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MILNOR FIBRE HOMOLOGY COMPLEXES

GUS LEHRER AND YANG ZHANG

Dedicated to Claudio Procesi, good friend, Italian mathematician

Abstract. Let W be a finite Coxeter group. We give an algebraic presentation of what
we refer to as “the non-crossing algebra”, which is associated to the hyperplane complement
of W and to the cohomology of its Milnor fibre. This is used to produce simpler and more
general chain (and cochain) complexes which compute the integral homology and cohomology

groups of the Milnor fibre F of W . In the process we define a new, larger algebra Ã, which
seems to be “dual” to the Fomin-Kirillov algebra, and in low ranks is linearly isomorphic

to it. There is also a mysterious connection between Ã and the Orlik-Solomon algebra, in
analogy with the fact that the Fomin-Kirillov algebra contains the coinvariant algebra of W .
This analysis is applied to compute the multiplicities 〈ρ,Hk(F,C)〉W and 〈ρ,Hk(M,C)〉W ,
where M and F are respectively the hyperplane complement and Milnor fibre associated to
W and ρ is a representation of W .

This work is an outgrowth of [Zha22], whose notation we follow, by and large. In particular,
W is a finite Coxeter group,M is its corresponding complexified hyperplane complement and
F is the corresponding (non-reduced) Milnor fibre, as defined in [DL16, Def. 1] or [Zha22].
Our objective is to construct tractable chain complexes which compute the homology of M
(which is known for all W ) and that of F (which is poorly understood, even in the case
W = Symn). Our approach will indicate a connection with the algebra of Fomin-Kirillov
[FK99].
In the first two sections, we recall two distinct definitions of the central character in our

development, the “non-crossing algebra” A, and prove their equivalence. This provides us
with many properties of the algebra A. In addition, we discuss a number of preliminaries we
shall require later. We then introduce a duality theory, by defining a non-degenerate bilinear
form on A, and this is applied to study the integral cohomology of F .
Our main purpose here is to show how the algebra A and its relatives play a crucial role

in determining the cohomolgy of the Milnor fibre F . For example, we give several results
similar to the following (see Corollary 4.19 below). Let ω =

∑
t∈T at ∈ A; then ω2 = 0 in A,

and we prove that both left and right multiplication by ω on A have the same kernel and
image. Moreover we have the following isomorphism of graded abelian groups:

(0.1) H∗(F/W ;Z)[−1] ∼=
Aω ∩ ωA

ωAω
,

where [−1] on the left means that the Z-grading is shifted by −1. This result could be
compared with those in [DPSS99], whose ultimate purpose is to compute the left side of
the equation (0.1). In principle, the stated result reduces the question to a mechanical
computation in A, although in practice, this is not an easy computation.
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2 GUS LEHRER AND YANG ZHANG

1. Definitions, notation and preliminaries.

1.1. The noncrossing partition lattice. Let (W,S) be a finite Coxeter system of rank n
with a geometric representation on the Euclidean space V := Rn, and let T =

⋃
w∈W wSw−1

be the set of reflections of W . Denote by ℓT (w) the number of reflections in a shortest
expression for w as a product of reflections, and define a partial order ≤ on W by stipulating
that u ≤ v if and only if ℓT (v) = ℓT (u) + ℓT (u

−1v) for u, v ∈ W . Then (W,≤) is a graded
poset whose unique minimal element is the identity e and whose maximal elements are those
having no fixed points in Rn, sometimes known as elliptic elements.
Let γ be any Coxeter element, i.e., product of all the simple reflections in some order.

Definition 1.1. Denote by L the closed interval L := [e, γ] of the poset (W,≤).

Brady and Watt proved that the closed interval L is a lattice, which we call the noncrossing
partition (NCP) lattice [BW08]. The isomorphism type of the NCP lattice is independent of
γ, as all Coxeter elements form a conjugacy class in W . Although all Coxeter elements of W
are conjugate in W , we now define a specific Coxeter element in terms of the root system,
which has properties we shall find useful later.
Associated with W we have a set Φ of vectors in V , which form a root system (cf. [Bou02,

Ch. VI, §1]), and S determines a simple subsystem of Φ, as well as the corresponding set
Φ+ of positive roots. Write Π = {αi | i ∈ [n]} for the given simple system. Without loss
of generality, we may assume that W is irreducible. Then Π can be written as the disjoint
union Π = Π1 ∪ Π2, where Π1 = {αi1 , . . . , αil} and Π2 = {αil+1, . . . , αin} where the αik ∈ Π1

are mutually orthogonal as also are the αik ∈ Π2 (see [Ste59]).
The set of positive roots of Φ is in bijection with the set of reflections of W . Recall

that W acts faithfully on the Euclidean space V := Rn whose inner product we denote by
(−,−). For any positive root α relative to Π, the corresponding reflection is defined by

tα(x) := x− 2 (α,x)
(α,α)

α for any x ∈ Rn. Throughout, we use the following Coxeter element

γ = (
∏

α∈Π1

tα)(
∏

α∈Π2

tα),

unless otherwise stated. Note that the simple reflections tα and tβ commute whenever α, β ∈
Π1 or α, β ∈ Π2.
Now we define a total order on the set of positive roots. Let h be the Coxeter number, i.e.

the order of γ. Then the number of positive roots is nh/2. It is proved in [Ste59, Theorem
6.3] that the positive roots ρk of Φ relative to Π can be produced successively using the
following formulae

(1.1) ρk =





αik , 1 ≤ k ≤ l,

−γ(αik), l + 1 ≤ k ≤ n,

γ(ρk−n), n+ 1 ≤ k ≤ nh
2
.

This yields a total order � on the set T of reflections

(1.2) tρ1 ≺ tρ2 ≺ · · · ≺ tρnh/2
.

The total order � on T gives rise to an EL-labelling (see [ABW07]) of L. Denote by E(L)
the set of covering relations u ⋖ v of L, that is, relations where there is no third element
between u and v. Then we have a natural edge labelling

λ : E(L) → T, u⋖ v 7→ u−1v.
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Let c : x = w0 < w1 < · · · < wk = y be a maximal chain of any closed interval [x, y] of L. We
may identify c with its labelling sequence λ(c) := (w−1

0 w1, . . . , w
−1
k−1wk), where w

−1
i−1wi ∈ T

for 1 ≤ i ≤ k. It has been proved that λ is an EL-labelling [ABW07, Bjö80], which means
that for every interval [x, y] of L

(1) there is a unique increasing maximal chain in [x, y], and
(2) this chain is lexicographically smallest among all maximal chains in [x, y].

As L has an EL-labelling, it is Cohen-Macaulay [Bjö80, Theorem 2.3], i.e. for any u < v of
L we have

H̃i(u, v) = 0, ∀i 6= ℓT (v)− ℓT (u)− 2,

where H̃ denotes reduced homology of the order complex of (u, v).
IfW is a finite Coxeter group, then L is a direct product of the NCP lattices L(Wi) over the

irreducible components Wi of W . It is a result of [Bjö80] that the EL-labelling is preserved
under the direct product. Moreover, any closed interval [e, w] of L has an EL-labelling given
by the natural labelling λ restricted to [e, w].
For any w ∈ L, denote

RexT (w) := {(t1, t2, . . . , tk) |w = t1t2 . . . tk is T -reduced}.

With respect to the total order (1.2) on T , we define

(1.3) Dw := {(t1, . . . tk) ∈ RexT (w) | t1 ≻ t2 ≻ · · · ≻ tk}.

In words, Dw is the set of decreasing labelling sequences for the maximal chains e < t1 <
t1t2 < · · · < t1t2 . . . tk = w of [e, w]. Note that any interval [u, v] of L is isomorphic to
[e, u−1v] as posets. The following result can be found in [Zha22, Proposition 2.2].

Proposition 1.2. For any w ∈ L with 1 ≤ ℓT (w) = k ≤ n, we have

rank H̃k−2(e, w) = (−1)kµ(w) = |Dw|,

where µ is the Möbius function of L.

Any interval [e, w] of L has the following important interpretation, due to Bessis [Bes03,
Lemma 1.4.3] (see also [Arm09, Proposition 2.6.11]).

Proposition 1.3. Let γ ∈ W be a Coxeter element and NC(W, γ) the noncrossing parti-
tion lattice relative to γ. For any w ≤ γ, the interval [e, w] of NC(W, γ) is isomorphic to
NC(W ′, w) for some parabolic subgroup W ′ of W .

1.2. The algebra A. We now give an algebraic definition of the noncrossing algebra in
terms of generators and relations.

Definition 1.4. Let L := [e, γ] be the noncrossing partition lattice associated to a finite
Coxeter group W and a Coxeter element γ ∈ W . We define the noncrossing algebra A =
A(W, γ) to be the graded algebra over Z generated by homogeneous elements at, t ∈ T of
degree 1, subject to the following quadratic relations:

(1) a2t = at1at2 = 0 for any t ∈ T and t1, t2 ∈ T with t1t2 6≤ γ;
(2)

∑
(t1,t2)∈RexT (w) at1at2 = 0 for any w ∈ L with ℓT (w) = 2.

Different choices of the Coxeter element produce isomorphic noncrossing algebras, as the
Coxeter elements are all conjugate to each other and the absolute length is invariant under
the conjugation. More precisely, if γ′ = wγw−1 for some w ∈ W , the map at 7→ awtw−1

extends to an algebra isomorphism between A(W, γ) and A(W, γ′).
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Example 1.5. (Dihedral group) Let I2(m) be the diheral group defined by

I2(m) := 〈s1, s2 | s
2
1 = s22 = (s2s1)

m = 1〉, m ≥ 3.

Let γ = s1s2 be a Coxeter element and let ti = s1(s2s1)
i−1 be reflections for 1 ≤ i ≤ m. Then

γ = t1tm = t2t1 = · · · = tmtm−1 has m reduced reflection factorisations. The noncrossing
algebra A(I2(m), γ) is generated by ati , 1 ≤ i ≤ m subject to the following relations

at1ati = 0, 1 ≤ i ≤ m− 1,

atiatj = 0, 2 ≤ i ≤ m, 1 ≤ j 6= i− 1 ≤ m,

at1atm + at2at1 + · · ·+ atmatm−1 = 0.

Because it is relevant for the proof of Proposition 2.5, we set out how the above construc-
tions apply to this case. Note first that, using the relation γtiγ

−1 = ti+2, where the index is
taken modulo m, the construction (1.2) leads to the following ordering on the reflections ti:

t1(= s1) ≺ t2 ≺ · · · ≺ tm(= s2).

It follows, taking into account the reduced reflection factorisations of γ given above, that the
unique increasing factorisation is γ = t1tm = s1s2, and all other factorisations are decreasing.

Example 1.6. (Type An) Let W = Symn+1 be the symmetric group generated by the
elementary transpositions (i, i + 1), 1 ≤ i ≤ n. Let γ = (1, 2, . . . , n + 1) be a Coxeter
element. We write aij := a(i,j). Then A(W, γ) of type A is the graded Z-algebra generated
by aij , 1 ≤ i < j ≤ n + 1 subject to the following relations:

a2ij = 0, 1 ≤ i < j ≤ n+ 1,

aikajl = 0, 1 ≤ i < j < k < l ≤ n+ 1,

aijaik = ajkaij = aikajk = 0, 1 ≤ i < j < k ≤ n + 1,

aijakl + aklaij = ailajk + ajkail = 0, 1 ≤ i < j < k < l ≤ n+ 1,

aijajk + ajkaik + aikaij = 0, 1 ≤ i < j < k ≤ n + 1.

1.3. The algebra B. We next give what later will turn out to be a combinatorial definition
of the noncrossing algebra above, as introduced in [Zha22].
For each k = 0, . . . , n, let Lk := {w ∈ L | ℓT (w) = k}. Denote by Ck−1(w) the abelian

group which is freely spanned by all sequences of RexT (w). Let Bk denote the k-string braid
group, with standard generators σi, 1 ≤ i ≤ k − 1 subject to the relations σiσj = σjσi for
|i−j| ≥ 2, and σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ k−2. The Hurwitz action of Bk on Ck−1(w)
is defined by

σi.(t1, . . . , ti−1, ti, ti+1, . . . , tk) := (t1, . . . , ti−1, ti+1, t
ti+1

i , . . . , tk), 1 ≤ i ≤ k − 1.

Let Symk be the symmetric group on k letters with standard generators si = (i, i+1), 1 ≤
i ≤ k − 1. There is a set-theoretic lift map:

ϕ : Symk → Bk, π = si1 . . . sip 7→ π := σi1 . . . σip,

where π = si1 . . . sip ∈ Symk is a reduced expression in the standard generators. This is
independent of the choice of reduced expression of π. For any t = (t1, t2, . . . , tk) ∈ RexT (w),
we define the following Z-linear map using the above Hurwitz action:

β : Ck−1(w) → Ck−1(w), t 7→ βt :=
∑

π∈Symk

sgn(π) π.(t1, t2, . . . , tk),
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where sgn is the usual sign character of Symk. The element βt is viewed as an alternating
sum of maximal chains of the interval (e, w], with each sequence (t1, t2, . . . , tk) in the sum
identified with the following chain

t1 < t1t2 < · · · < t1t2 . . . tk = w.

Definition 1.7. For each w ∈ Lk, we define Bw to be the abelian group spanned by the
elements βt of RexT (w), that is,

Bw := Im β =
∑

t∈RexT (w)

Zβt ⊆ Ck−1(w).

In particular Be := Z. Further, we write B :=
⊕

w∈L Bw.

We point out a close connection between B and the homology of L. For any w ∈ Lk, let
H̃k−2(e, w) be the top reduced homology group of the open interval (e, w). Define Ck−1 to be
the abelian group freely spanned by the basis

⋃
w∈Lk

RexT (w). Then Ck−1 =
⊕

w∈Lk
Ck−1(w).

Define the linear truncation dk−1 by

(1.4) dk−1 : Ck−1 → Ck−2, (t1, t2, . . . , tk−1, tk) 7→ (t1, t2, . . . , tk−1), k ≥ 2,

and d0(t) = 1, ∀t ∈ T . We will write d = dk whenever no confusion arises. As Bw ⊆ Ck−1(w),
we may restrict d to Bw and define

zt := d(βt), ∀t ∈ RexT (w).

Proposition 1.8. [Zha22, Proposition 3.5] Let w ∈ Lk with k ≥ 1. Then for any t ∈
RexT (w), we have

zt =

k∑

i=1

(−1)k−iβ
t(̂i) ∈ H̃k−2(e, w),

where t(̂i) := (t1, . . . , t̂i, . . . , tk) is obtained by removing the i-th entry of t.

Theorem 1.9. [Zha22, Theorem 4.5] For any w ∈ L, let Bw and Dw be as defined in
Definition 1.7 and (1.3), respectively.

(1) The elements βt, t ∈ Dw constitute a Z-basis for Bw;

(2) The elements zt, t ∈ Dw are a Z-basis for H̃k−2(e, w), where k = ℓT (w) ≥ 1;
(3) The Z-linear map

d : Bw → H̃k−2(e, w), βt 7→ zt, t ∈ RexT (w)

is an isomorphism of free abelian groups.

We now define a multiplicative structure which makes B into a finite dimensional algebra.
For any βt ∈ Bw and βt, t ∈ T , define

βtβt :=

{
β(t,t), if wt ≤ γ and ℓT (wt) > ℓT (w),

0, otherwise,

where (t, t) denotes the concatenation of t and t. Clearly, we have βt = βt1βt2 . . . βtk for
any T -reduced expression w = t1t2 . . . tk ∈ L. Therefore, B is a finite-dimensional Z-graded
algebra generated by homogeneous elements βt, t ∈ T of degree 1.

Proposition 1.10. [Zha22, Proposition 5.6] We have the following quadratic relations in B:

(1) β2
t = βt1βt2 = 0 for all t ∈ T and t1, t2 ∈ T with t1t2 6≤ γ.
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(2) For any w ∈ L2, we have
∑

(t1,t2)∈RexT (w)

βt1βt2 = 0.

2. An isomorphism between A and B

2.1. The isomorphism. The main theorem of this section is the following.

Theorem 2.1. Let W be a finite Coxeter group and let T be the set of reflections of W . The
assignment at 7→ βt for all t ∈ T extends to a graded algebra isomorphism A ∼= B.

The remainder of this section is devoted to proving Theorem 2.1.
We begin with a sketch of the proof. By Proposition 1.10, the assignment at 7→ βt preserves

the quadratic relations ofA. Since B is a finite-dimensional algebra generated by βt, we obtain
a surjective algebra homomorphism

(2.1) φ : A → B, at 7→ βt, t ∈ T

from A to B. To see that this is indeed an isomorphism, we will prove that A is finite-
dimensional and then show that rankA = rankB. It will follow that A and B are isomorphic.
To show A is finite dimensional, it is crucial to find necessary and sufficient conditions to

ensure that at1at2 . . . atk = 0. We need the following key lemma.

Lemma 2.2. (Vanishing property) Let ti ∈ T for 1 ≤ i ≤ k.

(1) We have at1at2 . . . atk = 0 if t1t2 . . . tk is not T -reduced.
(2) Let t1t2 . . . tk be a T -reduced expression. Then

at1at2 . . . atk = 0, if t1t2 . . . tk 6≤ γ.

The proof of this lemma is postponed to Section 2.2.

Lemma 2.3. The element at1at2 . . . atk 6= 0 if and only if t1t2 . . . tk is T -reduced and t1t2 . . . tk ≤
γ.

Proof. The “only if” part is evident from Lemma 2.2. For the “if” part, note that

φ(at1at2 . . . atk) = βt1βt2 . . . βtk = βt,

where t = (t1, . . . , tk) is the labelling sequence of the chain e < t1 < t1t2 < · · · < t1t2 . . . tk of
L. By our construction βt 6= 0 and hence at1at2 . . . atk 6= 0. �

Recall that the algebra A has a natural Z-grading with deg(at) = 1 for any t ∈ T . Let Ak

denote the k-th graded component of A. For any w ∈ Lk, let Aw be the abelian subgroup of
Ak given by

Aw := SpanZ{at := at1at2 . . . atk | t ∈ RexT (w)}

By convention we set Ae := Z.

Lemma 2.4. Maintain the notation above. We have:

(1) Ak = 0 for k > n = ℓT (γ).
(2) Ak =

⊕
w∈Lk

Aw for 0 ≤ k ≤ n = ℓT (γ).

Proof. As the maximal rank of the poset (W,≤) is n, any expression t1 . . . tk with k > n is not
T -reduced. It follows from Lemma 2.3 that Ak = 0 for k > n and Ak =

∑
w∈Lk

Aw for 0 ≤
k ≤ n. The surjective homomorphism (2.1) satisfies φ(Aw) = Bw and hence φ(

∑
w∈Lk

Aw) =⊕
w∈Lk

Bw. Therefore, the sum Ak =
∑

w∈Lk
Aw is a direct sum. �
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Proposition 2.5. For any w ∈ L, let Dw be as in (1.3). Then the elements at, t ∈ Dw form
a Z-basis for Aw.

Proof. Since φ(at) = βt, the set {at | t ∈ Dw} is Z-linearly independent by Theorem 1.9. By
Proposition 1.3, without loss of generality, we may assume w = γ. It remains to show that
every element of Aγ is a Z-linear combination of the decreasing elements at, t ∈ Dγ.
We use induction on ℓT (γ) = n. If n = 1, then there is nothing to prove. By part (2)

of Lemma 2.4 we have An−1 =
∑

w∈Ln−1
Aw. For n > 1, we may by induction assume that

any at1at2 . . . atn−1 ∈ An−1 can be expressed as a Z-linear combination of the elements at for
t ∈

⋃
w∈Ln−1

Dw.

Consider the following filtration of An = Aγ. Recall that T is totally ordered as in (1.2).
For each reflection tρi ∈ T , define to be Vρi be the abelian subgroup of Aγ spanned by the
elements at1 . . . atn−1atρi for all (t1, . . . , tn−1) ∈ RexT (γtρi). Then we have a filtration

0 ⊆ Vρ1 ⊆ · · · ⊆
s∑

i=1

Vρi ⊆ · · · ⊆

hn/2∑

i=1

Vρi = Aγ.

We use induction on s to show that for each s with 1 ≤ s ≤ hn
2
,
∑s

i=1 Vρi is spanned by
the elements at, t ∈ Dγ. If s = 1, then by the minimality of tρ1 in T and the induction
hypothesis on n, any element in Vρ1 can be written as a Z-linear combination of decreasing
elements at1 . . . atn−1atρ1 for all (t1, . . . , tn−1, tρ1) ∈ Dγ.
Now assume s > 1. For any a ∈ Vρs, by the induction hypothesis on n there exist λt ∈ Z

such that

a =
∑

t∈Dγtρs

λtatatρs =
∑

t∈D≻

γtρs

λtatatρs +
∑

t∈D≺

γtρs

λtatatρs ,

where
D≻
γtρs

= {(t1, . . . tn−1) ∈ Dγtρs | tn−1 ≻ tρs},

D≺
γtρs

= {(t1, . . . tn−1) ∈ Dγtρs | tn−1 ≺ tρs}.

Note that atatρs is a decreasing element for any t ∈ D≻
γtρs

. We claim that

(2.2) atatρs ∈ Vρ1 + Vρ2 + · · ·+ Vρs−1, ∀t ∈ D≺
γtρs

.

Given (2.2), by the induction hypothesis on s, any element a ∈ Vρs is a Z-linear combination of
decreasing elements at, t ∈ Dγ . Therefore,

∑s
i=1 Vρi is spanned by the elements at, t ∈ Dγ for

any positive integer s. In particular, Aγ =
∑hn/2

i=1 Vρi is spanned by the decreasing elements
at, t ∈ Dγ.
It remains to prove (2.2). Take any t = (t1, . . . , tn−2, tn−1) ∈ D≺

γtρs
with tn−1 ≺ tρs . Let

u = tn−1tρs . Then there exists a poset isomorphism between [e, u] and [t1 . . . tn−2, γ] which
sends x ∈ [e, u] to t1 . . . tn−2x ∈ [t1 . . . tn−2, γ]. In particular, this isomorphism preserves the
EL-labelling.
By Proposition 1.3, the interval [e, u] is the noncrossing partition lattice of a dihedral group

I2(m) for some integer m ≥ 2. Let tτ1 ≺ tτ2 ≺ · · · ≺ tτm be the reflections of [e, u] with the
total order inherited from (1.2). By the discussion in Example 1.5 the unique increasing
maximal chain of [e, u] is labelled by (tn−1, tρs) and we have tτ1 = tn−1 and tτm = tρs. The
other maximal chains in [e, u] are all decreasing. Further, using the defining relation of A,
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we have

(2.3) atn−1atρs = atτ1atτm = −
∑

tτi≻tτj

atτiatτj ,

where the sum is over all decreasing labelling sequences of maximal chains in [e, u]. For any
pair tτi ≻ tτj we have

(2.4) tτj � tτm−1 � tρs−1 ≺ tρs = tτm .

Combining (2.3) and (2.4), we obtain

atatρs = at1 . . . atn−2(atn−1atρs ) = −
∑

tτi≻tτj

at1 . . . atn−2atτiatτj ∈
s−1∑

i=1

Vρi.

The statement (2.2) follows, and the proof of Proposition 2.5 is complete. �

The following is an immediate consequence of Lemma 2.4 and Proposition 2.5.

Corollary 2.6. The set {at | t ∈
⋃
w∈LDw, t decreasing} is a (Z)-basis of A.

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. The map φ : A → B defined by φ(at) = βt extends to a surjective
algebra homomorphism. By Corollary 2.6 the algebra A has a basis consisting of decreasing
elements at with t ∈

⋃
w∈LDw. It follows from Theorem 1.9 that φ is injective and hence A

is isomorphic to B. �

Proposition 2.7. The algebra A enjoys the following properties.

(1) Let L and L′ be two noncrossing partition lattices. Then as free abelian groups,

A(L × L′) ∼= A(L)⊗A(L′).

(2) Let Lw = [e, w] be a closed interval in L. Then the inclusion i : Lw →֒ L of posets
induces an injective homomorphism iA : A(Lw) → A(L) of algebras. In particular,

A(Lw)u = A(L)u, ∀u ≤ w.

Proof. For part (a), let T and T ′ be the set of reflections of L and L′ respectively. The algebra
A(L × L′) is generated by at, t ∈ T ∪ T ′. By the defining relation we have atat′ = −at′at
for any t ∈ T and t′ ∈ T ′. We have two natural embeddings i1 : A(L) → A(L × L′) and
i2 : A(L′) → A(L× L′), inducing the algebra isomorphism

f : A(L)⊗A(L′) → A(L× L′),

such that f(at⊗at′) = i1(at)i2(at′) and i1(at)i2(at′) = −i2(at′)i1(at) for any t ∈ T and t′ ∈ T .
We turn to the proof of part (b). The set Tw of reflections in Lw inherits the total

order from the totally ordered set T of reflections in L. Since Lw ⊂ L, the induced map
iA : A(Lw) → A(L) defined by at → at, t ∈ Tw preserves the defining relations and hence is
an algebraic homomorphism. Moreover, the induced map iA preserves the decreasing basis
elements and thus iA is injective. �

2.2. The vanishing lemma. In this subsection we prove the vanishing property stated in
Lemma 2.2.
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2.2.1. T -reduced expressions and root systems. Consider the following two sets:

(2.5)
T1 : = {(t1, t2, . . . , tk) | k ∈ N and t1t2 . . . tk is not T -reduced},

T2 : = {(t1, t2, . . . , tk) | k ∈ N and t1t2 . . . tk is T -reduced and t1t2 . . . tk 6≤ γ}.

Then Lemma 2.2 can be restated as:

(2.6) at = 0, for any t ∈ T1 ∪ T2.

To prove this, we need a geometric characterisation for T1 ∪ T2 in terms of the root system.
Let ̺ : W → GL(V ) be the geometric representation of W with V = Rn. Denote by Φ+

the set of positive roots of W , as determined by S (see the remarks preceding (1.1)). Define

Fix(w) := Ker (̺(w)− Id) ⊆ V

to be the vector subspace fixed by w ∈ W . By [Car72, Lemma 2], we have

(2.7) ℓT (w) = codimFix(w) = n− dimFix(w), ∀w ∈ W.

Since the Coxeter element γ fixes no vector in V , the linear map γ−1 is an automorphism
of V . We define the linear map

ϑ := (γ − 1)−1 : V → V.

This map satisfies the following properties which come from the proof of [Car72, Lemma 2];
see also [BW08, Corollary 4.2].

Lemma 2.8. Let ρ ∈ Φ+ be a positive root and let ϑ be as defined above.

(1) (ϑ(ρ), ρ) = −1
2
(ρ, ρ);

(2) ϑ(ρ) ∈ Fix(tργ).

Proof. We have (γ − 1)(ϑ(ρ)) = ρ, which implies that γ(ϑ(ρ)) = ϑ(ρ) + ρ. Since Coxeter
group action preserves the inner product of V , we have (γ(ϑ(ρ)), γ(ϑ(ρ))) = (ϑ(ρ), ϑ(ρ)) and
hence (ϑ(ρ), ρ) = −1

2
(ρ, ρ). It follows that tρ(ϑ(ρ)) = ϑ(ρ) + ρ and hence γ(ϑ(ρ)) = tρ(ϑ(ρ)).

This leads to ϑ(ρ) ∈ Fix(tργ). �

The following lemma characterises the reduced T -expressions.

Lemma 2.9. [Car72, Lemma 3] Let ρ1, ρ2, . . . , ρk ∈ Φ+. Then the expression tρ1tρ2 . . . tρk is
T -reduced if and only if ρ1, ρ2, . . . , ρk are linearly independent.

This follows directly from the fact that for w ∈ W , ℓT (w) = dim(Im(w − 1)) (cf. [HL99,
(1.2)]). The following lemma characterises the T -reduced expressions of elements occurring
in the lattice L.

Lemma 2.10. [BW08, Lemma 4.8] Let tρ1tρ2 . . . tρk be a T -reduced expression. Then the
following are equivalent:

(1) tρ1tρ2 . . . tρk ≤ γ;
(2) (ϑ(ρi), ρj) = 0 whenever 1 ≤ i < j ≤ k.
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2.2.2. Proof of the vanishing lemma. To prove the equivalent statement (2.6) of Lemma 2.2,
we need a description of the set T1 ∪ T2 in terms of positive roots.

Proposition 2.11. Let ρ1, ρ2, . . . , ρk ∈ Φ+, and let T1 and T2 be as in (2.5). Then we have
(tρ1 , tρ2, . . . , tρk) ∈ T1 ∪ T2 if and only if there exists a pair i < j such that (ϑ(ρi), ρj) 6= 0.

Proof. Let t = (tρ1 , tρ2 , . . . , tρk) ∈ T1 ∪ T2 and assume for contradiction that we have
(ϑ(ρi), ρj) = 0 for any 1 ≤ i < j ≤ k. Since the matrix ((ϑ(ρi), ρj))k×k is non-singular
by part (1) of Lemma 2.8, the positive roots ρi, 1 ≤ i ≤ k are linearly independent. It
follows from Lemma 2.9 that tρ1tρ2 . . . tρk is T -reduced and hence t /∈ T1, which implies that
t ∈ T2. However, if tρ1tρ2 . . . tρk is T -reduced and (ϑ(ρi), ρj) = 0 for any 1 ≤ i < j ≤ k,
then by Lemma 2.10 we have tρ1tρ2 . . . tρk ≤ γ, which implies that t /∈ T2. This contradicts
t ∈ T1 ∪ T2. This proves the ”only if” part.
For the converse, assume that there exist i < j such that (ϑ(ρi), ρj) 6= 0. If tρ1tρ2 . . . tρk is

not T -reduced, then (tρ1 , tρ2, . . . tρk) ∈ T1. Otherwise, by Lemma 2.10 tρ1tρ2 . . . tρk 6� γ, and
hence (tρ1 , tρ2, . . . tρk) ∈ T2. This completes the proof. �

We now make the following definition.

Definition 2.12. A sequence of positive roots (ρ1, ρ2, . . . , ρk) is called a vanishing sequence
if the inner product (ϑ(ρi), ρj) = 0 for all 1 ≤ i < j ≤ k except that (ϑ(ρ1), ρk) 6= 0.

With this definition, we can refine Proposition 2.11 as follows.

Proposition 2.13. Let ρ1, ρ2, . . . , ρk ∈ Φ+. Then t = (tρ1 , tρ2 , . . . tρk) ∈ T1 ∪ T2 if and only
if there exists a pair i < j such that (ρi, ρi+1 . . . , ρj) is a vanishing sequence.

Proof. By Proposition 2.11, we may choose a pair i < j for which j − i is minimal such that
(ϑ(ρi), ρj) 6= 0. It follows from the minimality of j−i that (ϑ(ρs), ρt) = 0 for all i ≤ s < t ≤ j
except for s = i, t = j. Therefore, (ρi, ρi+1, . . . , ρj) is a vanishing sequence. �

Note that for any ρ ∈ Φ+, the sequence (ρ, ρ) is a vanishing sequence as the inner prod-
uct (ϑ(ρ), ρ) 6= 0 by part (1) of Lemma 2.8. If tρ1tρ2 is T -reduced and tρ1tρ2 6≤ γ, then
by Lemma 2.10 the inner product (ϑ(ρ1), ρ2) 6= 0 and therefore the sequence (ρ1, ρ2) is a
vanishing sequence. It follows from the defining relations of A that atρ1atρ2 = a2tρ = 0.

In general, we will prove that atρ1 . . . atρk = 0 for any vanishing sequence (ρ1, ρ2, . . . , ρk).
Before proving this, we need the following observations.

Lemma 2.14. Let (ρ1, ρ2, . . . , ρk) be a vanishing sequence with k > 2. Then

(1) tρ1tρ2 · · · tρk−1
≤ γ and tρ2tρ3 · · · tρk ≤ γ are both T -reduced;

(2) tρitρj ≤ γ is T -reduced for all i < j except that i = 1, j = k;
(3) Let w = tρ1tρ2 ≤ γ and let Φ+(w) = {τ1, τ2, . . . , τm} be the set of all positive roots for

which tτi ≤ w. Then (τi, ρ3, . . . , ρk) is a vanishing sequence for any τi 6= ρ2.

Proof. The matrix ((ϑ(ρi), ρj))(k−1)×(k−1) with 1 ≤ i, j ≤ k − 1 is lower triangular with
nonzero diagonal entries, thereby ρi, 1 ≤ i ≤ k − 1 are linearly independent. It follows
from Lemma 2.9 and Lemma 2.10 that tρ1tρ2 · · · tρk−1

is T -reduced and tρ1tρ2 · · · tρk−1
≤ γ.

Similarly, one can prove that tρ2tρ3 · · · tρk ≤ γ. This completes the proof of part (1), from
which part (2) follows.
For part (3), let V1 = Fix(w) ⊆ V and let V ⊥

1 be the orthogonal subspace such that
V = V1⊕V

⊥
1 . Then by (2.7) dimV1 = n−2 and dimV ⊥

1 = 2. Since w fixes every vector in V1,
so is any expression tτitτj of w. Therefore, those positive roots τi ∈ Φ+(w) are in V ⊥

1 . Since
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tρ1tρ2 is T -reduced, it follows from Lemma 2.9 that ρ1, ρ2 ∈ V ⊥
1 are linearly independent and

hence make up a basis for V ⊥
1 .

For any τi ∈ Φ+(w) ⊆ V ⊥
1 we have τi = λ1ρ1 + λ2ρ2 for some λ1, λ2 ∈ R. Note that λ1 = 0

if and only if τi = ρ2. Then we have

(ϑ(τi), ρj) = λ1(ϑ(ρ1), ρj) + λ2(ϑ(ρ2), ρj) = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1,

((ϑ(τi), ρk)) = λ1(ϑ(ρ1), ρk) + λ2(ϑ(ρ2), ρk) = λ1(ϑ(ρ1), ρk).

Since (ϑ(ρ1), ρk) 6= 0, we have ((ϑ(τi), ρk)) 6= 0 if and only if λ1 6= 0 if and only if τi 6= ρ2.
Therefore the sequence (τi, ρ3, . . . , ρk) is a vanishing sequence for any τi 6= ρ2. �

Lemma 2.15. Let (ρ1, ρ2, . . . , ρk) be a vanishing sequence with k ≥ 2. Then

atρ1atρ2 · · · atρk = 0.

Proof. We use induction on k. For the base case k = 2, since (ρ1, ρ2) is a vanishing sequence
we have (ϑ(ρ1), ρ2) 6= 0. Then by Proposition 2.11, (tρ1 , tρ2) ∈ T1 ∪ T2. If (tρ1 , tρ2) ∈ T1, then
tρ1tρ2 is not T -reduced. This implies that ρ1 = ρ2 and hence a2tρ1 = 0. If (tρ1 , tρ2) ∈ T2, then

we have tρ1tρ2 6≤ γ and hence atρ1atρ2 = 0.
Now let (ρ1, ρ2, . . . , ρk) be vanishing sequence with k > 2. Using part (2) of Lemma 2.14

we have w = tρ1tρ2 ≤ γ. Then by Proposition 1.3 the interval [e, w] is isomorphic to the
noncrossing partition lattice of a dihedral group I2(m) for some m ≥ 2. Suppose that
Φ+(w) = {τ1, τ2, . . . , τm} is set of all positive roots for which tτi ≤ w. By the defining
relation, we have

atρ1atρ2 = −
∑

w=tτi tτj , τj 6=ρ2

atτiatτj ,

where the sum is over all T -reduced expressions tτitτj of w with τj 6= ρ2. Using the above
relation, we obtain

atρ1atρ2atρ3 · · · atρn = −
∑

w=tτi tτj , τj 6=ρ2

atτiatτj atρ3 · · · atρn .

It follows from part (3) of Lemma 2.14 that (τj , ρ3, . . . , ρn) is a vanishing sequence for
any τj 6= ρ2, and hence by induction hypothesis atτj atρ3 · · · atρn = 0. Therefore, we have
atρ1atρ2 · · · atρn = 0 �

We are now in a position to prove Lemma 2.2.

Proof of Lemma 2.2. By Proposition 2.13, t = (tρ1 , tρ2, . . . , tρk) ∈ T1 ∪ T2 if and only if there
exists i < j such that (ρi, ρi+1 . . . , ρj) is a vanishing sequence. Using Lemma 2.15, in this
case we have at = atρ1 . . . (atρiatρi+1

. . . atρj ) . . . atρk = 0. �

3. Chain complexes for Milnor fibres and hyperplane arrangements

We now begin our discussion of the chain complexes whose homology realise that of the
Milnor fibre and of the hyperplane complement associated with W . For any u, v ∈ W , write
uw := w−1uw.
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3.1. Some acyclic chain complexes. Recall that B =
⊕n

k=0 Bk is a Z-graded algebra
generated by the βt for t ∈ T . For any t = (t1, t2, . . . , tk) ∈ RexT (w) with w ∈ L, i.e., such
that w = t1t2 . . . , tk ∈ L is a T -reduced expression, we have βt = βt1βt2 . . . βtk . Recalling the
Z-linear map d from (1.4) and Proposition 1.8, we have

(3.1) dk : Bk → Bk−1, βt 7→ zt =

k∑

i=1

(−1)k−iβ
t(̂i),

In particular, d1(βt) = 1 for any t ∈ T . The following results can be found in [Zha22, Lemma
5.9, Proposition 5.11].

Proposition 3.1. The following properties hold for (B, d).

(1) We have d2 = 0, whence we have the following chain complex (B, d):

0 // Bn
dn

// Bn−1

dn−1
// · · ·

d1
// B0

// 0.

(2) The chain complex (B, d) is acyclic. More precisely, let L[k] := {w ∈ L|1 ≤ ℓT (w) ≤
k} be a rank-selected subposet of L. If 1 ≤ k ≤ n− 1, then

Im dk = H̃k−2(L[k−1]), Ker dk = H̃k−1(L[k]).

Otherwise, Im dn = H̃n−2(L[n−1]) and Ker dn = 0.
(3) (Leibniz rule) For each i = 1, 2, . . . , k − 1, we have

d(βt) = (−1)k−i(dβ(t1,...,ti))β(ti+1,...,tk) + β(t1...,ti)(dβ(ti+1,...,tk))

for any t = (t1, t2, . . . , tk) ∈ RexT (w), where w ∈ Lk with 2 ≤ k ≤ n.

In view of Theorem 2.1, the map φ : A−→B given by φ(at1at2 . . . atk) = βt1βt2 . . . βtk for
any T -reduced expression w = t1t2 . . . , tk ∈ L, is a graded isomorphism from A to B. By
abuse of notation, for each k = 1, . . . n we define the Z-linear map

(3.2) d : Ak → Ak−1, at1at2 . . . atk 7→
k∑

i=1

(−1)k−iat1 . . . âti . . . atk .

Then the properties described in Proposition 3.1 for (B, d) hold mutatis mutandem for (A, d).
In particular, (A, d) is an acyclic complex.
We proceed next to give another acyclic complex induced by the “Kreweras complement” of

the NCP lattice. Now the noncrossing partition lattice L is self-dual, i.e., L ∼= Lop, where Lop

is the set L with the reverse partial order <op. This isomorphism may be realised explicitly
by the Kreweras complement K, defined by

K : L −→ Lop, w 7→ γw−1.

The Kreweras map induces an automorphism ofA = A(L) as a graded algebra. Recall from
Lemma 2.3 that an element at1at2 . . . atk of A is nonzero if and only if e < t1 < t1t2 < · · · <
t1t2 . . . tk is a chain of L. The latter is mapped by K to the chain γ <op γt1 <op γt2t1 <op

· · · <op γtk . . . t1 of Lop, and this corresponds to a nonzero element at1att12
. . . a

t
tk−1...t1
k

of

A(Lop). Note further that A(Lop) is isomorphic to the opposite algebra A(L)op. Therefore,
we have the following composite of linear maps:

κ : A(L)
κ̄
→ A(Lop) ∼= A(L)op

θ
→ A(L),
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where κ̄ is induced as above by K, so that κ̄(at1at2 . . . atk) = at1att12
. . . a

t
tk−1...t1
k

and θ is the

anti-isomorphism given by θ(at1at2 . . . atk) = atk . . . at2at1 . Hence the linear automorphism κ
of A is defined explicitly by

(3.3) κ(at1at2 . . . atk) = a
t
tk−1...t1
k

. . . a
t
t1
2
at1 .

It is clear that κ preserves the defining relations of A.
In addition to the differential (3.2), for each k = 1, . . . , n we define the following Z-linear

map

(3.4) δ : Ak → Ak−1, at1at2 . . . atk 7→
k∑

i=1

(−1)i−1a
t
ti
1
. . . a

t
ti
i−1
âti . . . atk .

The properties of δ are summarised in the next result.

Proposition 3.2. Let δ and κ be as defined above.

(1) (Leibniz rule) For each k = 2, . . . , n, we have

δ(at1at2 . . . atk) = δ(at1at2 . . . atk−1
)atk + (−1)k−1a

t
tk
1
a
t
tk
2
. . . a

t
tk
k−1
.

for any t = (t1, t2, . . . , tk) ∈ RexT (w) with w ∈ Lk.
(2) For each integer k = 1, . . . , n, the following diagram commutes:

Ak Ak−1

Ak Ak−1.

d

κ κ

δ

Therefore, the complex (A, δ) is acyclic.
(3) We have dδ = δd.

Proof. Part (1) follows directly from the definition (3.4). The diagram commutes by straight-
forward calculation. As κ is an automorphism and (A, d) is acyclic, the acyclicity of (A, δ)
follows. It is easily verified directly that d and δ commute with each other. �

Remark 3.3. Note that d and δ do not preserve the defining relations of the algebra A. For
instance, we have at1at2 = 0 for any pair of reflections t1, t2 satisfying t1t2 6≤ γ. However,
d(at1at2) = −at2 + at1 6= 0 and δ(at1at2) = −at2 + at2t1t2 6= 0.

Remark 3.4. It follows from Lemma 2.3 that Ak as a free abelian group is spanned by
nonzero elements at1at2 . . . atk , where t1t2 . . . tk = w ∈ L is a T -reduced expression. By the
defining relations of A, all linear relations among nonzero elements at1 . . . atk are generated
by the quadratic relation

∑
(t1,t2)∈RexT (w) at1at2 = 0 for any w ∈ L2. It is easily verified that

d(
∑

(t1,t2)∈RexT (w) at1at2) = 0 for any t ∈ T , and similarly this holds for δ. Therefore, the
linear maps d and δ are well-defined.

3.2. Complexes for the Milnor fibre and hyperplane complement. Let H be the set
of (complexified) reflecting hyperplanes of W and write M = MW := VC \ ∪H∈HH for the
corresponding hyperplane complement. For H ∈ H, let ℓH ∈ V ∗

C be a corresponding linear
form, so that H = ker(ℓH). Let Q =

∏
H∈H ℓ

2
H ; it is well known that the ℓH may be chosen

so that Q is W -invariant. The Milnor fibre F := Q−1(1) = {v ∈ VC | Q(v) = 1}. Evidently
W acts on both M and F , so that we may speak of the orbit spaces M/W and F/W .
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3.2.1. Chain complexes for M and F . Recall from [Zha22] the following chain complexes
which compute the integral homology of the hyperplane complement and of the Milnor fibre.
We use the algebra A instead of B in the original complexes.

Theorem 3.5. [Zha22, Theorem 7.2] The integral homology of the hyperplane complement
M is isomorphic to the homology of the following chain complex of abelian groups:

(3.5) 0 ZW ⊗An · · · ZW ⊗A1 ZW ⊗A0 0,
∂n ∂1

where the boundary maps are given by

∂k(w⊗at1at2 . . . atk) =
k∑

i=1

(−1)i−1wti⊗a
t
ti
1
. . . a

t
ti
i−1
âti . . . atk −

k∑

i=1

(−1)i−1w⊗at1 . . . âti . . . atk

for any w ∈ W and (t1, t2, . . . , tk) ∈
⋃
u∈Lk

RexT (u).

Theorem 3.6. [Zha22, Theorem 6.3] The integral homology of the Milnor fibre FQ = Q−1(1)
is isomorphic to the homology of the following chain complex

(3.6) 0 ZW ⊗ d(An) · · · ZW ⊗ d(A2) ZW ⊗ d(A1) 0,
∂n−1 ∂1

where the boundary maps are given by

∂k−1(w ⊗ d(at1at2 . . . atk)) =
k∑

i=1

(−1)i−1wti ⊗ d(a
t
ti
1
. . . a

t
ti
i−1
âti . . . atk)

for any w ∈ W , (t1, . . . , tk) ∈
⋃
u∈Lk

RexT (u) with 2 ≤ k ≤ n.

3.2.2. W -action on these complexes. Note that W acts on the above chain complexes as
follows. For x ∈ W , x.w ⊗ at1at2 . . . atk = (xw) ⊗ at1at2 . . . atk in the case of (3.5), while
in the case of (3.6), x.w ⊗ d(at1at2 . . . atk) = (xw) ⊗ d(at1at2 . . . atk). It is evident that this
W -action respects the boundary homomorphisms. Thus these chain complexes are both left
W -modules.
Now it is well known that W acts freely on M and F . The quotient spaces M/W and

F/W are both K(π, 1)-spaces. In particular, the fundamental group π1(M/W ) = A(W ),
the Artin group of W . Therefore, we have Hk(A(W );Z) = Hk(M/W ;Z), and this may be
computed using A as follows.

Theorem 3.7. [Zha22, Theorem 7.5] The integral homology of M/W or the Artin group
A(W ) is isomorphic to the homology of the following chain complex:

0 An An−1 · · · A1 A0 0,
∂n ∂1

where the boundary maps are given by ∂k = δk + (−1)kdk, i.e.,

(3.7) ∂k(at1at2 . . . atk) =

k∑

i=1

(−1)i−1a
t
ti
1
. . . a

t
ti
i−1
âti . . . atk −

k∑

i=1

(−1)i−1at1 . . . âti . . . atk

for (t1, t2, . . . , tk) ∈
⋃
u∈Lk

RexT (u).
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Theorem 3.8. [Zha22, Theorem 6.7] The integral homology of F/W is isomorphic to the
homology of the following chain complex :

0 // d(An)
∂n−1

// d(An−1) // · · · // d(A2)
∂1

// d(A1) // 0,

where the boundary maps are given by ∂k = δk, i.e.,

(3.8) ∂k−1(d(at1at2 . . . atk)) =

k∑

i=1

(−1)i−1d(a
t
ti
1
. . . a

t
ti
i−1
âti . . . atk)

for any (t1, . . . , tk) ∈
⋃
w∈Lk

RexT (w) and 2 ≤ k ≤ n. In particular, ∂1 = 0.

3.3. A new pair of complexes. Let us start with two new complexes defined over C. The
first, denoted C, is

(3.9) C := 0−→CW ⊗An
∂n−→ . . .−→CW ⊗A1

∂1−→CW ⊗A0−→0,

with the boundary homomorphisms ∂i defined as in Theorem 3.5. The second, denoted K, is

(3.10) K := 0−→CW ⊗ d(An)
∂n−1
−→ . . .−→CW ⊗ d(A2)

∂1−→CW ⊗ d(A1)−→0,

where the boundary homomorphisms are as defined in Theorem 3.6. Then by Theorem 3.5
and Theorem 3.6, the homology of the complex C (resp. K) is the homology of the corre-
sponding hyperplane complement M =MW (resp. Milnor fibre F ) with complex coefficients.

3.3.1. Left, right and bi-W -modules. In the development below, we shall need to distin-
guish between left and right CW -modules. Let ModR(CW ) (resp. ModL(CW )) be the
category of finite dimensional right (resp. left) CW -modules. We shall use the categorical
isomorphisms λRL : U 7→ UL from ModR(CW )−→ModL(CW ), and λLR : X 7→ XR from
ModL(CW )−→ModR(CW ) (U ∈ ModR(CW ), X ∈ ModL(CW )) where, for u ∈ UL and
w ∈ W , w.u := u.w−1, and for x ∈ XR, x.w := w−1.x.
In addition to the above categories, we shall need the category ModLR(CW ) of finite

dimensional CW -bimodules. If Y ∈ ModLR(CW ), then for w1, w2 ∈ W and y ∈ Y , we
have (w1y)w2 = w1(yw2). Evidently if U ∈ ModR(CW ), X ∈ ModL(CW ), then X ⊗C U
is naturally a W -bimodule. Using this, we have the following formulation of a standard
decomposition of a finite group algebra.

Lemma 3.9. Maintaining the above notation, we have the following isomorphism in the
category of W -bimodules.

CW ∼= ⊕U∈Irr(ModR(CW ))(U
∗
L ⊗C U).

Here the sum is over the simple modules U ∈ ModR(CW ) and U∗
L denotes the contragredient

of UL (defined above).

Proof. It is easily verified that for any right CW -module U , the left module U∗
L has the same

character as U . This is because UL ≃ U as vector spaces, and w ∈ W acts on UL as w−1

does on U . Thus they have complex conjugate traces. But the character of w on U∗
L is the

conjugate of its character on UL, and hence coincides with its charcater on U . The stated
decomposition is now standard.
Note that each of the tensor factors in each summand is referred to as the multiplicity

module of the other factor in that summand. �



16 GUS LEHRER AND YANG ZHANG

Corollary 3.10. In the above notation, we have HomCW (U∗
L,CW ) ∼= U as right W -module.

Here the left side indicates homomorphisms of left CW -modules.

Proof. By Lemma 3.9, HomCW (U∗
L,CW ) ∼= ⊕U∈Irr(ModR(CW ))HomCW (U∗

L, U
∗
L ⊗C U) But for

fixed U , U∗
L ⊗C U is isomorphic to a sum of simple left modules U∗

L. The result follows. �

3.3.2. A new pair of complexes. We next define “relative” versions of the complexes (3.9)
and (3.10).
Let U ∈ ModR(CW ). Define complexes C(U) and K(U) as follows.

C(U) := 0−→U ⊗An
∂n−→ . . .−→U ⊗A1

∂1−→U ⊗A0−→0,

where the boundary maps are given (for u ∈ U) by

(3.11)

∂(u⊗ at1at2 . . . atk) =

k∑

i=1

(−1)i−1uti ⊗ a
t
ti
1
. . . a

t
ti
i−1
ati+1

. . . atk

−
k∑

i=1

(−1)i−1u⊗ at1 · · · âti . . . atk .

K(U) := 0−→U ⊗ d(An)
∂n−1
−→· · ·−→U ⊗ d(A2)

∂1−→U ⊗ d(A1)−→0,

where the boundary homomorphisms are defined for u ∈ U by

(3.12) ∂(u ⊗ d(at1at2 . . . atk)) =

k∑

i=1

(−1)i−1uti ⊗ d(a
t
ti
1
. . . a

t
ti
i−1
ati+1

. . . atk).

Now as observed in 3.2.2, the complexes C and K admit a (left) W -action. This is
not generally the case for C(U) or K(U). Hence for each integer k, Hk(C) and Hk(K)
are left CW -modules. For left CW -modules U1, U2 we write 〈U1, U2〉W for the multiplic-
ity dimHomCW (U1, U2) as usual.
Recall that for any simple module U ∈ ModR(CW ), we have a “corresponding” module

U∗
L ∈ ModL(CW ), whose character coincides with that of U .

Theorem 3.11. For any right W -module U and for each integer k ≥ 0, we have

(3.13) dimHk(C(U)) = 〈U∗
L, Hk(M)〉

and

(3.14) dimHk(K(U)) = 〈U∗
L, Hk(F )〉.

Proof. We prove the first equation (3.13); the second equation (3.14) has a similar proof.
Since Hk(M) = Hk(C), we have

〈U∗
L, Hk(M)〉 = 〈U,Hk(C)〉 = dimHomW (U∗

L, Hk(C))

Now by semisimplicity, U∗
L is a flat module, whence the functor HomC(U

∗
L,−) is exact.

Moreover the kth homology functor commutes with any exact functor. It follows that we
have the following isomorphism of left W -modules.

(3.15) Hk(HomC(U
∗
L, C))

∼= HomC(U
∗
L, Hk(C)).

Further, the fixed point functor (−)W : M 7→ MW from the left W -module M to the
C-module MW is representable. It is represented by the trivial W -module C, so that (−)W

is naturally isomorphic to the functor HomW (C,−). Since CW is a semisimple algebra, the
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trivial W -module C is projective. Therefore, HomW (C,−) ∼= (−)W is an exact functor. It
follows that, upon taking W -fixed points in (3.15), we obtain

Hk(HomC(U
∗
L, C))

W ∼=Hk((HomC(U
∗
L, C))

W )
∼=Hk(HomCW (U∗

L, C))
∼= HomCW (U∗

L, Hk(C)).

It now remains only to relate the complex HomCW (U∗
L, C) to C(U). for this, observe that

HomCW (U∗
L, C)k

∼= HomCW (U∗
L, Ck)

∼= HomCW (U∗
L,CW ⊗C Ak).

Moreover since W acts trivially on A, we have

HomCW (U∗
L, C)k

∼= HomCW (U∗
L,CW )⊗C Ak.

But by Corollary 3.10, the right side of the above equation is equal to U ⊗CAk = C(U)k, and
the proof is complete. �

3.4. Applications. We give some special cases and applications of Theorem 3.11.
First, consider the case U = 1W , the trivial CW -module. Then U∗

L = 1W and we have

〈U∗
L, Hk(M)〉 = 〈1W , Hk(M)〉 = dimHk(M)W .

Moreover by the transfer theorem for homology with coefficients in C (cf. [GB72, Theorem
III.2.4]), Hk(M)W ∼= Hk(M/W ). It follows from the first statement in Theorem 3.11 that

Hk(M/W ) ∼= Hk(C(1W )).

It is readily checked that the complex C(1W ) coincides with the (complexification of the)
complex in Theorem 3.7, and in this way we recover that theorem for complex homology.
Note that Theorem 3.7 is stronger, in that it computes the integral homology.
Next, using precisely the same arguments, we deduce that if F is the Milnor fibre as defined

above, then

Hk(F/W ) ∼= Hk(K(1W )).

In this case, one again checks readily that K(1W ) may be identified with the complexifica-
tion of the complex in Theorem 3.8, whence in this case we recover Theorem 3.8, again with
coefficients in C, by applying Theorem 3.11 in the case of K(U) with U = 1W .
Consider next the case U = ε, the alternating representation of W . Then U∗

L ≃ ε and it
follows from [Leh96, (1.2)] that

〈Hk(M), ε〉 = 0 for all k.

It follows immediately from the first part of Theorem 3.11 that

The complex C(ε) is acyclic.

Now we may think of C(U) = C(ε) as having chain groups with bases {b ⊗ at | t ∈⋃
w∈LDw}, where b is the basis element of ε. Using the fact that bt = −b for all reflections

t, it follows from (3.11) that C(ε) may be identified with the chain complex

(3.16) 0−→An
Dn−→ . . .A1

D1−→A0−→0,
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where the boundary homomorphism Dk : Ak−→Ak−1 is given by

Dk(b⊗ at1 . . . atk) =

k∑

i=1

(−1)i−1(−b)⊗ a
t
ti
1
. . . a

t
ti
i−1
ati+1

. . . atk

−
k∑

i=1

(−1)i−1b⊗ at1 . . . âti . . . atk .

It follows that we may identify C(ε) with the complex (3.16), where

Dk = −δk + d̃k,

where δk is the restriction to Ak of δ, which is defined in (3.4) and d̃k = (−1)kdk, where
d = ⊕n

k=1dk is defined in (3.2).

It follows from Proposition 3.2 (3) that d̃δ = −δd̃, and hence that D is a differential. The
acyclicity of (A, D) is not evident from these arguments.
Finally, observe that for any right W -module U we have

(3.17) Hk(K(U)) = Hk(K(U ⊗ ǫ)), 0 ≤ k ≤ n− 1,

as the boundary maps (3.12) of K(U) and K(U ⊗ ǫ) differ by −1.

4. Dual complexes

The principal purpose of this section is to obtain sharper results on the integral homology
and cohomology of both M , the hyperplane complement, and F , the non-reduced Milnor
fibre. With this in mind we begin by defining a Z-bilinear form on A, which will later
become a tool for moving between homology and cohomology.

4.1. A bilinear form on A. We will make frequent use of the following Z-linear maps in
later sections. For each t ∈ T , we define

dt : Ak → Ak−1, at1at2 . . . atk 7→
k∑

i=1

(−1)k−iδ
t,t

ti+1...tk
i

at1 . . . âti . . . atk ,

δt : Ak → Ak−1, at1at2 . . . atk 7→
k∑

i=1

(−1)i−1δt,tiatti1
. . . a

t
ti
i−1
âti . . . atk ,

where δt,ti = 1 if t = ti and 0 otherwise. It is clear that in the notation of (3.2) and (3.4),
d =

∑
t∈T dt and δ =

∑
t∈T δt. Note that δt and dt also satisfy the Leibniz rule, i.e.

dt(at1at2 . . . atk) = −dttk (at1at2 . . . atk−1
)atk + δt,tkat1at2 . . . atk−1

,

δt(at1at2 . . . atk) = δt(at1at2 . . . atk−1
)atk + (−1)k−1δt,tkattk1

a
t
tk
2
. . . a

t
tk
k−1
.

for any (t1, t2, . . . , tk) ∈ RexT (w) with w ∈ Lk. We call dt and δt skew derivations.
The linear maps dt and δt are well-defined, for the same reason as in Remark 3.4.

Lemma 4.1. For any t, t′ ∈ T , we have dtδt′ = δt′dt.
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Proof. We evaluate both sides on at1 . . . atk ∈ A and use induction on k. For any nonzero
element at1 . . . atk ∈ A, we have

dtδt′(at1 . . . atk) =dt(δt′(at1 . . . atk−1
)atk + (−1)k−1δt′,tkattk1

a
t
tk
2
. . . a

t
tk
k−1

)

=− dttk (δt′(at1 . . . atk−1
)atk + δt,tkδt′(at1 . . . atk−1

)

+ (−1)k−1δt′,tkdt(attk1
a
t
tk
2
. . . a

t
tk
k−1

),

while on the other hand,

δt′dt(at1 . . . atk) =δt′(−dttk (at1at2 . . . atk−1
)atk + δt,tkat1at2 . . . atk−1

)

=− δt′(dttk (at1 . . . atk−1
))atk + (−1)k−1δt′,tkdt(attk1

a
t
tk
2
. . . a

t
tk
k−1

)

+ δt,tkδt′(at1 . . . atk−1
).

The result is trivial if k = 1. For k > 1, by the induction hypothesis and the equations above
we have dtδt′(at1 . . . atk) = δt′dt(at1 . . . atk). This proves that dtδt′ = δt′dt. �

Lemma 4.2. The skew derivations δt, t ∈ T satisfy the following relations:

δ2t = δt2δt1 = 0, ∀t ∈ T, t1t2 6≤ γ,
∑

(t1,t2)∈RexT (w)

δt2δt1 = 0, ∀w ∈ L2.

Therefore, they describe an action of the opposite algebra Aop on A.

Proof. For any reflections r1, r2 ∈ T , we have

δr2δr1(at1at2 . . . atk) = δr2(δr1(at1at2 . . . atk−1
)atk + (−1)k−1δr1,tkattk1

a
t
tk
2
. . . a

t
tk
k−1

)

= δr2(δr1(at1at2 . . . atk−1
))atk + (−1)k−2δr2,tkδrtk1

(a
t
tk
1
a
t
tk
2
. . . a

t
tk
k−1

)

+ (−1)k−1δr1,tkδr2(attk1
a
t
tk
2
. . . a

t
tk
k−1

),

where (t1, t2, . . . , tk) ∈ RexT (w) for some w ∈ L. We use induction on k to prove the stated
relations among δt, t ∈ T by evaluating the relevant expressions on at1 . . . atk . The base case
k = 1 is obvious. For k > 1, we prove each relation as follows.
By the induction hypothesis it is easy to see that δ2t = 0 if t = r1 = r2.
If r1r2 6≤ γ, then there are two cases. Case 1: neither of r1, r2 is tk. By the induction

hypothesis, δr2δr1(at1at2 . . . atk) = δr2(δr1(at1at2 . . . atk−1
))atk = 0. Case 2: exactly one of r1, r2

equals tk. If r1 = tk, then we have

δr2δr1(at1at2 . . . atk) = δr2(δr1(at1at2 . . . atk−1
))atk + (−1)k−1δr2(attk1

a
t
tk
2
. . . a

t
tk
k−1

).

We claim that δr2(attk1
a
t
tk
2
. . . a

t
tk
k−1

) = 0. Otherwise, by the definition of δr2 , we have r2 =

ttki for some 1 ≤ i ≤ k − 1. However, this leads to r1r2 = tkt
tk
i = titk, which pre-

cedes γ by Lemma 2.10 and hence violates our assumption that r1r2 6≤ γ. Therefore,
δr2δr1(at1at2 . . . atk) = δr2(δr1(at1at2 . . . atk−1

))atk = 0 by the induction hypothesis. If r2 = tk,
the proof is similar.
For the last relation, by the induction hypothesis this is equivalent to showing that

∑

(r1,r2)∈RexT (w)

δr2,tkδrtk1
− δr1,tkδr2 = 0.
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We may assume w = s1sm = s2s1 = · · · = smsm−1 has m T -reduced factorisations. If none
of the si is equal to tk, then the above equation holds true. Otherwise, tk = si for some
i = 1, . . . , m. In that case we have

∑

(r1,r2)∈RexT (w)

δr2,tkδrtk1
− δr1,tkδr2 =

m∑

j=1

(δsj−1,siδssij − δsj ,siδsj−1
) = δssii+1

− δsi−1
= 0,

where s0 := sm for notational convenience. This completes the proof. �

Definition 4.3. Define the bilinear pairing

〈−,−〉 : A×A −→ Z

by 〈1, 1〉 = 1 and

(1) 〈Ak,Aℓ〉 = 0 for any 0 ≤ k 6= ℓ ≤ n;
(2) For any x ∈ Ak and ti ∈ T, i = 1, . . . , k,

〈at1at2 . . . atk , x〉 := δtk . . . δt1(x).

In view of Lemma 4.2, this bilinear form is well-defined.

Lemma 4.4. For any t ∈ T , and x, y ∈ A we have

〈atx, y〉 = 〈x, δt(y)〉, and 〈xat, y〉 = 〈x, dt(y)〉.

Thus with respect to the bilinear form the skew-derivations δt and dt are right adjoint to left
and right multiplication by at, respectively.

Proof. We assume x ∈ Ak−1 and y ∈ Ak for 1 ≤ k ≤ n. The first adjunction follows
immediately from the definition. For the second one, we use induction on k. If k = 1,
then 〈λat, µat′〉 = λµδt,t′ = 〈λ, µdt(at′)〉 for any λ, µ ∈ Z. For k > 1, we may assume
x = at1 . . . atk−1

. Then

〈at1 . . . atk−1
at, y〉 = 〈at2 . . . atk−1

at, δt1(y)〉 = 〈at2 . . . atk−1
, dtδt1(y)〉

= 〈at2 . . . atk−1
, δt1dt(y)〉 = 〈at1at2 . . . atk−1

, dt(y)〉,

where the first and the last equation follow from the adjunction between δt and left mul-
tiplication by at, the second equation follows from the induction hypothesis, and the third
equation follows from Lemma 4.1. The proof is complete. �

Proposition 4.5. The bilinear form 〈−,−〉 is unimodular, i.e., it induces an isomorphism
A ∼= A∗ = HomZ(A,Z), given by x 7→ 〈x,−〉 for any x ∈ A.

Proof. We only need to show that the bilinear form induces an isomorphism Ak
∼= A∗

k for
0 ≤ k ≤ n. Recall that Ak =

⊕
w∈Lk

Aw. It suffices to prove the following claims:

(1) 〈Av,Aw〉 = 0 for any two elements v 6= w of Lk;
(2) For any w ∈ L, the bilinear form induces an isomorphism Aw

∼= A∗
w.

To prove claim (1), we use induction on ℓT (v) = ℓT (w) = k. It is trivial if k = 1. For
k > 1, assume that x = x′at ∈ Av. Then for any y ∈ Aw with w 6= v we have

〈x, y〉 = 〈x′at, y〉 = 〈x′, dt(y)〉.



21

Suppose that y = at1at2 . . . atk with w = t1t2 . . . tk being a T -reduced expression. Then by
the definition,

dt(y) =

k∑

i=1

(−1)k−iδt,riat1 . . . ati−1
ati+1

. . . atk ,

where ri = t
ti+1...tk
i . If t 6= ri for any i, then dt(y) = 0 and hence 〈x, y〉 = 0. Otherwise, there

exists a unique i0 such that t = ri0 . Assume that x′ = at′1at′2 . . . at′k−1
with v = t′1t

′
2 . . . t

′
k−1t

being a T -reduced expression. We have

〈x, y〉 = 〈x′, dt(y)〉 = (−1)k−i0〈at′1at′2 . . . at′k−1
, at1 . . . ati0−1

ati0+1
. . . atk〉.

Assume with a view to obtaining a contradiction that 〈x, y〉 6= 0. By the induction hypothesis
we have t′1t

′
2 . . . t

′
k−1 = t1 . . . ti0−1ti0+1 . . . tk. It follows that

v = (t′1t
′
2 . . . t

′
k−1)t = t1 . . . ti0−1ti0+1 . . . tkri0 = t1t2 . . . tk = w,

which leads to a contradiction. Therefore, we have 〈x, y〉 = 0 for any x ∈ Av and y ∈ Aw

with w 6= v.
We proceed next to prove claim (2). To this end, we need to introduce a lexicographical

order on the basis of Aw, and then show that the corresponding matrix of the bilinear form
is upper triangular with diagonal entries being 1.
Recall from Proposition 2.5 that Aw has a basis consisting of elements at1at2 . . . atk , where

w = t1t2 . . . tk is a T -reduced expression and t1 ≻ t2 ≻ · · · ≻ tk with respect to the total
order of T . We define the lexicographical order on the basis by

(4.1) at1at2 . . . atk < at′1at′2 . . . at′k ⇐⇒ ti ≺ t′i,

where i is the first place where the two monomials differ. Let {m1 < m2 < · · · < mp} be the
totally ordered set of the basis of Aw, and let M be the matrix of the bilinear form with the
(i, j)-th entry being 〈mi, mj〉. Next we show that M is a upper-triangular matrix with all
diagonal entires equal to 1.
To show that M is upper-triangular, we need to prove that

(4.2) 〈at′1at′2 . . . at′k , at1at2 . . . atk〉 = 0

for any two basis elements at1at2 . . . atk < at′1at′2 . . . at′k ofAw. Note that t1 ≻ t2 ≻ · · · ≻ tk and
t′1 ≻ t′2 ≻ · · · ≻ t′k with respect to the total order on T . Assuming that t1 = t′1, . . . , ti−1 = t′i−1

and ti ≺ t′i, we have

〈at′1at′2 . . . at′k , at1at2 . . . atk〉 = 〈at′2 . . . at′k , δt′1(at1at2 . . . atk)〉

= 〈at′2 . . . at′k , at2 . . . atk〉,

· · ·

= 〈at′iat′i+1
. . . at′k , atiati+1

. . . atk〉,

where in the first line we have used the adjoint property from Lemma 4.4, and in the third
line we repeat the process until we obtain the last equation. Using the adjoint property
again, we have

〈at′iat′i+1
. . . at′k , atiati+1

. . . atk〉 = 〈at′i+1
. . . at′k , δt′i(atiati+1

. . . atk)〉.

Since t′i ≻ ti ≻ ti+1 ≻ · · · ≻ tk, by the definition of δt′i we have δt′i(atiati+1
at2 . . . atk) = 0.

Hence we have 〈at′1at′2 . . . at′k , at1at2 . . . atk〉 = 0.
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Applying the adjunction between δt and left multiplication by at repeatedly, we have

(4.3)

〈at1at2 . . . atk , at1at2 . . . atk〉 = 〈at2 . . . atk , δt1(at1at2 . . . atk)〉

= 〈at2 . . . atk , at2 . . . atk〉

= · · · = 1

for any basis element at1at2 . . . atk of Aw. Hence the diagonal entries of M are all equal to 1.
Therefore, the bilinear form is unimodular on Aw. Combing this with claim (1), we complete
the proof. �

4.2. Acyclic dual complexes. In this subsection, we introduce some acyclic cochain com-
plexes which are dual to the previous acyclic chain complexes with respect to suitable bilinear
forms.
We recall the universal coefficient theorem for cohomology, which will be used later.

Theorem 4.6. [Hat02, Section 3.1] Let G be an abelian group, and C be the following chain
complex of free abelian groups

0−→Cn
∂

−→Cn−1−→· · ·−→C1
∂

−→C0−→0.

Let C∗
k = HomZ(Ck, G) be the dual of the chain group Ck and ∂∗ : C∗

k−1 → C∗
k be the dual

coboundary map for 1 ≤ k ≤ n. Then the cohomology groups Hk(C;G) of the cochain complex

0−→C∗
0
∂∗
−→C∗

1−→· · ·−→C∗
n−1

∂∗
−→C∗

n−→0.

are determined by split exact sequences

0 −→ Ext(Hk−1(C), G) −→ Hk(C;G) −→ HomZ(Hk(C), G) −→ 0.

We are only concerned with the case G = Z. If the homology groups Hk(C) are finitely
generated abelian groups with torsion subgroups Tk ⊆ Hk(C), then the homology of the chain
complex (C, ∂) and the cohomology of the dualised chain complex (C∗, ∂∗) are related by

Hk(C∗;Z) ∼= Hk(C)/Tk ⊕ Tk−1.

In particular, if (C, ∂) is acyclic then so is (C∗, ∂∗). If C consists of finitely generated free
abelian groups, then (C∗∗, ∂∗∗) ∼= (C, ∂).

4.2.1. A pair of acyclic complexes. Using the bilinear form on A, we define acyclic cochain
complexes which are dual to the acyclic chain complexes (A, d) and (A, δ).
Define the element

ω :=
∑

t∈T

at ∈ A1.

It is easily verified that ω2 = 0. Hence it gives rise to a cochain complex whose coboundary
maps are right multiplication by ω:

0−→A0
rω−→A1−→· · ·

rω−→An−→0

We denote this complex by (A, rω). Similarly, we define the complex (A, ℓω), where ℓω denotes
left multiplication by ω.
Recall from Proposition 4.5 that the bilinear form induces an isomorphism of graded free

abelian groups:

(4.4) ψ : A → A∗, x 7→ ψ(x) := 〈−, x〉,
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where ψ(x)(x′) = 〈x′, x〉 for any x, x′ ∈ Ak. Therefore, for any linear form λ ∈ A∗, there
exists a unique x ∈ A such that λ = ψ(x). In what follows, a linear map on A∗ will be
defined by its action on elements of the form ψ(x), x ∈ A.

Lemma 4.7. The linear map ψ induces an isomorphism between chain complexes (A, d) and
(A∗, r∗ω), where r

∗
ω is the adjoint map of rω defined by

r∗ω(ψ(y))(x) := ψ(y)(rω(x)) = 〈xω, y〉, ∀x ∈ Ak−1, y ∈ Ak.

Similarly, ψ induces an isomorphism between chain complexes (A, δ) and (A∗, ℓ∗ω)

Proof. For any integer k, it suffices to prove that the following diagram commutes:

Ak Ak−1

A∗
k A∗

k−1

d

ψ ψ

r∗ω

We verify this directly. For any x ∈ Ak, y ∈ Ak−1, by the definition of r∗ω we have

((r∗ωψ)(x))(y) = r∗ω(ψ(x))(y) = 〈yω, x〉.

On the other hand, we have

((ψd)(x))(y) = ψ(dx)(y) = 〈y, dx〉.

Using the adjointness property from Lemma 4.4, we have 〈yω, x〉 = 〈y, dx〉, whence r∗ωψ = ψd.
Therefore, ψ is a chain map between (A, d) and (A∗, r∗ω). As ψ is a graded isomorphism,
(A, d) and (A∗, r∗ω) are isomorphic. The isomorphism between (A, δ) and (A∗, ℓ∗ω) can be
proved similarly. �

Proposition 4.8. The cochain complexes (A, rω) and (A, ℓω) are both acyclic.

Proof. Recall from Proposition 3.1 that the chain complex (A, d) is acyclic. It follows from
Lemma 4.7 that the chain complex (A∗, r∗ω) is acyclic. Since (A∗, r∗ω) is the dual complex of
(A, rω) induced by the isomorphism ψ, the cochain complex (A, rω) is acyclic by the universal
coefficient theorem for cohomology. Similarly, one can prove that (A, ℓω) is acyclic, using the
acyclicity of (A, δ) from Proposition 3.2. �

4.2.2. Another pair of acyclic complexes. Recall from Theorem 3.5 that the boundary maps
of the complex (ZW ⊗ Ak, ∂k) are given by ∂k = ∂′k + (−1)k∂′′k , where the linear maps
∂′, ∂′′ : ZW ⊗Ak → ZW ⊗Ak−1 are defined by

(4.5)

∂′(w ⊗ at1at2 . . . atk) =

k∑

i=1

(−1)i−1wti ⊗ a
t
ti
1
. . . a

t
ti
i−1
âtiati+1

. . . atk ,

∂′′(w ⊗ at1at2 . . . atk) =

k∑

i=1

(−1)k−iw ⊗ at1 · · · âti . . . atk .

In what follows, whenever dealing with (co)boundary maps, ZW is viewed as a right ZW -
module with any t ∈ T acts on the right side.
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Lemma 4.9. Let ∂′, ∂′′ be as in (4.5). Then we have

∂′ =
∑

t∈T

t⊗ δt, ∂′′ =
∑

t∈T

1⊗ dt = 1⊗ d.

Therefore, ∂′, ∂′′ satisfy (∂′)2 = (∂′′)2 = 0 and ∂′∂′′ = ∂′′∂′.

Proof. For any nonzero element at1 . . . atk we have

∑

t∈T

t⊗ δt(w ⊗ at1at2 . . . atk) =
∑

t∈T

k∑

i=1

(−1)i−1wt⊗ δt,tiatti1
. . . a

t
ti
i−1
âtiati+1

. . . atk

=
k∑

i=1

(−1)i−1wti ⊗ a
t
ti
1
. . . a

t
ti
i−1
âtiati+1

. . . atk .

It follows that ∂′ =
∑

t∈T t ⊗ δt, and similarly, ∂′′ =
∑

t∈T 1 ⊗ dt. Using the fact that
δ2t = d2t = 0 for any t ∈ T , we obtain (∂′)2 = (∂′′)2 = 0. By Lemma 4.1 dt and δt′ commute
with each other, we have

∂′∂′′ =
∑

t,t′∈T

t⊗ δtdt′ =
∑

t,t′∈T

t⊗ dt′δt = ∂′′∂′.

�

By Lemma 4.9, we have a pair of chain complexes (ZW ⊗ A, ∂′) and (ZW ⊗ A, ∂′′). We
proceed next to define a bilinear form on ZW ⊗ A, which enables us to dualise the chain
complexes.
We will always denote by 〈−,−〉 the bilinear form on a linear space whenever no confusion

arises. Recall that there is a standard Z-bilinear form on ZW defined by

〈−,−〉 : ZW × ZW → Z, 〈v, w〉 := δv,w, ∀v, w ∈ W,

where δ is the Kronecker delta. This together with the bilinear form on A which we have
already defined, gives rise to a Z-bilinear form 〈−,−〉 on ZW ⊗A, defined by

〈v ⊗ x, w ⊗ y〉 := 〈v, w〉 〈x, y〉, ∀v, w ∈ W,x, y ∈ A.

Note that ZW⊗A is a Z-graded algebra, with the grading inherited fromA and multiplication
given by (v ⊗ x)(w ⊗ y) = vw ⊗ xy. By definition, we have 〈ZW ⊗ Ak,ZW ⊗ Aℓ〉 = 0 for
any integers k 6= ℓ.
It follows from Proposition 4.5 that the bilinear form on ZW⊗A is also unimodular. Hence

we have the following graded isomorphism of free abelian groups:

(4.6) ψW : ZW ⊗A → (ZW ⊗A)∗, w ⊗ x 7→ ψW (w ⊗ x) := 〈−, w ⊗ x〉,

where w ∈ W and x ∈ Ak for 0 ≤ k ≤ n.
We introduce the following elements:

σ =
∑

t∈T

t⊗ at, ς =
∑

t∈T

1⊗ at = 1⊗ ω.

It is easily verified that σ2 = ς2 = 0 in ZW ⊗ A. Hence σ and ς give rise to two cochain
complexes (ZW ⊗A, ℓσ) and (ZW ⊗A, rς), where the coboundary maps are given by

ℓσ(w ⊗ x) =
∑

t∈T

wt⊗ atx, rς(w ⊗ x) =
∑

t∈T

w ⊗ xat.
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for any w ⊗ x ∈ ZW ⊗Ak.

Lemma 4.10. For any v, w ∈ W and x, y ∈ A, we have

〈ℓσ(v ⊗ x), w ⊗ y〉 = 〈v ⊗ x, ∂′(w ⊗ y)〉,

〈rς(v ⊗ x), w ⊗ y〉 = 〈v ⊗ x, ∂′′(w ⊗ y)〉.

Therefore, with respect to the bilinear form on ZW ⊗ A, ∂′ and ∂′′ are right adjoint to the
linear operators ℓσ and rς , respectively.

Proof. We only prove the first adjunction; the second one can be treated similarly. Assume
that x ∈ Ak−1 and y ∈ Ak for some k = 0, . . . n. Then we have

〈ℓσ(v ⊗ x), w〉 =
∑

t∈T

〈vt⊗ atx, w ⊗ y〉 =
∑

t∈T

〈vt, w〉 〈atx, y)

=
∑

t∈T

〈v, wt〉 〈x, δt(y)) =
∑

t∈T

〈v ⊗ x, (t⊗ δt)(w ⊗ y)〉

=〈v ⊗ x, ∂′(w ⊗ y)〉,

where the third equation follows from the adjoint property in Lemma 4.4, and last equation
is a consequence of Lemma 4.9. �

Proposition 4.11. The chain complexes (ZW ⊗A, ∂′) and (ZW ⊗A, ∂′′) are both acyclic.

Proof. By Lemma 4.9, we have ∂′′ = 1 ⊗ d. As ZW is a flat Z-module, the acyclicity of
(ZW ⊗A, ∂′′) follows from that of (A, d), which is given in Proposition 3.1.
It remains to prove that (ZW ⊗A, ∂′) is acyclic. Recall from (3.3) the Kereweras automor-

phism κ : A → A whose inverse is given by κ−1(at1at2 . . . atk) = atka
tk
tk−1

. . . at2...tkt1 . Note that

this is a graded automorphism. Applying 1⊗κ−1 to the chain complex (ZW⊗A, ∂′), we obtain

a new chain complex (ZW ⊗A, ∂̃′) whose boundary map satisfies ∂̃′(1⊗ κ−1) = (1⊗ κ−1)∂′,
defined explicitly by

(4.7) ∂̃′(w ⊗ at1at2 . . . atk) =

k∑

i=1

(−1)k−iwt
ti−1...t1
i ⊗ at1 . . . âti . . . atk

for any w ∈ W and nonzero element at1at2 . . . atk ∈ Ak. Hence we are reduced to proving the

acyclicity of (ZW ⊗A, ∂̃′).
For each k = 0, 1, . . . n, we have the following split exact sequence

(4.8) 0 → Ker ∂̃′k → ZW ⊗Ak → Im ∂̃′k → 0.

To prove that the homology Hk = Ker ∂̃′k/Im ∂̃′k+1 is trivial, we shall determine each image

Im ∂̃′k, and then use the exact sequence above to show that Im ∂̃′k+1 and Ker ∂̃′k have equal
ranks for all k. Finally, we show that the homology is torsion free and hence is trivial.
Let us start with a combinatorial description of the chain group ZW ⊗ Ak. As the chain

complex (A, d) is acyclic, we have decompositions of free abelian groupsAk = d(Ak)⊕d(Ak+1)
for 0 ≤ k ≤ n− 1. It is proved in [Zha22, Theorem 4.8] that d(Ak) has a Z-basis consisting
of elements d(at1 . . . atk) for 1 ≤ k ≤ n, where (t1, . . . , tk) ∈ D[k−1] with D[k−1] defined by

D[k−1] :=
{
(t1, . . . , tk)

∣∣∣ γ = t1t2 . . . tn is T -reduced and
t1 ≻ · · · ≻ tk−1 ≻ tk ≺ tk+1 ≺ · · · ≺ tn

}
.
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Then we have
rank(ZW ⊗Ak) = |W |(D[k] +D[k−1]), 0 ≤ k ≤ n.

Moreover, recall from Corollary 2.6 that Ak has a Z-basis {at = at1 . . . atk |t = (t1, . . . tk) ∈⋃
u∈Lk

Du}, where Du is defined as in (1.3). Therefore, {w ⊗ at|w ∈ W, t ∈
⋃
u∈Lk

Du} is a
Z-basis for ZW ⊗Ak.
Now we consider the image Im ∂̃′k. Denote by Bk ⊆ ZW ⊗ Ak−1 the free abelian group

spanned by the set S[k−1] := {∂̃′(w ⊗ at) | w ∈ W, t ∈ D[k−1]}. Then we have Bk ⊆ Im ∂̃′k.
We shall prove that the set S[k−1] is Z-linearly independent. To this end, we choose a total
order on the basis of ZW ⊗Ak for each k such that

(4.9) w ⊗ at < v ⊗ at′ whenever at < at′,

for any v, w ∈ W and t, t′ ∈
⋃
u∈Lk

Du, where at < at′ is the total order defined in (4.1).
Then it follows from (4.2) that for any pair of basis elements w ⊗ at < v ⊗ at′

(4.10) 〈v ⊗ at′, w ⊗ at〉 = 0.

Now assume that there exist nonzero λw0,t0, λw,t ∈ Z such that

λw0,t0∂̃
′(w0 ⊗ at0) =

∑

w0⊗at0>w⊗at

λw,t∂̃
′(w ⊗ at),

for some elements ∂̃′(w⊗at) and ∂̃
′(w0⊗at0) of the set S[k−1]. In view of the definition (4.7),

for any element w ⊗ at = w ⊗ at1 . . . atk with t1 ≻ · · · ≻ tk, the element

w ⊗ at(k̂) := wt
tk−1...t1
k ⊗ at1 . . . atk−1

is the unique maximal term under the total order (4.9) in the expression of ∂̃′(w⊗at1 . . . atk).

Hence by (4.10) and (4.3) we have 〈w ⊗ at(k̂), ∂̃
′(w ⊗ at)〉 = 1. Moreover, observe that if

w0 ⊗ at0 > w ⊗ at for t, t0 ∈ D[k−1], then w0 ⊗ at0(k̂) > w ⊗ at(k̂) (cf. [Zha22, Proposition

4.7]). This further implies that 〈w0 ⊗ at0(k̂), ∂̃
′(w⊗ at)〉 = 0 by (4.10). Therefore, we obtain

λw0,t0 = 〈w0 ⊗ at0(k̂), λw0,t0∂̃
′(w0 ⊗ at0)〉

=
∑

w0⊗at0>w⊗at

〈w0 ⊗ at0(k̂), λw,t∂̃
′(w ⊗ at)〉

= 0,

which contradicts our assumption that λw,t0 6= 0. Therefore, S[k−1] is a Z-linearly independent

set, which spans the free abelian subgroup Bk ⊆ Im ∂̃′k.
Now by the exact sequence (4.8) we obtain

rankKer ∂̃′k = rankZW ⊗Ak − rank Im ∂̃′k ≤ rankZW ⊗Ak − rankBk

= |W |(D[k] +D[k−1])− |W ||D[k−1]|

= |W ||D[k]|.

On the other hand, since Bk+1 ⊆ Im ∂̃′k+1 ⊆ Ker ∂̃′k, we have

rankKer ∂̃′k ≥ rank Im ∂̃′k+1 ≥ rankBk+1 = |W ||D[k]|.

Combing the above two inequalities, for each k we have rankKer ∂̃′k = |W ||D[k]|, and

rank Im ∂̃′k = rankZW ⊗Ak − rankKer ∂̃′k = |W ||D[k−1]|.
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It follows that Im ∂̃′k+1 and Ker ∂̃′k have equal rank.

It remains to show that the homology Hk = Ker ∂̃′k/Im ∂̃′k+1 is trivial. We aim to prove that

Bk+1 = Ker ∂̃′k = Im ∂̃′k+1. By the above arguments on ranks, Bk+1 ⊆ Ker ∂̃′k is a free abelian

subgroup of maximal rank. Therefore, every element of the quotient group Ker ∂̃′k/Bk+1 has

finite order. For any β ∈ Ker ∂̃′k, there exists a nonzero integer m such that

(4.11) mβ =
∑

w∈W,t∈D[k]

λw,t∂̃
′
k+1(w ⊗ at) ∈ Bk+1, λw,t ∈ Z.

Suppose that w0 ⊗ t0 is the biggest element under the total order (4.9) such that m ∤ λw0,t0.
Then

mβ −
∑

w⊗t>w0⊗t0

λw,t∂̃
′
k+1(w ⊗ at) = λw0,t0∂̃

′
k+1(w0 ⊗ at0) +

∑

w⊗t<w0⊗t0

λw,t∂̃
′
k+1(w ⊗ at).

Recalling that 〈w0 ⊗ at0(k̂), ∂̃
′
k+1(w ⊗ at)〉 = 0 for any w ⊗ t < w0 ⊗ t0 with t, t0 ∈ D[k] and

〈w0 ⊗ at0(k̂), ∂̃
′
k+1(w0 ⊗ at0)〉 = 1, we have

〈w0 ⊗ at0(k̂), mβ −
∑

w⊗t>w0⊗t0

λw,t∂̃
′
k+1(w ⊗ at)〉 = λw0,t0.

By the choice of w0 ⊗ t0, we have m|λw,t for any w ⊗ t > w0 ⊗ t0. Thus the left hand side is
divisible by m, so is λw0,t0 on the right hand side. This contradicts our assumption for λw0,t0.
Therefore, all coefficients λw,t in (4.11) are divisible by m, and hence β ∈ Bk+1. This proves

that Bk+1 = Ker ∂̃′k. Similarly, one can prove that Bk+1 = Im ∂̃′k+1. Thus the homology group

Hk = Ker ∂̃′k/Im ∂̃′k+1 is trivial. �

Proposition 4.12. The cochain complexes (ZW ⊗A, ℓσ) and (ZW ⊗A, rς) are both acyclic.

Proof. By Lemma 4.10 ∂′ is right adjoint to ℓσ. Using the same method as in Lemma 4.7,
one can show that the isomorphism ψW given in (4.6) induces an isomorphism between chain
complexes (ZW ⊗A, ∂′) and ((ZW ⊗A)∗, ℓ∗σ). The former is acyclic by Proposition 4.11, so is
the latter. Hence (ZW ⊗A, ℓσ) is acyclic by the universal coefficient theorem for cohomology.
Similarly, one can prove the acyclicity of (ZW ⊗A, rς). �

4.3. Dual complexes for Milnor fibres and hyperplane complements. In terms of the
bilinear forms on A and ZW ⊗A, we shall give complexes which are dual to the chain com-
plexes introduced in Section 3.2. These dual complexes have the same integral cohomology
as that of the Milnor fibres and hyperplane complements.

4.3.1. Dual complexes for M and M/W . Recall from Theorem 3.5 the chain complex which
computes the integral homology of the hyperplane complement M . The following gives a
cochain complex dual to the chain complex.

Theorem 4.13. The integral cohomology of the hyperplane complement M is isomorphic to
the cohomology of the following cochain complex of free abelian groups:

0−→ZW ⊗A0
∂0
−→ZW ⊗A1

∂1
−→ . . .−→ZW ⊗An−→0,

where the coboundary maps are given by ∂k := ℓσ − (−1)krς for 0 ≤ k ≤ n, i.e.

∂k(w ⊗ x) =
∑

t∈T

wt⊗ atx− (−1)k
∑

t∈T

w ⊗ xat, ∀x ∈ Ak, w ∈ W.
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Proof. Recall that the chain complex given in Theorem 3.5 computes the integral homology
of M . We dualise this chain complex by replacing the kth chain group with (ZW ⊗ Ak)

∗ ∼=
HomZ(ZW ⊗ Ak,Z) and the kth boundary map by its dual coboundary map ∂∗ : (ZW ⊗
Ak−1)

∗ → (ZW ⊗Ak)
∗. Then we obtain the following cochain complex:

C(W )∗ : 0−→(ZW ⊗A0)
∗ ∂∗0
−→(ZW ⊗A1)

∗ ∂∗1
−→ . . .−→(ZW ⊗An)

∗−→0.

By the universal coefficient theorem for cohomology, we have Hk(C(W )∗) ∼= Hk(M ;Z) for
0 ≤ k ≤ n. It remains to show that C(W )∗ and the complex given in the theorem have the
same cohomology.
Recall the the bilinear form 〈−,−〉 on ZW ⊗ A is unimodular. This gives rises to the

isomorphism:

(4.12) ψ′
W : ZW ⊗A → (ZW ⊗A)∗, v ⊗ x 7→ ψ′

W (v ⊗ x) := 〈v ⊗ x,−〉

for any v ∈ W and x ∈ A. Now consider the following diagram:

ZW ⊗Ak ZW ⊗Ak+1

(ZW ⊗Ak)
∗ (ZW ⊗Ak+1)

∗.

∂k

ψ′

W ψ′

W

∂∗k

For any v, w ∈ W , x ∈ Ak and y ∈ Ak+1, we have

ψ′
W (∂k(v ⊗ x))(w ⊗ y) = 〈∂k(v ⊗ x), w ⊗ y〉 = 〈ℓσ(v ⊗ x)− (−1)krς(v ⊗ x), w ⊗ y〉

= 〈v ⊗ x, (∂′k + (−1)k+1∂′′k)(w ⊗ y)〉,

= ∂∗k(ψ′
W (v ⊗ x))(w ⊗ y).

where the third equation follows from Lemma 4.10 and the last equation follows from the
fact that ∂k = ∂′k+(−1)k+1∂′′k . Therefore, ψ

′
W is a chain isomorphism between (ZW ⊗A, ∂k)

and C(W )∗, and hence these two cochain complexes have the same cohomology. �

Theorem 4.14. The integral cohomology of M/W or the Artin group A(W ) is isomorphic
to the cohomology of the following cochain complex of free abelian groups:

0−→A0
∂0
−→A1

∂1
−→ . . .−→An−→0,

where ∂k = ℓω − (−1)krω for 0 ≤ k ≤ n with ω =
∑

t∈T at, i.e.

∂k(x) = ωx− (−1)kxω, ∀x ∈ Ak.

Proof. Recall from Theorem 3.7 the chain complex which computes the integral homology
of M/W or A(W ). The theorem can be proved using the same method as in the proof of
Theorem 4.13. �

4.3.2. Dual complexes for F and F/W . Recall from Theorem 3.6 and Theorem 3.8 the chain
complexes which realise the integral homology of the Milnor fibres F and F/W , respectively.
Using the bilinear form on ZW ⊗A, we will construct the cochain complexes which are dual
to these chain complexes.
We begin with the following proposition, which identifies d(Ak+1) with Akω. The latter is

the kth homogeneous component of the left ideal Aω of A generated by ω.
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Proposition 4.15. For each k = 0, . . . , n, the free abelian group Ak decomposes as

Ak = d(Ak+1)⊕Ak−1ω.

Moreover, we have an isomorphism Ak−1ω ∼= d(Ak), given by the linear map d.

Proof. First, we prove the isomorphism Ak−1ω ∼= d(Ak). Since the cochain complex (A, rω)
is acyclic, we have the following short exact sequences

0 → Ak−1ω → Ak → Akω → 0, 0 ≤ k ≤ n

Then each short exact sequence splits since Akω is free, being a subgroup of the free abelian
group Ak+1 . Therefore, we obtain that

Ak
∼= Ak−1ω ⊕Akω, 0 ≤ k ≤ n.

Similarly, using the acyclicity of (A, d) we have

Ak
∼= d(Ak)⊕ d(Ak+1), 0 ≤ k ≤ n.

Note that An
∼= d(An) ∼= An−1ω. By comparing the isomoprhisms above we have Ak−1ω ∼=

d(Ak) for 0 ≤ k ≤ n.
Using the adjoint property in Lemma 4.4, we have 〈xω, d(y)〉 = 〈x, d2(y)〉 = 0 for any

x ∈ Ak−1 and y ∈ Ak+1. Hence Ak−1ω is orthogonal to d(Ak+1) as subgroups of Ak.
Moreover, using the above isomorphisms we obtain

rankAk = rank d(Ak) + rank d(Ak+1) = rankAk−1ω + rank d(Ak+1).

Therefore, we have the decomposition Ak = Ak−1ω ⊕ d(Ak+1) for all k. �

Theorem 4.16. The integral cohomology of the Milnor fibre F is isomorphic to the coho-
mology of the following cochain complex of free abelian groups:

0−→ZW ⊗A0ω
ℓσ−→ZW ⊗A1ω

ℓσ−→ . . .−→ZW ⊗An−1ω−→0,

where ω =
∑

t∈T at and the coboundary maps are given by ℓσ, i.e.

ℓσ(w ⊗ xω) =
∑

t∈T

wt⊗ atxω, ∀x ∈ Ak, w ∈ W.

Proof. For each k = 0, 1, . . . , n− 1, let (ZW ⊗Akω)
∗ = HomZ(ZW ⊗Akω,Z). Consider the

following chain complex ((ZW ⊗Aω)∗, ℓ∗σ):

0−→(ZW ⊗An−1ω)
∗ ℓ∗σ−→(ZW ⊗An−2ω)

∗ ℓ∗σ−→ . . .−→(ZW ⊗A0ω)
∗−→0.

We will show that this chain complex is isomorphic to the chain complex (ZW ⊗d(Ak), ∂k−1)
given in Theorem 3.6. Thus, these two chain complexes both compute the integral homology
of F . By the universal coefficient theorem for cohomology (cf. Theorem 4.6), the cochain
complex (ZW ⊗Aω, ℓσ) given in the theorem, which is the dual complex of ((ZW⊗Aω)∗, ℓ∗σ),
has the integral cohomology of F .
Now we only need to prove that (ZW ⊗d(Ak), ∂k−1) and ((ZW ⊗Aω)∗, ℓ∗σ) are isomorphic.

We start by constructing an isomorphism between ZW ⊗d(Ak) and (ZW ⊗Ak−1ω)
∗ for each

k = 1, . . . , n. By Proposition 4.15, we have

ZW ⊗Ak ω ∼= ZW ⊗ d(Ak+1), w ⊗ x 7→ ∂′′(w ⊗ x) = u⊗ d(x)
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for any w ∈ W and x ∈ Akω. Moreover, the linear map ψW defined in (4.6) restricts to the
following isomorphism:

ZW ⊗Ak ω ∼= (ZW ⊗Ak ω)
∗, w ⊗ x 7→ ψW (w ⊗ x) = 〈−, w ⊗ x〉.

Combining the above two isomorphisms, we obtain that

ξk : ZW ⊗ d(Ak+1) → (ZW ⊗Ak ω))
∗

is an isomorphism given by

ξk(w ⊗ d(x)) := ψW (w ⊗ x) = 〈−, w ⊗ x〉

for any w ∈ W and x ∈ Ak ω. This is well-defined, since if d(x) = d(y) for some x, y ∈ Ak ω,
then we have w ⊗ (x− y) ∈ Ker(1⊗ d) = Ker ∂′′ and

ξk(w ⊗ d(x− y))(v ⊗ zω) = 〈v ⊗ zω, w ⊗ (x− y)〉 = 〈v ⊗ z, ∂′′(w ⊗ (x− y))〉 = 0,

for any w, v ∈ W and z ∈ Ak, where the last equation follows from Lemma 4.10.
We now prove that ξk is an isomorphism between chain complexes. It suffices to show that

the following diagram commutes for each k:

ZW ⊗ d(Ak+1) ZW ⊗ d(Ak)

(ZW ⊗Akω)
∗ (ZW ⊗Ak−1ω)

∗.

∂k

ξk ξk−1

ℓ∗σ

Recalling that in terms of notation (4.5), we have ∂k = ∂′k and 1⊗dk = ∂′′k . For any v, w ∈ W
and y ∈ Ak−1 ω, we have

ξk−1∂k(v ⊗ d(x))(w ⊗ y) = ξk−1(∂
′∂′′(v ⊗ x))(w ⊗ y) = ξk−1(∂

′′∂′(v ⊗ x))(w ⊗ y)

= 〈w ⊗ y, ∂′(v ⊗ x)〉,

where the second equation follows from Lemma 4.9. On the other hand,

ℓ∗σξk(v ⊗ d(x))(w ⊗ y) = ξk(v ⊗ d(x))(ℓσ(w ⊗ y)) = 〈ℓσ(w ⊗ y), v ⊗ x〉.

By the adjoint property in Lemma 4.10, we have ξk−1∂k = ℓ∗σξk. Therefore, ξk is an isomor-
phism between the chain complexes (ZW ⊗d(Ak), ∂k) and ((ZW ⊗Aω)∗, ℓ∗σ). This completes
the proof. �

Corollary 4.17. Let A := ZW ⊗A be the tensor product equipped with the usual multiplica-
tive structure. Then we have the following Z-graded isomorphism of abelian groups:

H∗(F ;Z)[−1] = (A ς ∩ σA )/σA ς,

where σ =
∑

t∈T t ⊗ at and ς =
∑

t∈T 1 ⊗ at, and A[−1]n := An−1 for the Z-graded abelian
group A.

Proof. Recall from Proposition 4.12 that the complex (ZW ⊗A, ℓσ) is acyclic. Denote Ak :=
ZW ⊗Ak for 0 ≤ k ≤ n. Then the coboundary map ℓσ : Ak+1 → Ak+2 has the kernel σAk.
Using Theorem 4.16, we obtain

Hk(F ;Z) ∼= Ker(Akς
ℓσ−→Ak+1ς)/σAk−1ς = (σAk ∩ Akς)/σAk−1ς.

This completes the proof. �
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Theorem 4.18. The integral cohomology of the Milnor fibre F/W is isomorphic to the
cohomology of the following cochain complex of free abelian groups:

0−→A0ω
ℓω−→A1ω

ℓω−→ . . .
ℓω−→An−1ω−→0,

where the coboundary maps are given by left multiplication by ω =
∑

t∈T at.

Proof. The proof is similar to that of Theorem 4.16. Recall from Theorem 3.8 the chain
complex which computes the integral homology of F/W . Using the bilinear form (4.4), one
can identify d(Ak+1) and (Akω)

∗ and prove that the complexes (d(Ak+1), ∂k) and ((Aω)∗, ℓ∗ω)
are isomorphic. Thus the complex (Aω, ℓω) computes the integral cohomology of F/W . �

Corollary 4.19. Let Aω (resp. ωA) be the left (resp. right) ideal of A generated by ω. Then
we have the following Z-graded isomorphism of abelian groups:

H∗(F/W ;Z)[−1] ∼= (Aω ∩ ωA)/ωAω,

where A[−1]n := An−1 for the Z-graded abelian group A.

Proof. By Proposition 4.8, the cochain complex (A, ℓω) is acyclic. It follows that the cobound-
ary map ℓω : Ak+1 → Ak+2 has the kernel ωAk. Using Theorem 4.18, we have

Hk(F/W ;Z) ∼= Ker(Akω
ℓω−→Ak+1ω)/ωAk−1ω = (ωAk ∩ Akω)/ωAk−1ω.

This completes the proof. �

4.4. A pair of dual complexes with complex coefficients. We shall introduce a pair of
cochain complexes which are dual to the complexes C(U) and K(U). In this subsection, we
work over C.
Let U be any finite dimensional right CW -module. We define the dual complex of C(U)

by

C∗(U) := 0−→U ⊗A0
∂∗
−→ . . .−→U ⊗An−1

∂∗
−→U ⊗An−→0,

where the coboundary maps are given by

∂∗(u⊗ x) =
∑

t∈T

ut⊗ atx− (−1)ku⊗ xω, ∀x ∈ Ak, u ∈ U.

It is straightforward to verify that (∂∗)2 = 0. Similarly, define the dual complex of K(U) by

K∗(U) := 0−→U ⊗A0 ω
∂∗0−→ . . .−→U ⊗An−2 ω

∂∗n−2
−→U ⊗An−1 ω−→0,

where Ak ω is the subspace of Ak+1 linearly spanned by elements of the form at1 . . . atkω, and
the coboundary maps are defined by

∂∗(u⊗ xω) =
∑

t∈T

ut⊗ atxω, ∀x ∈ Ak, u ∈ U.

The following is a cohomology version of Theorem 3.11.

Theorem 4.20. For any right W -module U and for each integer k ≥ 0, we have:

dimHk(C∗(U)) = 〈U∗
L, H

k(M)〉

and
dimHk(K∗(U)) = 〈U∗

L, H
k(F )〉.

Proof. Use Theorem 4.13 and Theorem 4.16. The proof is similar to that of Theorem 3.11. �
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5. Complements on a covering algebra Ã of A.

In this section we define an algebra Ã, whose presentation is simpler than that of A, and
which in fact hasA as a homomorphic image. The algebra Ã has some remarkable similarities
with the Fomin-Kirillov algebra En (in type An−1) (cf. [FK99], and we conjecture that the
two algebras have the same Hilbert-Poincaré series (always in type An). They are in some
sense “dual” to each other, but are not Koszul.
In Section 5.1 we define a braided Hopf algebra and show that there exists a surjective

algebra homomorphism from the braided Hopf algebra to the noncrossing algebra. We show
also that Ã has the structure of a W -graded Hopf algebra, that it has a braiding, and more
generally belongs to a category of Yetter-Drinfeld modules over CW . In Section 5.2 we define
some differential operators on the braided Hopf algebra, and determine some of their adjoint
properties, which are similar to those of A. We also prove that there is a bilinear form on

Ã, and that this form descends to the one we already have on A. Throughout this section,
we work over the complex field C.

5.1. A new braided Hopf algebra. We introduce a cover of the noncrossing algebra,
which is analogous to the Fomin-Kirillov algebra [FK99]. This new algebra is a Yetter-
Drinfeld module over the group algebra CW , and has a braided Hopf algebra structure. We
refer to [AS02] for background concerning Yetter-Drinfeld modules.

5.1.1. Definition and Examples.

Definition 5.1. Let W be any finite Coxeter group and T be the set of reflections of W .

Define Ã = Ã(W ) to be the associative algebra over C generated by αt, t ∈ T , subject to the
following quadratic relations:

α2
t = 0, for any t ∈ T ,(5.1)

∑

(t1,t2)∈RexT (w)

αt1αt2 = 0, for any w ∈ W with ℓT (w) = 2.(5.2)

The algebra Ã is a Z-graded algebra with the Z-grading deg(αt) = 1 for all t ∈ T . In
this section, we denote by A the noncrossing algebra over the complex field C. Theses two
algebras are related by the following lemma.

Lemma 5.2. We have a surjective algebra homomorphism π : Ã → A, given by αt 7→ at for
all t ∈ T .

Proof. We just need to check that the relations (5.2) are preserved in A. If w ≤ γ, then
relation (5.2) is sent to the defining relation of A under the map π. Otherwise, for any two
reflections t1, t2 such that t1t2 6≤ γ, we have π(αt1αt2) = at1at2 = 0, and hence for any w 6≤ γ
we have

∑
(t1,t2)∈RexT (w) π(αt1αt2) = 0. �

Example 5.3. The new algebra Ã(Symn) of type An−1 is generated by αij = αji for 1 ≤ i <
j ≤ n with the following relations:

(5.3)

α2
ij = 0,

αijαkl + αklαij = 0, for distinct i, j, k, l

αijαjk + αjkαki + αkiαij = 0, for distinct i, j, k
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In type A2, these relations read:

α2
12 = α2

13 = α2
23 = 0,

α12α23 + α23α13 + α13α12 = 0,

α23α12 + α12α13 + α13α23 = 0.

This algebra looks similar to the Fomin-Kirillov algebra En [FK99], which is generated by
xij = −xji for 1 ≤ i < j ≤ n with relations:

x2ij = 0,

xijxkl − xklxij = 0, for distinct i, j, k, l

xijxjk + xjkxki + xkixij = 0, for distinct i, j, k.

For any Z-graded algebra A =
⊕

k∈ZAk, we denote by HA(t) =
∑

k∈Z dimAk t
k the Hilbert-

Poincaré series of A. Using computational software, we obtain that Ã(Symn) and En have
the same Hilbert-Poincaré series for n ≤ 5:

n = 1 : HÃ(Symn)
(t) = HEn(t) = 1,

n = 2 : HÃ(Symn)
(t) = HEn(t) = [2] = 1 + t,

n = 3 : HÃ(Symn)
(t) = HEn(t) = [2]2[3] = 1 + 3t+ 4t2 + 3t3 + t4,

n = 4 : HÃ(Symn)
(t) = HEn(t) = [2]2[3]2[4]2,

n = 5 : HÃ(Symn)
(t) = HEn(t) = [4]4[5]2[6]4,

where we have used the notation [k] := 1+ t+ · · ·+ tk−1. These Hilbert-Poincaré series have
symmetric coefficients. In particular, the top homogeneous component has dimension 1. It
is unknown whether En is finite-dimensional for n ≥ 6.

Conjecture 5.4. The algebra Ã(Symn) and the Fomin-Kirillov algebra En have the same
Hilbert-Poincaré series.

Remark 5.5. Recall that the Orlik-Solomon algebra associated to the reflection arrangement
of Symn is generated by elements eij = eji for 1 ≤ i < j ≤ n, subject to the following
relations:

eijekl = −ekleij , 1 ≤ i < j ≤ n, 1 ≤ k ≤ l ≤ n,

eijejk + ejkeki + ekieij = 0, 1 ≤ i, j, k ≤ n.

This appears as a quotient of Ã(Symn) by imposing the anti-commutative relations αijαkl =
−αklαij for i < j and k < l, that is, we allow {i, j} ∩ {k, l} 6= ∅ in the second relation of
(5.3).

5.1.2. Braided Hopf algebra structure. We now take a Hopf-theoretic point of view to the

covering algebra Ã [AG99, MS00, AS02].
Let us recall relevant definitions. The group algebra CW has a Hopf algebra structure

with the comultiplication ∆(w) = w⊗w, counit ǫ(w) = 1 and antipode S(w) = w−1 for any
w ∈ W . A Yetter-Drinfeld module A over CW is a W -graded vector space A =

⊕
w∈W Aw,

which is a W -module such that w.Au ⊆ Awuw−1 for all u, w ∈ W .

The algebra Ã is a Yetter-Drinfeld module over CW , as we now describe. In addition

to the natural Z-grading, Ã has a grading with respect to W such that the W -degree of
the generator αt is t ∈ T and this is extended to all monomials by multiplication. As the
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defining relations of Ã are homogeneous with respect to theW -degree, this gives aW -grading

of Ã =
⊕

w∈W Ãw, where Ãw is spanned by monomials αt1 . . . αtk such that t1t2 . . . tk = w.
Note that w = t1t2 . . . tk is not necessarily a reduced expression with respect to reflections of
T or simple reflections of S.
The W -module structure on Ã is defined by

(5.4) w.αt := (−1)ℓ(w)αwtw−1, , ∀w ∈ W,

where ℓ(w) is the usual length of w with respect to the generating set S of W . Clearly,

this action preserves the defining relations (5.1) and (5.2) of Ã, and is compatible with the

W -grading, i.e. w.Ãu ⊆ Ãwuw−1 for all u, w ∈ W . Therefore, Ã is a Yetter-Drinfeld module
over CW .
We denote by W

WYD the category of Yetter-Drinfeld modules over CW . A morphism
f : A → B of the category W

WYD is a homomorphism of W -modules which preserves the
W -grading.
An important ingredient of the Yetter-Drinfeld category is the canonical braiding. For any

A,B ∈ W
WYD, the canonical braiding c : A⊗ B → B ⊗ A is defined by

(5.5) c(a⊗ b) = b⊗ (w−1.a), ∀a ∈ A, b ∈ Bw.

The tensor product A⊗B is an object of WWYD, with theW -grading (A⊗B)w =
⊕

ab=w Aa⊗Bb

and the W -action w.(a ⊗ b) = w.a ⊗ w.b for any w ∈ W , a ∈ A and b ∈ B. In particular,

we have Ã ⊗ Ã ∈ W
WYD. Moreover, the tensor product Ã ⊗ Ã is still an algebra, with

multiplication defined via the canonical braiding:

(5.6) (x1 ⊗ y1)(x2 ⊗ y2) = x1x2 ⊗ (w−1.y1)y2, ∀x2 ∈ Ãw, x1, y1, y2 ∈ Ã.

More concisely, µÃ⊗Ã = (µÃ⊗µÃ)(1⊗c⊗1), where µA : A⊗A → A denotes the multiplication
map of the algebra A.
Recall that a braided bialgebra A in W

WYD is a collection (A, µ, η,∆, ǫ) such that (A, µ, η) is
an algebra in W

WYD, (A,∆, ǫ) is a coalgebra in W
WYD and ∆ : A→ A⊗A and ǫ : A→ C are

morphisms of algebras (here A⊗A is an algebra in W
WYD with multiplication defined via the

braiding c). We call A a braided Hopf algebra if in addition there is an antipode S : A → A
in W

WYD such that (1⊗ S)∆ = (S ⊗ 1)∆ = ηǫ.

Proposition 5.6. The algebra Ã is a braided Hopf algebra in W
WYD with the coproduct ∆,

the counit ǫ and the antipode S defined on the generators αt, t ∈ T by

(5.7)
∆(αt) = αt ⊗ 1 + 1⊗ αt,

ǫ(αt) = 0, S(αt) = −αt.

Proof. We need to check that ∆, ǫ and S are well-defined, and then check that they satisfy
Hopf algebra axioms. Straightforward calculations show that:

∆(α2
t ) = α2

t ⊗ 1 + 1⊗ α2
t , S(α2

t ) = α2
t , ǫ(α2

t ) = 0,

∆(Rw) = Rw ⊗ 1 + 1⊗Rw,

S(Rw) = Rw, ǫ(Rw) = 0,

where we have used the notation Rw :=
∑

(t1,t2)∈RexT (w) αt1αt2 for any w ∈ W with ℓT (w) = 2.
Therefore, ∆, ǫ and S are all well-defined.



35

Next we check the Hopf algebra axioms on the generators of Ã: (1) Coassociativity:

(∆⊗ 1)(∆(αt)) = (∆⊗ 1)(αt ⊗ 1 + 1⊗ αt)

= αt ⊗ 1⊗ 1 + 1⊗ αt ⊗ 1 + 1⊗ 1⊗ αt

= (1⊗∆)(∆(αt)).

(2) The counit axiom:

(ǫ⊗ 1)(∆(αt)) = (ǫ⊗ 1)(αt ⊗ 1 + 1⊗ αt) = αt,

(1⊗ ǫ)(∆(αt)) = (1⊗ ǫ)(αt ⊗ 1 + 1⊗ αt) = αt.

(3) The antipode axiom:

µ(1⊗ S)(∆(αt)) = µ(1⊗ S)(αt ⊗ 1 + 1⊗ αt) = αt − αt = 0 = ǫ(αt),

µ(S ⊗ 1)(∆(αt)) = µ(S ⊗ 1)(αt ⊗ 1 + 1⊗ αt) = −αt + αt = 0 = ǫ(αt).

�

We can extend (5.7) to any monomials of Ã. Clearly, ǫ(αt1 . . . αtk) = 0 for k ≥ 1. In the
following we give explicit formulae for S and ∆.

Proposition 5.7. The antipode S is given explicitly by

(5.8) S(αt1 . . . αtk) = ε(t1, . . . , tk)αtkαttkk−1
. . . α

t
t2...tk
1

,

where ε(t1, . . . , tk) = (−1)k
∏k

i=2(−1)ℓ(ti...tk).

Proof. Recall that in W
WYD we have Sµ = µ(S ⊗ S)c. This follows from the fact that

both Sµ and µ(S ⊗ S)c are the inverse of µ under the convolution product in the algebra

Hom(Ã ⊗ Ã, Ã); refer to [AG99, Lemma 1.2.2]. Using this equation and induction on k, we
have

S(αt1αt2 . . . αtk) = S(αt2 . . . αtk)S((tk . . . t2).αt1)

= −(−1)ℓ(t2...tk)S(αt2 . . . αtk)αtt2...tk1
.

The formula follows by induction hypothesis. �

Proposition 5.8. The comultiplication of Ã is given explicitly by

∆(αt1 . . . αtk) =
k∑

j=0

∑

1≤i1<i2<···<ij≤k

αti1 . . . αtij ⊗Etij . . . Eti1 (αt1 . . . αtk),

where Etri (αtr1 . . . αtrs ) := tri .(αtr1 . . . αtri−1
)αtri+1

. . . αtrs , for any monomial αtr1 . . . αtrs ∈ Ã
and 1 ≤ i ≤ s.
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Proof. Use induction on k. The formula is trivial if k = 1. For k > 1, by induction hypothesis
we have

∆(αt1 . . . αtk) = ∆(αt1 . . . αtk−1
)∆(αtk)

=
k−1∑

j=0

∑

1≤i1<i2<···<ij≤k−1

(αti1 . . . αtij ⊗Etij . . . Eti1 (αt1 . . . αtk−1
))(1⊗ αtk + αtk ⊗ 1)

=
k−1∑

j=0

∑

1≤i1<i2<···<ij≤k−1

αti1 . . . αtij ⊗ (Etij . . . Eti1 (αt1 . . . αtk−1
))αtk

+

k−1∑

j=0

∑

1≤i1<i2<···<ij≤k−1

αti1 . . . αtijαtk ⊗ tk.(Etij . . . Eti1 (αt1 . . . αtk−1
)).

Note that in the above equation, we have

(Etij . . . Eti1 (αt1 . . . αtk−1
))αtk = Etij . . . Eti1 (αt1 . . . αtk−1

αtk)

tk.(Etij . . . Eti1 (αt1 . . . αtk−1
)) = EtkEtij . . . Eti1 (αt1 . . . αtk).

Then we obtain the formula of ∆(αt1 . . . αtk) as desired. �

Example 5.9. Using Proposition 5.8, we have

∆(αt1αt2) = 1⊗ αt1αt2 + αt1 ⊗Et1(αt1αt2) + αt2 ⊗Et2(αt1αt2) + αt1αt2 ⊗ Et2Et1(αt1αt2)

= 1⊗ αt1αt2 + αt1 ⊗ αt2 − αt2 ⊗ αt2t1t2 + αt1αt2 ⊗ 1.

It follows that Ã is not cocommutative.

Proposition 5.10. The noncrossing algebra A is a subcoalgebra of Ã.

Proof. By Lemma 5.2 A can be lifted as a subspace of Ã. Note that if at1 . . . atk is a nonzero
element of A, that is, w = t1t2 . . . tk ∈ L is a T -reduced expression, then Eti(at1 . . . atk) =
(−1)i−1a

t
ti
1
. . . .a

t
ti
i−1
ati+1

. . . atk is still a nonzero element of A. In view of Proposition 5.8, A

is closed under the comultiplication ∆ of Ã. In addition, A is clearly closed under the counit

ǫ of Ã. Therefore, A is a subcoalgebra of Ã. �

5.2. Skew-derivations on Ã. Recall that the noncrossing algebra A has skew-derivations
δt and dt for any t ∈ T . We shall show that these skew-derivations can be lifted to the algebra

Ã with similar properties. The difference is that these skew-derivations are defined using the

braided Hopf algebra structure of Ã.
For any integer k ≥ 0 let πk : Ã → Ãk be the projection of Ã onto its k-th homogeneous

component Ãk. We denote by

∆i,j : Ãi+j
∆

−→ Ã ⊗ Ã
πi⊗πj
−→ Ãi ⊗ Ãj

the (i, j)-th component of the comultiplication ∆.

For any t ∈ T , we define the linear map ∇t : Ã → Ã as follows: let ∇t(1) = 0, and for any

x ∈ Ãk define ∇t(x) ∈ Ãk−1 by

(5.9) ∆1,n−1(x) =
∑

t∈T

αt ⊗∇t(x).
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Similarly, we define Dt : Ã → Ã by Dt(1) = 0 and ∆n−1,1(x) =
∑

t∈T Dt(x)⊗ αt. It is clear
that ∇t1(αt2) = Dt1(αt2) = δt1,t2 (Kronecker delta).

Proposition 5.11. For any t ∈ T , let ∇t, Dt be as above.

(1) For any x, y ∈ Ã, we have

∇t(xy) = ∇t(x)y + (t.x)∇t(y),

Dt(xy) = (|y|.Dt)(x)y + xDt(y),

where |y| ∈ W denotes theW -grading of y, i.e. y ∈ Ã|y|, and |y|.Dt := (−1)ℓ(|y|)D|y|t|y|−1.

(2) For any αt1αt2 . . . αtk ∈ Ã, we have

∇t(αt1αt2 . . . αtk) =
k∑

i=1

(−1)i−1δt,tiαtti1
. . . α

t
ti
i−1
αti+1

. . . αtk ,

Dt(αt1αt2 . . . αtk) =

k∑

i=1

(−1)k−iδt,riαt1 . . . .αti−1
αti+1

. . . αtk ,

where ri = t
ti+1...tk
i , and δ is the Kronecker delta.

(3) The linear operators ∇t, Dt preserve the defining relations of Ã.

Proof. For part (1), note that

∆(xy) = ∆(x)∆(y) = (1⊗ x+
∑

t∈T

αt ⊗∇t(x) + · · · )(1⊗ y +
∑

t∈T

αt ⊗∇t(y) + · · · )

= 1⊗ xy +
∑

t∈T

αt ⊗ (t.x)∇t(y) +
∑

t∈T

αt ⊗∇t(x)y + · · · .

It follows that ∇t(xy) = ∇t(x)y+(t.x)∇t(y). Similarly, using the expression ∆(x) = x⊗1+∑
t∈T Dt(x)⊗ αt + · · · , we have

∆(xy) = ∆(x)∆(y) = (x⊗ 1 +
∑

t∈T

Dt(x)⊗ αt + · · · )(y ⊗ 1 +
∑

t∈T

Dt(y)⊗ αt + · · · )

= xy ⊗ 1 +
∑

t∈T

xDt(y)⊗ αt +
∑

t∈T

Dt(x)y ⊗ |y|−1.αt + · · · .

Note that ∑

t∈T

Dt(x)y ⊗ |y|−1.αt =
∑

t∈T

(−1)ℓ(|y|)Dt(x)y ⊗ α|y|−1t|y|

=
∑

t∈T

(−1)ℓ(|y|)D|y|t|y|−1(x)y ⊗ αt

Therefore, we have Dt(xy) = (|y|.Dt)(x)y + xDt(y). Part (2) is a consequence of part (1),
and part (3) follows immediately from the formulae in part (2). �

Remark 5.12. The linear operators ∇t, Dt are called skew-derivations of the braided Hopf

algebra Ã [AG99, AS02].
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Proposition 5.13. The skew-derivations ∇t, t ∈ T satisfy the following relations:

∇2
t = 0, ∀t ∈ T ,

∑

(t1,t2)∈RexT (w)

∇t1∇t2 = 0, ∀w ∈ W with ℓT (w) = 2,

Therefore, they describe an action of Ã on itself.

Proof. We evaluate these relations on x ∈ Ã and use induction on the Z-degree of x. It is
trivial if deg(x) = 1. In general, assume that x = αt1 . . . αtk . For any r1, r2 ∈ T , using the
formula from part (1) of Proposition 5.11 we have

∇r1∇r2(αt1 . . . αtk) = ∇r1(∇r2(αt1αt2 . . . αtk−1
)αtk + (−1)k−1δr2,tkαttk1

α
t
tk
2
. . . α

t
tk
k−1

)

= ∇r1(∇r2(αt1 . . . αtk−1
))αtk + (−1)k−2δr1,tk∇r

tk
2
(α

t
tk
1
. . . α

t
tk
k−1

)

+ (−1)k−1δr2,tk∇r1(αttk1
α
t
tk
2
. . . α

t
tk
k−1

),

If r1 = r2 = t, then by the induction hypothesis we have ∇r1∇r2(αt1 . . . αtk) = 0, proving the
first relations.
For the second relation, by the induction hypothesis it is equivalent to proving that

∑

(r1,r2)∈RexT (w)

δr1,tk∇tkr2tk − δr2,tk∇r1 = 0

for any w ∈ W with ℓT (w) = 2. If tk 6≺ w, then the above equation holds trivially. Otherwise,
we have two T -reduced expressions w = tkt = (tkttk)tk for t = t−1

k w ∈ T , which leads to the
above equation. �

We do not know whether this action of Ã on itself faithful. Compare [FK99, §9]. Next we

define a bilinear form on Ã in terms of the skew-derivations.

Definition 5.14. Define the bilinear pairing

〈−,−〉 : Ã × Ã −→ C

by 〈1, 1〉 = 1 and

(1) 〈Ãk, Ãℓ〉 = 0 for any 0 ≤ k 6= ℓ;

(2) For any x ∈ Ãk and ti ∈ T, i = 1, . . . , k,

〈αt1αt2 . . . αtk , x〉 := ∇t1∇t2 . . .∇tk(x).

The bilinear form on Ã is well-defined in view of Proposition 5.13. Note that we do not
reverse the order of ∇ti in the above definition. This is different from that in Definition 5.14.
However, one can prove the following the properties which are similar to those given for A.

Proposition 5.15. We have the following properties.

(1) For any t ∈ T and x ∈ Ã, we have

∇t(x) =
∑

(x)

〈αt, x(1)〉 x(2),

Dt(x) =
∑

(x)

x(1) 〈x(2), αt〉,
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where we have used the Sweedler’s notation ∆(x) =
∑

(x) x(1) ⊗ x(2) for the comulti-

plication of Ã.
(2) For any t, t′ ∈ T , we have ∇tDt′ = Dt′∇t.

(3) For any x, y ∈ Ã, we have

〈xαt, y〉 = 〈x,∇t(y)〉, and 〈αtx, y〉 = 〈x,Dt(y)〉.

Therefore, with respect to the bilinear form the skew-derivations ∇t and Dt are right
adjoint to right and left multiplication by αt, respectively.

Proof. Part (1) follows from the definitions of ∇t, Dt (see (5.9)) and the bilinear form. For

part (2), for any x ∈ Ã we have

∇tDt′(x) = ∇t(
∑

(x)

x(1) 〈x(2), αt′〉) =
∑

(x)

〈αt, x(1)〉 x(2)〈x(3), αt′〉.

Similarly, we can express Dt′∇t(x) and obtain that ∇tDt′ = Dt′∇t. The proof of part (3) is
similar to that of Lemma 4.4. �

Remark 5.16. We do not know whether the bilinear form on Ã is non-degenerate. Note that
by Lemma 5.2 A and its opposite Aop can be lifted to Ã as vector spaces. It follows from
Proposition 4.5 that the restriction 〈−,−〉 : Aop ×A → C is non-degenerate.

We define

ω̃ :=
∑

t∈T

αt.

By the defining relations of Ã we have ω̃2 = 0. Hence (Ã, rω̃) (resp. (Ã, ℓω̃)) is a cochain
complex, where rω̃ (resp. ℓω̃) is given by right (resp. left) multiplication by ω̃.

Proposition 5.17. We have the following:

(1) Let ∇ =
∑

t∈T ∇t and D =
∑

t∈T Dt. Then we have

〈xω̃, y〉 = 〈x,∇(y)〉, and 〈ω̃x, y〉 = 〈x,D(y)〉.

(2) The complexes (Ã, D) and (Ã, rω̃) are acyclic.

(3) The complexes (Ã,∇)and (Ã, ℓω̃) are acyclic.

Proof. Part (1) is a consequence of Proposition 5.15. For part (2), we have

Drω̃(x) = D(xω̃) =
∑

t∈T

D(xαt) =
∑

t∈T

(−D(x)αt + x) = −rω̃D(x) +Nx.

Therefore, we have Drω̃+ rω̃D = N id, which implies that (Ã, D) and (Ã, rω̃) are acyclic and
part (2) follows. Part (3) can be proved similarly. �

Appendix A. Computational results on the multiplicity

In this appendix, we tabulate some computational results on the cohomology Hk(K∗(U))
for the simple CW -module U , which by Theorem 4.20 counts the multiplicity of the con-
tragredient U∗

L in the cohomology Hk(F ;C) of the Milnor fibre. The homology Hk(K(U))
returns the same result; see Theorem 3.11. All calculations are done with the computational
algebra system Magma.
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We only focus on the case of the symmetric group W = Symn+1. Then the Milnor fibre F
is an algebraic variety defined by

F := {(x1, . . . xn+1) ∈ Cn+1 |
∏

1≤i<j≤n+1

(xi − xj)
2 = 1}.

The reduced Milnor fibre F0 is defined by

F0 := {(x1, . . . xn+1) ∈ Cn+1 |
∏

1≤i<j≤n+1

(xi − xj) = 1}.

The symmetric group Symn+1 acts on F by permuting coordinates. Hence it induces a
linear (left) action on the cohomology Hk(F ;C) for 0 ≤ k ≤ n − 1. As vector spaces,
Hk(F ;C) ∼= Hk(F0;C)⊕Hk(F0;C); see [DL16].
The simple right modules Sλ of Symn+1 are indexed by partitions λ = (λm1

1 , . . . , λ
mp
p ) of

n + 1, where λmi
i means that λi repeats mi times and

∑p
i=1miλi = n + 1. Let λ′ be the

conjugate partition of λ. Then we have Sλ′ ∼= Sλ⊗ǫ, where ǫ is the alternating representation
associated to (1n+1). It follows from (3.17) that

Hk(K∗(Sλ)) ∼= Hk(K∗(Sλ′)), 0 ≤ k ≤ n− 1

for any conjugate pair λ, λ′ of partitions.
Let (Sλ)L denote the simple left module of Symn+1 associated to the partition λ. It is

well known that the contragredient (Sλ)
∗
L is isomorphic to (Sλ)L as left Symn+1-module.

Therefore, using Theorem 4.20 we have

(A.1) 〈(Sλ)L, H
k(F,C)〉 = dimHk(K∗(Sλ)).

The Poincaré polynomial P (t) of the Milnor fibre F can be computed by

(A.2) P (t) =

n−1∑

k=0

dimHk(F ;C)tk =

n−1∑

k=0

∑

λ⊢n+1

dimSλ〈(Sλ)L, H
k(F,C)〉tk.

Note that the Poincaré polynomial P0(t) of F0 is P0(t) = P (t)/2.
We tabulate computational results on (A.1) and (A.2) for all simple modules of Symn+1

for 2 ≤ n ≤ 7 in the following tables. Each conjugate pair of partitions is listed in the same
row as they produce the same cohomology.

Remark A.1. Note that the results tabulated here are consistent with those appearing in
[DL16], up to type A4, where W = Sym5. However the cases computed in loc. cit. include
the action of the monodromy group on the cohomology, in the sense that the structure of
H∗(F,C)is described as a Γ-module, where Γ = Symn+1 × µn(n+1). In the present work, al-
though the original Brady-Falk-Watt model of F does come with an action of the monodromy
on the CW complex describing F (see [BFW18] or [Zha20, Section 3.4]), our analysis of the
model has not been able to preserve the monodromy action, except to the following extent.
In general, the group 〈γ〉 acts (like any subgroup of W ) on F , and hence on H∗(F ). But it
is known that 〈γ〉 may be identified with a quotient (or subgroup) of the monodromy µ, and
this action is easily identifiable in our model [Zha22, Remark 6.4].

Remark A.2. Settepanella computed the cohomology Hk(PBn+1,Q[q, q−1]) of the pure braid
group PBn+1 with coefficients in the Laurent polynomial ring Q[q, q−1] for n ≤ 7 [Set09,
Table 2]. This is related to the Milnor fibre F0 by

Hk+1(PBn+1,Q[q, q−1]) ∼= Hk(F0,Q).
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Hence Settepanella’s results give rise to the Poincaré polynomials P0(t) in type An for n ≤ 7.
The Poincaré polynomials P0(t) = P (t)/2 given in the tables below coincide with those of
Settepanella up to type A6. However, for type A7 our cohomology groups Hk(F0;Q) agree
with Settepanella’s except for k = 5, 6, but the Euler characteristic remains the same.

Remark A.3. Apart from the monodromy action, the major issue untouched by our work is
the mixed Hodge structure on each cohomology group H i(F,C). We hope to return to this
theme later.

H0 H1

(3), (13) 1 2
(2,1) 0 2

Table 1. Sym3, P (t) = 2 + 8t

H0 H1 H2

(4), (14) 1 2 2
(3, 1), (2, 1, 1) 0 1 4

(2, 2) 0 2 4

Table 2. Sym4, P (t) = 2 + 14t+ 36t2

H0 H1 H2 H3

(5), (15) 1 0 2 4
(4, 1), (2, 13) 0 1 1 4
(3, 2), (22, 1) 0 1 2 6

(3, 1, 1) 0 0 4 10

Table 3. Sym5, P (t) = 2 + 18t+ 56t2 + 160t3

H0 H1 H2 H3 H4

(6), (16) 1 0 2 4 2
(5, 1), (2, 14) 0 1 1 3 8
(4, 2), (22, 12) 0 1 1 6 15
(3, 3), (2, 2, 2) 0 0 1 7 11
(4, 1, 1), (3, 13) 0 0 2 5 13

(3, 2, 1) 0 0 4 6 18

Table 4. Sym6, P (t) = 2 + 28t+ 146t2 + 412t3 + 1012t4
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H0 H1 H2 H3 H4 H5

(7), (17) 1 0 2 0 2 6
(6, 1), (2, 15) 0 1 1 3 3 6
(5, 2), (22, 13) 0 1 1 4 8 18
(5, 1, 1), (3, 14) 0 0 2 3 10 24
(4, 3), (23, 1) 0 0 1 4 7 18

(4, 2, 1), (3, 2, 12) 0 0 2 8 17 46
(3, 3, 1), (3, 22) 0 0 1 5 11 28

(4, 13) 0 0 0 6 8 22

Table 5. Sym7, P (t) = 2 + 40t+ 314t2 + 1240t3 + 2572t4 + 6648t5

H0 H1 H2 H3 H4 H5 H6

(8), (18) 1 0 0 0 2 6 4
(7, 1), (2, 16) 0 1 1 1 1 3 10
(6, 2), (22, 14) 0 1 1 2 4 10 28
(6, 12), (3, 15) 0 0 2 3 3 7 26
(5, 3), (23, 12) 0 0 1 3 6 10 34

(5, 2, 1), (3, 2, 13) 0 0 2 5 16 25 76
(5, 13), (4, 14) 0 0 0 3 10 22 50
(4, 4), (24) 0 0 0 1 4 19 30

(4, 3, 1), (3, 22, 1) 0 0 1 6 18 27 84
(4, 22), (32, 12) 0 0 0 3 16 31 74

(4, 2, 12) 0 0 0 8 22 36 112
(3, 3, 2) 0 0 0 4 10 16 52

Table 6. Sym8, P (t) = 2 + 54t+ 590t2 + 3330t3 + 10212t4 + 17744t5 + 50644t6
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