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MILNOR FIBRE HOMOLOGY COMPLEXES
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Dedicated to Claudio Procesi, good friend, Italian mathematician

ABSTRACT. Let W be a finite Coxeter group. We give an algebraic presentation of what
we refer to as “the non-crossing algebra”, which is associated to the hyperplane complement
of W and to the cohomology of its Milnor fibre. This is used to produce simpler and more
general chain (and cochain) complexes which compute the integral homology and cohomology
groups of the Milnor fibre F' of W. In the process we define a new, larger algebra A, which
seems to be “dual” to the Fomin-Kirillov algebra, and in low ranks is linearly isomorphic
to it. There is also a mysterious connection between A and the Orlik-Solomon algebra, in
analogy with the fact that the Fomin-Kirillov algebra contains the coinvariant algebra of W.
This analysis is applied to compute the multiplicities (p, H*(F,C))w and (p, H*(M,C))w,
where M and F' are respectively the hyperplane complement and Milnor fibre associated to
W and p is a representation of W.

This work is an outgrowth of [Zha22], whose notation we follow, by and large. In particular,
W is a finite Coxeter group, M is its corresponding complexified hyperplane complement and
F is the corresponding (non-reduced) Milnor fibre, as defined in [DLI16, Def. 1] or [Zha22].
Our objective is to construct tractable chain complexes which compute the homology of M
(which is known for all W) and that of F' (which is poorly understood, even in the case
W = Sym,,). Our approach will indicate a connection with the algebra of Fomin-Kirillov
[FK99).

In the first two sections, we recall two distinct definitions of the central character in our
development, the “non-crossing algebra” A, and prove their equivalence. This provides us
with many properties of the algebra A. In addition, we discuss a number of preliminaries we
shall require later. We then introduce a duality theory, by defining a non-degenerate bilinear
form on A, and this is applied to study the integral cohomology of F'.

Our main purpose here is to show how the algebra A and its relatives play a crucial role
in determining the cohomolgy of the Milnor fibre F'. For example, we give several results
similar to the following (see Corollary below). Let w =Y, . a; € A; then w? = 0 in A,
and we prove that both left and right multiplication by w on A have the same kernel and
image. Moreover we have the following isomorphism of graded abelian groups:

AwnNwA

01) H(F/W;2)[-1) = =22

where [—1] on the left means that the Z-grading is shifted by —1. This result could be
compared with those in [DPSS99], whose ultimate purpose is to compute the left side of
the equation (O0.I). In principle, the stated result reduces the question to a mechanical

computation in A, although in practice, this is not an easy computation.
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1. DEFINITIONS, NOTATION AND PRELIMINARIES.

1.1. The noncrossing partition lattice. Let (IW,.S) be a finite Coxeter system of rank n
with a geometric representation on the Euclidean space V :=R", and let T' = |J,,cipr wSw™!
be the set of reflections of W. Denote by ¢7(w) the number of reflections in a shortest
expression for w as a product of reflections, and define a partial order < on W by stipulating
that u < v if and only if f7(v) = lp(u) + br(u™tv) for u,v € W. Then (W, <) is a graded
poset whose unique minimal element is the identity e and whose maximal elements are those
having no fixed points in R", sometimes known as elliptic elements.
Let v be any Coxeter element, i.e., product of all the simple reflections in some order.

Definition 1.1. Denote by £ the closed interval £ := [e,~] of the poset (W, <).

Brady and Watt proved that the closed interval L is a lattice, which we call the noncrossing
partition (NCP) lattice [BWOS]. The isomorphism type of the NCP lattice is independent of
v, as all Coxeter elements form a conjugacy class in W. Although all Coxeter elements of W
are conjugate in W, we now define a specific Coxeter element in terms of the root system,
which has properties we shall find useful later.

Associated with W we have a set ® of vectors in V', which form a root system (cf. [Bou02,
Ch. VI, §1}), and S determines a simple subsystem of ®, as well as the corresponding set
®* of positive roots. Write II = {«; | ¢ € [n]} for the given simple system. Without loss
of generality, we may assume that W is irreducible. Then II can be written as the disjoint
union IT = IT; U Iy, where Iy = {ay,, ..., a4} and Iy = {ay,11, - .., ay, } where the o;, € Iy
are mutually orthogonal as also are the «;, € Iy (see [Steb9]).

The set of positive roots of ® is in bijection with the set of reflections of W. Recall
that W acts faithfully on the Euclidean space V' := R"™ whose inner product we denote by

(—,—). For any positive root « relative to II, the corresponding reflection is defined by
to(z) =2 — Q%a for any = € R™. Throughout, we use the following Coxeter element
fy = ( H ta)( H ta);
a€ell; acllz

unless otherwise stated. Note that the simple reflections ¢, and g commute whenever «;, 3 €
Hl or «, 5 S Hg.

Now we define a total order on the set of positive roots. Let h be the Coxeter number, i.e.
the order of 7. Then the number of positive roots is nh/2. It is proved in [Steb9, Theorem
6.3] that the positive roots py of ® relative to Il can be produced successively using the
following formulae

(071 1 S k S l,
(1.1) pe = (), [+1<k<n,
Y(pr—n), n+1<k<
This yields a total order < on the set T' of reflections
(12) tm = tp2 <= tpnh,/2'

The total order < on T gives rise to an EL-labelling (see JABWOT]) of £. Denote by £(L)
the set of covering relations u < v of £, that is, relations where there is no third element
between u and v. Then we have a natural edge labelling

N EL) =T, u<v—ulto.
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Let c: 2 =wy < wy < -+ < wg =y be amaximal chain of any closed interval [z, y] of L. We
may identify ¢ with its labelling sequence A(c) := (wg 'wy, ..., w; ' wy), where w; jw; € T
for 1 <4 < k. It has been proved that A is an EL-labelling [ABWO07, Bj680], which means
that for every interval [z, y] of £

(1) there is a unique increasing maximal chain in [z, y], and

(2) this chain is lexicographically smallest among all maximal chains in [z, y].

As £ has an EL-labelling, it is Cohen-Macaulay [Bj680, Theorem 2.3], i.e. for any u < v of
L we have B

Hi(u,v) =0, Vi#lr(v) —lr(u) =2,
where H denotes reduced homology of the order complex of (u,v).

If W is a finite Coxeter group, then L is a direct product of the NCP lattices L(W;) over the
irreducible components W; of W. It is a result of [Bjo80] that the EL-labelling is preserved
under the direct product. Moreover, any closed interval [e, w] of £ has an EL-labelling given
by the natural labelling A restricted to [e, w].

For any w € L, denote

Rexr(w) := {(t1,ta, ..., tx) |w = tity.. .ty is T-reduced}.
With respect to the total order (L2]) on 7', we define

(1.3) Dy = {(tl, .. .tk) € ReXT(w) | t1 =ty >+ > tk}.

In words, D,, is the set of decreasing labelling sequences for the maximal chains e < t; <
tity < -+ < tylg... 1ty = w of [e,w]. Note that any interval [u,v] of L is isomorphic to
[e, u1v] as posets. The following result can be found in [Zha22, Proposition 2.2].

Proposition 1.2. For any w € L with 1 < {p(w) =k < n, we have
rank Hy,_s(e,w) = (—1)*u(w) = | Dy,
where p is the Mobius function of L.

Any interval [e,w]| of £ has the following important interpretation, due to Bessis [Bes03|
Lemma 1.4.3] (see also [Arm09, Proposition 2.6.11]).

Proposition 1.3. Let v € W be a Cozeter element and NC(W,~) the noncrossing parti-
tion lattice relative to . For any w < =, the interval [e,w] of NC(W,~) is isomorphic to
NC(W' w) for some parabolic subgroup W' of W.

1.2. The algebra A. We now give an algebraic definition of the noncrossing algebra in
terms of generators and relations.

Definition 1.4. Let £ := [e,7] be the noncrossing partition lattice associated to a finite
Coxeter group W and a Coxeter element v € W. We define the noncrossing algebra A4 =
A(W,7) to be the graded algebra over Z generated by homogeneous elements a;,t € T of
degree 1, subject to the following quadratic relations:

(1) a? = a,ay, = 0 for any ¢t € T and ty,t, € T with t1ty £ v;

(2) 221 1) eResr(w) Ot Gtz = 0 for any w € £ with {r(w) = 2.

Different choices of the Coxeter element produce isomorphic noncrossing algebras, as the
Coxeter elements are all conjugate to each other and the absolute length is invariant under
the conjugation. More precisely, if ¥/ = wyw™! for some w € W, the map a; — Gy
extends to an algebra isomorphism between A(W,~) and A(W, 7).
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Example 1.5. (Dihedral group) Let I;(m) be the diheral group defined by
I(m) = (51,85 | 57 =55 = (s951)" = 1), m > 3.

Let v = 5155 be a Coxeter element and let t; = s;(s251)""! be reflections for 1 < i < m. Then
v = tit,, = tot; = -+ = tt,_1 has m reduced reflection factorisations. The noncrossing
algebra A(Iy(m), ) is generated by a;,, 1 < i < m subject to the following relations

apa,;, =0, 1<i<m-—1,

aga;, =0, 2<i<m,1<j#i—1<m,

N e e N

Because it is relevant for the proof of Proposition 2.5 we set out how the above construc-
tions apply to this case. Note first that, using the relation v¢;7y~! = t;.», where the index is
taken modulo m, the construction ([2)) leads to the following ordering on the reflections ¢;:
tl(: 81) <ty <.+ =< tm(: 82).

It follows, taking into account the reduced reflection factorisations of v given above, that the

unique increasing factorisation is v = #1t,,, = 5152, and all other factorisations are decreasing.

Example 1.6. (Type A,) Let W = Sym,, be the symmetric group generated by the
elementary transpositions (7,7 + 1),1 < i < n. Let v = (1,2,...,n + 1) be a Coxeter
element. We write a;; := a(; ;). Then A(W, ) of type A is the graded Z-algebra generated
by a;j,1 <1i < j <n+ 1subject to the following relations:

a?j:(), I<i<jg<n+l,
a;paj =0, 1<i<y<k<li<n+1,
@ijQik = QjR0i; = Qipajr = 0, 1<i<y<k<n+1,
;i + aRa;; = ayaik + a;pag = 0, 1<i<ji<k<l<n+1,
;@i + ki + aipa;; =0, 1<i<j<k<n+1.

1.3. The algebra B. We next give what later will turn out to be a combinatorial definition
of the noncrossing algebra above, as introduced in [Zha22].

For each k = 0,...,n, let £ := {w € L | {r(w) = k}. Denote by Cj_1(w) the abelian
group which is freely spanned by all sequences of Rexr(w). Let By denote the k-string braid
group, with standard generators o;,1 < i < k — 1 subject to the relations o,0; = o0;0; for
li—j| > 2, and 0y0;110; = 04410011 for 1 < i < k—2. The Hurwitz action of By on Cy_1(w)
is defined by

Ui'(tla .. 'ati—latiati-i-la S >tk) = (t17 s ati—lati+1>t§i+1> s >tk)> 1<:i< k—1.

Let Sym,, be the symmetric group on k letters with standard generators s; = (i,i+1),1 <
t < k — 1. There is a set-theoretic lift map:

@ :Symy — B, T=8;...8, T i=0;...04,

where m = s;,...s;, € Sym,, is a reduced expression in the standard generators. This is
independent of the choice of reduced expression of 7. For any t = (¢1,ts,..., %) € Rexr(w),
we define the following Z-linear map using the above Hurwitz action:

B:Croa(w) = Choa(w), tr Bei= > sgu(m)m.(ti,ta, ... t),

TESym,,
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where sgn is the usual sign character of Sym,. The element f; is viewed as an alternating
sum of maximal chains of the interval (e, w], with each sequence (¢,ts,...,) in the sum
identified with the following chain

1 <titg < -+ <tity... T = w.

Definition 1.7. For each w € Lj, we define B, to be the abelian group spanned by the
elements [, of Rexp(w), that is,

By=ImB= > Zp C Ciy(w).
teRexr(w)
In particular B, := Z. Further, we write B := @, ., B..
_We point out a close connection between B and the homology of L. For any w € Ly, let
Hy_s(e,w) be the top reduced homology group of the open interval (e, w). Define Cy_; to be

the abelian group freely spanned by the basis (., Rexr(w). Then Cy—1 = D, ¢, Cr-1(w).
Define the linear truncation dj_; by

(1.4) dp—1: Cro1 = Cra,  (ti,to, .o tiy, tg) = (f1,tay . ter), k> 2,

and do(t) = 1,Vt € T. We will write d = dj, whenever no confusion arises. As B, C Cy_1(w),
we may restrict d to B, and define

2z :=d(f), VYt € Rexp(w).

Proposition 1.8. [Zha22, Proposition 3.5] Let w € Ly with k > 1. Then for any t €
Rexr(w), we have

k
Zt - Z(—l)k_lﬁt(z) 6 Hk_Q(e,W),
=1

where t(1) := (t1,...,t;, ... ty) is obtained by removing the i-th entry of t.

Theorem 1.9. [Zha22, Theorem 4.5] For any w € L, let B, and D, be as defined in
Definition [1.7 and (L3)), respectively.
(1) The elements Py, t € D, constitute a Z-basis for By;
(2) The elements zy,t € D, are a Z-basis for Hy_s(e,w), where k = {p(w) > 1;
(3) The Z-linear map
d: B, — f[k_g(e,w), By — 24, t € Rexp(w)
is an isomorphism of free abelian groups.

We now define a multiplicative structure which makes B into a finite dimensional algebra.
For any By € B, and §;,t € T, define

By, if wt <~ and lp(wt) > lp(w),
BB == .
0, otherwise,

where (t,t) denotes the concatenation of t and t. Clearly, we have By = S, 04, ... 0y, for
any T-reduced expression w = tity...t, € L. Therefore, B is a finite-dimensional Z-graded
algebra generated by homogeneous elements ;,t € T of degree 1.

Proposition 1.10. [Zha22, Proposition 5.6] We have the following quadratic relations in B:
(1) B2 =B, B, =0 forallt € T and ty,ty € T with tity £ .
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(2) For any w € Lo, we have

> Bub,=0

(t1,t2)ERexr (w)
2. AN ISOMORPHISM BETWEEN A AND B

2.1. The isomorphism. The main theorem of this section is the following.

Theorem 2.1. Let W be a finite Cozeter group and let T be the set of reflections of W. The
assignment a; — By for all t € T extends to a graded algebra isomorphism A = B.

The remainder of this section is devoted to proving Theorem 2.1]

We begin with a sketch of the proof. By Proposition [[L.I0] the assignment a; — [3; preserves
the quadratic relations of A. Since B is a finite-dimensional algebra generated by [3;, we obtain
a surjective algebra homomorphism

(21) ¢:A—)B, at>—>ﬁt, teT

from A to B. To see that this is indeed an isomorphism, we will prove that A is finite-
dimensional and then show that rank A = rank B. It will follow that A and B are isomorphic.

To show A is finite dimensional, it is crucial to find necessary and sufficient conditions to
ensure that a; ay, ... a;,, = 0. We need the following key lemma.

Lemma 2.2. (Vanishing property) Let t; € T for 1 <i <k.
(1) We have agay, - ..ay, = 0 if tita ...t is not T-reduced.
(2) Let tity ...ty be a T-reduced expression. Then
CLthLtQ...atkIO, thltgtkﬁ’}/
The proof of this lemma is postponed to Section

Lemma 2.3. The element a;,ay, . . . ar, # 0 if and only if t1ty . . .ty is T-reduced and t1ty . . .t <
’}/.
Proof. The “only if” part is evident from Lemma For the “if” part, note that

lag, ag, - . az,) = B, Bry - - B, = Be,
where t = (11, ..., t) is the labelling sequence of the chain e < t; < t1ty < -+ < tyty... 1) of
L. By our construction ¢ # 0 and hence a,ay, . .. a;, # 0. ]

Recall that the algebra A has a natural Z-grading with deg(a;) = 1 for any t € T'. Let A
denote the k-th graded component of A. For any w € Ly, let A, be the abelian subgroup of
Aj. given by

A, = Spang{ay :== aya, ... a, | t € Rexp(w)}
By convention we set A, := Z.

Lemma 2.4. Maintain the notation above. We have:
(1) Ay =0 for k >n = Llp(y).
(2) Ak = Brec, Av for 0 <k <n=tr(3).

Proof. As the maximal rank of the poset (W, <) is n, any expression t; .. .t; with k£ > n is not
T-reduced. It follows from Lemma that A, =0 for k >n and A, =) . L A, for 0 <
k <n. The surjective homomorphism (2.1]) satisfies ¢(A,) = B, and hence ¢(>_, . Aw) =
D..c ¢, Buw. Therefore, the sum Ay = > A, is a direct sum. O

wELy
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Proposition 2.5. For any w € L, let D, be as in ([L3)). Then the elements ay,t € D, form
a Z-basis for A,.

Proof. Since ¢(a) = [, the set {a¢ | t € Dy} is Z-linearly independent by Theorem [L9. By
Proposition [[.3, without loss of generality, we may assume w = ~y. It remains to show that
every element of A, is a Z-linear combination of the decreasing elements a¢,t € D,.

We use induction on ¢7(y) = n. If n = 1, then there is nothing to prove. By part (2)
of Lemma 2.4 we have A,,_; = > . £, Aw. For n > 1, we may by induction assume that
any ag, ay, -..a;, , € A,_1 can be expressed as a Z-linear combination of the elements ay for
t € Uper, , Do

Consider the following filtration of A, = A,. Recall that T is totally ordered as in (L.2).
For each reflection t,, € T, define to be V,, be the abelian subgroup of A, spanned by the
elements ay, ... ayz, ,a, forall (t1,...,t, 1) € Rexp(q1,,). Then we have a filtration

ngplg...givig...gZ\/i:Aw
i=1

We use induction on s to show that for each s with 1 < s < %”, > iV, is spanned by
the elements ay,t € D,. If s = 1, then by the minimality of ¢,, in 7" and the induction
hypothesis on n, any element in V, can be written as a Z-linear combination of decreasing
elements ay, ...az, ,a;, forall (t1,...,t,1,t,) € D,.

Now assume s > 1. For any a € V,_, by the induction hypothesis on n there exist \y € Z

such that
a= Z AeQeay, = Z Aegag, + Z Ay,
tE€D 1y, teDy, teD,
where
D:tps = {(tl, .. -tn—l) S D'ytps tp_1 > tps}>

D:;tps = {(tl, .. -tn—l) S D'ytps | th—1 < tps}'

Note that agay,, is a decreasing element for any t € D:tps. We claim that
(22) atatps - Vpl -+ Vp2 + 4 ‘/;571, Vt - ,D’jtps .

Given (2.2]), by the induction hypothesis on s, any element a € V,_ is a Z-linear combination of
decreasing elements at, t € D.,. Therefore, > | V,, is spanned by the elements a¢, t € D,, for
any positive integer s. In particular, A, = 2?2{2 V,, is spanned by the decreasing elements
ag, te ,D«/.

It remains to prove (Z2). Take any t = (t1,...,t,_2,tn_1) € Djtps with ¢,_1 < ¢,,. Let
u = t,_1t,,. Then there exists a poset isomorphism between [e,u] and [t;...t,_2,7] which
sends x € [e,u] to ty...t, ox € [t1...t,_2,7]. In particular, this isomorphism preserves the
EL-labelling.

By Proposition[[3] the interval [e, u] is the noncrossing partition lattice of a dihedral group
I,(m) for some integer m > 2. Let ¢, < t,, < --- < t, be the reflections of [e,u] with the
total order inherited from ([.2]). By the discussion in Example the unique increasing
maximal chain of [e, u] is labelled by (t,-1,t,,) and we have ¢, =t,_; and ¢, =t, . The
other maximal chains in [e, u| are all decreasing. Further, using the defining relation of A,



8 GUS LEHRER AND YANG ZHANG

we have

(23) atnilatps = CLtTl atTm = — E atTi atTj,

trytr

where the sum is over all decreasing labelling sequences of maximal chains in [e, u]. For any
pair t,, > t,, we have

(2.4) try Rty Sty <ty =t
Combining (23)) and (2.4]), we obtain

s—1
gy, = Gy, - . Gy, o (G, 0y, ) = — Z gy - - - Ay, o0y, Oy, € Z V-
byt i=1
The statement (2.2]) follows, and the proof of Proposition is complete. O

The following is an immediate consequence of Lemma [2.4] and Proposition 2.5

Corollary 2.6. The set {ay |t €, . Dw, t decreasing} is a (Z)-basis of A.

weL

We are now in a position to prove Theorem 2.1

Proof of Theorem[2. The map ¢ : A — B defined by ¢(ay) = f¢ extends to a surjective
algebra homomorphism. By Corollary the algebra A has a basis consisting of decreasing
elements ay with t € J, ., Dy It follows from Theorem that ¢ is injective and hence A
is isomorphic to B. O

Proposition 2.7. The algebra A enjoys the following properties.

(1) Let L and L' be two noncrossing partition lattices. Then as free abelian groups,
AL x L) =2 AL) @ AL).

(2) Let L, = le,w] be a closed interval in L. Then the inclusion i : L,, — L of posets
induces an injective homomorphism i : A(Ly) = A(L) of algebras. In particular,

A(Ly)w = A(L)y, Yu < w.

Proof. For part (a), let T and T” be the set of reflections of £ and L' respectively. The algebra
A(L x L') is generated by a;,t € T'UT’. By the defining relation we have a;ay = —aypay
for any t € T and t' € T'. We have two natural embeddings i; : A(L) — A(L x L) and
io  A(L") — A(L x L), inducing the algebra isomorphism

FiAL) @ AL) — AL x L)),

such that f(a;®ay) = i1(as)iz(ay) and i1(ay)is(ay) = —is(ay)ii(a;) forany t € T and ¢/ € T.

We turn to the proof of part (b). The set T, of reflections in L, inherits the total
order from the totally ordered set T' of reflections in L. Since £,, C L, the induced map
ia: A(Ly) = A(L) defined by a; — as,t € T, preserves the defining relations and hence is
an algebraic homomorphism. Moreover, the induced map ¢4 preserves the decreasing basis
elements and thus 74 is injective. 0

2.2. The vanishing lemma. In this subsection we prove the vanishing property stated in
Lemma 2.2



2.2.1. T-reduced expressions and root systems. Consider the following two sets:

Ti:=A{(ts,ta,...,tx) | k € Nand tyty. ..t is not T-reduced},

2.5
(2:5) To i ={(t1,ta, ..., ;) | k € N and tity ...t is T-reduced and 1ty ...t £ v}.

Then Lemma can be restated as:
(2.6) ag =0, foranyte T UTs.

To prove this, we need a geometric characterisation for 73 U 75 in terms of the root system.
Let o : W — GL(V) be the geometric representation of W with V' = R™. Denote by &
the set of positive roots of W, as determined by S (see the remarks preceding (L1])). Define

Fix(w) := Ker (p(w) —1d) C V
to be the vector subspace fixed by w € W. By [Car72, Lemma 2], we have
(2.7) lr(w) = codim Fix(w) = n — dim Fix(w), Yw € W.

Since the Coxeter element v fixes no vector in V', the linear map v —1 is an automorphism
of V. We define the linear map

V=(-1"1 V=V

This map satisfies the following properties which come from the proof of [Car72, Lemma 2J;
see also [BW0S|, Corollary 4.2].

Lemma 2.8. Let p € &1 be a positive root and let 9 be as defined above.

(1) (9(p),p) = ~L(p. p);
(2) 0(p) € Fix(t,7).

Proof. We have (v — 1)(¥(p)) = p, which implies that v(J(p)) = ¥(p) + p. Since Coxeter
group action preserves the inner product of V', we have (v(9(p)),v(9(p))) = (9(p),¥(p)) and
hence (9(p), p) = —3(p, p). It follows that ¢,(9(p)) = ¥(p) + p and hence v(J(p)) = t,(I(p)).
This leads to J(p) € Fix(t,7). O

The following lemma characterises the reduced T-expressions.

Lemma 2.9. [Car72, Lemma 3] Let p1, pa, ..., px € ®T. Then the expression t,t,, .. .t,, is

T-reduced if and only if p1, pa, ..., pr are linearly independent.

k

This follows directly from the fact that for w € W, ¢r(w) = dim(Im(w — 1)) (cf. [HL99,
(1.2)]). The following lemma characterises the T-reduced expressions of elements occurring
in the lattice L.

Lemma 2.10. [BWO0S, Lemma 4.8] Let t,t,,...t, be a T-reduced expression. Then the
following are equivalent:

(1) tortp, - to, <5
(2) (9(pi), p;) =0 whenever 1 <i < j <k.
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2.2.2. Proof of the vanishing lemma. To prove the equivalent statement (2.6)) of Lemma [2.2]
we need a description of the set 7; U 75 in terms of positive roots.

Proposition 2.11. Let p1,p2,...,px € @1, and let T; and T3 be as in [2H). Then we have
(tpristpss - tp) € Tt UTy if and only if there exists a pair i < j such that (V(p;), p;) # 0.

Proof. Let t = (t,,,tpy,...,tp,) € Ti U Ty and assume for contradiction that we have
(9(pi),p;) = 0 for any 1 < i < j < k. Since the matrix ((J(p;), pj))kxk is non-singular
by part (1) of Lemma 2.8, the positive roots p;, 1 < ¢ < k are linearly independent. It
follows from Lemma that ¢,,t,, ...t,, is T-reduced and hence t ¢ 77, which implies that
t € 7. However, ift oyt s T reduced and (V(p;),p;) = 0 for any 1 < i < j < k,
then by Lemma we have toitps - -ty <y, which implies that t ¢ 75. This contradicts
t € 71 U7T,. This proves the ”only 1f” part.

For the converse, assume that there exist ¢ < j such that (J(p;), p;) # 0. If t,,t,, .. .1, is
not T-reduced, then (t,,,%,,,...t,,) € Ti. Otherwise, by Lemma 210 ¢, t,,...t,, Z 7, and

hence (t,,,t ) € T3. This completes the proof. O

protpas- - tpy

We now make the following definition.

Definition 2.12. A sequence of positive roots (p1, pa, - . ., pr) is called a vanishing sequence
if the inner product (J(p;), p;) =0 for all 1 < i < j < k except that (9(p1), p) # 0.

With this definition, we can refine Proposition 2.11] as follows.

Proposition 2.13. Let p1, pa,...,pr € ®T. Then t = (t,,,t,,,...t,,) € T1 U Tz if and only
if there exists a pair i < j such that (p;, pit1--.,pj) is a vanishing sequence.

Proof. By Proposition 2.1, we may choose a pair ¢ < j for which 7 — 4 is minimal such that
(9(p:), p;) # 0. It follows from the minimality of j—i that (J(ps),pr) =0foralli <s <t <j
except for s = i,t = j. Therefore, (p;, pit1,...,p;) is a vanishing sequence. 0J

Note that for any p € ®*, the sequence (p, p) is a vanishing sequence as the inner prod-
uct (J(p),p) # 0 by part (1) of Lemma 2.8 1If ¢,¢,, is T-reduced and t,t,, £ v, then
by Lemma 210 the inner product (9(py1),p2) # 0 and therefore the sequence (py, p2) is a
vanishing sequence. It follows from the defining relations of A that a;, a;,, = af =0.

In general, we will prove that a;, ...a;, = 0 for any vanishing sequence (pl, P25y Pk)-
Before proving this, we need the follovvlng observations.

Lemma 2.14. Let (p1, pa,- .., pr) be a vanishing sequence with k > 2. Then
(1) tptp, -ty , < v andtpty, ---t, < are both T-reduced;
(2) toty, < is T-reduced for all i < j except thati=1,j = k;
(3) Let w =t,t,, <7 and let T (w) = {1, T2, ..., T} be the set of all positive roots for
which t., <w. Then (7;, ps, ..., pr) 1S a vanishing sequence for any 7; # p.

Proof. The matrix ((9(ps), pj))k—1)xk—1) With 1 < 4,5 < k — 1 is lower triangular with
nonzero diagonal entries, thereby p;;1 < ¢ < k — 1 are linearly independent. It follows
from Lemma and Lemma that ¢,,t,, - -t,_, is T-reduced and t,t,,---t,,_, < 7.
Similarly, one can prove that ¢,,t,, ---t,, < 7. This completes the proof of part (1), from
which part (2) follows.

For part (3), let V; = Fix(w) C V and let V% be the orthogonal subspace such that
V =V, @ Vit Then by [271) dimV; = n—2 and dimV;* = 2. Since w fixes every vector in V;,
so is any expression ¢ t,, of w. Therefore, those positive roots 7; € ®*(w) are in Vi*. Since
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tptp, 1 T-reduced, it follows from Lemma 2.9 that p;, po € Vi* are linearly independent and
hence make up a basis for V.

For any 7; € & (w) C Vit we have 7; = A\;p1 + Aops for some Aj, Ay € R. Note that A\; = 0
if and only if 7; = ps. Then we have

(D7), pj) = M(D(p1), psi) + X2(F(p2), p;) =0, 1<i<n1<j<k-—1,
((9(7), pr)) = A1), pr) + A2(F(p2), pr) = M(F(p1), pr.)-

(
Since (V(p1), px) # 0, we have ((¥(7), px)) # 0 if and only if Ay # 0 if and only if 7, # po.
Therefore the sequence (7, ps, ..., px) is a vanishing sequence for any 7; # ps. O

Lemma 2.15. Let (p1, p2, ..., pr) be a vanishing sequence with k > 2. Then
atplatp2 o 'CLtpk = 0.

Proof. We use induction on k. For the base case k = 2, since (p1, p2) is a vanishing sequence
we have (J(p1), p2) # 0. Then by Proposition 211, (¢,,,t,,) € T UTs. If (¢,,,%,,) € T1, then
tpitp, is not T-reduced. This implies that p; = p, and hence af =0. If (¢,,,t,,) € Tz, then
we have ,,t,, £ v and hence a;, a;,, = 0.

Now let (p1, p2, - .., px) be vanishing sequence with & > 2. Using part (2) of Lemma 2.14]
we have w = t,t,, < v. Then by Proposition the interval [e,w] is isomorphic to the
noncrossing partition lattice of a dihedral group Iy(m) for some m > 2. Suppose that
Ot (w) = {7, 72,..., T} is set of all positive roots for which ¢, < w. By the defining

relation, we have
Aty Aty = — z : atr, atTj’

w:tTi tTj s Ty #pZ

where the sum is over all T-reduced expressions t,t. of w with 7; # p,. Using the above
relation, we obtain

Aty Aty At~ ** Aty = — E Qg atTj Aty =" A, -
wztfitfj ) TiFpP2

It follows from part (3) of Lemma [2.14] that (7j,ps,...,p,) is a vanishing sequence for
any 7; # p2, and hence by induction hypothesis ., A,y - Gy, = 0. Therefore, we have

atplatp2~-~atpn =0 ]
We are now in a position to prove Lemma

Proof of Lemmal2.4. By Proposition 213 t = (t,,,%,,,...,ty,) € T1 UT; if and only if there
exists ¢ < j such that (p;, pit1...,p;) is a vanishing sequence. Using Lemma 217 in this
case we have ay = ay,, ... (atm Aty - .atpj) coeay, =0. O

3. CHAIN COMPLEXES FOR MILNOR FIBRES AND HYPERPLANE ARRANGEMENTS

We now begin our discussion of the chain complexes whose homology realise that of the
Milnor fibre and of the hyperplane complement associated with W. For any u,v € W, write
w —1
u? = wuw.
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3.1. Some acyclic chain complexes. Recall that B = @,_, By, is a Z-graded algebra
generated by the §; for t € T'. For any t = (t1,ts,...,t) € Rexp(w) with w € L, i.e., such
that w = tits...,t; € L is a T-reduced expression, we have By = 3,31, . . . Bt,,. Recalling the
Z-linear map d from (L4) and Proposition [[.§], we have

k
(3.1) di : By = Be—1, Py 2 = Z(_l)k_iﬁt(z)a

i=1
In particular, dy(3;) = 1 for any t € T'. The following results can be found in [Zha22, Lemma
5.9, Proposition 5.11].

Proposition 3.1. The following properties hold for (B,d).
(1) We have d*> = 0, whence we have the following chain complex (B, d):

oy, B, 0.
(2) The chain complex (B, d) is acyclic. More precisely, let Ly == {w € L|1 < lp(w) <
k} be a rank-selected subposet of L. If 1 <k <n —1, then

Im dk = ﬁk_g(ﬁ[k_l}), Ker dk = ﬁk—l(ﬁ[k})

Otherwise, Im d,, = H,,_5(Lp,—1) and Kerd, = 0.
(3) (Leibniz rule) For each i =1,2,....k — 1, we have

0— B, LBn_l

for any t = (t1,ta, ..., tx) € Rexp(w), where w € Ly, with 2 < k < n.

In view of Theorem 2.1l the map ¢ : A—B given by ¢(ay,az, ...ar,) = B, P, - - - P, for
any T-reduced expression w = tity...,t; € L, is a graded isomorphism from A to B. By
abuse of notation, for each k = 1,...n we define the Z-linear map

k
(3.2) d: A= Acr, anay . ag = > (D),
=1

Then the properties described in Proposition Bl for (B, d) hold mutatis mutandem for (A, d).
In particular, (A, d) is an acyclic complex.

We proceed next to give another acyclic complex induced by the “Kreweras complement” of
the NCP lattice. Now the noncrossing partition lattice L is self-dual, i.e., £ = L, where L
is the set £ with the reverse partial order <,,. This isomorphism may be realised explicitly
by the Kreweras complement K, defined by

K:L— L% w—yw

The Kreweras map induces an automorphism of A = A(L) as a graded algebra. Recall from
Lemma that an element a;, ay, . ..a, of A is nonzero if and only if e < ) < t1ty < -+ <
tity ...t is a chain of £. The latter is mapped by K to the chain v <., vt1 <op Vlat1 <op

- <op Ytk ...t1 of L°P, and this corresponds to a nonzero element Aty @y ...atz,c,l.utl of

A(L°P). Note further that A(LP) is isomorphic to the opposite algebra A(L)°P. Therefore,
we have the following composite of linear maps:

KAL) S ALP) = AL S AL),
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where £ is induced as above by K, so that E(ay,ay, ... ay,) = a,az .. ~@tq.n and 0 is the
2 k

anti-isomorphism given by 6(ay, ar, . . .ay,) = ay, . .. ap,aq, . Hence the linear automorphism x
of A is defined explicitly by

(3.3) K(ayay ... ap ) = Aty -yt Gy
k 2
It is clear that k preserves the defining relations of A.
In addition to the differential ([3.2]), for each k = 1,...,n we define the following Z-linear
map

P

k
(3.4) 0: Ak = Ak1,  apap, .. .ay, — Z(_l)i_lat’;i -
i=1

(3

Qg ... Q¢
1

The properties of § are summarised in the next result.

Proposition 3.2. Let § and k be as defined above.
(1) (Leibniz rule) For each k =2,...,n, we have

k—1

dagaty - .. ar) = 0(ay ay - .. ag,_, )ag, + (—1)%" R

for any t = (t1,ts,...,tx) € Rexyp(w) with w € L.
(2) For each integer k = 1,...,n, the following diagram commutes:

A, L> Ak_1

[
A, —— A1,

Therefore, the complex (A, ) is acyclic.
(3) We have dé = dd.

Proof. Part (1) follows directly from the definition (3.4]). The diagram commutes by straight-
forward calculation. As k is an automorphism and (A, d) is acyclic, the acyclicity of (A, J)
follows. It is easily verified directly that d and 6 commute with each other. 0J

Remark 3.3. Note that d and § do not preserve the defining relations of the algebra A. For
instance, we have a;,a;, = 0 for any pair of reflections t1,, satisfying ¢;to £ 7. However,
d(atlatz) = —Qy, + Aty 7& 0 and 5(at1at2) = — Oy, + Atotqts 7& 0.

Remark 3.4. It follows from Lemma 23] that A, as a free abelian group is spanned by
nonzero elements a; ay, ... ay, , where t1to.. .t = w € L is a T-reduced expression. By the
defining relations of A, all linear relations among nonzero elements a, ...a;, are generated
by the quadratic relation Z(thtz)eReXT(w) ap,ar, = 0 for any w € L. It is easily verified that
A3 41 1) eRexp (w) At @t;) = 0 for any ¢ € T', and similarly this holds for 6. Therefore, the
linear maps d and ¢ are well-defined.

3.2. Complexes for the Milnor fibre and hyperplane complement. Let H be the set
of (complexified) reflecting hyperplanes of W and write M = My, := Vi \ Ugey H for the
corresponding hyperplane complement. For H € H, let g € V¥ be a corresponding linear
form, so that H = ker({g). Let Q = [];cy (3; it is well known that the £ may be chosen
so that @ is W-invariant. The Milnor fibre F':= Q7 (1) = {v € V¢ | Q(v) = 1}. Evidently
W acts on both M and F, so that we may speak of the orbit spaces M /W and F/W.
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3.2.1. Chain complexes for M and F. Recall from [Zha22| the following chain complexes
which compute the integral homology of the hyperplane complement and of the Milnor fibre.
We use the algebra A instead of B in the original complexes.

Theorem 3.5. [Zha22, Theorem 7.2] The integral homology of the hyperplane complement
M is isomorphic to the homology of the following chain complex of abelian groups:

(3.5) 0— > ZW®RA, 2 .. y IW @ A 2 ZW ® Ay —— 0,

where the boundary maps are given by

k

k
- . - .
h(wayay, ...a,) = E (—1)" Wt @ag - ag . ay, = E (D)7 w®ay, ... a4, .. .a,
i

for any w € W and (t1,ta,. .., tx) € U, Rexr(u).

Theorem 3.6. [Zha22, Theorem 6.3] The integral homology of the Milnor fibre Fo = Q~'(1)
s isomorphic to the homology of the following chain complex

(3.6) 0 —— ZW @d(A,) 25 o ZW @ d(As) —2 ZW @ d(A;) —— 0,

where the boundary maps are given by

k
O (w @ d(anar, ... ay,)) = > (=1)wt; @ d(ag: ...ap ay,...ap,)

i=1
foranyw e W, (ti,...,tx) € U,ep, Rexr(u) with 2 <k <n.

3.2.2. W-action on these complexes. Note that W acts on the above chain complexes as
follows. For z € W, z.w ® ayay, ...ay, = (xw) @ ayay, - .. ay, in the case of (3.5]), while
in the case of (B.0), z.w ® d(ay,ar, ... ar,) = (zw) @ d(ay, ar, . - . a,). It is evident that this
W-action respects the boundary homomorphisms. Thus these chain complexes are both left
W-modules.

Now it is well known that W acts freely on M and F. The quotient spaces M /W and
F/W are both K(m,1)-spaces. In particular, the fundamental group m (M/W) = A(W),
the Artin group of W. Therefore, we have Hy(A(W);Z) = Hy(M/W;Z), and this may be

computed using A as follows.

Theorem 3.7. [Zha22| Theorem 7.5] The integral homology of M /W or the Artin group
A(W) is isomorphic to the homology of the following chain complex:

On o1

0 > A, > A1 > Ay > Ao > 0,

where the boundary maps are given by O, = 6, + (—1)%dy, i.e.,

k k

(37) 8k(at1at2 e CLtk> = Z(—l)i_lattli Ce at;i dti e Q. — Z(—l)i_latl e (Alti LAy

i=1 i=1

for (ti,ta, ... 1) € Uueﬁk Rexr(u).
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Theorem 3.8. [Zha22, Theorem 6.7] The integral homology of F/W s isomorphic to the
homology of the following chain complex :

0 —— d(A) 225 d(Ap ) —— - ——s d(Ag) —2 d(Ay) —— 0,

where the boundary maps are given by Oy = dy, i.e.,
k
(3.8) Opr(dlanay, .. ay)) =Y (1) dlag .. ap dy,...ay,)
i=1

for any (t1,...,tx) € Uweﬁk Rexr(w) and 2 < k <n. In particular, 0; = 0.

3.3. A new pair of complexes. Let us start with two new complexes defined over C. The
first, denoted C, is

(3.9) C:=0—CW @A, 2% . —CW @ A, 25CW @ Ay—s0,
with the boundary homomorphisms 0; defined as in Theorem The second, denoted K, is

(3.10) K = 0——CW @ d(A) 2 ... —CW @ d(As)-25CW @ d(Ar)—0,

where the boundary homomorphisms are as defined in Theorem [3.60l Then by Theorem
and Theorem [B.6, the homology of the complex C (resp. K) is the homology of the corre-
sponding hyperplane complement M = My, (resp. Milnor fibre F') with complex coefficients.

3.3.1. Left, right and bi-W -modules. In the development below, we shall need to distin-
guish between left and right CW-modules. Let Modgz(CW) (resp. Mody(CW)) be the
category of finite dimensional right (resp. left) CIW-modules. We shall use the categorical
isomorphisms Ay, : U — Up from Modg(CW)—Mod.(CW), and Arg : X — Xg from
Mod(CW)—Modg(CW) (U € Modgr(CW),X € Mod.(CW)) where, for v € Uy and
weW, wu:=uw', and for z € Xp, z.w = wt.a.

In addition to the above categories, we shall need the category Mod,r(CW) of finite
dimensional CW-bimodules. If Y € Mod z(CW), then for wi,wy € W and y € Y, we
have (wiy)ws = wi(yws). Evidently if U € Modg(CW), X € Mod,(CW), then X ®@¢c U
is naturally a W-bimodule. Using this, we have the following formulation of a standard
decomposition of a finite group algebra.

Lemma 3.9. Maintaining the above motation, we have the following isomorphism in the
category of W -bimodules.

Cw = 69U€I?‘7‘(ModR((CW))([]z Q¢ U)

Here the sum is over the simple modules U € Modr(CW) and U} denotes the contragredient
of Uy (defined above).

Proof. 1t is easily verified that for any right CW-module U, the left module U; has the same
character as U. This is because U ~ U as vector spaces, and w € W acts on Uy, as w™*
does on U. Thus they have complex conjugate traces. But the character of w on Uj is the
conjugate of its character on Uy, and hence coincides with its charcater on U. The stated
decomposition is now standard.

Note that each of the tensor factors in each summand is referred to as the multiplicity
module of the other factor in that summand. ([l
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Corollary 3.10. In the above notation, we have Homeyw (Uy, CW) = U as right W-module.
Here the left side indicates homomorphisms of left CW -modules.

Proof. By Lemma 3.9, Homew (Uf, CW) = @yerrrMody@w)yHomew (Ur, Up @c U) But for
fixed U, Uj ®c U 1is isomorphic to a sum of simple left modules U;. The result follows. [

3.3.2. A new pair of compleres. We next define “relative” versions of the complexes (B.9)

and (310).
Let U € Modg(CW). Define complexes C(U) and K(U) as follows.

CU) 1= 0—U @ A2 ... —U @ 425U @ Ag—s0,

where the boundary maps are given (for u € U) by
k
Mu® aya, . ..ap) = Z(—l)l_luti R Qi A Gy -y,
i=1
k

D )T u®a, a .,

i=1

K(U) = 0——U @ d(A) 2T - U @ d(As) 25U @ d(A)—0,
where the boundary homomorphisms are defined for u € U by
k
(3.12) O(u@d(anar, .. a,)) = > (=1)ut; @ d(ag ...ap an,, ... ag).
i=1
Now as observed in B.2.2] the complexes C and K admit a (left) W-action. This is
not generally the case for C(U) or IC(U). Hence for each integer k, Hp(C) and H(K)
are left CW-modules. For left CW-modules Uy, Uy we write (U, Us)y for the multiplic-
ity dim Homeyw (Uy, Us) as usual.
Recall that for any simple module U € Modg(CW), we have a “corresponding” module
U; € Mod(CW), whose character coincides with that of U.

(3.11)

Theorem 3.11. For any right W-module U and for each integer k > 0, we have

(3.13) dim H(C(U)) = (U}, Hy(M))
and
(3.14) dim H,(K(U)) = (U;, Hi(F)).

Proof. We prove the first equation (B.13); the second equation (3.I4) has a similar proof.
Since Hy(M) = Hy(C), we have

(U, H,(M)) = (U, H,(C)) = dim Homy (U}, H,(C))
Now by semisimplicity, U} is a flat module, whence the functor Hom¢(Uj, —) is exact.

Moreover the k™" homology functor commutes with any exact functor. It follows that we
have the following isomorphism of left WW-modules.

Further, the fixed point functor (=) : M — MW from the left W-module M to the
C-module MW is representable. It is represented by the trivial W-module C, so that (—)"
is naturally isomorphic to the functor Homy, (C, —). Since CW is a semisimple algebra, the
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[a¥)

trivial W-module C is projective. Therefore, Homy (C, —) = (—)V is an exact functor. It
follows that, upon taking W-fixed points in (3.13]), we obtain

Hy,(Home (U}, €)Y =H,((Home (U}, C))"Y)

It now remains only to relate the complex Homew (U, C) to C(U). for this, observe that
Homew (U, C)x = Homew (Ur, Cr) = Homew (U, CW ®c¢ Ay).
Moreover since W acts trivially on A, we have
Homew (U, C)x = Homew (U, CW) ®c¢ Ay

But by Corollary 310} the right side of the above equation is equal to U @c Ay = C(U)g, and
the proof is complete. O

3.4. Applications. We give some special cases and applications of Theorem [B.11]
First, consider the case U = 1y, the trivial CI¥/-module. Then U} = 1 and we have

(Ur, Hi(M)) = (1w, H(M)) = dim Hy(M)".

Moreover by the transfer theorem for homology with coefficients in C (cf. [GB72, Theorem
11.2.4)), Hy (M)W = H,(M/W). It follows from the first statement in Theorem B.1T] that

Hp(M/W) = Hy(C(1w)).

It is readily checked that the complex C(1y/) coincides with the (complexification of the)
complex in Theorem B.7 and in this way we recover that theorem for complex homology.
Note that Theorem 3.7 is stronger, in that it computes the integral homology.

Next, using precisely the same arguments, we deduce that if I is the Milnor fibre as defined
above, then

Hy(F/W) = Hy(K(1w)).

In this case, one again checks readily that /C(1y,) may be identified with the complexifica-
tion of the complex in Theorem [3.8, whence in this case we recover Theorem B.8], again with
coefficients in C, by applying Theorem B.I1]in the case of K(U) with U = 1y .

Consider next the case U = ¢, the alternating representation of W. Then U] =~ € and it
follows from [Leh96, (1.2)] that

(Hi(M),e) =0 for all k.
It follows immediately from the first part of Theorem B.11] that
The complex C(¢) is acyclic.

Now we may think of C(U) = C(e) as having chain groups with bases {b®@ ay | t €
Uwer Dw}, where b is the basis element of . Using the fact that bt = —b for all reflections
t, it follows from (B:I1]) that C(¢) may be identified with the chain complex

(3.16) 00— A2 A2 A—0,
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where the boundary homomorphism Dy, : A,—>A,_; is given by

k

Dry(b®ay, ...ap ) = Z(—l)i_l(—b) Ry Ay Gy -y,
i=1
k
— Z(—l)z_lb ® atl e 6; Ce atk.
i=1

It follows that we may identify C(¢) with the complex (3.16]), where
Dy = -6, + d~k,

where dj, is the restriction to Ay, of §, which is defined in (34) and dj, = (—1)*d;, where
d = ®}_,dy, is defined in (3.2).

It follows from Proposition 3.2 (3) that dj = —dd, and hence that D is a differential. The
acyclicity of (A, D) is not evident from these arguments.

Finally, observe that for any right W-module U we have

(3.17) Hy(K(U)) = Hy(K(U®e€), 0<k<n-—1,
as the boundary maps (8.12) of K(U) and K(U ® ¢) differ by —1.

4. DUAL COMPLEXES

The principal purpose of this section is to obtain sharper results on the integral homology
and cohomology of both M, the hyperplane complement, and F', the non-reduced Milnor
fibre. With this in mind we begin by defining a Z-bilinear form on A, which will later
become a tool for moving between homology and cohomology.

4.1. A bilinear form on A. We will make frequent use of the following Z-linear maps in
later sections. For each t € T', we define

k
dt : Ak — Ak_l, Qg Ay - - Ay — E (—1)k_15t t§i+1.4.tkat1 e (Alti <Ay
i=1 ’
k
. § i—1 ~
5t . Ak — Ak_l, Qg Ay - - - Ay — (—1) 5t,tiatt1i . at;i 1ati <Ay
i
=1

where 0,4, = 1 if t = ¢; and 0 otherwise. It is clear that in the notation of (8.2)) and (3.4),
d=> ,erdiand § =Y, ;. 0;. Note that ¢, and d; also satisfy the Leibniz rule, i.e.

dt(atl Aty - o - atk) = _dttk (atl Aty - o atkil)atk —+ 5t,tkat1at2 cee Qg

5t(at1at2 Ce atk) = 5t(at1at2 e atkil)atk -+ (_1)k_16t7tkattlk at;k Ce at}i}il.

for any (t1,t2,...,t) € Rexp(w) with w € L. We call d; and 0; skew derivations.
The linear maps d; and ¢; are well-defined, for the same reason as in Remark [3.4

Lemma 4.1. For any t,t' € T, we have di;dy = oy d;.
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Proof. We evaluate both sides on ay, ...a;, € A and use induction on k. For any nonzero
element ay, ...a; € A, we have

dtét/(atl Ce atk) :dt((st/(atl P atkil)atk + (—].)k_l(st/7tka,t7ik atgk P at?il)
= — dttk (5t/(at1 e atkil)atk -+ 5t,tk5t’ (CLtl Ce atkil)
_'_ (_1)k—15t/’tkdt(attlkat;k [P at?il)’
while on the other hand,
5t/dt(at1 . CLtk) :6t’(_dttk (atl Ay - - - atkil)atk + 6t,tkat1at2 Ce atkil)
== 0y (dp(ay, ... ay,_,))ay, + (1) 0y de(apag. .. )
+ 5t,tk5t/(at1 P atkil).

The result is trivial if K = 1. For k > 1, by the induction hypothesis and the equations above
we have ddy (ay, ... ay,) = opdi(ay, ... ap, ). This proves that dydy = dpd,. O

Lemma 4.2. The skew derivations 6;,t € T satisfy the following relations:
67 = 01,0, =0, VtET, tity £,
> 60, =0, Ywe L

(t1,t2)ERexr (w)

Therefore, they describe an action of the opposite algebra AP on A.
Proof. For any reflections ry,7, € T', we have

57’257’1 (a'tl Qgy - - 'atk) = 57’2 (57’1 (at1at2 - 'atkfl)a’tk + (_l)k_l(sm,tkatik at;k o 'atzlil)

= 57,2 (57»1 (atlat2 Ce atkil))atk + (_]‘)k_257"27tk5rik (atik atgk e atz,il)

+ (—1)k_15T17tk57"2 (ati’“ atgk .. .Cltz;il),

where (tq,ts,...,tx) € Rexy(w) for some w € L. We use induction on k to prove the stated
relations among d;,t € T' by evaluating the relevant expressions on ay, ...a . The base case
k =1 is obvious. For k > 1, we prove each relation as follows.

By the induction hypothesis it is easy to see that 62 = 0 if t = r; = ry.

If 7179 £ 7, then there are two cases. Case 1: neither of ry,rs is tx. By the induction
hypothesis, 0,,0,, (at,aty - . . ap, ) = Gpy (0r, (A, Gy - - - @y, ))ay, = 0. Case 2: exactly one of 1,79
equals t;. If i = t;, then we have

Ory Oy (At apy - .oy ) = Opy (0, (Agy Oy - -y, ))at, + (—1)k_1<5r2 (attlk Ayt - 'at}i’il)’

We claim that d,,(auapm .. .an ) = 0. Otherwise, by the definition of §,,, we have ry =
1 2 k—1

t';fk for some 1 < i < k — 1. However, this leads to riry = tkt';’“ = t;t, which pre-
cedes v by Lemma 210 and hence violates our assumption that riry £ ~. Therefore,
OryOry (At Qty - .- Qg ) = Opy (Ory (@, @ty - .- ay,_,))ar, = 0 by the induction hypothesis. If ro = ty,
the proof is similar.

For the last relation, by the induction hypothesis this is equivalent to showing that

Y Onubu 046, =0.

(r1,r2)ERex(w)
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We may assume w = 518, = S$281 = -+ = S;uSm—1 has m T-reduced factorisations. If none
of the s; is equal to t;, then the above equation holds true. Otherwise, t, = s; for some
1 =1,...,m. In that case we have

m

Z 6T27tk5rik - 6T1,tk57‘2 = Z((ssj*hsi(ssj-i B 533‘781'553'—1) = 55?11 - 581'71 =0,
(r1,r2)€Rexy (w) j=1
where sq := s, for notational convenience. This completes the proof. O]

Definition 4.3. Define the bilinear pairing
(— =) AxA—1Z

by (1,1) =1 and
(1) (Ag, Ap) =0 forany 0 < k # ¢ <mn;
(2) Forany z € A, and t; € T,i=1,... k,

<at1at2 <Ay, l’) = 5tk e 5t1 (l’)
In view of Lemma (.2}, this bilinear form is well-defined.

Lemma 4.4. For anyt €T, and x,y € A we have
(ax,y) = (x,6(y)), and (za,y) = (z,d(y)).

Thus with respect to the bilinear form the skew-derivations §; and d; are right adjoint to left
and right multiplication by a;, respectively.

Proof. We assume x € A, and y € A for 1 < k < n. The first adjunction follows
immediately from the definition. For the second one, we use induction on k. If £ = 1,
then (Aay, pay) = My = (N, pd(ap)) for any \,u € Z. For k > 1, we may assume
T =ay ...a_,. Then

<at1 A y> = <at2 e Gy Gy 6151 (y)> = <at2 R dt5t1 (y)>
= <at2 <o Qg 5t1dt(y)> = <at1at2 .- 'atkfl’dt(y)>?
where the first and the last equation follow from the adjunction between ¢; and left mul-

tiplication by a;, the second equation follows from the induction hypothesis, and the third
equation follows from Lemma [4.1l The proof is complete. O

Proposition 4.5. The bilinear form (—, —) is unimodular, i.e., it induces an isomorphism
A= A* = Homy (A, Z), given by x — (x,—) for any z € A.

Y

Proof. We only need to show that the bilinear form induces an isomorphism A; = A; for
0 < k < n. Recall that A;, = @we L A,. It suffices to prove the following claims:

(1) (A,, Ay,) = 0 for any two elements v # w of Ly;
(2) For any w € L, the bilinear form induces an isomorphism 4,, = A% .

To prove claim (1), we use induction on ¢r(v) = lr(w) = k. It is trivial if k = 1. For
k > 1, assume that © = 2’a; € A,. Then for any y € A,, with w # v we have

(z,y) = (Z'ay,y) = (', di(y)).
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Suppose that y = ay ay, ... ay
the definition,

. wWith w = 1ty ... %, being a T-reduced expression. Then by

k
de(y) = Z(_l)k_idtmatl s gy Qg - Ay
i=1
where r; = t?“"'tk. If ¢ # r; for any 4, then d;(y) = 0 and hence (x,y) = 0. Otherwise, there
exists a unique i such that ¢t = r;,. Assume that 2’ = aygay, ... ay_ with v = ththy ..t t

being a T-reduced expression. We have
<£L’, y> = <IJ> dt(y)> = (_1)k_i0 <at’1at’2 s Qs Qg Qg Q- atk)'

Assume with a view to obtaining a contradiction that (x,y) # 0. By the induction hypothesis
we have t\t, ...t =t1.. . tiy_1tig+1 .. .1, It follows that

v = (tllté Ce t;g_l)t = tl e tio—ltio-i-l e tkrio = tltg Ce tk = w,

which leads to a contradiction. Therefore, we have (x,y) = 0 for any x € A, and y € A,
with w # v.

We proceed next to prove claim (2). To this end, we need to introduce a lexicographical
order on the basis of A,,, and then show that the corresponding matrix of the bilinear form
is upper triangular with diagonal entries being 1.

Recall from Proposition that A, has a basis consisting of elements a;,a, . .. a;,, where
w = tity.. .1, is a T-reduced expression and t; > to = --- > t, with respect to the total
order of T'. We define the lexicographical order on the basis by

(4.1) Ay gy - - - Qg < Qg @y Gy = 1 <1,

where i is the first place where the two monomials differ. Let {m; < my < --- <m,} be the
totally ordered set of the basis of A, and let M be the matrix of the bilinear form with the
(i, 7)-th entry being (m;, m;). Next we show that M is a upper-triangular matrix with all
diagonal entires equal to 1.

To show that M is upper-triangular, we need to prove that

(4.2) (agay, . ..ay,ayag, ... a,) =0

for any two basis elements a;, ay, . . . a, < ay, g, . . . ay, of A,,. Note that t; = t3 = --- > t;, and
th = th > -+ >t with respect to the total order on T'. Assuming that t; =t|,...,t,;_1 =t,_,
and t; < t;, we have

<a,t/1at’2 c. at;ﬁ, Ay Ay« .- atk> = <a,t/2 c. at;ﬁ, 5t’1 (atlat2 N atk)>

= <a,t/2...a,t;c,at2 ...a,tk>,

= (ayay, , -y, GG, - Qy),
where in the first line we have used the adjoint property from Lemma [£.4] and in the third
line we repeat the process until we obtain the last equation. Using the adjoint property
again, we have

(aay, . ay, o, . an) = (ag, . ay,0p (A Gy, - ay).

Since t; = t; = tiy1 = --+ = ty, by the definition of J; we have dy(ay,as,,az, ... ay) = 0.
Hence we have (ayay, ... ay, aya, ... ag) = 0.
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Applying the adjunction between §; and left multiplication by a; repeatedly, we have
(g, Qpy <oy Ay Aty -Gy ) = (A« gy Oy (G gy -Gy )
(4.3) = (Qty ... Ay, Qpy - - - Qy,)
—...=1
for any basis element a;, ay, .. .a;, of A,. Hence the diagonal entries of M are all equal to 1.

Therefore, the bilinear form is unimodular on A,,. Combing this with claim (1), we complete
the proof. O

4.2. Acyclic dual complexes. In this subsection, we introduce some acyclic cochain com-
plexes which are dual to the previous acyclic chain complexes with respect to suitable bilinear
forms.

We recall the universal coefficient theorem for cohomology, which will be used later.

Theorem 4.6. [Hat02, Section 3.1] Let G be an abelian group, and C be the following chain
complex of free abelian groups

0—C—5Cp_1—3 - - —C1 25 Cy—0.

Let Cf = Homg(Cy, G) be the dual of the chain group Cy and 0* : C}_; — C} be the dual
coboundary map for 1 < k <mn. Then the cohomology groups H*(C; G) of the cochain complex

0—C- 50— o Lo —s0.
are determined by split exact sequences
0 — Ext(H,_,(C),G) — H*(C;G) — Homy(H,(C),G) — 0.

We are only concerned with the case G = Z. If the homology groups Hy(C) are finitely
generated abelian groups with torsion subgroups 7, C Hy(C), then the homology of the chain
complex (C,d) and the cohomology of the dualised chain complex (C*,9*) are related by

In particular, if (C,0) is acyclic then so is (C*,0*). If C consists of finitely generated free
abelian groups, then (C**,0™) = (C, 0).

4.2.1. A pair of acyclic complexes. Using the bilinear form on A, we define acyclic cochain
complexes which are dual to the acyclic chain complexes (A, d) and (A, §).
Define the element
W= Z a; € Aj.

teT

It is easily verified that w? = 0. Hence it gives rise to a cochain complex whose coboundary
maps are right multiplication by w:

0—Ag—2 A — - 5 A,—0

We denote this complex by (A, r,). Similarly, we define the complex (A, £,,), where £, denotes
left multiplication by w.

Recall from Proposition that the bilinear form induces an isomorphism of graded free
abelian groups:

(4.4) VA=A e (x) = (=, x),
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where (z)(z') = (a',x) for any z, 2’ € Aj. Therefore, for any linear form A € A* there
exists a unique x € A such that A = ¢(z). In what follows, a linear map on A* will be
defined by its action on elements of the form ¢(z),z € A.

Lemma 4.7. The linear map 1) induces an isomorphism between chain complexes (A, d) and
(A*, %), where 17 is the adjoint map of r,, defined by

ro( W) (x) = (Y)(ru(z)) = (zw,y), Vo e A,y € Ay
Similarly, 1 induces an isomorphism between chain complexes (A, 0) and (A*, £F)

Proof. For any integer k, it suffices to prove that the following diagram commutes:

Ay L> A1

I

* Tw *
Ay —— A

We verify this directly. For any x € Ay, y € Ag_1, by the definition of r}, we have

((ro)(@)(y) = ri((@))(y) = (yw, z).
On the other hand, we have

((Vd)(2))(y) = P(dx)(y) = (y, dx).

Using the adjointness property from Lemmald4], we have (yw, x) = (y, dx), whence r’ 1) = d.
Therefore, 1 is a chain map between (A, d) and (A*,7F). As 9 is a graded isomorphism,

w

(A,d) and (A*,r) are isomorphic. The isomorphism between (A,J) and (A*, ¢f) can be

proved similarly. O

Proposition 4.8. The cochain complezes (A,r,) and (A, L) are both acyclic.

Proof. Recall from Proposition Bl that the chain complex (A, d) is acyclic. It follows from
Lemma [7 that the chain complex (A*, 77) is acyclic. Since (A*,r}) is the dual complex of
(A, r,) induced by the isomorphism %, the cochain complex (A, r,) is acyclic by the universal
coefficient theorem for cohomology. Similarly, one can prove that (A4, ¢,) is acyclic, using the

acyclicity of (A, d) from Proposition [3.2] O

4.2.2. Another pair of acyclic complezes. Recall from Theorem that the boundary maps
of the complex (ZW ® Ay, 0) are given by 0y = 0}, + (—1)*0], where the linear maps
A0 IW ® A, — ZW ® Aj_; are defined by

W

(0w ayat,...a) =
(4.5) '

8”(11} (039 Ay, Aty - oo CLtk) =

i—1 -~
(—].) 'thz ®atii ...atzilatiatiﬂ <o Ay

1

(—D*"w®a, ---ay, . ..a

7

-

P

=1

In what follows, whenever dealing with (co)boundary maps, ZW is viewed as a right ZW-
module with any ¢ € T" acts on the right side.
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Lemma 4.9. Let 0',0" be as in (L5). Then we have

=Y t@s, =) lod=1®d

teT tel

Therefore, &',0" satisfy (&')? = (0")* =0 and 0" = 3"9'.

Proof. For any nonzero element ay, ...a;, we have
k
_ i1 ~
E t®0(w® ayar,...a) = g g (—1)"" wt ® 0r,a Qg Uy Oy,
teT teT i=1

a,t; latiatiH Qg

tll... thi b

i=1
It follows that 0 = Y, ,t ® &, and similarly, &’ = Y, 1 ® d;. Using the fact that
62 =d? =0 for any t € T, we obtain (9')? = (9")? = 0. By Lemma 1] d; and dy commute
with each other, we have

99" = Z t®5tdt’ _ Z t®dt/5t — 9.
t,t'eT tt'eT

O

By Lemma [£.9] we have a pair of chain complexes (ZW ® A,d") and (ZW ® A,9"). We
proceed next to define a bilinear form on ZW ® A, which enables us to dualise the chain
complexes.

We will always denote by (—, —) the bilinear form on a linear space whenever no confusion
arises. Recall that there is a standard Z-bilinear form on ZW defined by

(—, =) ZW X ZW — Z, (v,w) =0y, Yo,we W,
where ¢ is the Kronecker delta. This together with the bilinear form on A which we have
already defined, gives rise to a Z-bilinear form (—, —) on ZW ® A, defined by
(v@r,wy) = (v,w)(r,y), Yo,we Wz yec A

Note that ZW®.A is a Z-graded algebra, with the grading inherited from A and multiplication
given by (v ® z)(w ® y) = vw @ xy. By definition, we have (ZW & Ay, ZW @ A;) = 0 for
any integers k # /.

It follows from Proposition 4.5 that the bilinear form on ZW ® A is also unimodular. Hence
we have the following graded isomorphism of free abelian groups:

(4.6) by  IWRA— (ZW R A", wzr—Yy(wr):=(—wd ),

where w € W and x € A, for 0 < k <n.
We introduce the following elements:

U:Zt®at, gzZl@at:hX)w.
teT teT

It is easily verified that 02 = ¢ = 0 in ZW ® A. Hence o and ¢ give rise to two cochain
complexes (ZW ® A, {,) and (ZW ® A, r.), where the coboundary maps are given by

o(w® ) Zwt@at:r rdw® )= Zw@xat

teT tel
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for any w ®@ z € ZW ® Aj.

Lemma 4.10. For any v,w € W and z,y € A, we have
(lov@a),wey) =(ver,d(way)),
rdvz),wey)=werd(wey)).

Therefore, with respect to the bilinear form on ZW ® A, 0" and 0" are right adjoint to the
linear operators ¢, and r., respectively.

Proof. We only prove the first adjunction; the second one can be treated similarly. Assume
that € Ay_, and y € A;, for some k = 0,...n. Then we have

(lo(v®@ ), w) = Z(vt ® @, w R y) = Z(vt, w) (@, y)

_vat Y (z,0:,(y)) = Z(v@x(t®5t)(w®y)>

=(ve,d(way),

where the third equation follows from the adjoint property in Lemma [Z4], and last equation
is a consequence of Lemma O

Proposition 4.11. The chain complezes (ZW @ A,d') and (ZW @ A,d") are both acyclic.

Proof. By Lemma [£9] we have 0" = 1 ® d. As ZW is a flat Z-module, the acyclicity of
(ZW @ A, 0") follows from that of (A, d), which is given in Proposition B.1l

It remains to prove that (ZW ® A, J') is acyclic. Recall from (B.3)) the Kereweras automor-
phism x : A — A whose inverse is given by ™' (ayay, ... ay,) = ag,ai"_ ... a2 Note that
this is a graded automorphism. Applymg 1®k~! to the cham complex (ZW@A J ) we obtain
a new chain complex (ZW @ A, &) whose boundary map satisfies & (1® £~!) = (1@ £~ 1),
defined explicitly by

k
(47) 8/(w®at1at2 ...atk) = Z(—l) U}ttz L ®at1 CALtZ <Ay
i=1
for any w € W and nonzero element a;,ay, . .. a;, € Ayj. Hence we are reduced to proving the
acyclicity of (ZW & A, ).
For each £ = 0,1,...n, we have the following split exact sequence

(4.8) 0 = Kerd, — ZW @ A, — Im d}, — 0.

To prove that the homology Hy = Ker @, /Im 9, 41 Is trivial, we shall determine each image

Im 0;,, and then use the exact sequence above to show that Im 9, and Ker 9; have equal
ranks for all k. Finally, we show that the homology is torsion free and hence is trivial.

Let us start with a combinatorial description of the chain group ZW ® A;. As the chain
complex (A, d) is acyclic, we have decompositions of free abelian groups Ay = d(Ay)Pd(Ag11)
for 0 < k <n—1. It is proved in [Zha22, Theorem 4.8] that d(.Ay) has a Z-basis consisting
of elements d(ay, ...ay,) for 1 <k < n, where (t1,...,t;) € Dy with Dy,_q) defined by

v =tity...t, is T-reduced and }

D[k_l} = {(tl"“’tk)‘ tl>—--->—tk_1>-tk-<tk+1-<"'-<tn
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Then we have
rank(ZW X Ak) = |W|(D[k] + D[k—l])a 0<k<n.

Moreover, recall from Corollary that Ay has a Z-basis {ay = ay, ... a, [t = (t1,...t) €
Uuer, Du}, where D, is defined as in (L3). Therefore, {w @ aslw € W,t € U,cp, Du} is a
Z-basis for ZW @ A;. N

Now we consider the image Im d,. Denote by By, C ZW ® Aj_; the free abelian group
spanned by the set Sp_1) := {8 (w®ay) | we Wt € Dy_y}. Then we have By, C Im@’
We shall prove that the set Sp._y) is Z-linearly independent. To this end, we choose a total
order on the basis of ZW ® A, for each k such that

(4.9) w®ag <v®ay whenever ay < ay,

for any v,w € W and t,t" € ., Du, where ay < ay is the total order defined in (4.1).
Then it follows from (£.2) that for any pair of basis elements w ® ay < v ® ay

ueLy

(4.10) (v @ ay,w® ay) = 0.
Now assume that there exist nonzero Ay t,, At € Z such that
ool (w0 @ a) = 3 Aued (W@ ar),
wo®aty >wat

for some elements & (w ® ay) and & (wy ® ag,) of the set Sip—1y. In view of the definition (4.7),
for any element w ® ay = w ® ay, .. .a,, with ¢ > --- > #;, the element

w®ag(k) = wt M @ay, . ay,
is the unique maximal term under the total order r (A.9) in the expression of dwa, ... Say).
Hence by [I0) and [@3) we have (w ® ay(k),d(w @ ay)) = 1. Moreover, observe that if
wy @ ay, > w @ ag for t,tg € Dy—q), then wo ® ay, (k) > w ® ag(k) (cf. [Zha22, Proposition
4.7]). This further implies that (wy ® ag, (k), J(w®ay)) =0 by ([I0). Therefore, we obtain

>‘w07t0 = <w0 ® Qg (k)v )‘wo,tog/(wo ® ato))
= Z (wo ® ag, (), At (w @ ar))

woXaty >wag
=0,
which contradicts our assumption that A, ¢, # 0. Therefore, S,y is a Z-linearly independent

set, which spans the free abelian subgroup By, C Imd,.
Now by the exact sequence (A8]) we obtain

rank Ker 5,’6 = rank ZW ® A;, — rank Im 5,; <rankZW ® A, — rank B;,
= [W[(Dyj + Dpj—1)) — [W||Dppe—1)]
= |[WI| Dyl
On the other hand, since By,; C Im 5,;“ C Ker 5,’“ we have
rank Ker &/, > rank Im 5,;“ > rank Byy1 = [W/|| Dyl
Combing the above two inequalities, for each k we have rank Ker &/, = W || Dy, and

rank Im 9, = rank ZW ® A, — rank Ker @, = [W]| |Dpte—1j|-



27

It follows that Im d, 4, and Ker 8, have equal rank.

It remains to show that the homology H), = Ker 5,; /Im 5,; 4 18 trivial. We aim to prove that
Bjy1 = Ker 9, = Im 5,’€+1. By the above arguments on ranks, By C Ker 8}, is a free abelian
subgroup of maximal rank. Therefore, every element of the quotient group Ker 5,’c /By.41 has
finite order. For any 8 € Ker 5;, there exists a nonzero integer m such that
(4.11) mB= > Mutlh(W®ar) € Bir, Ay € L.

weWﬂ:ElD[k]

Suppose that wy ® t, is the biggest element under the total order (4.9) such that m { Ay, ¢,-
Then

mp — Z Moty 1 (W0 @ @) = A 0Oy 1 (W0 ® agy) + Z Aoty (w0 © ay).
wRt>woRto wRt<woRto
Recalling that (wg ® ato(fc), 5,’€+1(w ® ag)) = 0 for any w @ t < wy ® to with t,tg € Dy, and
(wo ® ag,y (k), 041 (wo ® ag,)) = 1, we have
(wo ® ag, (k),mB— Y Muefhyr (0 @ ae)) = Aug -
wRt>wodto

By the choice of wy ® to, we have m|\, ¢ for any w ® t > wy @ ty. Thus the left hand side is
divisible by m, 5o is Ay, ¢, on the right hand side. This contradicts our assumption for A, ¢,-
Therefore, all coefficients A, ¢ in (A1) are divisible by m, and hence 5 € Bj41. This proves

that By = Ker 5,2 Similarly, one can prove that By, = Im d;_ ;. Thus the homology group
Hj, = Ker 0,,/Im 0, , is trivial. O
Proposition 4.12. The cochain complexes (ZW @ A, {,) and (ZW & A, r.) are both acyclic.

Proof. By Lemma [£10] & is right adjoint to ¢,. Using the same method as in Lemma [£.7]
one can show that the isomorphism ¢y, given in (£6) induces an isomorphism between chain
complexes (ZW ® A, d') and ((ZW ®.A)*, £%). The former is acyclic by Proposition .11}, so is
the latter. Hence (ZW ® A, {,) is acyclic by the universal coefficient theorem for cohomology.
Similarly, one can prove the acyclicity of (ZW ® A, r.). O

4.3. Dual complexes for Milnor fibres and hyperplane complements. In terms of the
bilinear forms on A and ZW ® A, we shall give complexes which are dual to the chain com-
plexes introduced in Section These dual complexes have the same integral cohomology
as that of the Milnor fibres and hyperplane complements.

4.3.1. Dual complexes for M and M /W . Recall from Theorem the chain complex which
computes the integral homology of the hyperplane complement M. The following gives a
cochain complex dual to the chain complex.

Theorem 4.13. The integral cohomology of the hyperplane complement M is isomorphic to
the cohomology of the following cochain complex of free abelian groups:

0—ZW ® Ag-ZW @ AL —ZW ® A,—0,
where the coboundary maps are given by 0% := b, — (—1)kr. for 0 < k < n, i.e.

O (w ® 1) :Zwt®at:)§—(—1)k2w®xat, Ve € Ag,w e W.

teT tel
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Proof. Recall that the chain complex given in Theorem computes the integral homology
of M. We dualise this chain complex by replacing the k' chain group with (ZW ® A;)* =
Homgz(ZW ® Ay, Z) and the k™ boundary map by its dual coboundary map 9* : (ZW ®
A1) = (ZW @ Ag)*. Then we obtain the following cochain complex:

C(W)* - 0—(ZW @ A)* ZH(ZW @ AL . —(ZW @ A,)*—0.

By the universal coefficient theorem for cohomology, we have H*(C(W)*) = H*(M;Z) for
0 < k < n. It remains to show that C(IW)* and the complex given in the theorem have the
same cohomology.

Recall the the bilinear form (—,—) on ZW ® A is unimodular. This gives rises to the
isomorphism:

(4.12) Uy W R A= (ZW @A), verx—=Yy(vez):= (v, —)
for any v € W and x € A. Now consider the following diagram:

W oA —2L 5 IW @ Ap

lw'w lw/w

ZW @ Ap)* L5 (ZW @ Apir)™.

For any v,w € W, z € Ay and y € Ag,1, we have
Vi (v @) (wey) = (0Fver),wey) = l(ver) - (—1)kr(ver),wy)
= (v, (G + (1)) (w e y)),
= 0" (Y (v @) (wey).

where the third equation follows from Lemma [AT0 and the last equation follows from the
fact that 0y = 0, + (—1)¥"19]. Therefore, 1){;, is a chain isomorphism between (ZW @ A, 9%)
and C(W)*, and hence these two cochain complexes have the same cohomology. O

Theorem 4.14. The integral cohomology of M /W or the Artin group A(W) is isomorphic
to the cohomology of the following cochain complex of free abelian groups:

0—>Aoa—O>A18—1> ... —A,—0,
where OF =, — (—1)*r, for 0 <k <n withw =Y, ra, i.c.
O (z) = wz — (=DFaw, V€ A,

Proof. Recall from Theorem B.7] the chain complex which computes the integral homology
of M/W or A(W). The theorem can be proved using the same method as in the proof of
Theorem [£.13] O

4.3.2. Dual complexes for F' and F//W. Recall from Theorem 3.6l and Theorem B.8 the chain
complexes which realise the integral homology of the Milnor fibres F' and F//W, respectively.
Using the bilinear form on ZW ® A, we will construct the cochain complexes which are dual
to these chain complexes.

We begin with the following proposition, which identifies d(Axs1) with Agw. The latter is
the k' homogeneous component of the left ideal Aw of A generated by w.
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Proposition 4.15. For each k =0, ..., n, the free abelian group Ay decomposes as
A, = d(.A]H_l) D A w.
Moreover, we have an isomorphism Ap_jw = d(Ay), given by the linear map d.

Proof. First, we prove the isomorphism A;_jw = d(Ay). Since the cochain complex (A, )
is acyclic, we have the following short exact sequences

0> Ap_iw—> A, > Aw —0, 0<k<n

Then each short exact sequence splits since Ajw is free, being a subgroup of the free abelian
group A1 . Therefore, we obtain that

A 2 A iwd Aww, 0<k<n.
Similarly, using the acyclicity of (A, d) we have
A = d(.Ak) ©® d(Ak+1), 0<k<n.

Note that A, = d(A,) = A,_jw. By comparing the isomoprhisms above we have A;_jw =
d(Ay) for 0 < k <n.

Using the adjoint property in Lemma EE4, we have (zw,d(y)) = (z,d*(y)) = 0 for any
r € Ap_q and y € Apyi. Hence Ap_jw is orthogonal to d(Agi1) as subgroups of Aj.
Moreover, using the above isomorphisms we obtain

rank A, = rank d(Ay) 4+ rank d(Agy1) = rank A _w + rank d(Ay1).
Therefore, we have the decomposition Ay, = Ay_1w @ d( Ak, 1) for all k. O

Theorem 4.16. The integral cohomology of the Milnor fibre F' is isomorphic to the coho-
mology of the following cochain complex of free abelian groups:

0——ZW @ Agw—ZW @ Ajw—2s ... —ZW @ A, _w—0,

where w =Y, a; and the coboundary maps are given by (s, i.e.

lo(w ® aw) = Zwt@atm}, Ve e A, w e W.

Proof. For each k =0,1,...,n—1, let (ZW ® Ayw)* = Homz(ZW ® Ayw,Z). Consider the
following chain complex ((ZW ® Aw)*, £%):

0—(ZW @ A1)~ (ZW @ Ap_ow)* 2> . .. —(ZW @ Agw)*—0.

We will show that this chain complex is isomorphic to the chain complex (ZW @ d(Ay), Ox_1)
given in Theorem 3.6l Thus, these two chain complexes both compute the integral homology
of F'. By the universal coefficient theorem for cohomology (cf. Theorem [.6), the cochain
complex (ZW ® Aw, {,) given in the theorem, which is the dual complex of ((ZW ® Aw)*, %),
has the integral cohomology of F'.

Now we only need to prove that (ZW ®@d(Ay), Ok—1) and ((ZW ® Aw)*, %) are isomorphic.
We start by constructing an isomorphism between ZW ® d(Ay) and (ZW ® Ai_1w)* for each
k=1,...,n. By Proposition d.15, we have

ZW @ Apw 2 ZW @ d(Ags1), w@z— 0" (w®r)=u®d(x)
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for any w € W and = € Ayw. Moreover, the linear map vy defined in (4.0)) restricts to the
following isomorphism:

ZW @ Apw = (ZW @ Apw)*, w@zr— Yw(w @) = (—w® ).
Combining the above two isomorphisms, we obtain that
&t ZW @ d(Ag+1) = (ZW @ Ay w))”*
is an isomorphism given by
§e(w @ d(x)) :=dw(w @ x) = (-, 0w O )

for any w € W and = € Ay w. This is well-defined, since if d(z) = d(y) for some z,y € A w,
then we have w ® (x — y) € Ker(1 ® d) = Ker 9" and

E(w @ d(z —y))(v® w) = (V& 2w, W (r —y)) = (1© 20" (W (x —y))) =0,

for any w,v € W and z € A, where the last equation follows from Lemma .10
We now prove that & is an isomorphism between chain complexes. It suffices to show that
the following diagram commutes for each k:

IW ® d(Apyr) —2—s ZW @ d(Ay)

l&k l&k—l

(ZW ® Ayw)* —2s (ZW @ Aprw)*.
Recalling that in terms of notation (£.5]), we have 0y = 0}, and 1®dy = 0}. For any v,w € W
and y € Ay_; w, we have
E—10k(v @ d(2))(w @ y) = §1(I'0" (v ® 7)) (w @ y) = §—1(0"V (v @ ) (w @ y)
=(w®y,d(ver)),
where the second equation follows from Lemma [4.9. On the other hand,
(v @ d(x))(w @ y) = & (v @ d(x))(lo(w @ y)) = {lo(w @ y),v O z).

By the adjoint property in Lemma .10, we have &,_10; = €:&;. Therefore, & is an isomor-
phism between the chain complexes (ZW @ d(Ay), Ox) and ((ZW ® Aw)*, £%). This completes
the proof. O

Corollary 4.17. Let of .= ZW ® A be the tensor product equipped with the usual multiplica-
tive structure. Then we have the following Z-graded isomorphism of abelian groups:

H (F;Z)[-1])=(HsNod )] ods,

where 0 = Y, pt®@a; and ¢ = Y, 11 ® a;, and A[-1], := A,_y for the Z-graded abelian
group A.

Proof. Recall from Proposition that the complex (ZW ® A, {,) is acyclic. Denote 7, :=
ZW @ Ai for 0 < k < n. Then the coboundary map ¢, : @1 — .2 has the kernel 0.97.
Using Theorem .16, we obtain

H*(F; Z) & Ker(ohs~2 e y16) 016 = (054 N 45) 015,
This completes the proof. O
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Theorem 4.18. The integral cohomology of the Milnor fibre F/W s isomorphic to the
cohomology of the following cochain complex of free abelian groups:

O—)Aowe—wbéllwe—“) . Z—“’)An_lw—ﬂ),
where the coboundary maps are given by left multiplication by w =, 1 a;.

Proof. The proof is similar to that of Theorem 416l Recall from Theorem [B.§ the chain
complex which computes the integral homology of F//W. Using the bilinear form (4.4]), one
can identify d( A1) and (Axw)* and prove that the complexes (d(Ag41), Ox) and ((Aw)*, £)
are isomorphic. Thus the complex (Aw,{,) computes the integral cohomology of F/W. O

Corollary 4.19. Let Aw (resp. wA) be the left (resp. right) ideal of A generated by w. Then
we have the following Z-graded isomorphism of abelian groups:

H(F/W;2)[-1] 2 (Aw NwA) /wAw,
where A|—1),, := A,—1 for the Z-graded abelian group A.

Proof. By Proposition[L.§] the cochain complex (A, £,,) is acyclic. It follows that the cobound-
ary map £, : App1 — Apio has the kernel wA;. Using Theorem I8, we have

H¥(F/W;Z) = Ker(Apw—2 Ay 1w) /wAp_1w = (WA N Agw) Jw Ay 1w.
This completes the proof. O

4.4. A pair of dual complexes with complex coefficients. We shall introduce a pair of
cochain complexes which are dual to the complexes C(U) and K(U). In this subsection, we
work over C.
Let U be any finite dimensional right CI¥/-module. We define the dual complex of C(U)
by
CHU) 1= 0—U @ Ap-Ls ... —U @ A1 25U @ A,—0,
where the coboundary maps are given by

F(u®x)= Zut@at:p— (—D*u @ zw, Vo e Ay, uel.

teT
It is straightforward to verify that (9*)% = 0. Similarly, define the dual complex of K(U) b
* a*
KHU) = 0—U @ Agw—2s .. U @ Ap_s 02U ® A, w—0,

where Ay, w is the subspace of A4 linearly spanned by elements of the form a,, ...a; w, and
the coboundary maps are defined by

0" (u® rw) = Zut@at:ﬂw Vo € Ag,u € U.

The following is a cohomology version of Theorem B.I1l
Theorem 4.20. For any right W-module U and for each integer k > 0, we have:
dim H*(C*(U)) = (U, H*(M))

and

dim H*(K*(U)) = (Ug, H*(F)).
Proof. Use Theorem [L.13land Theorem [4.16. The proof is similar to that of Theorem [3.11l [J
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5. COMPLEMENTS ON A COVERING ALGEBRA A OF A.

In this section we define an algebra A, whose presentation is simpler than that of A, and
which in fact has A as a homomorphic image. The algebra A has some remarkable similarities
with the Fomin-Kirillov algebra &, (in type A,_1) (cf. [FK99], and we conjecture that the
two algebras have the same Hilbert-Poincaré series (always in type A,). They are in some
sense “dual” to each other, but are not Koszul.

In Section 5.1l we define a braided Hopf algebra and show that there exists a surjective
algebra homomorphism from the braided Hopf algebra to the noncrossing algebra. We show
also that A has the structure of a W-graded Hopf algebra, that it has a braiding, and more
generally belongs to a category of Yetter-Drinfeld modules over CIW. In Section 5.2l we define
some differential operators on the braided Hopf algebra, and determine some of their adjoint
properties, which are similar to those of A. We also prove that there is a bilinear form on
A, and that this form descends to the one we already have on A. Throughout this section,
we work over the complex field C.

5.1. A new braided Hopf algebra. We introduce a cover of the noncrossing algebra,
which is analogous to the Fomin-Kirillov algebra [FK99]. This new algebra is a Yetter-
Drinfeld module over the group algebra CW, and has a braided Hopf algebra structure. We
refer to [AS02] for background concerning Yetter-Drinfeld modules.

5.1.1. Definition and Examples.

Definition 5.1. Let W be any finite Coxeter group and 7" be the set of reflections of W.
Define A = A(W) to be the associative algebra over C generated by oy, t € T, subject to the
following quadratic relations:

(5.1) a?=0, foranyteT,
(5.2) Z ay oy, =0, for any w € W with {r(w) = 2.

(t1,t2) ERexp (w)
The algebra A is a Z-graded algebra with the Z-grading deg(ay) = 1 for allt € T. In

this section, we denote by A the noncrossing algebra over the complex field C. Theses two
algebras are related by the following lemma.

Lemma 5.2. We have a surjective algebra homomorphism T : A A, given by oy — ay for
allteT.

Proof. We just need to check that the relations (5.2]) are preserved in A. If w < -y, then
relation (5.2)) is sent to the defining relation of A under the map 7. Otherwise, for any two
reflections t1, t5 such that 1ty £ v, we have m(ay, ay,) = ay,ay, = 0, and hence for any w £

we have Z(tm)eRCXT(w) (o aq,) = 0. [
Example 5.3. The new algebra ./T(Symn) of type A,_; is generated by a;; = aj; for 1 <14 <
7 < n with the following relations:

a?j =0,
(5.3) a0 + agoy; = 0, for distinct 4, j, k, [

QG0 + QGO + agoy; = 0, for distinet 4, 7, &
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In type As, these relations read:

2 _ 2 2 _
Qjy = j3 = Q3 =0,

Q20093 + Q313 + apzya = 0,
Q312 + Q213 + (zrey = 0.
This algebra looks similar to the Fomin-Kirillov algebra &, [FK99], which is generated by
x;; = —xj; for 1 <14 < j < n with relations:
xfj =0,
T T — Ty = 0, for distinct ¢, 7, k, {
Tij ik + TipTr + Trivi; = 0, for distinct 1, j, k.
For any Z-graded algebra A = @, _, Ak, we denote by Ha(t) = >, _, dim Ay t* the Hilbert-

Poincaré series of A. Using computational software, we obtain that A(Sym,) and &, have
the same Hilbert-Poincaré series for n < 5:

n=1:Hgg., ()= He,(t)=1,

n=2:Hzgm () = He, (t) = [2] = 1 + ¢,

n=3:Hzgm () = He, (t) = [2]°[3] = 1+ 3t +4¢* + 3¢° + 1,
n=4:H g (t) = He, (t) = [2°[3]°[4]%,

n="5:Hyg,, \(t) = He,(t) = [4]*[5]*[6]",

where we have used the notation [k] := 1+¢+---+t*~!. These Hilbert-Poincaré series have
symmetric coefficients. In particular, the top homogeneous component has dimension 1. It
is unknown whether &, is finite-dimensional for n > 6.

Conjecture 5.4. The algebra .Z(Symn) and the Fomin-Kirillov algebra &, have the same
Hilbert-Poincaré series.

Remark 5.5. Recall that the Orlik-Solomon algebra associated to the reflection arrangement
of Sym,, is generated by elements e;; = e;; for 1 < i < j < n, subject to the following
relations: o
€ijCrl = —CkCij, 1<i<j<nl1<k<Il<n,
€ij€jk + €jker; T €ri€ij = 0, 1<,5,k <n.

This appears as a quotient of /T(Symn) by imposing the anti-commutative relations oo =
—aga; for ¢ < j and k < [, that is, we allow {7,5} N {k,{} # 0 in the second relation of
B.3).

5.1.2. Braided Hopf algebra structure. We now take a Hopf-theoretic point of view to the
covering algebra A [AG99, MS00, [AS02].

Let us recall relevant definitions. The group algebra CW has a Hopf algebra structure
with the comultiplication A(w) = w ® w, counit ¢(w) = 1 and antipode S(w) = w™? for any
w € W. A Yetter-Drinfeld module A over CW is a W-graded vector space A = @, .y Auw,
which is a W-module such that w. A, C Ay for all u,w € W.

The algebra A is a Yetter-Drinfeld module over CW, as we now describe. In addition
to the natural Z-grading, A has a grading with respect to W such that the W-degree of
the generator oy is t € T and this is extended to all monomials by multiplication. As the
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defining relations of A are homogeneous with respect to the W-degree, this gives a W-grading
of A= @wew .Z(W, where .Zw is spanned by monomials «y, ...y, such that t1ty.. .t = w.
Note that w = t1t5 .. .1, is not necessarily a reduced expression with respect to reflections of
T or simple reflections of S.

The W-module structure on A is defined by

(5.4) w.oy = (=1 a1, YweW,

where ¢(w) is the usual length of w with respect to the generating set S of W. Clearly,
this action preserves the defining relations (5.I) and (5.2)) of A, and is compatible with the

W-grading, i.e. w.A, C A, -1 for all u,w € W. Therefore, A is a Yetter-Drinfeld module
over CW.

We denote by VD the category of Yetter-Drinfeld modules over CW. A morphism
f: A — B of the category [y, YD is a homomorphism of W-modules which preserves the
W-grading.

An important ingredient of the Yetter-Drinfeld category is the canonical braiding. For any
A, B € YD, the canonical braiding ¢: A® B — B ® A is defined by

(5.5) cla®b) =b® (wta), Vaec AbE B,.

The tensor product A® B is an object of |, YD, with the W-grading (AQB),, = @,,_,, Aa® By
and the W-action w.(a ® ) = w.a ® w.b for any w € W, a € A and b € B. In particular,

we have A ® A € WYD. Moreover, the tensor product A® A is still an algebra, with
multiplication defined via the canonical braiding:

(5.6) (21 @ Y1) (22 @ yo) = 2122 @ (W 1) ya, Vs € Ay, T1, 1,10 € A.

More concisely, pt 3, 7 = (1 7@1 7)(1®c®1), where p14 : A®A — A denotes the multiplication
map of the algebra A.

Recall that a braided bialgebra A in ¥, YD is a collection (A, i, 1, A, €) such that (A, p,n) is
an algebra in |V VD, (A, A, ¢) is a coalgebra in YD and A: A - A® Aand e: A — C are
morphisms of algebras (here A® A is an algebra in [}, YD with multiplication defined via the
braiding ¢). We call A a braided Hopf algebra if in addition there is an antipode S : A — A
in |y YD such that (1 ® S)A = (S®1)A = ne.

Proposition 5.6. The algebra A is a braided Hopf algebra in YD with the coproduct A,
the counit € and the antipode S defined on the generators cy,t € T by

Aly) =0 ®1+1® ay,
e(ar) =0, S(u)=—a.
Proof. We need to check that A, € and S are well-defined, and then check that they satisfy
Hopf algebra axioms. Straightforward calculations show that:
Al =al®@1+1®a?, S?)=a?, ela})=0,
A(R,) = Ry @1+ 1® R,,
S(Ry) = Ry, €(Ry) =0,

(5.7)

where we have used the notation Ry := 37 1 cRewy () @ O, for any w € W with p(w) = 2.
Therefore, A, € and S are all well-defined.
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Next we check the Hopf algebra axioms on the generators of A (1) Coassociativity:

(AR (A()) = (A1) (s @14+ 1® o)
=®1IQ1+10uR1+101Q oy
= (1@ A)(Aaw)).

(2) The counit axiom:

(e® 1)(A(w)
(1®e)(Alay))

~—

(e ®@1+1® ) =,
Ie)(a@1+1Qa) = ay.

—~

(3) The antipode axiom:

p(l @ S)(Ala))
p(S @ 1)(Aar))

M(l@S)(at®1+1®O{t>:Oét—OétIOZE(Oét),
M(S®1)(at®1+1®at) :—at+at:0:e(at).

O

We can extend (5.7) to any monomials of A. Clearly, e(cy, ...ay,) = 0 for k > 1. In the
following we give explicit formulae for S and A.

Proposition 5.7. The antipode S is given explicitly by

(58) S(Oétl ce Oétk) = E(tl, ce ,tk) Oy Oty oo gty
b1 2t

where g(t, ... t) = (=1) Hf:2(_1)f(ti...tk)'

Proof. Recall that in |V YD we have Sy = p(S ® S)c. This follows from the fact that
both Sy and ,ti(S ® S)c are the inverse of y under the convolution product in the algebra

Hom(A ® A, A); refer to [AG99, Lemma 1.2.2]. Using this equation and induction on k, we
have

S(Oéthét2 .. .Oétk) = S(OétQ ce Oétk)S((tk .. .tg).Oétl)

= (=12 G(qy, . .. atk)at§2,4,tk.
The formula follows by induction hypothesis. O
Proposition 5.8. The comultiplication ofﬂ s given explicitly by

k
A(atl...atk) = Z Z atil "'atij ®Etij “‘Etil(atl“‘atk)’

J=0 1<i1 <io<---<i; <k

€A

where Etri (Oétrl e Oétrs) = tTi'(atrl e Oét”;l )OK
and 1 <73 <s.

ooy, , for any monomial oy, ... oy,

tri+1
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Proof. Use induction on k. The formula is trivial if £ = 1. For £ > 1, by induction hypothesis
we have
A(Oétl e Oétk) = A(Oétl e Oétkil)A(O{tk)
k—1
= Z Z (Oztil e atij & Etij Ce Etil (Oétl Ce O‘tk,l))(l (029 Oy, + O, (029 1)

J=0 1<y <ig<---<i; <k—1
—1

k
= Z Z atil Ce atij X (Etij Ce Etil (at1 e O{tkil))atk

J=0 1<i1 <ia < <4 <k—1
k—

+ Z Z atil e atij Oétk ® tk(EtlJ e Etil (O{tl e atkfl))'

7=0 1<i1 <ig<-+<ij<k—1

[y

Note that in the above equation, we have
(Etij By (v ooy, ))y, = Etij By (o oy, 0y,)
tk.(Etij By (o ooy ) = EyEy, .. Ey, (v - ay,).
Then we obtain the formula of A(ay, ... a4, ) as desired. O

Example 5.9. Using Proposition (.8, we have
A(atl atz) =1® Ay O,y + Ay ® Et1 (atl at2) + Oy ® Et2 (ahatz) + Ay Oy ® Et2Et1 (ahatz)

=1 X Qi Ol + Qg & Qg — Oty & Qo ty + Oy Ol X 1.
It follows that A is not cocommutative.
Proposition 5.10. The noncrossing algebra A is a subcoalgebra of A.

Proof. By Lemma A can be lifted as a subspace of A. Note that if g, ... Q, is a nonzero

element of A, that is, w = t1t5...t; € L is a T-reduced expression, then Ey,(ay, ...ay) =

(_1)i—1at? Qg g -Gy, is still a nonzero element of A. In view of Proposition B.8, A
i—1

is closed under the comultiplication A of A. In addition, A is clearly closed under the counit

e of A. Therefore, A is a subcoalgebra of A. O

5.2. Skew-derivations on A. Recall that the noncrossing algebra 4 has skew-derivations
d; and d; for any ¢ € T'. We shall show that these skew-derivations can be lifted to the algebra
A with similar properties. The difference is that these skew-derivations are defined using the
braided Hopf algebra structure of A.

For any integer k > 0 let 7 : A — Ay be the projection of A onto its k-th homogeneous
component A;. We denote by

the (7, )-th component of the comultiplication A.

For any t € T', we deﬁAr}e the linear map V; : A — A as follows: let V(1) = 0, and for any
x € Ay define V,(z) € Ax_1 by

(5.9) Appoa(z) =) 0 @ V().
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Similarly, we define D; : A=A by Dy(1) =0 and A,_11(z) = > e Di(x) ® ay. It is clear
that Vi, (aw,) = Dy, (au,) = 0t,.1, (Kronecker delta).
Proposition 5.11. For anyt € T, let Vy, D, be as above.

(1) For any x,y € A, we have

Vi(ry) = Vi(z)y + (t.2)Vi(y),
Di(xy) = (ly|-De)(x)y + 2Dy (y),

where |y| € W denotes the W -grading of y, i.e. y € ./TM, and |y|.Dy := (=1)“WD Dy 1,11
(2) For any ay oy, . ..oy, € A, we have

k
_ E i—1
Vt(oztloztz ...Oétk) = (—1) 5t7tiattli "'at:ilatiJrl cee Oy

i=1
k
§ k—i
Dt(atlatg . Oétk) = (—1) 6t,7”iat1 e .OétiilatZ#l e )
i=1

where r; = ttl“ % and § is the Kronecker delta.

(3) The linear operators Vy, Dy preserve the defining relations of A.

Proof. For part (1), note that
Alzy) = A@)AY) =1@z+ Y @ Vir)+-)1@y+ Y a@Vi(y)+---)
teT teT

=1@ay+ Y o ® (L)Ve(y) + > @ Vi(z)

teT pyed
It follows that Vi(zy) = Vi(x)y + (t.z)Vi(y). Similarly, using the expression A(z) = z® 1+
ZtET Dy(x) ® ay + - - -, we have

A(zy) = A@)Ay) = (@ 1+ ) D) @ar+---)y© 1+ Dily) ®a;+---)

teT teT

=y @1+ Y 2Dy(y) @+ Y Dil2)y @ |yl Ly

teT teT
Note that
Lo, = £(lyl)
Z Dy(z)y @ |y|~ Z(—l) Dy(2)y @ a1y,
teT teT
=Y (=) DDy (2)y @ ay
teT

Therefore, we have Dy(zy) = (|y|.D;)(x)y + xD;(y). Part (2) is a consequence of part (1),
and part (3) follows immediately from the formulae in part (2). O

Remark 5.12. The linear operators V,, D, are called skew-derivations of the braided Hopf
algebra A [AG99, [AS02].



38 GUS LEHRER AND YANG ZHANG

Proposition 5.13. The skew-derivations Vi, t € T satisfy the following relations:
VZ=0, VteT,
> Vi,V =0, YweW with ly(w) =2,
(t1,t2)ERexy (w)

Therefore, they describe an action 0f.2( on itself.

Proof. We evaluate these relations on x € A and use induction on the Z-degree of x. It is
trivial if deg(xz) = 1. In general, assume that © = ay, ..., For any ry,ry € T, using the
formula from part (1) of Proposition 511 we have

Vi Vi, (atl .- 'atk) =V, (Vm (atl Qiy - - 'atk—l)atk + (_l)k_l(srz,tkatik at;k o 'at§£1)

=V, (Vi(ou .. .oou )y, + (—1)’“‘25”7th7,;,€ (attlk .. 'atZ’il)
I (—1)k_15rz,tkvm(atikatgk . 'atZ’il)’

If 1 = ro = t, then by the induction hypothesis we have V,,V,, (a4, ...az, ) = 0, proving the
first relations.
For the second relation, by the induction hypothesis it is equivalent to proving that

Z 5T17tkvtk7“2tk - 6T27tkv7“1 =0
(r1,r2)ERex(w)

for any w € W with ¢r(w) = 2. If t;, £ w, then the above equation holds trivially. Otherwise,
we have two T-reduced expressions w = tyt = (txtty)ty for t = t,;lw € T, which leads to the
above equation. O

We do not know whether this action of A on itself faithful. Compare [FK99, §9]. Next we
define a bilinear form on A in terms of the skew-derivations.

Definition 5.14. Define the bilinear pairing
(—,=): Ax A—C
by (1,1) =1 and

)
(1) @Z;WZA :O@I any 0 < k # ¢(;
(2) Forany z € Ay and t, € T,i=1,... k,

(oo, ..oy, ) =V, Vi, o .V, (7).

The bilinear form on A is well-defined in view of Proposition 5.13l Note that we do not
reverse the order of V4, in the above definition. This is different from that in Definition [5.14
However, one can prove the following the properties which are similar to those given for A.

Proposition 5.15. We have the following properties.
(1) For anyt € T and x € A, we have

Vi(z) :Z(at,l‘(l)> T(2),

()
Dy(x) = Z Ty (T(2), ),
()
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where we have used the Sweedler’s notation A(x) = Z(x) ) ® x(2) for the comulti-
plication of A.
(2) For any t,t' € T, we have V Dy = DyV,.
(3) For any z,y € A, we have
(vay, y) = (2, Vi(y)), and (auw,y) = (z, Di(y)).

Therefore, with respect to the bilinear form the skew-derivations Vy and Dy are right
adjoint to right and left multiplication by oy, respectively.

Proof. Part (1) follows from the definitions of V;, D, (see (5.9)) and the bilinear form. For
part (2), for any x € A we have

ViDy(x) = Vi) way (x), 00) = Y (o, 1)) 22 (w(3), o).
(z) (z)
Similarly, we can express Dy V,(z) and obtain that V,Dy = DyV,. The proof of part (3) is
similar to that of Lemma (.4l O

Remark 5.16. We do not know whether the bilinear form on As non-degenerate. Note that
by Lemma A and its opposite A% can be lifted to A as vector spaces. It follows from
Proposition [4.5] that the restriction (—, —) : A% x A — C is non-degenerate.

We define
W= Z .
teT
By the defining relations of A we have & = 0. Hence (A,r3) (resp. (A, ¢5)) is a cochain
complex, where 75 (resp. {z) is given by right (resp. left) multiplication by @.

Proposition 5.17. We have the following:
(1) Let V=73, .r Viand D =3, . Dy. Then we have

(2w0,y) = (2, V(y)), and (wr,y) = (z, D(y)).
(2) The complezes (.%, D) and (g, r5) are acyclic.
(3) The complexes (A, V)and (A, lz) are acyclic.
Proof. Part (1) is a consequence of Proposition For part (2), we have
Drg(z) = D(a@) = Y D(xay) = Y (=D(r)ey + x) = —rgD(x) + Na.
teT teT

Therefore, we have Drg + rzD = Nid, which implies that (.Z, D) and (./T, r5) are acyclic and
part (2) follows. Part (3) can be proved similarly. O

APPENDIX A. COMPUTATIONAL RESULTS ON THE MULTIPLICITY

In this appendix, we tabulate some computational results on the cohomology H*(K*(U))
for the simple CW-module U, which by Theorem counts the multiplicity of the con-
tragredient U; in the cohomology H*(F;C) of the Milnor fibre. The homology Hy(K(U))
returns the same result; see Theorem B.11l All calculations are done with the computational
algebra system Magma.
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We only focus on the case of the symmetric group W = Sym,, ;. Then the Milnor fibre F’
is an algebraic variety defined by

Fo={(z1,...000) €C | ] (2i—=)*=1}

1<i<j<n+1

The reduced Milnor fibre Fj is defined by
Fy=A{(z1,...x0p) €C™ | ] (mi—a)=1}

1<i<j<n+1
The symmetric group Sym,,_; acts on F' by permuting coordinates. Hence it induces a
linear (left) action on the cohomology H*(F;C) for 0 < k < n — 1. As vector spaces,
HY(F;C) = H*(Fy; C) @ H*(Fy; C); see [DL16].

The simple right modules Sy of Sym,,; are indexed by partitions A = (A[™, ..., \;"”) of
n + 1, where A\]" means that \; repeats m; times and Zle m;\; = n+ 1. Let X be the
conjugate partition of A\. Then we have Sy = S, ®¢€, where € is the alternating representation
associated to (1"*1). Tt follows from (B.I7) that

HE (A (Sh)) = HE(K*(Sy)), 0<k<n-—1

for any conjugate pair A\, \" of partitions.

Let (Sy)r denote the simple left module of Sym, _, associated to the partition A. It is
well known that the contragredient (S))j is isomorphic to (S)); as left Sym, ;-module.
Therefore, using Theorem we have

(A1) ((Sx)r, H*(F,C)) = dim H*(K*(Sy)).
The Poincaré polynomial P(t) of the Milnor fibre F' can be computed by

(A.2) P(t) = nz_ldimﬂ'f(F; C)tk = nz_l > dimSy((Sy)r, HE(F, C))t*.

Note that the Poincaré polynomial Py(t) of Fy is Py(t) = P(t)/2.

We tabulate computational results on (A.) and (A.2) for all simple modules of Sym,,_,
for 2 < n < 7 in the following tables. Each conjugate pair of partitions is listed in the same
row as they produce the same cohomology.

Remark A.1. Note that the results tabulated here are consistent with those appearing in
[DL16], up to type A4, where W = Sym,. However the cases computed in loc. cit. include
the action of the monodromy group on the cohomology, in the sense that the structure of
H*(F,C)is described as a Imodule, where I' = Sym,, | X ftn(41). In the present work, al-
though the original Brady-Falk-Watt model of F' does come with an action of the monodromy
on the CW complex describing F' (see [BEWIS| or [Zha20, Section 3.4]), our analysis of the
model has not been able to preserve the monodromy action, except to the following extent.
In general, the group () acts (like any subgroup of W) on F', and hence on H*(F'). But it
is known that (7) may be identified with a quotient (or subgroup) of the monodromy u, and
this action is easily identifiable in our model [Zha22, Remark 6.4].

Remark A.2. Settepanella computed the cohomology H*(PB,1,Qlq, ¢~']) of the pure braid
group PB, ; with coefficients in the Laurent polynomial ring Q[q,q '] for n < 7 [Set09]
Table 2. This is related to the Milnor fibre Fjy by

Hk+1(PBn+1>@[qaq_1]) = Hk(FOaQ)
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Hence Settepanella’s results give rise to the Poincaré polynomials Py(t) in type A, forn < 7.
The Poincaré polynomials Py(t) = P(t)/2 given in the tables below coincide with those of
Settepanella up to type Ag. However, for type A; our cohomology groups H*(Fy; Q) agree
with Settepanella’s except for k = 5,6, but the Euler characteristic remains the same.

Remark A.3. Apart from the monodromy action, the major issue untouched by our work is
the mixed Hodge structure on each cohomology group H*(F,C). We hope to return to this
theme later.

H° H'
(3).0H[ 1 2
21) [0 2

TABLE 1. Syms, P(t) =2+ 8t

o HY
4), (Y 1 2 2
G,1,21L,0] 0 1 4
(2,2) 0 2 4

)

TABLE 2. Sym,, P(t) = 2 + 14t + 36t

H° H' H? H°

(5),(1”) |1 2 4

(4.1),(2,1°)] 0 14
(3,2),(2%1)] 0 2 6
3,1,1) | 0 4 10

TABLE 3. Symj, P(t) = 2 + 18t + 56t + 160t

H° H' H? H® H°

(6), (19 1 0 2 4 2
G,1),2,19 10 1 1 3 8
42,2210 1 1 6 15
(3,3),(2,2,2) | 0 0 1 7 11
4,1,1),3,1| 0 0 2 5 13
(3,2,1) 0 0 4 6 18

TABLE 4. Symg, P(t) = 2 + 28t + 146t* + 412¢% + 1012¢*
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H° H' H? H® H* H

@, @7 I 0 2 0 2 6
6,1),2,1°) |0 1 1 3 3 6
5,2),(2%1%) |0 1 1 4 8 18
(5.1,1),(3,1 To 0 2 3 10 24
4,3),251) |0 0 1 4 7 18
(421),(321) 0 0 2 8 17 46
(3,3, ) (3 22y [0 0 1 5 11 28
(4,19 0 0 0 6 8 22

TABLE 5. Symy, P(t) = 2 + 40t + 314¢2 + 1240t% 4 2572t* + 6648t>

H° HY H? H® H* H° H°

®), (1) 1 0 0 0 2 6 4
70,21 |0 1 1 1 1 3 10
6,2),2%1%) |0 1 1 2 4 10 28
6,19,(3,1°) |0 0 2 3 3 7 26
5,3),(251%) |0 0 1 3 6 10 34
(5,2,1),3,2,50 0 2 5 16 25 76
5,159,415 [0 0 0 3 10 22 50
(4,4), (29 0 0 0 1 4 19 30
(4,3,1),3,221) 0 0 1 6 18 27 84
(4,29,3%15) [0 0 0 3 16 31 74
(4,2, 12) 0 0 0 8 22 36 112
(3,3,2) 0 0 0 4 10 16 52

TABLE 6. Symg, P(t) = 2 + 54t + 590¢% + 3330¢> 4+ 10212¢* + 17744t° 4+ 50644¢°
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