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Reaction-Diffusion Problems on Time-Periodic Domains

Jane Allwright

Abstract

Reaction-diffusion equations are studied on bounded, time-periodic domains with zero Dirichlet boundary
conditions. The long-time behaviour is shown to depend on the principal periodic eigenvalue of a transformed
periodic-parabolic problem. We prove upper and lower bounds on this eigenvalue under a range of different
assumptions on the domain, and apply them to examples. The principal eigenvalue is considered as a
function of the frequency, and results are given regarding its behaviour in the small and large frequency
limits. A monotonicity property with respect to frequency is also proven. A reaction-diffusion problem with
a class of monostable nonlinearity is then studied on a periodic domain, and we prove convergence to either
zero or a unique positive periodic solution.

1 Introduction

In this paper we study reaction-diffusion equations on time-dependent domains Ω(t) ⊂ R
N which are

bounded, connected, and periodic with period T : Ω(t) ≡ Ω(t + T ). Specifically, we consider non-negative
solutions ψ(x, t) to

∂ψ

∂t
= D∇2ψ + f(ψ) for x ∈ Ω(t) (1)

ψ(x, t) = 0 for x ∈ ∂Ω(t) (2)

where f is either linear: f(ψ) = f ′(0)ψ, or a nonlinear, Lipschitz continuous function which satisfies the
following conditions for some K > 0:

f(0) = f(K) = 0, f ′(0) > 0 exists,
f(k)

k
is non-increasing on k > 0. (3)

Note that these assumptions on f imply that f(k) ≤ f ′(0)k for k > 0.
Such reaction-diffusion problems, with ψ ≥ 0, can be used to model population dynamics, chemical

diffusion, and other biological, ecological and physical processes. We are interested in domains whose
boundaries change periodically due to some external influence. In the context of population dynamics, this
could represent a habitat whose boundary moves periodically due to the seasonal variation in temperature,
water level, or snow cover, or due to a periodic cycle of land usage. Population models typically include
Dirichlet, Neumann or Robin boundary conditions. In this study we shall impose zero Dirichlet conditions,
since these lead to the more interesting mathematical results and comparison with the solution on a fixed
domain.

For non-negative solutions to the problem (1), (2) but on a constant bounded domain Ω, the long-time
behaviour depends on λ(Ω), where this is the principal Dirichlet eigenvalue of −∇2 on Ω. If f ′(0) < Dλ(Ω)
then the solution tends to zero as t → ∞. If f ′(0) > Dλ(Ω) then the solution to the linear equation tends
to infinity, and the solution to the nonlinear problem has a nontrivial lower bound. (This is straightforward
to show if we bound the initial conditions above and below by appropriately large and small multiples of

the principal eigenfunction.) For an interval 0 < x < L0 the critical threshold value for f ′(0) is Dπ2

L2
0
, which

leads to the definition of ‘critical length’ as

Lcrit = π

√

D

f ′(0)
. (4)
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Thus, on a fixed interval 0 < x < L0, there is a positive stationary solution to the linear problem if
L0 = Lcrit; otherwise the solution tends to zero or infinity depending whether L0 < Lcrit or L0 > Lcrit

respectively. Such results only apply for constant domains, not for those that vary with time.
There is very little published work addressing similar matters on time-dependent domains; however see

[1] and [2] which consider the linear version of (1), (2) on time-dependent intervals A(t) < x < A(t) +L(t).
The approach in both [1] and [2] is based upon a change of variables onto a fixed domain, followed by other
changes of variables which allow the construction of exact solutions, subsolutions and supersolutions. Here,
similarly, we start in Section 2 by transforming the problem onto a fixed domain. Now, due to the assumed
T -periodicity of the original domain, this converts the problem to a periodic-parabolic equation. Although
periodic-parabolic problems have been studied by several authors, and we make use of results from Castro
and Lazer [4], Hess [5], Peng and Zhao [11], and Liu, Lou, Peng and Zhou [9], none of these have worked
specifically on time-periodic domains or the periodic-parabolic equations that arise from them.

The results of Castro and Lazer [4] show that the long-time behaviour of the solution to our transformed
problem is determined by a principal periodic eigenvalue, µ. It is worth emphasising the importance of [4,
Theorem 1] (the existence and uniqueness of the principal periodic eigenvalue and eigenfunction) for our
problem on a time-periodic domain. The principal periodic eigenvalue µ is an important threshold value, and
its existence distinguishes the study of time-periodic domains from that of general time-dependent domains.
Various results concerning the long-time behaviour of the solution can now be stated in terms of bounds on
this eigenvalue.

In Section 3 we derive upper and lower bounds on the principal periodic eigenvalue µ associated with
a time-periodic domain Ω(t), under a range of different assumptions on Ω(t). These bounds, and their
derivations, give original and useful insight into how problems on time-periodic domains behave. We also
apply these bounds to some illustrative examples, including the interval 0 < x < L(t) with

L(t) = L0(1 + ε sin(ωt)), (5)

with ω > 0 and 0 < ε < 1. In this case (see Example 3), the bounds on µ imply that if

f ′(0) <
Dπ2

L2
0(1− ε2)3/2

, (6)

that is, if

L0 < π

√

D

f ′(0)(1 − ε2)3/2
=

Lcrit

(1− ε2)3/4
, (7)

then the solution to (1), (2) tends to zero. This result holds independently of the frequency ω > 0. Results
from Section 4 also imply that if we have the opposite inequality,

L0 >
Lcrit

(1 − ε2)3/4
, (8)

then there exist ω > 0 such that the solution (to the linear version of (1), (2)) tends to infinity.
Such results demonstrate that the ‘critical length’ has a more intricate role for time-dependent domains

than for constant domains. This is also shown in [2], where the author studies the problem on an interval
0 < x < L(t) of general time-dependent length L(t). Even if L(t) < Lcrit for all t, the solution may or may
not converge to zero. In [2], conditions on L(t) are derived that guarantee each outcome. In particular, if

L(t) = Lcrit(1− ε(t+ 1)−k) (9)

with 0 < ε < 1 and 0 < k ≤ 1, then ψ(x, t) → 0 uniformly in x as t → ∞; however if k > 1 then there is a

non-trivial lower bound: ψ(x, t) ≥ B sin
(

πx
L(t)

)

for some B > 0.

Here, the case (5) is just one example that we consider; we also study more general time-periodic intervals
A(t) < x < A(t) + L(t). Moreover, several of our results are valid for time-periodic domains Ω(t) in R

N .
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In Section 4 we consider µ as a function of the frequency ω = 2π
T and prove results concerning the small

and large frequency limits, as well as a monotonicity property. The first step is to convert our principal
eigenvalue problem into a 1-periodic problem; it then becomes an equation of the form

ω

2π

∂φ

∂s
− Lω(ξ, s)φ = µ(ω)φ(ξ, s) ξ ∈ Ω0, s ∈ [0, 1]. (10)

The operator Lω(ξ, s) is 1-periodic in s, but it has certain terms that depend on, and scale with, ω.
Our proofs of the limit limω→0 µ(ω), and of a monotonicity result, are inspired by methods from [9] but

have to be adapted to our own case. In [9], Liu, Lou, Peng and Zhou study the dependence of a principal
periodic eigenvalue on the frequency, but for a different problem. They consider the principal periodic
eigenvalue λ̂(ω) of

ω

2π

∂φ̂

∂s
− L̂(ξ, s)φ̂ = λ̂(ω)φ̂(ξ, s) ξ ∈ Ω0, s ∈ [0, 1] (11)

where the coefficients of the operator L̂(ξ, s) are 1-periodic in s and do not depend on ω. The result of [9,
Theorem 1.3(i)] is that

lim
ω→0

λ̂(ω) =

∫ 1

0

λ0(s)ds (12)

where for each 0 ≤ s ≤ 1, λ0(s) is the principal Dirichlet eigenvalue of the elliptic operator −L̂(ξ, s) on
Ω0. This result can be extended in a natural way to the operator −Lω(ξ, s), since the ω-dependence is
sufficiently smooth and the uniform ellipticity condition holds independently of ω as ω → 0. Thus, by
adapting the proof of [9, Theorem 1.3(i)], in Theorem 5 we identify limω→0 µ(ω) for a

2π
ω -periodic domain

in any dimension. In Corollary 1 we then show that if µ(ω) is the principal periodic eigenvalue associated
with Ω(t) = Ω̃

(

ωt
2π

)

, where Ω̃(s) is a bounded and 1-periodic domain, then

lim
ω→0

µ(ω) =

∫ 1

0

Dλ(Ω̃(s))ds. (13)

In this formula, for each 0 ≤ s ≤ 1, λ(Ω̃(s)) denotes the principal Dirichlet eigenvalue of −∇2 on Ω̃(s).

Next we consider ω → ∞. The large frequency limit of λ̂(ω) (the principal periodic eigenvalue of Liu,
Lou, Peng and Zhou in [9]) is given in [9, Theorem 1.3(ii)]. By adapting an argument from [10, Theorem

3.10], they prove that limω→∞ λ̂(ω) = λ∞ where λ∞ is the principal eigenvalue of the elliptic operator whose
coefficients are equal to the time-averages of those of −L̂(ξ, s). However, neither this result nor the analysis
of [10] applies in cases such as ours, when some of the coefficients depend on ω and become unbounded as
ω → ∞.

In our case, as we shall see, the behaviour of µ(ω) as ω → ∞ depends on the detail of the problem. We
show that very different types of asymptotic behaviour of µ(ω) are possible as ω → ∞. Indeed, let

L(t) = L0l

(

ωt

2π

)

, A(t) = A0a

(

ωt

2π

)

(14)

where L0 > 0, A0 ≥ 0, ω > 0, and where l(·) and a(·) are 1-periodic functions with l ≥ 1. Let µ(ω) be the
principal periodic eigenvalue associated with the domain (A(t), A(t)+L(t)). We show that if a(·) is constant
then µ(ω) = O(1) as ω → ∞, but if a(·) is non-constant then there exist C1, C2 such that: if A0

L0
< C1 then

µ(ω) = O(1) as ω → ∞, and if A0

L0
> C2 then µ(ω) → ∞ at the rate ω2 as ω → ∞ (see Theorem 6).

In [9, Theorem 1.1], Liu, Lou, Peng and Zhou prove that if their parabolic operator has no advection

term then the principal periodic eigenvalue λ̂(ω) is non-decreasing with respect to ω > 0. In the final part
of Section 4 we similarly show that the principal periodic eigenvalue µ(ω) associated with a periodic domain
Ω(t) ⊂ R

N is also non-decreasing with respect to ω > 0.
We conclude the paper with Section 5, in which we consider the nonlinear problem on a periodic domain

in R
N , with f satisfying (3). Using a result of Hess [5] and methods involving the Poincaré map, we prove

convergence to zero if f ′(0) < µ, or to a unique positive periodic solution if f ′(0) > µ. That is, if f ′(0) > µ

then there is a unique positive solution ψ∗(x, t) to (1), (2) such that ψ∗(x, t) ≡ ψ∗(x, t + T ), and for any
non-negative initial conditions, the solution ψ(x, nT + t) converges uniformly to ψ∗(x, t) as n→ ∞.
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2 Principal periodic eigenvalue µ

Throughout the paper, we shall assume there is a one-to-one mapping h(·, t) : Ω(t) → Ω0 which transforms
Ω(t) into a bounded, connected reference domain Ω0 with sufficiently smooth boundary (at least C2+ε for
some ε > 0), and such that the change of variables ξ = h(x, t) and u(ξ, t) = ψ(x, t) transforms (1), (2) into
a parabolic equation of the form

∂u

∂t
= L(ξ, t)u + f(u) for ξ ∈ Ω0 (15)

u(ξ, t) = 0 for ξ ∈ ∂Ω0, (16)

where

L(ξ, t)u =
∑

i,j

aij(ξ, t)
∂2u

∂ξi∂ξj
+
∑

j

(bj(ξ, t) + cj(ξ, t))
∂u

∂ξj
for ξ ∈ Ω0, (17)

aij(ξ, t) =
∑

k

D

(

∂hi

∂xk

∂hj

∂xk

)

, bj(ξ, t) = −∂hj
∂t

, cj(ξ, t) = D∇2hj . (18)

We assume that the map h is such that aij , bj , cj belong to Cα,α/2(Ω0 × [0, T ]) for some α > 0, and that
aij is uniformly elliptic. For example, if the time-dependent domain is an interval A(t) < x < A(t) + L(t)
where L(t) > 0 and A(t) are C2+α functions for some α > 0, then we can transform onto a fixed reference

domain 0 < ξ < L0 by letting ξ =
(

x−A(t)
L(t)

)

L0. The solution u(ξ, t) = ψ(x, t) then satisfies

∂u

∂t
= D

L2
0

L(t)2
∂2u

∂ξ2
+

(

Ȧ(t)L0 + ξL̇(t)

L(t)

)

∂u

∂ξ
+ f(u) in 0 < ξ < L0 (19)

with u(ξ, t) = 0 at ξ = 0 and ξ = L0.
Since Ω(t) is periodic with period T , the map h and the coefficients of L are also T -periodic in t. By

Theorem 1 of Castro and Lazer [4] there exists a value µ and a function φ(ξ, t) such that

∂φ

∂t
− Lφ = µφ in ξ ∈ Ω0, t ∈ R (20)

φ(ξ, t) = 0 for ξ ∈ ∂Ω0 (21)

φ(ξ, t) > 0 for ξ ∈ Ω0 (22)

φ(ξ, t) ≡ φ(ξ, t+ T ). (23)

This function φ is unique up to scaling [4, Theorem 1], and is called the principal periodic eigenfunction,
while µ is called the principal periodic eigenvalue. Here, we shall say that µ is ‘the principal periodic
eigenvalue of Ω(t)’ to mean that it is the principal periodic eigenvalue of (20), (21), (22), (23), when L is
defined by (17), (18).

The function u(ξ, t) = φ(x, t)e(f
′(0)−µ)t is a solution to the linear reaction-diffusion equation (15), (16)

with f(u) = f ′(0)u. So, if the initial conditions satisfy bφ(ξ, 0) ≤ u(ξ, 0) ≤ aφ(ξ, 0) for some 0 < b ≤ a, then
by the comparison principle the solution to the linear equation satisfies

bφ(ξ, t)e(f
′(0)−µ)t ≤ u(ξ, t) ≤ aφ(ξ, t)e(f

′(0)−µ)t for all t ≥ 0. (24)

The principal periodic eigenvalue is therefore a threshold such that if f ′(0) > µ then u(ξ, t) → ∞ as t→ ∞,
whereas if f ′(0) < µ then u(ξ, t) → 0. See also [3, page 192].
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3 Bounds on µ and examples

In this section we prove some bounds on µ, the principal periodic eigenvalue of a T -periodic domain Ω(t).
First we give a lower bound, which is valid for time-dependent domains in any dimension.

Theorem 1. Let Ω(t) be T -periodic and let µ be the principal periodic eigenvalue of Ω(t). At each fixed time
0 ≤ t ≤ T , let λ(Ω(t)) be the principal eigenvalue of −∇2 on the domain Ω(t) with zero Dirichlet boundary
conditions. Then

µ ≥ 1

T

∫ T

0

Dλ(Ω(t))dt. (25)

Proof. Let ψ be a solution to the problem (1), (2) with f(ψ) = f ′(0)ψ, and define

E(t) =
1

2

∫

Ω(t)

ψ(x, t)2dx. (26)

We differentiate E(t), noting that the additional contribution from the moving boundary ∂Ω(t) vanishes
due to the zero Dirichlet conditions. It follows from (1), (2) that

dE

dt
=

∫

Ω(t)

ψ(D∇2ψ + f ′(0)ψ)dx =

∫

Ω(t)

(−D|∇ψ|2 + f ′(0)ψ2)dx. (27)

Then for each time t, we use Poincaré’s inequality to get

dE

dt
≤ (−Dλ(Ω(t)) + f ′(0))

∫

Ω(t)

ψ2dx = 2 (f ′(0)−Dλ(Ω(t)))E(t). (28)

Therefore, for t ≥ 0

0 ≤ E(t) ≤ E(0) exp

(

2

∫ t

0

(f ′(0)−Dλ(Ω(ζ))) dζ

)

(29)

= E(0) exp

(

2

(

f ′(0)t− t

T

∫ T

0

Dλ(Ω(ζ))dζ

)

+O(1)

)

as t→ ∞ (30)

where in the last line we have used the fact that λ(Ω(t)) is T -periodic. So, if f ′(0)− 1
T

∫ T

0 Dλ(Ω(ζ))dζ < 0

then (30) implies that
∫

Ω(t) ψ(x, t)
2dx → 0 as t → ∞. Therefore, the condition f ′(0) − 1

T

∫ T

0 Dλ(ζ)dζ < 0

must imply that f ′(0) < µ, and so the bound (25) is proved.

Remark 1. If we were instead interested in the principal periodic eigenvalue µV of an operator ∂
∂t −D∇2+

V (x, t) on Ω(t), where V was a continuous function on Ω(t) and periodic in t with the same period as the
domain, then the same proof would show that

µ ≥ 1

T

∫ T

0

(

Dλ(Ω(t)) −max
y

V (y, t)

)

dt.

Example 1. Let Ω(t) = (A(t), A(t) + L(t)) where L(t) > 0 and A(t) are T -periodic. By Theorem 1,

µ ≥ 1

T

∫ T

0

Dπ2

L(t)2
dt. (31)

In particular, if L(t) ≡ l > 0 is constant and A(t) is periodic then we have the lower bound µ ≥ Dπ2

l2 . This

means that whenever the solution on the fixed interval (0, l) tends to zero (i.e. f ′(0) < Dπ2

l2 ), the solution
on a periodic interval (A(t), A(t) + l) also tends to zero (i.e. f ′(0) < µ) for every periodic function A(t).

The next result follows from the comparison principle, and is also valid for time-dependent domains in
any dimension.
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Theorem 2. Let Ω(t) be T -periodic and let µ be the principal periodic eigenvalue of Ω(t). Suppose there
is a domain Ω1 such that Ω1 ⊂ Ω(t) for all t, and let λ(Ω1) be the principal eigenvalue of −∇2 on Ω1 with
zero Dirichlet boundary conditions. Then

µ ≤ Dλ(Ω1). (32)

Proof. Let ψ1 be the solution to (1), (2) with f(u) = f ′(0)u, but on the fixed domain Ω1, and with non-trivial
initial conditions satisfying 0 ≤ ψ1(x, 0) ≤ ψ(x, 0). By the comparison principle, 0 ≤ ψ1(x, t) ≤ ψ(x, t) for
all x ∈ Ω1 and t ≥ 0. If f ′(0) < µ then ψ → 0 as t → ∞, which implies that ψ1 → 0 and so that
f ′(0) < Dλ(Ω1). Therefore we conclude that µ ≤ Dλ(Ω1).

Example 2. Let Ω(t) = (A(t), A(t) + L(t)) for some T -periodic functions L(t) > 0 and A(t) satisfying

max
[0,T ]

A < min
[0,T ]

(A+ L). (33)

The fixed interval Ω1 := (max(A),min(A + L)) is always contained within the domain (A(t), A(t) + L(t)).
By Theorem 2, we get the upper bound

µ ≤ Dπ2

(min(A+ L)−maxA)2
. (34)

In particular, if A(t) ≡ A(0) is constant and L(t) > 0 is periodic, then µ ≤ Dπ2

(minL)2 .

Let us continue to consider to the linear equation on the time-dependent interval A(t) < x < A(t)+L(t)
where L(t) > 0 and A(t) are T -periodic and belong to C2+α([0, T ]) for some α > 0. We shall apply the
same changes of variables that were introduced in [1], [2]. Namely, first we transform onto a fixed reference

domain 0 < ξ < L0 by letting ξ =
(

x−A(t)
L(t)

)

L0. The solution u(ξ, t) = ψ(x, t) then satisfies equation (19)

with f(u) = f ′(0)u, and u(ξ, t) = 0 at ξ = 0 and ξ = L0. Next, we let w(ξ, t) = u(ξ, t)H(ξ, t)e−f ′(0)t where

H(ξ, t) =

(

L(t)

L(0)

)1/2

exp





t
∫

0

Ȧ(ζ)2

4D
dζ +

ξ2L̇(t)L(t)

4DL2
0

+
ξȦ(t)L(t)

2DL0



. (35)

As in [1], [2], we find that w satisfies the problem

∂w

∂t
= D

L2
0

L(t)2
∂2w

∂ξ2
+

(

ξ2L̈(t)L(t)

4DL2
0

+
ξÄ(t)L(t)

2DL0

)

w in 0 < ξ < L0 (36)

w(ξ, t) = 0 at ξ = 0 and ξ = L0. (37)

From [2, Theorem 2.1] we have the following result.

Theorem 3. Let w(ξ, t) ≥ 0 satisfy (36), (37), and assume that C1 sin
(

πξ
L0

)

≤ w(ξ, 0) ≤ C2 sin
(

πξ
L0

)

for

some 0 < C1 ≤ C2. Define

Q(t) = max
0≤η≤1

(

η2L̈(t)L(t)

2
+ ηÄ(t)L(t)

)

, Q(t) = − min
0≤η≤1

(

η2L̈(t)L(t)

2
+ ηÄ(t)L(t)

)

. (38)

Then for every t ≥ 0,

C1 sin

(

πξ

L0

)

e
∫

t
0

(

− Dπ2

L(ζ)2
−

Q(ζ)

2D

)

dζ ≤ w(ξ, t) ≤ C2 sin

(

πξ

L0

)

e
∫

t
0

(

− Dπ2

L(ζ)2
+Q(ζ)

2D

)

dζ
. (39)

Proof. By the definitions of Q(t) and Q(t), and the equation (36) satisfied by w(ξ, t) ≥ 0, we have

−
Q(t)

2D
w(ξ, t) ≤ ∂w

∂t
−D

L2
0

L(t)2
∂2w

∂ξ2
≤ Q(t)

2D
w(ξ, t) in 0 < ξ < L0. (40)

By applying the parabolic comparison principle on [0, L0] × [0, t], we obtain the lower and upper bounds
stated.
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Let µu = µ denote the principal periodic eigenvalue of the operator which acts on u in equation (19),
and let µw denote the principal periodic eigenvalue of the operator which acts on w in equation (36). As in
equation (24) we know that

u(ξ, t) = O(φu(ξ, t)e
(f ′(0)−µu)t), w(ξ, t) = O(φw(ξ, t)e

−µwt) (41)

where φu(ξ, t) and φw(ξ, t) are the principal periodic eigenfunctions associated with µu and µw, and where
we use the notation u1 = O(u2) to mean that u1 = O(u2) and u2 = O(u1). The relationship between µu

and µw is given in the following lemma.

Lemma 1. Let µu = µ denote the principal periodic eigenvalue of the operator which acts on u in equation
(19), and let µw denote the principal periodic eigenvalue of the operator which acts on w in equation (36).
Then

µu = µw +
1

T

∫ T

0

Ȧ(t)2

4D
dt. (42)

Proof. Consider the function H(ξ, t) given by (35), which occurs in the change of variables from u to w.
Since L(t) > 0 and A(t) are both periodic, note that

(

L(t)

L(0)

)1/2

exp

(

ξ2L̇(t)L(t)

4DL2
0

+
ξȦ(t)L(t)

2DL0

)

= O(1) (43)

in the sense that the left-hand side has a finite upper bound a positive lower bound, uniformly in t ≥ 0,
0 ≤ ξ ≤ L0. Therefore from the change of variables and the periodicity of Ȧ(t), we have

u(ξ, t) = O



w(ξ, t)ef
′(0)t exp



−
t
∫

0

Ȧ(ζ)2

4D
dζ







 = O



w(ξ, t) exp



f ′(0)t− t

T

T
∫

0

Ȧ(ζ)2

4D
dζ







 . (44)

The claimed relationship (42) then follows by combining (44) with (41).

We also derive upper and lower bounds on µw and hence, via equation (42), upper and lower bounds on
µu.

Theorem 4. Let µ = µu denote the principal periodic eigenvalue of the operator which acts on u in equation
(19). Let Q(t), Q(t) be given by equation (38). Then

1

T

∫ T

0

(

Dπ2

L(t)2
+
Ȧ(t)2

4D
− Q(t)

2D

)

dt ≤ µ ≤ 1

T

∫ T

0

(

Dπ2

L(t)2
+
Ȧ(t)2

4D
+
Q(t)

2D

)

dt. (45)

Proof. By comparing (41) with (39) it follows that

1

T

∫ T

0

(

Dπ2

L(t)2
− Q(t)

2D

)

dt ≤ µw ≤ 1

T

∫ T

0

(

Dπ2

L(t)2
+
Q(t)

2D

)

dt. (46)

The result then follows immediately by combining this with Lemma 1.

Remark 2. If we were instead interested in the principal periodic eigenvalue µV of an operator ∂
∂t −D∇2+

V (x, t) on Ω(t), where V was a continuous function on Ω(t) and periodic in t with the same period as the
domain, then a similar result could be derived provided that Q(t) and Q(t) were adjusted appropriately to
also include the terms from V .

Example 3. Let L(t) = L0(1 + ε sin(ωt)) with ω > 0, 0 < ε < 1, and consider the domain Ω(t) = (0, L(t))
which has period T = 2π

ω . Let µ = µu be the principal periodic eigenvalue of Ω(t). We shall apply Theorems
1, 2 and 4 to give some bounds on µ. First we must consider

s(t) :=

t
∫

0

L2
0

L(ζ)2
dζ =

t
∫

0

1

(1 + ε sin(ωζ))2
dζ. (47)

7



This integral (47) can be calculated exactly. For −π
ω < t < π

ω ,

s(t) =
2

ω(1− ε2)3/2

(

arctan

(

tan(ωt
2 ) + ε√

1− ε2

)

− arctan

(

ε√
1− ε2

))

− 2ε

ω(1− ε2)

+
2ε2 tan(ωt

2 ) + 2ε

ω(1− ε2)
(

(tan(ωt
2 ) + ε)2 + 1− ε2

) . (48)

For t = ±π
ω ,

s
(

±π
ω

)

=
2

ω(1− ε2)3/2

(

±π
2
− arctan

(

ε√
1− ε2

))

− 2ε

ω(1− ε2)
, (49)

and for t > π
ω we can use the fact that the integrand of s(t) is periodic. Note that at t = 2π

ω ,

s

(

2π

ω

)

=
2π

ω

1

(1− ε2)3/2
. (50)

By the periodicity, it follows that

s(t) =

t
∫

0

L2
0

L(ζ)2
dζ =

t

(1− ε2)3/2
+O(1) as t→ ∞. (51)

Therefore we conclude from Theorems 1 and 2 that

Dπ2

L2
0(1− ε2)3/2

≤ µ ≤ Dπ2

L2
0(1− ε)2

. (52)

This means that, regardless of the frequency ω, the solution to the linear version of (1), (2), will tend to

zero if f ′(0) < Dπ2

L2
0(1−ε2)3/2

, or tend to infinity if f ′(0) > Dπ2

L2
0(1−ε)2

.

To apply Theorem 4, we calculate the 2π
ω -periodic functions Q(t) and Q(t) as defined in (38):

Q(t) =







0 for 0 ≤ t ≤ π
ω

−L
2
0εω

2

2
sin(ωt)(1 + ε sin(ωt)) for π

ω ≤ t ≤ 2π
ω

(53)

Q(t) =







L2
0εω

2

2
sin(ωt)(1 + ε sin(ωt)) for 0 ≤ t ≤ π

ω

0 for π
ω ≤ t ≤ 2π

ω

(54)

and therefore

∫ 2π
ω

0

Q(ζ)

2D
dζ =

L2
0εω

2D

(

1− επ

4

)

and

∫ 2π
ω

0

Q(ζ)

2D
dζ =

L2
0εω

2D

(

1 +
επ

4

)

. (55)

By equation (45) together with (51) we deduce that

Dπ2

L2
0(1− ε2)3/2

− L2
0εω

2

4πD

(

1− επ

4

)

≤ µ ≤ Dπ2

L2
0(1− ε2)3/2

+
L2
0εω

2

4πD

(

1 +
επ

4

)

, (56)

although we note that in this case the lower bound in (52) is better.

Remark 3. Let µ(ω) be the principal periodic eigenvalue of Ω(t) = (0, L(t)) with L(t) as in Example 3 for
some fixed ε ∈ (0, 1). The bounds (56) imply that

µ(ω) =
Dπ2

L2
0(1− ε2)3/2

+O(ω2) =
1

T

T
∫

0

Dπ2

L(t)2
dt+O(ω2) as ω → 0. (57)
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In fact, for any interval of the form A(t) < x < A(t) + L(t) where A(t) = A1

(

ωt
2π

)

and L(t) = L1

(

ωt
2π

)

for
some smooth and 1-periodic functions L1 > 0 and A1, we can use (45) to deduce the limit as ω → 0. Indeed
since Ȧ2, Q and Q (as defined in (38)) are all O(ω2) as ω → 0, we can conclude from (45) that

µ(ω) =

∫ 1

0

Dπ2

L1(s)2
ds+O(ω2) as ω → 0. (58)

In the next section we shall see that the limit limω→0 µ(ω) from (57) and (58) is an instance of a more
general property, which is valid for 2π

ω -periodic domains Ω(t) in any dimension, as ω → 0.

4 Dependence of µ on the frequency ω

4.1 Converting to a 1-periodic problem

In this section we consider the principal periodic eigenvalue µ as a function of the frequency ω = 2π
T . We

consider a 1-periodic domain Ω̃(s) and let µ = µ(ω) be the principal periodic eigenvalue associated with the
domain

Ω(t) = Ω̃

(

ωt

2π

)

. (59)

Note that the map h(·, t) : Ω(t) → Ω0 which we used in the change of variables can now be expressed as
h(·, t) = h̃(·, ωt

2π ), for a 1-periodic map h̃(·, s) : Ω̃(s) → Ω0. If we change variables from t to s = ωt
2π in (15),

(16), then the operator ∂
∂t − L(ξ, t) becomes an operator of the form ω

2π
∂
∂s − Lω(ξ, s) where

Lω(ξ, s) =
∑

i,j

ãij(ξ, s)
∂2u

∂ξi∂ξj
+
∑

j

( ω

2π
b̃j(ξ, s) + c̃j(ξ, s)

) ∂

∂ξj
, (60)

ãij(ξ, s) =
∑

k

D

(

∂h̃i

∂xk

∂h̃j

∂xk

)

, b̃j(ξ, s) = −∂h̃j
∂s

, c̃j(ξ, s) = D∇2h̃j . (61)

So the principal periodic eigenvalue of Ω(t) = Ω̃
(

ωt
2π

)

is the same as the principal periodic eigenvalue µ(ω)
of the problem

ω

2π

∂φ

∂s
− Lω(ξ, s)φ = µ(ω)φ(ξ, s) ξ ∈ Ω0, s ∈ [0, 1] (62)

φ(ξ, s) = 0 ξ ∈ ∂Ω0, s ∈ [0, 1] (63)

φ(ξ, s) ≡ φ(ξ, s+ 1) ξ ∈ Ω0. (64)

For any ω > 0, the coefficients of Lω(ξ, s) are 1-periodic in s. However, the term ω
2π b̃j(ξ, s)

∂
∂ξj

in (60) still

depends on, and scales with, ω. The source of this term is the coefficient involving
∂hj

∂t = ω
2π

∂h̃j

∂s which we

get when we transform the time-dependent domain Ω̃
(

ωt
2π

)

into the fixed reference domain Ω0.
In the paper [9], Liu, Lou, Peng and Zhou consider parabolic equations with periodic coefficients, and

they investigate how the principal periodic eigenvalue varies with respect to the frequency. However, the
coefficients in their equation are independent of the frequency ω except where it appears inside the periodic
functions as ωt. Therefore, after the change of time variables to give an operator with 1-periodic coefficients,
the problems they consider have the form

ω

2π

∂φ̂

∂s
− L̂(ξ, s)φ̂ = λ̂(ω)φ̂(ξ, s) ξ ∈ Ω0, s ∈ [0, 1] (65)

φ̂(ξ, s) = 0 ξ ∈ ∂Ω0, s ∈ [0, 1] (66)

φ̂(ξ, s) ≡ φ̂(ξ, s+ 1) ξ ∈ Ω0, (67)

where the coefficients of the operator L̂(ξ, s) are 1-periodic in s and do not depend on ω. We shall use
methods from [9] in the proofs of Theorem 5 and Theorem 7, but the methods have to be adapted, since
the operator Lω(ξ, s) depends on ω through the ω

2π b̃j(ξ, s)
∂

∂ξj
term.
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4.2 Asymptotic behaviour of µ(ω) as ω → 0

In this section, we consider the limit of µ(ω) as ω → 0. The proof of Theorem 5 is essentially the same as
that used in [9, Theorem 1.3(i)] to prove equation (12), however a slight generalisation is needed to allow
for the ω dependence of the coefficients in −Lω(ξ, s). For completeness, we give the proof here.

Theorem 5. Let Ω0 be a smooth bounded domain, and for each s ∈ [0, 1] and ω ≥ 0 let −Lω(ξ, s) be as
defined in equation (60). Assume the coefficients ãij, b̃j, c̃j belong to C1+α,1+α(Ω0 × [0, 1]) for some α > 0.

For s ∈ [0, 1] and ω ≥ 0, let λ0(s, ω) be the principal eigenvalue of the elliptic operator −Lω(ξ, s) on
Ω0, with zero Dirichlet conditions on ∂Ω0. For ω > 0, let µ(ω) be the principal periodic eigenvalue of (62),
(63), (64). Then

lim
ω→0

µ(ω) =

∫ 1

0

λ0(s, 0)ds. (68)

Proof. For each s ∈ [0, 1] and ω ≥ 0, let λ0(s, ω) and φ0(ξ; s, ω) be the principal eigenvalue and eigen-
function of the elliptic operator −Lω(ξ, s) on Ω0, with zero Dirichlet conditions on ∂Ω0, and normalised to
||φ0(· ; s, ω)||L2(Ω0) = 1. As in [9], note that for any ξ ∈ Ω0 and ω ≥ 0, both φ0(ξ; s, ω) and ∇φ0(ξ; s, ω) are
C1 and 1-periodic in s. We also note here that they, and λ0(s, ω), depend continuously on ω.

For ω > 0, define
φω(ξ, s) = φ0(ξ; s, ω)ρω(s) (69)

where

ρω(s) = exp

(

2π

ω

(

s

∫ 1

0

λ0(τ, ω)dτ −
∫ s

0

λ0(τ, ω)dτ

))

. (70)

Note that ρω > 0, ρω is periodic with period 1, and satisfies

ω

2π

dρω

ds
=

(∫ 1

0

λ0(τ, ω)dτ − λ0(s, ω)

)

ρω(s). (71)

We shall show that given ε > 0, ωε > 0 can be chosen small enough such that

(∫ 1

0

λ0(τ, ω)dτ − ε

)

φω ≤ ω

2π

∂φω
∂s

− Lω(ξ, s)φω ≤
(∫ 1

0

λ0(τ, ω)dτ + ε

)

φω (72)

for all 0 < ω ≤ ωε. Then since φω is positive, 1-periodic in s, and satisfies the Dirichlet boundary conditions
on ∂Ω0, it follows from [11, Proposition 2.1] that

∫ 1

0

λ0(τ, ω)dτ − ε ≤ µ(ω) ≤
∫ 1

0

λ0(τ, ω)dτ + ε for all 0 < ω ≤ ωε, (73)

and so we reach the conclusion

lim
ω→0

(

µ(ω)−
∫ 1

0

λ0(s, ω)ds

)

= 0. (74)

Finally, since λ0(s, ω) depends continuously on ω, (74) implies (68).
It remains to show that ωε > 0 can be chosen such that (72) holds for all 0 < ω ≤ ωε. Using (69), (71),

and the fact that φ0(ξ; s, ω) is an eigenfunction of −Lω(ξ, s) with eigenvalue λ0(s, ω), we calculate

ω

2π

∂φω
∂s

− Lω(ξ, s)φω =
ω

2π

∂φ0(ξ; s, ω)

∂s
ρω +

ω

2π

dρω

ds
φ0(ξ; s, ω) + λ0(s, ω)φ0(ξ; s, ω)ρω (75)

=

(

ω

2π

∂φ0(ξ; s, ω)

∂s
+

∫ 1

0

λ0(τ, ω)dτ φ0(ξ; s, ω)

)

ρω. (76)

Therefore (72) will hold provided that we can choose ωε > 0 such that

ω

2π

∣

∣

∣

∣

∂φ0(ξ; s, ω)

∂s

∣

∣

∣

∣

≤ εφ0(ξ; s, ω) for all ξ ∈ Ω0, s ∈ [0, 1], 0 < ω ≤ ωε. (77)
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Since φ0(ξ; s, ω) is positive in Ω0, we know that
∂φ0

∂s (ξ;s,ω)

φ0(ξ;s,ω) is finite for each ξ in Ω0. For any point ξ0 ∈ ∂Ω0,

with outward normal ν, we may consider a sequence ξ ∈ Ω0, ξ → ξ0 with ξ−ξ0
|ξ−ξ0|

· ν 9 0. Hopf’s Lemma

implies that ∇φ0(ξ0; s, ω) · ν 6= 0, and then by l’Hôpital’s rule, we have

lim
ξ→ξ0

∂φ0

∂s (ξ; s, ω)

φ0(ξ; s, ω)
=

∇∂φ0

∂s (ξ0; s, ω) · ν
∇φ0(ξ0; s, ω) · ν

= O(1). (78)

By continuity, and by the compactness of Ω0 × [0, 1]× [0, 1], we find that
∂φ0

∂s (ξ;s,ω)

φ0(ξ;s,ω) is bounded uniformly

with respect to (ξ0, s, ω) ∈ Ω0 × [0, 1]× [0, 1]. Therefore ωε > 0 can be chosen to satisfy (77).

Corollary 1. Let Ω̃(s) be a smooth bounded domain which varies smoothly and 1-periodically with s, and let
µ(ω) be the principal periodic eigenvalue of Ω(t) = Ω̃

(

ωt
2π

)

. For each 0 ≤ s ≤ 1, let λ(Ω̃(s)) be the principal

Dirichlet eigenvalue of −∇2 on Ω̃(s). Then

lim
ω→0

µ(ω) =

∫ 1

0

Dλ(Ω̃(s))ds. (79)

Proof. For each 0 ≤ s ≤ 1, the change of variables h̃ from Ω̃(s) to Ω0 transforms the operator D∇2 on Ω̃(s)

to
∑

i,j,kD
(

∂h̃i

∂xk

∂h̃j

∂xk

)

∂2

∂ξi∂ξj
+
∑

jD∇2h̃j
∂

∂ξj
on Ω0. By equations (60) and (61), this is precisely L0(ξ, s)

(i.e. Lω(ξ, s) with ω = 0). So we have
Dλ(Ω̃(s)) = λ0(s, 0) (80)

and then (79) is equivalent to (68).

Remark 4. Recall that
∫ 1

0 Dλ(Ω̃(s))ds is also a lower bound for µ(ω) for every ω > 0 (see Theorem 1).

Remark 5. A result corresponding to Corollary 1 would also hold for the principal periodic eigenvalue µV

of an operator ∂
∂t −D∇2 + V (x, t) on Ω(t), where V was a continuous function on Ω(t) and periodic in t

with the same period as the domain. Writing V (x, t) = Ṽ
(

x, ωt
2π

)

, the same proof would show then that

lim
ω→0

µV (ω) =

∫ 1

0

λD,Ṽ (Ω̃(s))ds

where for each s, λD,Ṽ (Ω̃(s)) was the principal Dirichlet eigenvalue of the elliptic operator −D∇2 + Ṽ (x, s)

on Ω̃(s).

4.3 Asymptotic behaviour of µ(ω) as ω → ∞
For one-dimensional time-periodic domains Ω(t) = (A(t), A(t) +L(t)), we shall give conditions under which
µ(ω) does and does not remain bounded as ω → ∞.

Theorem 6. Let l(·) and a(·) be 1-periodic functions, belonging to C2+α([0, 1]) for some α > 0, and with
min[0,1] l = 1, max[0,1] |a| = 1. For some L0 > 0, A0 ≥ 0, ω > 0, let

L(t) = L0l

(

ωt

2π

)

, A(t) = A0a

(

ωt

2π

)

, (81)

and let µ(ω) = µu(ω) be the principal periodic eigenvalue associated with Ω(t) = (A(t), A(t) + L(t)). Then
µ(ω) = O(ω2) as ω → ∞, and if a(·) is constant, then µ(ω) = O(1) as ω → ∞. Moreover, if a(·) is
non-constant, there exist constants C1, C2 depending only on the functions l and a such that

1. If A0

L0
< C1 then µ(ω) = O(1) as ω → ∞.

2. If A0

L0
> C2 then µ(ω) = O(ω2) as ω → ∞.
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As before, the notation µ(ω) = O(ω2) is used to mean that µ(ω) is ‘exactly of order’ ω2 in the sense that
µ(ω) = O(ω2) and ω2 = O(µ(ω)) as ω → ∞.

Proof. If maxs∈[0,1](A0a(s)) < mins∈[0,1](A0a(s) + L0l(s)) then by Theorems 1 and 2, we have lower and
upper bounds on µ(ω) which are independent of ω > 0:

Dπ2

L2
0

∫ 1

0

1

l(s)2
ds ≤ µ(ω) ≤ Dπ2

(min[0,1](A0a+ L0l)−max[0,1](A0a))2
. (82)

So, µ(ω) = O(1) as ω → ∞ as long as max[0,1](A0a) < min[0,1](A0a+ L0l). If a(·) is constant then this will
be satisfied because, by assumption, min[0,1](L0l) > 0. If a(·) is non-constant, then a sufficient condition is
that

A0

L0
<

min l

max a−min a
. (83)

Next, in order to prove the other claimed properties, we shall consider the bounds (45) that were proved in
Theorem 4. Define non-negative constants c1, c2, c3, c4, c5, c6 in terms of the functions l and a as follows:

c1 =

∫ 1

0

1

l(s)2
ds, c2 =

∫ 1

0

a′(s)2ds, c3 =

∫ 1

0

l(s)[a′′(s)]+ds,

c4 =

∫ 1

0

l(s)[l′′(s)]+ds, c5 =

∫ 1

0

l(s)[a′′(s)]−ds, c6 =

∫ 1

0

l(s)[l′′(s)]−ds. (84)

Then note that
1

T

∫ T

0

Dπ2

L(t)2
dt =

Dπ2

L2
0

c1, (85)

1

T

∫ T

0

Ȧ(t)2

4D
dt =

( ω

2π

)2 A2
0

4D
c2, (86)

0 ≤ 1

T

∫ T

0

Q(t)

2D
dt ≤

( ω

2π

)2
(

A0L0

2D
c3 +

L2
0

4D
c4

)

, (87)

0 ≤ 1

T

∫ T

0

Q(t)

2D
dt ≤

( ω

2π

)2
(

A0L0

2D
c5 +

L2
0

4D
c6

)

. (88)

Therefore Theorem 4 implies that

Dπ2

L2
0

c1+
( ω

2π

)2
(

A2
0

4D
c2 −

A0L0

2D
c3 −

L2
0

4D
c4

)

≤ µ(ω) ≤ Dπ2

L2
0

c1+
( ω

2π

)2
(

A2
0

4D
c2 +

A0L0

2D
c5 +

L2
0

4D
c6

)

, (89)

which proves that µ(ω) = O(ω2) as ω → ∞, for any A0, L0. Moreover, if
A2

0

4 c2 −
A0L0

2 c3 − L2
0

4 c4 > 0 then

µ(ω) = O(ω2) as ω → ∞. If a(·) is non-constant then c2 6= 0 and so this inequality will hold for A0

L0
large

enough (depending on c2, c3, c4).

In the following example we give these estimates explicitly.

Example 4. Let L0 > 0 be constant and A(t) = A0 sin(ωt) for some ω > 0, A0 > 0. Consider the 2π
ω -

periodic domain Ω(t) = (A(t), A(t) +L0) and let µ(ω) = µu(ω) be the principal periodic eigenvalue on Ω(t).
By Theorems 1 and 2 we conclude that

Dπ2

L2
0

≤ µ(ω) for every ω > 0, (90)

and if 2A0 < L0, µ(ω) ≤ Dπ2

(L0 − 2A0)2
for every ω > 0. (91)
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To apply the bounds from Theorem 4, calculate

t
∫

0

Ȧ(ζ)2

4D
dζ =

A2
0ω

2

4D

(

t

2
+

sin(2ωt)

4ω

)

. (92)

Also calculate the 2π
ω -periodic functions Q(t) and Q(t) as defined in (38):

Q(t) =

{

0 for 0 ≤ t ≤ π
ω

−A0L0ω
2 sin(ωt) for π

ω ≤ t ≤ 2π
ω ,

(93)

Q(t) =

{

A0L0ω
2 sin(ωt) for 0 ≤ t ≤ π

ω

0 for π
ω ≤ t ≤ 2π

ω ,
(94)

and so
∫ 2π

ω

0

Q(ζ)

2D
dζ =

∫ 2π
ω

0

Q(ζ)

2D
dζ =

A0L0ω

D
. (95)

By Theorem 4 we deduce that

Dπ2

L2
0

+
A2

0ω
2

8D
− A0L0ω

2

2πD
≤ µ(ω) ≤ Dπ2

L2
0

+
A2

0ω
2

8D
+
A0L0ω

2

2πD
. (96)

In agreement with Corollary 1 and Theorem 6, the bounds (90), (91) and (96) show that:

µ =
Dπ2

L2
0

+O(ω2) as ω → 0. (97)

µ(ω) = O(ω2) as ω → ∞. (98)

If
A0

L0
<

1

2
then µ(ω) = O(1) as ω → ∞. (99)

If
A0

L0
>

4

π
then µ(ω) = O(ω2) as ω → ∞. (100)

It would be interesting to investigate the ω → ∞ limit in the intermediate parameter range L0

2 ≤ A0 ≤ 4L0

π .

4.4 Monotonicity of µ(ω) with respect to ω > 0

In this section, we prove first that the principal periodic eigenvalue associated with a T -periodic domain
Ω(t) ⊂ R

N is the same as the eigenvalue associated with the domain Ω(−t). We use this together with
Lemma 2.1 and Theorem 1.1 from [9] to show that, for ω > 0, the principal periodic eigenvalue µ(ω)
associated with the domain Ω̃

(

ωt
2π

)

is monotonic non-decreasing with respect to ω.

Lemma 2. Let Ω(t) be a T -periodic domain. Let µ+ be the principal periodic eigenvalue associated with
Ω(t), and let µ− be the principal periodic eigenvalue associated with Ω−(t) := Ω(−t). Then µ+ = µ−.

Proof. The eigenvalues µ+, µ− are principal periodic eigenvalues of problems of the form (20), (21), (22),
(23) on Ω0, with operators L+ and L− coming from the changes of variables. In terms of the original
co-ordinates, this means that there exist positive functions ψ+(x, t) on Ω(t) and ψ−(x, t) on Ω−(t), which
are T -periodic in t, and which satisfy

∂ψ+

∂t
= D∇2ψ+ + µ+ψ+ for x ∈ Ω(t) (101)

ψ+(x, t) = 0 for x ∈ ∂Ω(t) (102)
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∂ψ−

∂t
= D∇2ψ− + µ−ψ− for x ∈ Ω−(t) (103)

ψ−(x, t) = 0 for x ∈ ∂Ω−(t). (104)

Let ψ(x, t) = ψ−(x,−t) for x ∈ Ω−(−t) = Ω(t). Then ψ(x, t) is positive on Ω(t) and T -periodic in t, and
satisfies

−∂ψ
∂t

= D∇2ψ + µ−ψ for x ∈ Ω(t) (105)

ψ(x, t) = 0 for x ∈ ∂Ω(t). (106)

If I(t) =
∫

Ω(t)
ψ+(x, t)ψ(x, t)dx then, using the zero Dirichlet boundary conditions on ∂Ω(t), we have

dI

dt
=

∫

Ω(t)

(

∂ψ+

∂t
ψ +

∂ψ

∂t
ψ+

)

dx. (107)

Using equations (101) and (105), and integrating by parts, this becomes

dI

dt
= (µ+ − µ−)I(t). (108)

Therefore I(t) = I(0)e(µ+−µ−)t, but since I(t) is periodic it must be that µ+ − µ− = 0.

Remark 6. The proof of Lemma 2 not only shows that µ+ = µ− but also that I(t) ≡ I(0). That is, the
integral

∫

Ω(t) ψ+(x, t)ψ−(x,−t)dx is independent of t.

By rescaling time to s = ωt
2π , we can now extend some ideas of Liu, Lou, Peng and Zhou in [9] to prove

a monotonicity result with respect to the frequency ω.

Theorem 7. Let Ω̃(s) be a 1-periodic domain, and ω > 0. Let µ(ω) be the principal periodic eigenvalue

associated with Ω(t) = Ω̃
(

ωt
2π

)

. Then µ(ω) is monotonic non-decreasing: dµ(ω)
dω ≥ 0. Moreover dµ(ω)

dω = 0 if
and only if the domain is independent of time.

Proof. Changing variables to s = ωt
2π , the eigenfunctions ψ+(x, t) and ψ(x, t) from Lemma 2 now become

functions φω(x, s) and φω(x, s) which are positive on x ∈ Ω̃(s) and are 1-periodic in s. By Lemma 2 they
satisfy

ω

2π

∂φω

∂s
= D∇2φω + µ(ω)φω for x ∈ Ω̃(s) (109)

− ω

2π

∂φω
∂s

= D∇2φω + µ(ω)φω for x ∈ Ω̃(s) (110)

φω(x, s) = φω(x, s) = 0 for x ∈ ∂Ω̃(s). (111)

Without loss of generality we may normalise them so that

∫ 1

0

∫

Ω̃(s)

φω(x, s)
2dxds =

∫ 1

0

∫

Ω̃(s)

φω(x, s)φω(x, s)dxds = 1. (112)

Now, we follow the same steps as in [9, Theorem 1.1]. Namely we take equation (109) and differentiate it

with respect to ω. Writing φ′ω for ∂φω

∂ω and µ′(ω) for dµ(ω)
dω , this becomes

1

2π

∂φω

∂s
+

ω

2π

∂φ′ω
∂s

= D∇2φ′ω + µ(ω)φ′ω + µ(ω)φω for x ∈ Ω̃(s). (113)

Multiply this by φω and integrate over x ∈ Ω̃(s) and s ∈ [0, 1]. Using the boundary conditions (111), the
equation (110), and the normalisation, this leads to

1

2π

∫ 1

0

∫

Ω̃(s)

∂φω

∂s
φω dxds = µ′(ω). (114)
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Next, we define a functional

Jω(ζ) =

∫ 1

0

∫

Ω̃(s)

φω(x, s)φω(x, s)

(

ω
2π

∂ζ
∂s −D∇2ζ

ζ(x, s)

)

dxds (115)

for functions ζ(x, s) which are C2 in x ∈ Ω̃(s) and C1 on Ω̃(s), and which are C1 and 1-periodic in s ∈ [0, 1],
and which are positive for x ∈ Ω̃(s), with ζ(x, s) = 0 and ∇ζ · ν 6= 0 for x ∈ ∂Ω̃(s) (see [9]). Then it is
straightforward to check using (109) and (110) that equation (114) can be written as

µ′(ω) =
1

2π

∫ 1

0

∫

Ω̃(s)

∂φω

∂s
φωdxds =

1

2ω

(

Jω(φω)− Jω(φω)
)

. (116)

To prove the required result we must therefore show that Jω(φω) − Jω(φω) ≥ 0. But this can be proved
exactly as in the proof of Lemma 2.1 from [9]. Indeed, although our definition of Jω now includes a time-
dependent domain Ω̃(s), one can check that each step of the proof of [9, Lemma 2.1, case 2 (b=1)] (i.e. the
case of Dirichlet boundary conditions) goes through exactly as in [9]. This shows that, for all functions ζ of
the class defined above,

Jω(φω)− Jω(ζ) =

∫ 1

0

∫

Ω̃(s)

Dφω(x, s)φω(x, s)

∣

∣

∣

∣

∇
(

log
ζ

φω

)∣

∣

∣

∣

2

dxds, (117)

and the right hand side is clearly non-negative. In particular, Jω(φω) − Jω(φω) ≥ 0. This proves that
µ′(ω) ≥ 0. Moreover, µ′(ω) = 0 if and only if Jω(φω)− Jω(φω) = 0, and by equation (117) this holds if and

only if φω

φω
is a function just of s. Substituting φω(x, s) = β(s)φω(x, s) into (110) and using (109) gives

β′(s)φω + 2β(s)
∂φω

∂s
= 0. (118)

Since φω = 0 on ∂Ω̃(s) and β(s) > 0, this implies that also the (possibly one-sided) derivative ∂φω

∂s is zero

at each point x on ∂Ω̃(s). As φω > 0 on the interior and is zero with non-zero normal derivative on the
boundary, we deduce that in fact the boundary ∂Ω̃(s) must remain the same for all times s: the domain
is time-independent. Conversely, for all such time-independent domains, we have β = 1 and µ does not
depend on ω. Thus µ′(ω) = 0 if and only if the domain is independent of time.

Remark 7. It is possible to use the same proof to extend Lemma 2 to operators of the form ∂
∂t −D∇2+V (t)

on Ω(t), where V (t) (independent of x) is a continuous and periodic function with the same period as the
domain, and satisfies the extra condition that V (t) ≡ V (−t). For operators of this form, the monotonicity
result of Theorem 7 then also follows as above. However, the monotonicity results may not carry over to
more general forms of the operator.

5 Nonlinear equation on a periodic domain

In this section, we consider the nonlinear periodic parabolic problem (15), (16) where f is assumed to
satisfy the conditions (3). As above, let µ and φ(ξ, t) be the principal periodic eigenvalue and eigenfunction
satisfying (20), (21), (22), (23), and normalised so that ||φ||∞ = 1. Now the solution to the linear equation
is a supersolution to the nonlinear problem, so if f ′(0) < µ then u→ 0 as t→ ∞.

From now on, assume f ′(0) > µ. Fix any α ∈ (0, f ′(0)− µ). Then since f(u) = f ′(0)u + o(u) as u → 0
there exists ε > 0 (depending on α) such that for all 0 ≤ u ≤ ε,

(α− f ′(0) + µ)u+ (f ′(0)u− f(u)) ≤ 0. (119)

Now, for any δ such that 0 < δ ≤ εe−αT , the function û(ξ, t) = δφ(ξ, t)eαt is a subsolution for u for
0 ≤ t ≤ T :

∂û

∂t
− Lû− f(û) = αû + µû− f(û) (120)

= (α− f ′(0) + µ)û+ (f ′(0)û− f(û)) ≤ 0 (121)
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since û(ξ, t) ≤ ε for 0 ≤ t ≤ T . The function û also satisfies û(ξ, t) = 0 on ∂Ω0, and û(ξ, 0) ≤ û(ξ, T ),
and so it is a subsolution to the periodic problem (15), (16) in the sense of Hess [5, chapter III Definition
21.1]. Moreover the constant K is a supersolution. By applying [5, Theorem 22.3, chapter III], there exists
a stable periodic solution u∗(ξ, t) to

∂u∗

∂t
= Lu∗ + f(u∗) in ξ ∈ Ω0, t ∈ R (122)

u∗(ξ, t) = 0 for ξ ∈ ∂Ω0 (123)

u∗(ξ, t) ≡ u∗(ξ, t+ T ) (124)

such that
εφ(ξ, t)eα(t−T ) ≤ u∗(ξ, t) ≤ K for 0 ≤ t ≤ T, ξ ∈ Ω0. (125)

In the remainder of this section, we shall prove that the periodic solution u∗ is unique and that for any initial
conditions 0 ≤ u(ξ, 0) ≤ K not identically zero, the solution u(ξ, t) to the problem (15), (16) converges to
u∗.

Remark 8. It is straightforward to derive a lower bound on u(ξ, t) which shows that u(ξ, t) cannot converge
to zero. By the strong maximum principle and Hopf’s lemma, we can assume without loss of generality that
there exists 0 < δ ≤ εe−αT such that δφ(ξ, 0) ≤ u(ξ, 0) (since this will hold for every time t0 > 0). Then,
since δφ(ξ, t)eαt is a subsolution on 0 ≤ t ≤ T ,

δφ(ξ, t′)eαt
′ ≤ u(ξ, t′) for all 0 ≤ t′ ≤ T. (126)

Then as a consequence of the T -periodicity of φ, δφ(ξ, 0) ≤ δφ(ξ, 0)eαT ≤ u(ξ, T ) and we can conclude that

δφ(ξ, t′)eαt
′ ≤ u(ξ, t′ + nT ) for all 0 ≤ t′ ≤ T, n ∈ N. (127)

Therefore
lim inf
t→∞

u(ξ, t) ≥ δ min
0≤t′≤T

(φ(ξ, t′)eαt
′

). (128)

To prove the convergence to u∗, we shall use the Poincaré map PT . For each τ > 0 define Pτ to be the
map Pτ (u0) = u(·, τ) where u is the solution to the problem (15), (16) with initial conditions u(·, 0) = u0(·).
Since the coefficients are periodic, this is the same as the map taking u(·, nT ) to u(·, nT + τ) for any n ∈ N.
The Poincaré map is PT , which takes the solution at time nT to the solution at time (n + 1)T . If u∗ is a
T -periodic solution (satisfying (122), (123), (124)), then u∗(·, 0) is a fixed point of the Poincaré map PT .

We shall use the following two properties of Pτ .

Lemma 3. Monotonicity of Pτ .
For any τ > 0, the map Pτ is monotonic: if u0 ≤ v0 then Pτ (u0) ≤ Pτ (v0). Moreover, either u0 ≡ v0 or else
there is strict inequality Pτ (u0) < Pτ (v0) in Ω0 and the normal derivatives satisfy ∂

∂νPτ (u0) 6= ∂
∂νPτ (v0) on

∂Ω0.

Proof. This is a consequence of the parabolic comparison principle, strong maximum principle, and Hopf’s
Lemma.

Lemma 4. Sublinearity of Pτ .
Let f satisfy (3). Then for any τ > 0, the map Pτ is sublinear, in the following sense. Let 0 ≤ α ≤ 1, and
let u0 > 0 on Ω0, with u0 = 0 and ∂u0

∂ν 6= 0 on ∂Ω0. Then

αPτ (u0) ≤ Pτ (αu0). (129)

Proof. If α = 0 or 1 then it is obvious, so assume 0 < α < 1. Let u(ξ, t) be the solution to (15), (16) with
initial conditions u(ξ, 0) = u0(ξ) and v(ξ, t) the solution with initial conditions v(ξ, 0) = αu0(ξ). We need
to show that αu(ξ, t) ≤ v(ξ, t) for all t ≥ 0.
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By the assumption that f(k)
k is non-increasing, we have f(αu0) ≥ αf(u0). For ε > 0 small, define

fε(k) = f(k)− εk2, so that fε(k)
k is strictly decreasing in k > 0, and

fε(αu0)− αfε(u0) ≥ εα(1− α)u20 > 0 in Ω0. (130)

Let vε, uε be the corresponding solutions to the problem with f replaced by fε:

∂uε

∂t
= Luε + fε(uε),

∂vε

∂t
= Lvε + fε(vε). (131)

We shall show that αuε(ξ, t) ≤ vε(ξ, t) for every t ≥ 0. Then by taking ε → 0 we conclude that the same
inequality holds for the solutions v, u with the original reaction function f .

At t = 0 we have vε(·, 0)− αuε(·, 0) = 0 and

∂

∂t
(vε − αuε)|t=0 = L(αu0) + fε(αu0)− αL(u0)− αfε(u0) = fε(αu0)− αfε(u0) ≥ εα(1 − α)u20. (132)

Therefore, there exists t0 > 0 such that 0 ≤ vε(ξ, t) − αuε(ξ, t) for 0 ≤ t ≤ t0. If t0 can be taken as large
as we like, then we are done. Otherwise, let t∗ be the maximal such that αuε(ξ, t) ≤ vε(ξ, t) for 0 ≤ t ≤ t∗.
Let ṽε be the solution on t ≥ t∗ with ṽε(ξ, t

∗) = αuε(ξ, t
∗). Then by applying the same argument as above,

to the function ṽε at time t∗, we deduce that there exists t1 > 0 such that αuε ≤ ṽε for t∗ ≤ t ≤ t∗ + t1.
Since ṽε ≤ vε, this contradicts the maximality of t∗. Therefore, we do have αuε(ξ, t) ≤ vε(ξ, t) for all t ≥ 0,
as required.

Theorem 8. Uniqueness of periodic solution (given ordering).
Suppose f ′(0) > µ, and suppose that U(ξ, t), U(ξ, t) are both positive, T -periodic solutions to the problem
(122), (123), (124) with 0 ≤ U(ξ, 0) ≤ U(ξ, 0) for all ξ ∈ Ω0. Then U(ξ, t) ≡ U(ξ, t).

Proof. By the strong maximum principle and Hopf’s lemma, 0 < U(ξ, 0) ≤ U(ξ, 0) for all ξ ∈ Ω0, and U and
U have non-zero normal derivatives on ∂Ω0. Therefore for r > 0 small enough we have rU(ξ, 0) ≤ U(ξ, 0)
for all ξ ∈ Ω0. On the other hand this does not hold for any r > 1. Let

r̂ = sup{r ∈ (0, 1) : rU(ξ, 0) ≤ U(ξ, 0) for all ξ ∈ Ω0}. (133)

Then we know that
r̂U(ξ, 0) ≤ U(ξ, 0) for all ξ ∈ Ω0 (134)

and (by maximality of r̂) there exists some

ξ0 ∈ Ω0 such that r̂U(ξ0, 0) = U(ξ0, 0) or ξ0 ∈ ∂Ω0 such that r̂
∂U

∂ν
(ξ0, 0) =

∂U

∂ν
(ξ0, 0). (135)

Now apply the Poincaré map, PT . By the monotonicity (Lemma 3) we have

PT (r̂U(·, 0)) ≤ PT (U(·, 0)) (136)

with either r̂U ≡ U or else strict inequality

PT (r̂U(·, 0)) < PT (U(·, 0)) on Ω0 (137)

and
∂

∂ν
PT (r̂U(·, 0)) 6= ∂

∂ν
PT (U(·, 0)) on ∂Ω0. (138)

Combining this with the sublinearity property (Lemma 4) and the fact that U and U are fixed points of PT ,
we find that

r̂U(·, 0) = r̂PT (U(·, 0)) ≤ PT (r̂U(·, 0)) ≤ PT (U(·, 0)) = U(·, 0) (139)
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and that either r̂U ≡ U or else equations (137) and (138) hold. Incorporating these strict inequalities into
equation (139) would contradict the existence of ξ0 as in equation (135). Therefore, in fact

r̂U ≡ U on Ω0 × [0, T ]. (140)

This shows that U and r̂U are both solutions to (122), (123), (124), and hence r̂f(U) ≡ f(r̂U). By the

assumption that f(k)
k is non-increasing on k > 0, this implies that either r̂ = 1 or else f(U) ≡ f ′(0)U . But

we know that U does not satisfy the linear equation because that would contradict the fact that f ′(0) > µ.
Therefore, it must be that r̂ = 1 and U ≡ U .

Now we are able to prove convergence to u∗(ξ, t) (the positive T -periodic solution to (122), (123), (124)
whose existence is guaranteed by [5, Theorem 22.3, chapter III]).

Theorem 9. Assume that f satisfies (3) and f ′(0) > µ, and let u∗(ξ, t) be a positive T -periodic solution to
(122), (123), (124). Given non-negative, not identically zero initial conditions 0 ≤ u(ξ, 0) ≤ K, let u(ξ, t)
be the solution to the nonlinear problem (15), (16), and for n ∈ N define un(ξ, t) = u(ξ, nT + t). Then as
n→ ∞, un converges in C2,1(Ω0 × [0, T ]) to u∗(ξ, t). In particular, u∗ is unique.

Proof. Without loss of generality (since it will hold for every time t0 > 0 by the strong maximum principle
and Hopf’s Lemma) we can assume that the initial conditions are such that

δu∗(ξ, 0) ≤ u(ξ, 0) ≤ Bu∗(ξ, 0) (141)

for some 0 < δ ≤ 1 and B ≥ 1. Let u(ξ, t) and u(ξ, t) be the solutions to (15), (16) with initial conditions
u(ξ, 0) = δu∗(ξ, 0) and u(ξ, 0) = Bu∗(ξ, 0). By the comparison principle,

u(·, t) ≤ u(·, t) ≤ u(·, t) and u(·, t) ≤ u∗(·, t) ≤ u(·, t) for all t ≥ 0. (142)

For n ∈ N define un(ξ, t) = u(ξ, nT + t); also define un(ξ, t) = u(ξ, nT + t) and un(ξ, t) = u(ξ, nT + t). Then
we have

un(·, t) ≤ un(·, t) ≤ un(·, t) and un(·, t) ≤ u∗(·, t) ≤ un(·, t) (143)

for all 0 ≤ t ≤ T , n ∈ N.
Using the fact that u∗(·, 0) is a fixed point of the Poincaré map PT , together with the sublinearity of PT

(Lemma 4), we get that for all ξ ∈ Ω0,

u(ξ, 0) = δu∗(ξ, 0) = δPT (u
∗(ξ, 0)) ≤ PT (δu

∗(ξ, 0)) = PT (u(ξ, 0)) = u(ξ, T ) (144)

and

u(ξ, 0) = Bu∗(ξ, 0) = BPT (u
∗(ξ, 0)) = BPT

(

1

B
Bu∗(ξ, 0)

)

≥ PT (Bu
∗(ξ, 0)) = PT (u(ξ, 0)) = u(ξ, T ).

(145)

Therefore, u(ξ, 0) ≤ u(ξ, T ) and u(ξ, T ) ≤ u(ξ, 0). Apply PT again and use the monotonicity property
(Lemma 3) and the ordering (142), to deduce that

u(ξ, nT ) ≤ u(ξ, (n+ 1)T ) ≤ u∗(ξ, 0) ≤ u(ξ, (n+ 1)T ) ≤ u(ξ, nT ) (146)

for all ξ ∈ Ω0, n ∈ N. Therefore, pointwise limits v(ξ) ≤ v(ξ) exist such that v(ξ) ≤ u∗(ξ, 0) ≤ v(ξ) and

u(ξ, nT ) → v(ξ), u(ξ, nT ) → v(ξ) as n→ ∞. (147)

Using parabolic estimates from [8, Lemma 7.20 and Theorem 7.30] and [7, chapter IV, Theorem 10.1]
and embeddings from [6, Theorem 3.14(3)], we deduce that there is a subsequence unk

which converges in

C2,1(Ω0 × [0, T ]) to a solution U(ξ, t) of the nonlinear parabolic problem (15), (16). By equating this to the
pointwise limit at times 0 and T , we have that U(ξ, 0) = U(ξ, T ) = v(ξ). Likewise, there is a subsequence unr

of un which converges in C2,1(Ω0 × [0, T ]) to a solution U(ξ, t) of (15), (16), with U(ξ, 0) = U(ξ, T ) = v(ξ).
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Now U(ξ, 0) = v(ξ) ≤ u∗(ξ, 0) ≤ v(ξ) = U(ξ, 0) and so by the comparison principle, U(ξ, t) ≤ u∗(ξ, t) ≤
U(ξ, t) for all t ≥ 0. Therefore U and U satisfy the conditions of Theorem 8, and we conclude that

U ≡ U ≡ u∗. (148)

Since the limit is uniquely identified, this implies that actually the whole sequences un and un converge to
u∗ as n→ ∞ and the convergence is in C2,1(Ω0 × [0, T ]). But since un satisfies (143), it must also converge
uniformly to u∗ as n→ ∞, and by the same argument as above the convergence is in C2,1(Ω0 × [0, T ]).

The convergence of u(ξ, nT + t) to a unique positive T -periodic solution u∗(ξ, t) on Ω0 × [0, T ] can now
be interpreted in terms of the original problem for ψ(x, t) on the T -periodic domain Ω(t). The function
u∗(ξ, t) for ξ ∈ Ω0 corresponds to a positive solution ψ∗(x, t) to (1), (2) such that ψ∗(x, t) ≡ ψ∗(x, t + T )
for all x ∈ Ω(t), t ∈ R. Theorem 9 means that ψ(x, nT + t) converges uniformly to ψ∗(x, t) as n→ ∞.
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