindrical domain has an integral representation in terms of a trace triple
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1 Introduction

The study of the initial and lateral traces of nonnegative solutions of the heat

equation was initiated by D.V. Widder. In a series of papers starting with [HW],

[W1], [W2], D.V. Widder, P. Hartman and A. Winter solved the problem in the

one dimensional case for solutions of the heat equation in an infinite rod, a half

infinite rod and a finite rod. A complete treatment can be found in the book [W3].

In the case of an infinite rod, its n-dimensional version becomes the existence of

the initial trace for nonnegative solutions of the heat equation in R
n. This problem

was solved and generalized to nonnegative weak solutions of second order uniformly

parabolic equations in divergence form by D.G. Aronson in [A].

For the case of a finite rod, in Theorem 6 of Chapter VIII of [W2] Wid-

der showed that every nonnegative solution of the heat equation in the domain

(0, π) × (0, T ) has an integral representation in terms of three trace measures on

the parabolic boundary of the domain. These traces consist of nonnegative mea-

sures α on (0, π)× {0} and β, γ, on {0} × [0, T ) and {π} × [0, T ) respectively. It

was pointed out in [W3] that α((ε, π/2) × {0}) and α((π/2, π − ε) × {0}) could

be ∞ as ε → 0 but on the other hand both β({0} × (0, T1)) and γ({π} × (0, T1))

are finite for any 0 < T1 < T . The higher dimensional extension of a finite rod is

a bounded cylindrical domain in R
n, n ≥ 2. For a non-negative solution in such

domain with zero boundary data, the existence of an initial trace consisting of a

bottom and a corner ones was established K.M. Hui in [H].

Recently there is a lot of study of initial traces of non-negative solutions of

various parabolic equations. For example similar initial trace problem for the

positive solutions of the semilinear heat equation

ut = ∆u− uq

in C2 domain Ω ⊂ R
n with compact boundary where q > 1 was studied by M. Mar-

cus and L. Véron [MV4]. The boundary trace problem for the corresponding el-

liptic problem was also studied by M. Marcus and L. Véron in [MV1], [MV2],

[MV3]. Recently K. Hisa, K. Ishige and J. Takahashi [HIT] proved the existence

and uniqueness of initial traces of non-negative solutions to the following semilinear

heat equation,

ut = ∆u+ up

on a half space of RN under the zero Dirichlet boundary condition where p > 1.

The initial trace problem for the porous medium equation was studied by

Aronson and L.A. Caffarelli [AC], K.S. Chou and Y.C. Kwong [CK1], [CK2],
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B.E.J. Dahlberg and C.E. Kenig [DK], etc. The initial trace problem for the

parabolic p-laplace equation and the doubly nonlinear parabolic equation were

studied by E. DiBenedetto and M.A. Herrero [DiH1], [DiH2], and K. Ishige and

J. Kinnunen [Is], [IsK], etc.

Note that in [W2] only solutions of one dimensional heat equation is studied and

in [A] no measure initial data was considered. On the other hand in this paper we

study nonnegative solutions of the heat equation in a bounded cylindrical domain

in R
n for any n ≥ 1 which may not be zero along their lateral boundary. It will be

shown that such solution has an integral representation in terms of a trace triple

consisting of a bottom trace, a corner trace and a lateral trace on its parabolic

boundary. Conversely this trace triple uniquely determines the solution.

To make things precise, we introduce the following notations and definitions.

Let QT = Ω× (0, T ) where Ω is a smooth bounded domain in R
n and T > 0. For

any x ∈ Ω, let δ(x) = dist(x, ∂Ω) be the distance of x from the boundary ∂Ω of Ω.

Let C∞
0 (Ω) be the space of all smooth functions in Ω vanishing on ∂Ω and

L1(Ω, δ) =

{

f ∈ L1
loc(Ω) :

∫

Ω

|f(x)|δ(x) dx < ∞

}

. (1.1)

We denote by

• M(Ω, δ) the collection of all nonnegative Radon measures µ on Ω satisfying

∫

Ω

δ(x) dµ(x) < ∞ ,

• M(∂Ω) the collection of all nonnegative Radon measures on ∂Ω. Note that

since every Radon measure is finite on compact sets, hence all measures in

this collection are finite.

• Ms(∂Ω× (0, T )) the collection of all nonnegative Radon measures ν on ∂Ω×

(0, T )) satisfying ν(∂Ω × (0, T1)) < ∞ for all T1 ∈ (0, T ) .

Let u be a classical nonnegative solution of the heat equation in QT . We say

that a pair of measures (µ, λ) ∈ M(Ω, δ) × M(∂Ω) is the initial trace of u if for

any ϕ ∈ C∞
0 (Ω),

lim
t→0+

∫

Ω

ϕ(x)u(x, t) dx =

∫

Ω

ϕdµ+

∫

∂Ω

∂ϕ

∂N
dλ ,
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where ∂/∂N is the derivative with respect to the unit inner normal N . On the

other hand we say that a measure ν ∈ Ms(∂Ω × (0, T )) is the lateral trace of u if

for any h ∈ Cc(∂Ω× (0, T )),

lim
ε→0

∫ T

0

∫

∂Ωε

h̃(x, t)u(x, t) dσ(x)dt =

∫∫

∂Ω×(0,T )

h dν ,

where Ωε = {x ∈ Ω : δ(x) > ε} and h̃ is any continuous extension of h in a tubular

neighborhood of ∂Ω × (0, T ) vanishing near t = 0, T .

Our main result is

Theorem 1.1. Let u be a nonnegative classical solution of the heat equation in

QT . There exists (µ, λ, ν) ∈ M(Ω, δ)×M(∂Ω)×Ms(∂Ω× (0, T )) such that (µ, λ)

is the initial trace and ν is the lateral trace for u. Moreover,

u(x, t) =

∫

Ω

G(x, t; y, 0) dµ(y) +

∫

∂Ω

∂G

∂Ny

(x, t; y, 0) dλ(y)

+

∫∫

∂Ω×(0,t)

∂G

∂Ny

(x, t; y, s) dν(y, s) ∀(x, t) ∈ QT , (1.2)

where ∂/∂Ny is the derivative with respect to the unit inner normal Ny at y ∈ ∂Ω

and G(x, t; y, s) is the Green kernel of the heat equation in Ω× R.

Conversely, given any (µ, λ, ν) ∈ M(Ω, δ) × M(∂Ω) × Ms(∂Ω × (0, T )), (1.2)

gives a classical solution of the heat equation in QT whose trace triple is equal to

(µ, λ, ν).

Along a different vein, integral representation formulas for nonnegative solu-

tions of the heat equation in bounded domains in term of the so-called kernel func-

tion were given by J.T. Kemper in [K]. His results were extended to nonnegative

solutions of uniformly parabolic divergence equations by E.B. Fabes, N. Garofalo

and S. Salsa in [FGS]. One may consult [M] by M. Murata for more recent results

in this direction.

For the related generalized porous medium equation, existence and unique-

ness of a pair of initial traces for its nonnegative solution of the initial Dirichlet

problem in a bounded smooth cylindrical domain was proved by B.E.J. Dahlberg

and C.E. Kenig in [DK]. Results on non-zero lateral traces for solutions of the

porous medium equation were obtained by K.S. Chou and Y.C. Kwong in [CK1]

and [CK2].

The plan of the paper is as follows. In section 2 we will prove the existence

of initial trace for nonnegative solution of the heat equation in bounded smooth
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cylindrical domain. In section 3 we will prove the existence of the lateral trace and

the representation formula (1.2) for the solution. We will also prove Theorem 1.1

in section 3.

2 Existence of initial trace

We will assume that Ω is a smooth bounded domain in R
n and u is a nonnegative

solution of the heat equation in the cylindrical domain QT for some constant

T > 0 for the rest of the paper. We will fix a sufficiently small ε0 > 0 such that

the boundary of the subdomain

Ωε = {x ∈ Ω : dist (x, ∂Ω) > ε}, ε ∈ [0, ε0]

is smooth and for each x ∈ Ω \ Ωε0 , there is a unique z = z(x) ∈ ∂Ω satisfying

x = z + δ(x)Nz where δ(x) is the distance from x to ∂Ω and Nz is the unit inner

normal of ∂Ω at z. The map x 7→ (z, δ(x)) ∈ ∂Ω × (0, ε0] forms a diffeomorphism

from Ω \ Ωε0 to ∂Ω× (0, ε0]. We will extend the distance function δ on Ω \ Ωε0 to

a smooth positive function δ on Ω and fix it throughout this paper. Apparently

such choice of δ does not alter M(Ω, δ).

We first recall some basic properties of the Green kernel G(x, t; y, s) of the heat

equation (cf. [C], [I]). Note that the Green kernel G(x, t; y, s) for the heat equation

in Ω× R exists and is a continuous function in

{(x, t, y, s) : x, y ∈ Ω,−∞ < s < t < ∞}

which is smooth in its interior such that

• for each (y, s) ∈ Ω×R, G(·, ·; y, s) > 0 satisfies the heat equation in Ω×(s,∞),

vanishes on ∂Ω× (s,∞) and satisfies

lim
tցs

G(x, t; y, s) = δy ∀s ∈ R

in the distribution sense where δy is the delta mass at y.

• for each (x, t) ∈ Ω×R, G(x, t; ·, ·) satisfies the backward heat equation in Ω×

(−∞, t) and G(x, t; y, s) = 0, ∂Gε

∂Ny
(x, t; y, s) > 0 for all (y, s) ∈ ∂Ω× (−∞, t).

• and if we let Ω1 ⊂ Ω2 and G1, G2, be the Green kernel of the heat equation

with respect to the cylindrical domains Ω1×R and Ω2×R respectively, then

G1(x, t; y, s) ≤ G2(x, t; y, s) ∀x, y ∈ Ω1, s < t.

6



The proof of our main theorem Theorem 1.1 will be accomplished in several

lemmas. First of all, by the integral representation formula for solutions of the heat

equation in cylindrical domain (Theorem 5 of Chapter VII of [C]), u admits the

following integral representation, namely, for any (x, t) ∈ Ωε × (s, T ), ε ∈ (0, ε0),

u(x, t) =

∫

Ωε

Gε(x, t; y, s)u(y, s) dy+

∫ t

s

∫

∂Ωε

∂Gε

∂Ny

(x, t; y, τ)u(y, τ) dσ(y) dτ ,

(2.1)

where Gε is the Green kernel for the heat equation in Ωε × R and ∂/∂Ny is the

derivative with respect to the unit inner normal Ny at y ∈ ∂Ωε. Note that both

Gε(x, t; y, s) and
∂Gε

∂Ny
(x, t; y, s) are positive.

Since both terms on the right hand side of (2.1) are nonnegative, we have, for

all x ∈ Ωε, 0 < s < t < T, 0 < ε ≤ ε0,

∫

Ωε

Gε(x, t; y, s)u(y, s) dy ≤ u(x, t) , (2.2)

and

∫ t

s

∫

∂Ωε

∂Gε

∂Ny

(x, t; y, τ)u(y, τ) dσ(y) dτ ≤ u(x, t) . (2.3)

Since Gε(x, t; ·, ·) ↑ G(x, t; ·, ·) as ε → 0, letting ε → 0 in (2.2), by the monotone

convergence theorem, we have

∫

Ω

G(x, t; y, s)u(y, s) dy ≤ u(x, t) ∀x ∈ Ω, 0 < s < t < T . (2.4)

Lemma 2.1. For any T1 ∈ (0, T ), we have

sup
0<t≤T1

∫

Ω

u(x, t)δ(x) dx < ∞.

Proof. We fix some x0 ∈ Ω and T2 ∈ (T1, T ). By (2.4), we have

∫

Ω

G(x0, T2;w, s)u(w, s) dw ≤ u(x0, T2) ∀ 0 < s < T2. (2.5)
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Now for any (w, s) ∈ (Ω \ Ωε0)× (0, T1], we have

G(x0, T2;w, s)

=G(x0, T2; z(w) + δ(w)Nz(w), s)−G(x0, T2; z(w), s)

=

∫ 1

0

∂G

∂a
(x0, T2; z(w) + aδ(w)Nz(w), s) da

=

(

n
∑

j=1

Nj(z(w))

∫ 1

0

∂G

∂yj
(x0, T2; z(w) + aδ(w)Nz(w), s) da

)

δ(w) (2.6)

where Nz = (N1(z), · · · , Nn(z)) is the unit inner normal at z ∈ ∂Ω. Since

∂G/∂Ny(x0, T2; y, s) is positive for y ∈ ∂Ω and s < T2 and also uniformly con-

tinuous for s ∈ (0, T1], there exist constants 0 < ε1 < ε0 and c1 > 0 such that

c1 ≤

n
∑

j=1

Nj(z(w))
∂G

∂yj
(x0, T2; z(w) + aδ(w)Nz(w), s) ≤

1

c1
(2.7)

holds for any (w, s) ∈ (Ω \ Ωε1)× (0, T1]. Therefore by (2.6) and (2.7), we have

c1δ(w) ≤ G(x0, T2;w, s) ≤ c−1
1 δ(w) ∀y ∈ Ω \ Ωε1 , 0 < s ≤ T1. (2.8)

Since both δ(w) and G(x0, T2;w, s) are positive and uniformly bounded above and

below by some positive constants in Ωε1, by (2.5) and (2.8) the lemma follows.

Lemma 2.2. For any T1 ∈ (0, T ), we have

sup
0<ε≤ε0

∫ T1

0

∫

∂Ωε

u(x, τ) dσ(x) dτ < ∞.

Proof. Let x0 ∈ Ωε0 , T2 ∈ (T1, T ) and 0 < ε ≤ ε0. Putting x = x0 and t = T2 in

(2.3) and letting s → 0, by the monotone convergence theorem, we have

∫ T1

0

∫

∂Ωε

∂Gε

∂Ny

(x0, T2; y, τ)u(y, τ) dσ(y) dτ ≤ u(x0, T2) . (2.9)

We now claim that there exists a constant c1 > 0 such that

∂Gε

∂Ny

(x0, T2; y, τ) ≥ c1 , ∀y ∈ ∂Ωε, 0 ≤ τ ≤ T1, 0 < ε ≤ ε0.

Suppose the claim does not hold. Then there exist sequences {εi}
∞
i=1 ⊂ (0, ε0],

{τi}
∞
i=1 ⊂ [0, T1], {yi}

∞
i=1, such that yi ∈ ∂Ωεi for any i ∈ Z

+ and

∂Gεi

∂Nyi

(x0, T2; yi, τi) → 0 , as i → ∞.
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Then there exists ε0 ∈ [0, ε0], y0 ∈ ∂Ωε0 , τ0 ∈ [0, T1] and subsequences of {εi},

{yj}, {τi}, which we may assume without loss of generality to be the sequences

themselves such that εi → ε0, yj → y0 and τi → τ0 as i → ∞. It follows that

∂Gε0

∂Ny0

(x0, T2; y0, τ0) = 0.

On the other hand since ∂Gε0/∂Ny0(x0, T2; y, τ) is positive for any y ∈ ∂Ωε0 and

τ ∈ [0, T1], contradiction arises and our claim holds. By (2.9) and the claim, the

lemma follows.

Lemma 2.3. For any T1 ∈ (0, T ), we have

∫ T1

0

∫

Ω

u(x, t) dx dt < ∞.

Proof. For any 0 < ε < ε0, let ϕε be the solution of
{

−∆ϕ = 1 in Ωε

ϕ(x) = 0 ∀x ∈ ∂Ωε.
(2.10)

According to elliptic theory (cf. [GT], [Wi]), by decreasing ε0 if necessary, there

exists a constant C2 > 0 such that

C2 ≤
∂ϕε

∂Ny

(y) ≤ C−1
2 ∀y ∈ ∂Ωε, ε ∈ (0, ε0). (2.11)

Moreover

ϕε(x) ≤ Cδε(x) ≤ Cδ(x) ∀x ∈ Ωε (2.12)

for some constant C > 0 where δε(x) = dist(x, ∂Ωε). Multiplying the heat equation

by ϕε and integrating over Ωε × (t, T1), we have

∫

Ωε

u(x, T1)ϕε(x) dx−

∫

Ωε

u(x, t)ϕε(x) dx

=

∫ T1

t

∫

Ωε

u∆ϕε dx dt+

∫ T1

t

∫

∂Ωε

u
∂ϕε

∂N
dσ dt. (2.13)

By (2.10), (2.11), (2.12), (2.13) and Lemma 2.1, we have

C2

∫ T1

t

∫

∂Ωε

u(x, t) dσ(x) dt ≤ C3 +

∫ T1

t

∫

Ωε

u(x, t) dx dt (2.14)
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for some constant C3 > 0 independent of ε ∈ (0, ε0). Now using the coarea formula

[EG], we have

−
d

dε

∫

Ωε

g dx =

∫

∂Ωε

g

|∇δ(x)|
dσ(x)

where

g(x) =

∫ T1

t

u(x, τ) dτ

and noting that

|∇δ(x)| ≥ C4 ∀x ∈ Ω \ Ωε0

for some constant C4 > 0, by (2.14) we get

−
d

dε
G(ε) ≤ C5G(ε) + C5 (2.15)

for some constant C5 > 0 independent of ε ∈ (0, ε0) where

G(ε) =

∫ T

t

∫

Ωε

u dx dt.

Integrating (2.15) from ε to ε0, we have

∫ T

t

∫

Ωε

u dx dt ≤ eC5(ε0−ε)

∫ T

t

∫

Ωε0

u dx dt+ eC5(ε0−ε). (2.16)

Letting first ε → 0 and then t → 0 in (2.16), the lemma follows.

Lemma 2.4. There exists a Radon measure ν ∈ Ms(∂Ω × (0, T )) satisfying

lim
ε→0+

∫ T1

0

∫

∂Ωε

u(x, τ)h̃(x, τ) dσ(x) dτ =

∫∫

∂Ω×(0,T1)

h dν ∀0 < T1 < T (2.17)

for any bounded continuous function h on ∂Ω × (0, T ) where h̃ is any bounded

continuous extension of h in a tubular neighbourhood of ∂Ω× (0, T ). Moreover the

measure ν is uniquely given by

∫∫

∂Ω×(0,T )

h dν =

∫ T

0

∫

Ω

u
(

h∆δ + 2∇h · ∇δ + δ∆h+ δht

)

dx dt (2.18)

for any h ∈ Cc(∂Ω × (0, T )) where h is a continuous extension of h to Ω× (0, T )

vanishing near t = 0, T , such that h is constant along each inner normal direction

of ∂Ω in (Ω \ Ωε0)× (0, T ).
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Proof. For every bounded continuous function h on ∂Ω× (0, T ), we extend it to a

bounded continuous function h on (Ω \Ωε0)× (0, T ) such that h is constant along

each inner normal direction of ∂Ω. In view of Lemma 2.2, it suffices to prove the

lemma by taking h̃ to be h.

First we fix T1 ∈ (0, T ). For each ε ∈ (0, ε0], define a linear functional Λε on

Cc(∂Ω× (0, T1)) by

Λεh =

∫ T1

0

∫

∂Ωε

h(x, τ)u(x, τ) dσ(x) dτ ∀h ∈ Cc(∂Ω × (0, T1)).

By Lemma 2.2, we have

|Λεh| ≤ C‖h‖L∞ ∀h ∈ Cc(∂Ω × (0, T1)).

Therefore by the Riesz representation theorem (Theorem 7.2.8 of [Co]), there exists

a Radon measure νε on ∂Ω × (0, T1) such that

Λεh =

∫∫

∂Ω×(0,T )

h dνε ∀h ∈ Cc(∂Ω× (0, T1))

⇒

∫ T1

0

∫

∂Ωε

h(x, τ)u(x, τ) dσ(x) dτ =

∫∫

∂Ω×(0,T )

h dνε ∀h ∈ Cc(∂Ω × (0, T1)).

(2.19)

We now choose a sequence of monotone increasing functions {hi}
∞
i=1 ⊂ Cc(∂Ω ×

(0, T1)), 0 ≤ hi ≤ 1 for any i ∈ Z
+, satisfying

hi(x, t) = 1 ∀x ∈ ∂Ω, 1
i
≤ t ≤ T1 −

1
i
, i ∈ Z

+.

Putting h = hi in (2.19) and letting i → ∞, by Lemma 2.2, we have

sup
0<ε≤ε0

νε(∂Ω × (0, T1)) < ∞. (2.20)

The measure νε depends on T1. However, by letting T1 ր T it is clear that we

could define a Radon measure, still denoted by νε in Ms(∂Ω×(0, T )) so that (2.20)

remains valid for any 0 < T1 < T and

∫∫

∂Ω×(0,T )

h dνε =

∫ T

0

∫

∂Ωε

h(x, t)u(x, t) dσ(x) dt ∀h ∈ Cc(∂Ω× (0, T )). (2.21)

By (2.20) and weak compactness any sequence {εj}
∞
j=1 ⊂ (0, ε0), εj → 0 as j → ∞,

has a subsequence which we may assume without loss of generality to be the
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sequence itself that converges weakly to ν as j → ∞ for some ν ∈ Ms(∂Ω×(0, T )).

That is

lim
j→∞

∫∫

∂Ω×(0,T )

h dνεj =

∫∫

∂Ω×(0,T )

h dν ∀h ∈ Cc(∂Ω× (0, T ))

and

ν(∂Ω × (0, T1)) ≤ sup
0<ε≤ε0

νε(∂Ω× (0, T1)) < ∞ ∀0 < T1 < T.

We now claim that the limit ν is unique. In order to prove this claim we extend

h to a bounded continuous function on Ω× (0, T ) vanishing near t = 0, T . For any

ε ∈ (0, ε0), let ηε(x, t) = (δ(x)− ε)h(x, t). For any ε ∈ (0, ε0), multiplying the heat

equation for u by ηε and integrating over Ωε × (0, T ), by integration by parts, we

have
∫ T

0

∫

Ωε

u
[

h∆δ(x) + 2∇h · ∇δ(x) + (δ(x)− ε)∆h+ (δ(x)− ε)ht

]

dx dt

= −

∫ T

0

∫

∂Ωε

u(x, t)h(x, t)
∂δ

∂N
(x) dσ(x) dt

=

∫ T

0

∫

∂Ωε

u(x, t)h(x, t) dσ(x) dt (2.22)

where ∂/∂N is the derivative with respect to the unit inner normal N at ∂Ωε.

Since

h∆δ(x) = ∇h · ∇δ(x) = 0 ∀x ∈ Ω \ Ωε0,

by (2.22), we have
∫ T

0

∫

Ωε0

(

uh∆δ(x) + 2u∇h · ∇δ(x)
)

dx dt

+

∫ T

0

∫

Ωε

u
[

(δ(x)− ε)∆h+ (δ(x)− ε)ht

]

dx dt

=

∫ T

0

∫

∂Ωε

u(x, t)h(x, t) dσ(x) dt ∀0 < ε < ε0. (2.23)

Putting ε = εj in (2.23) and letting j → ∞, by Lemma 2.2 and the Lebesgue

dominated convergence theorem, we get (2.18). Hence the measure ν is uniquely

determined by (2.18) and the claim holds. Since the sequence {εj}
∞
j=1 is arbitrary,

νε converges weakly to ν as ε → 0. This together with (2.21) implies that ν is the

lateral trace of u.

Finally, since ν is finite on ∂Ω×(0, T1) for any 0 < T1 < T , by an approximation

argument, one can show that (2.17) holds not only for any h ∈ Cc(∂Ω × (0, T ))

but also for any bounded continuous functions on ∂Ω × (0, T ).
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Lemma 2.5. There exists (µ, λ) ∈ M(Ω, δ)×M(∂Ω) such that for any η ∈ C∞
0 (Ω),

we have

lim
t→0+

∫

Ω

u(x, t)η(x) dx =

∫

Ω

η dµ+

∫

∂Ω

∂η

∂N
dλ (2.24)

where ∂/∂N is the derivative with respect to the unit inner normal N at ∂Ω.

Proof. For any t ∈ (0, T ), 0 < ε ≤ ε0, let

wε(x, t) := Gε(u(·, t))(x) :=

∫

Ωε

Gε(x, y)u(y, t) dy ∀x ∈ Ωε

and

w(x, t) := G(u(·, t))(x) :=

∫

Ω

G(x, y)u(y, t) dy ∀x ∈ Ω (2.25)

be the Green potential of u(·, t) with respect to the domain Ωε and Ω respectively

where G(x, y), Gε(x, y), are the Green functions for the Laplacian −∆ on Ω, Ωε,

respectively. Then wε ≥ 0 on Ωε. By elliptic regularity theory [GT], for each

0 < t < T , wε is a classical solution of

{

−∆wε =u(·, t) in Ωε

wε =0 on ∂Ωε

and w(·, t) is a classical solution of

−∆w(·, t) = u(·, t) in Ω. (2.26)

Now by Theorem 2.3 of [Wi] for any x ∈ Ω, there exists a constant C > 0 such

that

G(x, y) ≤ Cδ(y)|x− y|1−n ∀x, y ∈ Ω. (2.27)

Since for any x, y ∈ Ω, Gε(x, y) increases to G(x, y) as ε → 0, by (2.27), Lemma 2.1

and the Lebesgue dominated convergence theorem, wε(x, t) increases to w(x, t) as

ε → 0 for any x ∈ Ω, 0 < t < T . Hence by (2.25), (2.27) and a direct computation,

we get

‖w(·, t)‖L1(Ω) ≤ C

∫

Ω

u(x, t)δ(x) dx ∀0 < t < T (2.28)

for some constant C > 0. Now

wε,t = Gε(ut) = Gε(∆u) = −u(x, t) +

∫

∂Ωε

∂Gε

∂Ny

(x, y)u(y, t) dσ(y) (2.29)

Integrating (2.29) over (t1, t2), 0 < t1 < t2 < T1 < T , we have
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wε(x, t2) +

∫ T1

t2

∫

∂Ωε

∂Gε

∂Ny

(x, y)u(y, τ) dσ(y) dτ

≤ wε(x, t1) +

∫ T1

t1

∫

∂Ωε

∂Gε

∂Ny

(x, y)u(y, τ) dσ(y) dτ .

Letting ε → 0, we have

w(x, t2) +

∫∫

∂Ω×(t2,T1)

∂G

∂Ny

(x, y) dν(y, τ)

≤w(x, t1) +

∫∫

∂Ω×(t1,T1)

∂G

∂Ny

(x, y) dν(y, τ) ∀0 < t1 < t2 < T1 < T.

Let 0 < T1 < T . This inequality shows that for each x ∈ Ω, the function

H(x, t) := w(x, t) +

∫∫

∂Ω×(t,T1)

∂G

∂Ny

(x, y) dν(y, τ)

is decreasing in t. Hence for each x ∈ Ω, H∗(x) := limt→0H(x, t) exists. Since
∫∫

∂Ω×(0,T1)

∂G

∂Ny

(x, y) dν(y, τ)

exists and is finite, we conclude that

w∗(x) := lim
t→0+

w(x, t)

exists. Letting t → 0 in (2.28), by Lemma 2.1, w∗ ∈ L1(Ω).

Sinice by Theorem 2.3 of [Wi] there exists a constant C > 0 such that

|∇yG(x, y)| ≤ C|x− y|1−n ∀x, y ∈ Ω,

we have
∫

Ω

(
∫∫

∂Ω×(0,t)

∂G

∂Ny

(x, y) dν(y, τ)

)

dx ≤ Cν(∂Ω × (0, t)) < ∞ ∀0 < t < T.

Hence we have
∫

Ω

|w∗(x)− w(x, t)| dx

≤

∫

Ω

|H∗(x)−H(x, t)| dx+

∫

Ω

(
∫∫

∂Ω×(0,t)

∂G

∂Ny

(x, y) dν(y, τ)

)

dx

≤

∫

Ω

|H∗(x)−H(x, t)| dx+ Cν(∂Ω × (0, t)).
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Letting t → 0, we have

lim
t→0

∫

Ω

|w∗(x)− w(x, t)| dx = 0. (2.30)

By (2.26) for each 0 < t < T , w(·, t) is superharmonic in Ω. Hence w∗ is superhar-

monic in Ω.

The rest of the proof follows from the arguments based on the proof of theorem

7 in [DK]. First of all, by (2.25), (2.30), Lemma 2.1 and the Fubini Theorem, for

any η ∈ C∞
0 (Ω), we have
∫

Ω

u(x, t)η(x) dx =−

∫

Ω

(
∫

Ω

G(x, y)∆η(y) dy

)

u(x, t) dx

=−

∫

Ω

(
∫

Ω

G(x, y)u(x, t) dx

)

∆η(y) dy

=−

∫

Ω

w(x, t)∆η(x) dx

→−

∫

Ω

w∗∆η dx as t → 0. (2.31)

On the other hand by the Riesz representation theorem for superharmonic func-

tions [He], there exists µ ∈ M(Ω, δ) and a nonnegative harmonic function h in Ω

such that

w∗(x) =

∫

Ω

G(x, y) dµ+ h(x) ∀x ∈ Ω, (2.32)

where G(x, y) is the Green function for the Laplacian −∆ in Ω. Applying Martin

representation theorem [He] to h, there exists λ ∈ M(∂Ω) such that

h(x) =

∫

∂Ω

∂G

∂Ny

(x, y) dλ(y) ∀x ∈ Ω. (2.33)

By (2.31),(2.32), (2.33) and an argument similar to the proof of Theorem 7 of [DK]

we get (2.24) and the lemma follows.

3 Existence of the lateral trace and the repre-

sentation formula

In this section we will prove Theorem 1.1. The existence of lateral trace and initial

trace have been established in Lemma 2.4 and Lemma 2.5 respectively. It remains

to prove (1.2).
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Lemma 3.1. For any x ∈ Ω, 0 < s < t < T , we have

lim
ε→0

∫ t

s

∫

∂Ωε

∂Gε

∂Ny

(x, t; y, τ)u(y, τ) dσ(y) dτ =

∫∫

∂Ω×(s,t)

∂G

∂Ny

(x, t; y, τ) dν(y, τ).

Proof. Let x ∈ Ω and 0 < δ1 < (t− s)/3. We choose 0 < ε1 < min(ε0, δ(x)/2) and

let 0 < ε < ε1. Then we have

∣

∣

∣

∣

∫ t

s

∫

∂Ωε

∂Gε

∂Ny

(x, t; y, τ)u(y, τ) dσ(y) dτ −

∫∫

∂Ω×(s,t)

∂G

∂Ny

(x, t; y, τ)dν(y, τ)

∣

∣

∣

∣

≤

∫ t−δ1

s

∫

∂Ωε

∣

∣

∣

∣

∂Gε

∂Ny

(x, t; y, τ)−
∂G

∂Ny

(x, t; y, τ)

∣

∣

∣

∣

u(y, τ) dσ(y) dτ

+

∣

∣

∣

∣

∫ t−δ1

s

∫

∂Ωε

∂G

∂Ny

(x, t; y, τ)u(y, τ) dσ(y)dτ −

∫∫

∂Ω×(s,t−δ1)

∂G

∂Ny

(x, t; y, τ) dν(y, τ)

∣

∣

∣

∣

+

∫ t

t−δ1

∫

∂Ωε

∂Gε

∂Ny

(x, t; y, τ)u(y, τ) dσ(y)dτ +

∫∫

∂Ω×(t−δ1,t)

∂G

∂Ny

(x, t; y, τ) dν(y, τ)

≡I1 + I2 + I3 + I4. (3.1)

Since by Lemma 2.2,

sup
ε∈(0,ε0)

νε(∂Ω× (0, t)) < ∞, (3.2)

we have

I1 ≤νε(∂Ω× (s, t− δ1)) max
s≤τ≤t−δ1
y∈∂Ωε

|∇y(G−Gε)(x, t; y, τ)|

≤C max
s≤τ≤t−δ1
y∈∂Ωε

|∇y(G−Gε)(x, t; y, τ)|

→0 as ε → 0. (3.3)
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Next,

I2 ≤

∣

∣

∣

∣

∫ t−δ1

s

∫

∂Ωε

∂G

∂Ny

(x, t; y, τ)u(y, τ) dσ(y) dτ

−

∫ t−δ1

s

∫

∂Ωε

∂G

∂Nz(y)

(x, t; z(y), τ)u(y, τ) dσ(y) dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫∫

∂Ω×(s,t−δ1)

∂G

∂Nz

(x, t; z, τ) dνε(z, τ)−

∫∫

∂Ω×(s,t−δ1)

∂G

∂Nz

(x, t; z, τ) dν(z, τ)

∣

∣

∣

∣

≤νε(∂Ω × (s, t− δ1)) max
s≤τ≤t−δ1
y∈∂Ωε

∣

∣

∣

∣

(

∂G

∂Ny

(x, t; y, τ)−
∂G

∂Nz(y)

(x, t; z(y), τ)

)
∣

∣

∣

∣

+

∣

∣

∣

∣

∫∫

∂Ω×(s,t−δ1)

∂G

∂Nz

(x, t; z, τ) dνε(z, τ)−

∫∫

∂Ω×(s,t−δ1)

∂G

∂Nz

(x, t; z, τ) dν(z, τ)

∣

∣

∣

∣

≤C max
s≤τ≤t−δ1
y∈∂Ωε

∣

∣

∣

∣

(

∂G

∂Ny

(x, t; y, τ)−
∂G

∂Nz(y)

(x, t; z(y), τ)

)
∣

∣

∣

∣

+

∣

∣

∣

∣

∫∫

∂Ω×(s,t−δ1)

∂G

∂Nz

(x, t; z, τ) dνε(z, τ)−

∫∫

∂Ω×(s,t−δ1)

∂G

∂Nz

(x, t; z, τ) dν(z, τ)

∣

∣

∣

∣

.

→0 as ε → 0. (3.4)

Finally, since for any y ∈ ∂Ωε we have |x − y| ≥ δ(x)/2 which together with the

result of [H] implies that

∂Gε

∂Ny

(x, t; y, τ) ≤
C1

(t− τ)
n+1
2

e−
C2δ

2(x)
t−τ , ∀y ∈ ∂Ωε, 0 < τ < t , 0 < ε < ε1 (3.5)

and
∂G

∂Ny

(x, t; y, τ) ≤
C1

(t− τ)
n+1
2

e−
C2δ

2(x)
t−τ , ∀y ∈ ∂Ω, 0 < τ < t , (3.6)

for some positive constants C1 and C2. Therefore by (3.2), (3.5) and (3.6), given

any small ε′ > 0, we can choose δ1 sufficiently small such that

I3 + I4 ≤

∫∫

∂Ωε×(t−δ1,t)

C1e
−

C2δ
2(x)

t−τ

(t− τ)
n+1
2

dνε(y, τ) +

∫∫

∂Ω×(t−δ1,t)

C1e
−

C2δ
2(x)

t−τ

(t− τ)
n+1
2

dν(y, τ)

≤Ca0ε
′, (3.7)

for some constant C > 0 where

a0 = ν(∂Ω × (0, t)) + sup
ε∈(0,ε0)

νε(∂Ω × (0, t)) < ∞.
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By (3.1), (3.3), (3.4) and (3.7), we have

lim sup
ε→0

∣

∣

∣

∣

∫ t

s

∫

∂Ωε

∂Gε

∂Ny

(x, t; y, τ)u(y, τ) dσ(y) dτ −

∫∫

∂Ω×(s,t)

∂G

∂Ny

(x, t; y, τ)dν(y, τ)

∣

∣

∣

∣

≤ Ca0ε
′. (3.8)

Letting ε′ → 0 in (3.8) and the lemma follows.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1: First of all, by letting ε → 0 in (2.1), with the help of

Lemma 3.1, we have for any x ∈ Ω and 0 < τ < t < T ,

u(x, t) =

∫

Ω

G(x, t; y, τ)u(y, τ) dy+

∫∫

∂Ω×(τ,t)

∂G

∂Ny

(x, t; y, s) dν(y, s)

=

∫

Ω

G(x, t; y, 0)u(y, τ) dy+

∫

Ω

(G(x, t;w, τ)−G(x, t;w, 0))u(w, τ) dw

+

∫∫

∂Ω×(τ,t)

∂G

∂Ny

(x, t; y, s) dν(y, s)

=J1 + J2 + J3. (3.9)

By Lemma 2.5, we have

lim
τ→0

J1 =

∫

Ω

G(x, t; y, 0) dµ(y) +

∫

∂Ω

∂G

∂Ny

(x, t; y, 0) dλ(y) . (3.10)

By the monotone convergence theorem, we have

lim
τ→0

J3 =

∫∫

∂Ω×(0,t)

∂G

∂Ny

(x, t; y, s) dν(y, s) . (3.11)
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Finally for any x ∈ Ω, 0 < τ < t
2
< t < T , we have

J2 =

∣

∣

∣

∣

∫

Ω

u(w, τ)

∫ τ

0

Gs(x, t;w, s) ds dw

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

Ωε0

u(w, τ)

∫ τ

0

Gs(x, t;w, s) ds dw

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

Ω\Ωε0

u(w, τ)

∫ 1

0

∫ τ

0

dGs

da
(x, t; z(w) + aδ(w)Nz(w), s) ds da dw

∣

∣

∣

∣

∣

≤Cτ

∫

Ωε0

u(w, τ)δ(w) dw

+

∣

∣

∣

∣

∣

∫

Ω

u(w, τ)δ(w)

∫ 1

0

∫ τ

0

n
∑

j=1

Nj(z(w))
∂Gs

∂yj
(x, t; z(w) + aδ(w)Nz(w), s) ds da dw

∣

∣

∣

∣

∣

≤Cτ

∫

Ω

u(w, τ)δ(w) dw

→0 as τ → 0 (3.12)

where Nz = (N1(z), · · · , Nn(z)) is the unit inner normal on ∂Ω for any z ∈ ∂Ω.

By (3.9), (3.10), (3.11) and (3.12), (1.2) follows.

To prove the converse part of the theorem, given (µ, λ, ν) ∈ M(Ω, δ)×M(∂Ω)×

Ms(∂Ω × (0, T )), let u be given by (1.2) and














v1(x, t) =

∫

Ω

G(x, t; y, 0) dµ(y) +

∫

∂Ω

∂G

∂Ny

(x, t; y, 0) dλ(y) ∀x ∈ Ω, t > 0,

v2(x, t) =

∫∫

∂Ω×(0,t)

∂G

∂Ny

(x, t; y, s) dν(y, s) ∀x ∈ Ω, 0 < t < T

where ∂/∂Ny is the derivative with respect to the unit inner normal Ny at y ∈ ∂Ω.

Then

u(x, t) = v1(x, t) + v2(x, t) ∀(x, t) ∈ QT .

By the results of [H] and standard parabolic theory ([F], [LSU]), v1 ∈ C2,1(Ω ×

(0,∞)) satisfies
{

v1,t =∆v1 in Ω× (0,∞)

v1 =0 on ∂Ω × (0,∞)

and

lim
t→0

∫

Ω

v1η dx =

∫

Ω

η dµ+

∫

∂Ω

∂η

∂N
dλ ∀η ∈ C∞

0 (Ω).

Hence v1 has initial traces (µ, λ) and zero lateral trace. Thus it suffices to prove

that v2 satisfies the heat equation in QT , has initial traces (0, 0) and lateral trace

ν.
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We choose a sequence νj where dνj = ϕj dσ dt, ϕj ∈ C(∂Ω × [0, T ]), such that

lim
j→∞

∫

∂Ω×(0,T1)

h dνj =

∫

∂Ω×(0,T1)

h dν ∀h ∈ C(∂Ω× [0, T1]), 0 < T1 < T.

Let

v2,j(x, t) =

∫∫

∂Ω×(0,t)

∂G

∂Ny

(x, t; y, s)ϕj dσds ∀x ∈ Ω, 0 < t < T, j ∈ Z
+. (3.13)

By standard parabolic theory each v2,j ∈ C2,1(Ω× (0,∞)) is a classical solution of

the heat equation inQT with initial traces (0, 0) and lateral value ϕj. Hence v2,j has

(0, 0, νj) as its trace triple for any j ∈ Z
+. Moreover, for each (x, t) ∈ QT , v2,j(x, t)

converges to v2(x, t) as j → ∞ and for each t ∈ (0, T ), v2,j(·, t) converges to v2(·, t)

in L1(Ω) as j → ∞. Also for each T1 ∈ (0, T ) the sequence {‖v2,j‖L1(QT1
)}

∞
j=1 are

uniformly bounded . Without loss of generality we may assume that v2,j converges

weakly to v2 in each QT1 as j → ∞ for any 0 < T1 < T . Since v2,j satisfies the

heat equation in QT , we have

∫ T

0

∫

Ω

v2,j(ϕt +∆ϕ) dx dt = 0 , ∀ϕ ∈ C∞
c (QT ), j ∈ Z

+

⇒

∫ T

0

∫

Ω

v2(ϕt +∆ϕ) dx dt = 0 , ∀ϕ ∈ C∞
c (QT ) as j → ∞.

Hence v2 is a weak solution of the heat equation. Thus by standard by parabolic

theory [LSU] u is a classical solution of the heat equation in QT .

Next, let ν ′ be the lateral trace of v2. Then by Lemma 2.4 for any h ∈ Cc(∂Ω×

(0, T )), we have

∫∫

∂Ω×(0,T )

h dν ′ =

∫ T

0

∫

Ω

v2
[

h∆δ + 2∇h · ∇δ + δ∆h + δht

]

dx dt (3.14)

where h is a continuous extension of h to Ω× (0, T ) vanishing near t = 0, T , such

that h is constant along each inner normal direction of ∂Ω in (Ω \ Ωε0)× (0, T ).

On the other hand, since the lateral trace of v2,j is νj , by putting u = v2,j and

ν = νj in (2.18) and letting j → ∞, we get for any h ∈ Cc(∂Ω× (0, T )), ν satisfies

(2.18) with u = v2 snd h being a continuous extension of h to Ω× (0, T ) vanishing

near t = 0, T , such that h is constant along each inner normal direction of ∂Ω in

(Ω \ Ωε0)× (0, T ). Hence by (2.18) and (3.14), ν ′ ≡ ν.
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Multiplying the heat equation satisfied by v2,j with some η ∈ C∞
0 (Ω), by inte-

gration by parts, we have

∫

Ω

v2,j(x, t)η(x) dx =

∫ t

0

∫

Ω

v2,j∆η dx ds+

∫ t

0

∫

∂Ω

ϕj

∂η

∂N
dσ dt

⇒

∫

Ω

v2(x, t)η(x) dx =

∫ t

0

∫

Ω

v2∆η dx ds+

∫∫

∂Ω×(0,t)

∂η

∂N
dν as j → ∞

⇒ lim
t→0

∫

Ω

v2(x, t)η(x) dx = 0.

Hence the initial trace of v2 is (0, 0) and the theorem follows.
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[MV2] M. Marcus and L. Véron, The boundary trace of positive solutions of semi-

linear elliptic equations: the subcritical case, Arch. Rat. Mech. Anal. 144

(1998), 201–231.
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