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Abstract

In this paper, we consider a transformation of k disjoint paths in a graph. For a graph
and a pair of k disjoint paths P and Q connecting the same set of terminal pairs, we aim to
determine whether P can be transformed toQ by repeatedly replacing one path with another
path so that the intermediates are also k disjoint paths. The problem is called Disjoint
Paths Reconfiguration. We first show that Disjoint Paths Reconfiguration is
PSPACE-complete even when k = 2. On the other hand, we prove that, when the graph
is embedded on a plane and all paths in P and Q connect the boundaries of two faces,
Disjoint Paths Reconfiguration can be solved in polynomial time. The algorithm is
based on a topological characterization for rerouting curves on a plane using the algebraic
intersection number. We also consider a transformation of disjoint s-t paths as a variant. We
show that the disjoint s-t paths reconfiguration problem in planar graphs can be determined
in polynomial time, while the problem is PSPACE-complete in general.

1 Introduction

1.1 Disjoint Paths and Reconfiguration

The disjoint paths problem is a classical and important problem in algorithmic graph theory and
combinatorial optimization. In the problem, the input consists of a graph G = (V,E) and 2k
distinct vertices s1, . . . , sk, t1, . . . , tk, called terminals, and the task is to find k vertex-disjoint
paths P1, . . . , Pk such that Pi connects si and ti for i = 1, . . . , k if they exist. A tuple P =
(P1, . . . , Pk) of paths satisfying this condition is called a linkage. The disjoint paths problem has
attracted attention since 1980s because of its practical applications to transportation networks,
network routing [52], and VLSI-layout [21, 33]. When the number k of terminal pairs is part of
the input, the disjoint paths problem was shown to be NP-hard by Karp [28], and it remains
NP-hard even for planar graphs [34]. For the case of k = 2, polynomial-time algorithms were
presented in [50, 51, 56], while the directed variant was shown to be NP-hard [20]. Later, for
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the case when the graph is undirected and k is a fixed constant, Robertson and Seymour [47]
gave a polynomial-time algorithm based on the graph minor theory, which is one of the biggest
achievements in this area. Although the setting of the disjoint paths problem is quite simple
and easy to understand, a deep theory in discrete mathematics is required to solve the problem,
which is a reason why this problem has attracted attention in the theoretical study of algorithms.

An interesting special case is the problem in planar graphs. In the early stages of the study
of the disjoint paths problem, for the case when G is embedded on a plane and all the terminals
are on one face or two faces, polynomial-time algorithms were given in [45, 53, 54]. In the series
of graph minor papers, the disjoint paths problem on a plane or on a fixed surface was solved for
fixed k [46]. For the planar case, faster algorithms were presented in [1, 43, 44]. The directed
variant of the problem can be solved in polynomial time if the input digraph is planar and k is
a fixed constant [14, 49].

In this paper, we consider a transformation of linkages in a graph. Roughly, in a transforma-
tion, we pick up one path among the k paths in a linkage, and replace it with another path to ob-
tain a new linkage. To give a formal definition, suppose thatG is a graph and s1, . . . , sk, t1, . . . , tk
are distinct terminals. For two linkages P = (P1, . . . , Pk) and Q = (Q1, . . . , Qk), we say that
P is adjacent to Q if there exists i ∈ {1, . . . , k} such that Pj = Qj for j ∈ {1, . . . , k} \ {i} and
Pi 6= Qi. We say that a sequence 〈P1,P2, . . . ,P`〉 of linkages is a reconfiguration sequence from
P1 to P` if Pi and Pi+1 are adjacent for i = 1, . . . , `− 1. If such a sequence exists, we say that
P1 is reconfigurable to P`. In this paper, we focus on the following reconfiguration problem,
which we call Disjoint Paths Reconfiguration.

Disjoint Paths Reconfiguration
Input. A graph G = (V,E), distinct terminals s1, . . . , sk, t1, . . . , tk, and two linkages P and
Q.
Question. Is P reconfigurable to Q?

The problem can be regarded as the problem of deciding the reachability between linkages
via rerouting paths. Such a problem falls in the area of combinatorial reconfiguration; see
Section 1.3 for prior work on combinatorial reconfiguration. Note that Disjoint Paths Re-
configuration is a decision problem that just returns “YES” or “NO” and does not necessarily
find a reconfiguration sequence when the answer is YES.

Although our study is motivated by theoretical interest in the literature of combinatorial
reconfiguration, the problem can model rerouting problem in a telecommunication network as
follows. Suppose that a linkage represents routing in a telecommunication network, and we
want to modify linkage P to another linkage Q which is better than P in some sense. If we
can change only one path in a step in the network for some technical reasons, and we have to
keep a linkage in the modification process, then this situation is modeled as Disjoint Paths
Reconfiguration.

We also study a special case of the disjoint paths problem when s1 = · · · = sk and t1 =
· · · = tk, which we call the disjoint s-t paths problem. In the problem, for a graph and two
terminals s and t, we seek for k internally vertex-disjoint (or edge-disjoint) paths connecting s
and t. It is well-known that the disjoint s-t paths problem can be solved in polynomial time.
The study of disjoint s-t paths was originated from Menger’s min-max theorem [37] and the
max-flow algorithm by Ford and Fulkerson [19]. Faster algorithms for finding maximum disjoint
s-t paths or a maximum s-t flow have been actively studied in particular for planar graphs; see
e.g. [16, 27, 29, 59].

In the same way as Disjoint Paths Reconfiguration, we consider a reconfiguration of
internally vertex-disjoint s-t paths. Let G = (V,E) be a graph with two distinct terminals s
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and t. We say that a set P = {P1, . . . , Pk} of k paths in G is an s-t linkage if P1, . . . , Pk are
internally vertex-disjoint s-t paths. Note that P is not a tuple but a set, that is, we ignore the
ordering of the paths in P. We say that s-t linkages P and Q are adjacent if Q = (P \P )∪{Q}
for some s-t paths P and Q with P 6= Q. We define the reconfigurability of s-t linkages in the
same way as linkages. We consider the following problem.

Disjoint s-t Paths Reconfiguration
Input. A graph G = (V,E), distinct terminals s and t, and two s-t linkages P and Q.
Question. Is P reconfigurable to Q?

1.2 Our Contributions

Since finding disjoint s-t paths is an easy combinatorial optimization problem, one may expect
that Disjoint s-t Paths Reconfiguration is also tractable. However, this is not indeed the
case. We show that Disjoint s-t Paths Reconfiguration is PSPACE-hard even when k = 2.

Theorem 1.1. The Disjoint s-t Paths Reconfiguration is PSPACE-complete even when
k = 2 and the maximum degree of G is four.

Note that Disjoint s-t Paths Reconfiguration can be easily reduced to Disjoint Paths
Reconfiguration by splitting each of s and t into k terminals. Thus, this theorem implies
the PSPACE-hardness of Disjoint Paths Reconfiguration with k = 2.

In this paper, we mainly focus on the problems in planar graphs. To better understand Dis-
joint Paths Reconfiguration in planar graphs, we show a topological necessary condition.

Topological conditions play important roles in the disjoint paths problem. If there exist
disjoint paths connecting terminal pairs in a graph embedded on a surface Σ, then obviously
there must exist disjoint curves on Σ connecting them. For example, when terminals s1, s2, t1
and t2 lie on the outer face F in a plane graph G in this order, there exist no disjoint curves
connecting the terminal pairs in the disk Σ = R2\F , and hence we can conclude that G contains
no disjoint paths. Such a topological condition is used to design polynomial-time algorithms for
the disjoint paths problem with k = 2 [50, 51, 56], and to deal with the problem on a disk or a
cylinder [45]. When Σ is a plane (or a sphere), we can always connect terminal pairs by disjoint
curves on Σ, and hence nothing is derived from the above argument. Indeed, Robertson and
Seymour [46] showed that if the input graph is embedded on a surface and the terminals are
mutually “far apart,” then desired disjoint paths always exist.

In contrast, as we will show below in Theorem 1.2, there exists a topological necessary
condition for the reconfigurability of disjoint paths. Thus, even when the terminals are mutually
far apart, the reconfiguration of disjoint paths is not always possible. This shows a difference
between the disjoint paths problem and Disjoint Paths Reconfiguration.

In order to formally discuss the topological necessary condition, we consider the reconfigu-
ration of curves on a surface. Suppose that Σ is a surface and let s1, . . . , sk, t1, . . . , tk be distinct
points on Σ. By abuse of notation, we say that P = (P1, . . . , Pk) is a linkage if it is a collection
of disjoint simple curves on Σ such that Pi connects si and ti. We also define the adjacency
and reconfiguration sequences for linkages on Σ in the same way as linkages in a graph. Then,
the reconfigurability between two linkages on a plane can be characterized with a word wj as-
sociated to Qj which is an element of the free group Fk generated by x1, . . . , xk as follows; see
Section 3 for the definition of wj .

Theorem 1.2. Let P = (P1, . . . , Pk) and Q = (Q1, . . . , Qk) be linkages on a plane (or a
sphere). Then, P is reconfigurable to Q if and only if wj ∈ 〈xj〉 for any j ∈ {1, . . . , k}, where
〈xj〉 denotes the subgroup generated by xj.
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Figure 1: (Left) An example on the plane where (P1, P2) is not reconfigurable to (Q1, Q2). (Right) An example
in a graph where the condition in Theorem 1.2 holds but (P1, P2) is not reconfigurable to (Q1, Q2).

See Figure 1 (left) for an example. It is worth noting that, if k = 2 and Σ is a connected
orientable closed surface of genus g ≥ 1, then such a topological necessary condition does not
exist, i.e., the reconfiguration is always possible; see Appendix A.

For a graph embedded on a plane, we can identify paths and curves. Then, Theorem 1.2 gives
a topological necessary condition for Disjoint Paths Reconfiguration in planar graphs.
However, the converse does not necessarily hold: even when the condition in Theorem 1.2 holds,
an instance of Disjoint Paths Reconfiguration may have no reconfiguration sequence.
See Figure 1 (right) for a simple example. The polynomial solvability of Disjoint Paths
Reconfiguration in planar graphs is open even for the case of k = 2.

With the aid of the topological necessary condition, we design polynomial-time algorithms
for special cases, in which all the terminals are on a single face (called one-face instances), or
s1, . . . , sk are on some face and t1, . . . , tk are on another face (called two-face instances). Note
that one/two-face instances have attracted attention in the disjoint paths problem [45, 53, 54],
in the multicommodity flow problem [39, 40], and in the shortest disjoint paths problem [8,
13, 15, 31]. We show that any one-face instance of Disjoint Paths Reconfiguration has a
reconfiguration sequence (Proposition 4.1). Moreover, we prove a topological characterization
for two-face instances of Disjoint Paths Reconfiguration (Theorem 4.2), which leads to a
polynomial-time algorithm in this case.

Theorem 1.3. When the instances are restricted to two-face instances, Disjoint Paths Re-
configuration can be solved in polynomial time.

Based on this theorem, we give a polynomial-time algorithm for Disjoint s-t Paths Re-
configuration in planar graphs.

Theorem 1.4. There is a polynomial-time algorithm for Disjoint s-t Paths Reconfigura-
tion in planar graphs.

Note that the number k of paths in Theorems 1.3 and 1.4 can be part of the input.
It is well known that G has an s-t linkage of size k if and only if G has no s-t separator

of size k − 1 (Menger’s theorem). The characterization for two-face instances (Theorem 4.2)
implies the following theorem, which is interesting in the sense that one extra s-t connectivity
is sufficient to guarantee the existence of a reconfiguration sequence.

Theorem 1.5. Let G = (V,E) be a planar graph with distinct vertices s and t, and let P and
Q be s-t linkages. If there is no s-t separator of size k, then P is reconfigurable to Q.

As mentioned above, the polynomial solvability of Disjoint Paths Reconfiguration in
planar graphs is open even for the case of k = 2. On the other hand, when k is not bounded,
Disjoint Paths Reconfiguration is PSPACE-complete as the next theorem shows.
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Theorem 1.6. The Disjoint Paths Reconfiguration is PSPACE-complete when the graph
G is planar and of bounded bandwidth.

Here, we recall the definition of the bandwidth of a graph. Let G = (V,E) be an undirected
graph. Consider an injective map π : V → Z. Then, the bandwidth of π is defined as max{|π(u)−
π(v)| | {u, v} ∈ E}. The bandwidth of G is defined as the minimum bandwidth of all injective
maps π : V → Z.

1.3 Related Work

Combinatorial reconfiguration is an emerging field in discrete mathematics and theoretical com-
puter science. In typical problems of combinatorial reconfiguration, we consider two discrete
structures, and ask whether one can be transformed to the other by a sequence of local changes.
See surveys of Nishimura [38] and van den Heuvel [57].

Path reconfiguration problems have been studied in this framework. The apparently first
problem is the shortest path reconfiguration, introduced by Kaminski et al. [26]. In this prob-
lem, we are given an undirected graph with two designated vertices s, t and two s-t shortest
paths P and Q. Then, we want to decide whether P can be transformed to Q by a sequence
of one-vertex changes in such a way that all the intermediate s-t paths remain the shortest.
Bonsma [6] proved that the shortest path reconfiguration is PSPACE-complete, but polynomial-
time solvable when the input graph is chordal or claw-free. Bonsma [7] further proved that the
problem is polynomial-time solvable for planar graphs. Wrochna [60] proved that the problem
is PSPACE-complete even for graphs of bounded bandwidth. Gajjar et al. [22] proved that the
problem is polynomial-time solvable for circle graphs, circular-arc graphs, permutation graphs
and hypercubes. They also considered a variant where a change can involve k successive ver-
tices; in this variant they proved that the problem is PSPACE-complete even for line graphs.
Properties of the adjacency relation in the shortest path reconfiguration have also been stud-
ied [4, 5].

Another path reconfiguration problem has been introduced by Amiri et al. [3] who were
motivated by a problem in software defined networks. In their setup, we are given a directed
graph with edge capacity and two designated vertices s, t. We are also given k pairs of s-
t paths (Pi, Qi), i = 1, 2, . . . , k, where the number of paths among P1, P2, . . . , Pk (and among
Q1, Q2, . . . , Qk respectively) traversing an edge is at most the capacity of the edge. The problem
is to determine whether one set of paths can be transformed to the other set of paths by a
sequence of the following type of changes: specify one vertex v and then switch the usable
outgoing edges at v from those in the Pi to those in the Qi. In each of the intermediate
situations, there must be a unique path through usable edges in Pi ∪ Qi for each i. See [3]
for the precise problem specification. Amiri et al. [3] proved that the problem is NP-hard even
when k = 2. For directed acyclic graphs, they also proved that the problem is NP-hard (for
unbounded k) but fixed-parameter tractable with respect to k. A subsequent work [2] studied
an optimization variant in which the number of steps is to be minimized when a set of “disjoint”
changes can be performed simultaneously.

Matching reconfiguration in bipartite graphs can be seen as a certain type of disjoint paths
reconfiguration problems. In matching reconfiguration, we are given two matchings (with extra
properties) and want to determine whether one matching can be transformed to the other
matching by a sequence of local changes. There are several choices for local changes. One of
the most studied local change rules is the token jumping rule, where we remove one edge and
add one edge at the same time. Ito et al. [24] proved that the matching reconfiguration (under
the token jumping rule) can be solved in polynomial time.1

1The theorem by Ito et al. [24] only gave a polynomial-time algorithm for a different local change, the so-called
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To see a connection of matching reconfiguration with disjoint paths reconfiguration, consider
the matching reconfiguration problem in bipartite graphs G under the token jumping rule, where
we are given two matchings M,M ′ of G. Then, we add two extra vertices s, t to G, and for
each edge e ∈ M (and M ′) we construct a unique s-t path of length three that passes through
e. This way, we obtain two s-t linkages P and P ′ from M and M ′, respectively. It is easy to
observe that P can be reconfigured to P ′ in Disjoint s-t Paths Reconfiguration if and
only if M can be reconfigured to M ′ in the matching reconfiguration problem in G.

There are a lot of studies on the disjoint paths problem and its variants. A natural variant
is to maximize the number of vertex-disjoint paths connecting terminal pairs, which is called
the maximum disjoint paths problem. Since this problem is NP-hard when k is part of the
input, it has been studied from the viewpoint of approximation algorithms. It is known that a
simple greedy algorithm achieves an approximation of factor O(

√
|V |) [32], which is the current

best approximation ratio for general graphs. Chuzhoy and Kim [9] improved this factor to
Õ(n1/4) for grid graphs, and Chuzhoy et al. [10] gave an Õ(|V |9/19)-approximation algorithm

for planar graphs. On the negative side, the maximum disjoint paths problem is 2Ω(
√

log |V |)-
hard to approximate under some complexity assumption [11], which is the current best hardness
result.

Another variant is the shortest non-crossing walks problem. In a graph embedded on a
plane, we say that walks are non-crossing if they do not cross each other or themselves, while
they may share edges or vertices; see [17] for a formal definition. We can see that this concept
is positioned in between disjoint paths and disjoint curves. In the shortest non-crossing walks
problem, we are given a plane graph with non-negative edge lengths and k terminal pairs that
lie on the boundary of h polygonal obstacles. The objective is to find k non-crossing walks
that connect terminal pairs in G of minimum total length, if they exist. For the case of h = 2,
Takahashi et al. [55] gave an O(|V | log |V |)-time algorithm, and Papadopoulou [42] proposed
a linear-time algorithm. For general h, Erickson and Nayyeri [17] gave a 2O(h2)|V | log k-time
algorithm, which runs in polynomial time when h is a fixed constant. They also showed that
the existence of a feasible solution can be determined in linear time.

1.4 Organization

In Section 2, we introduce some notation and basic concepts in topology. Section 3 deals with
rerouting disjoint curves, giving the proof of Theorem 1.2. In Sections 4 and 5, we prove The-
orems 1.3, 1.4, and 1.5. Hardness results (Theorems 1.1 and 1.6) are then proven in Section 6.

2 Preliminaries

For a positive integer k, let [k] = {1, 2, . . . , k}.
Let G = (V,E) be a graph. For a subgraph H of G, the vertex set of H is denoted by V (H).

Similarly, for a path P , let V (P ) denote the set of vertices in P . For X ⊆ V , let N(X) be the
set of vertices in V \X that are adjacent to the vertices in X. For a vertex set U ⊆ V , let G\U
denote the graph obtained from G by removing all the vertices in U and the incident edges. For
a path P in G, we denote G \ V (P ) by G \ P to simplify the notation. For disjoint vertex sets
X,Y ⊆ V , we say that a vertex subset U ⊆ V \ (X ∪Y ) separates X and Y if G\U contains no
path between X and Y . For distinct vertices s, t ∈ V , U ⊆ V \ {s, t} is called an s-t separator
if U separates {s} and {t}.

token addition and removal rule. However, their result can easily be adapted to the token jumping rule, too.
See [25].
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C1

C2

εp(C1, C2) = 1 εp(C1, C2) = −1

p C1

C2

p

Figure 2: Local intersection numbers of curves C1 and C2 at p.

C1

C2C1

C2 C2 C1

+1 −1

µ(C1, C2) = 0 µ(C1, C2) = 2 µ(C1, C2) = −1

Figure 3: Algebraic intersection numbers of paths C1 and C2 on a graph.

For Disjoint Paths Reconfiguration (resp. Disjoint s-t Paths Reconfiguration),
an instance is denoted by a triplet (G,P,Q), where G is a graph and P and Q are linkages
(resp. s-t linkages). Note that we omit the terminals, because they are determined by P and
Q. Since any instance has a trivial reconfiguration sequence when k = 1, we may assume that
k ≥ 2. For linkages (resp. s-t linkages) P and Q, we denote P ↔ Q if P and Q are adjacent.
Recall that P = (P1, . . . , Pk) is adjacent to Q = (Q1, . . . , Qk) if there exists i ∈ [k] such that
Pj = Qj for j ∈ [k] \ {i} and Pi 6= Qi.

For a graph G embedded on a surface Σ, each connected region of Σ \G is called a face of
G. For a face F , its boundary is denoted by ∂F . When a graph G is embedded on a surface Σ,
a path in G is sometimes identified with the corresponding curve in Σ. A graph embedded on
a plane is called a plane graph. A graph is said to be planar if it has a planar embedding.

The following notion is well known in topology. See [18, Section 1.2.3] for instance.

Definition 2.1. Let C1 and C2 be piecewise smooth oriented curves on an oriented surface and
let p ∈ C1 ∩ C2 be a transverse double point. The local intersection number εp(C1, C2) of C1

and C2 at p is defined by εp(C1, C2) = 1 if C1 crosses C2 from left to right and εp(C1, C2) = −1
if C1 crosses C2 from right to left (see Figure 2). When ∂C1 ∩C2 = C1 ∩ ∂C2 = ∅, the algebraic
intersection number µ(C1, C2) ∈ Z is defined to be the sum of εp(C1, C2) over all p ∈ C1 ∩ C2

(after a small perturbation if necessary). Note that ∂Ci denotes the set of endpoints of Ci.

When a graph is embedded on an oriented surface, paths in the graph are piecewise smooth
curves, and hence we can define the algebraic intersection number for a pair of paths (see
Figure 3).

3 Curves on a Plane

In this section, we consider the reconfiguration of curves on a plane and prove Theorem 1.2.
Suppose that we are given distinct points s1, . . . , sk, t1, . . . , tk on a plane and linkages P and Q
that consist of curves on the plane connecting si and ti.

Throughout this section, all intersections of curves are assumed to be transverse double
points. Fix j ∈ [k] and let

⋃
i∈[k] Pi∩Qj = {sj , p1, . . . , pn, tj}, where the n+2 points are aligned
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Figure 4: An example of linkages with w1 = x2x
−1
1 x−1

2 x1x
−1
2 x−1

1 x2 and w2 = x1x
−1
2 x−1

1 x2x
−1
1 x−1

2 x1.

Pi

Qi
(I) (II)

Pi

Qℓ

Figure 5: Local pictures of isotopies of Pi.

on Qj in this order. We now define wj ∈ Fk by

wj =
∏
`∈[n]

x
εp` (Pi`

,Qj)

i`
,

where i` ∈ [k] satisfies p` ∈ Pi` ∩ Qj . Recall that Fk denotes the free group generated by
x1, . . . , xk. We give an example in Figure 4.

Remark 3.1. Let ab: Fk → Zk denote the abelianization, that is, the `th entry of ab(w) is the
sum of the exponents of x`’s in w. For distinct i, j ∈ [k], the ith entry of ab(wj) is equal to
the algebraic intersection number µ(Pi, Qj) ∈ Z of Pi and Qj . Thus, wj ∈ 〈xj〉 implies that
µ(Pi, Qj) = 0 for any i ∈ [k] \ {j}.

In the following two lemmas, we observe the behavior of wj under certain moves of curves.
For j ∈ [k], let w′j denote the word defined by a linkage P ′ and the curve Qj .

Lemma 3.2. Let i ∈ [k] and let P ′ = (P ′1, . . . , P
′
k) be a linkage such that P ′` = P` if ` 6= i, and

P ′i is isotopic to Pi relative to {si, ti} in R2 \
⋃

`6=i P`. Then, w′j = wj for j ∈ [k] \ {i}, and
w′i = xe1i wix

e2
i for some e1, e2 ∈ Z.

Proof. By the definition of an isotopy (see [18, Section 1.2.5]), P ′i is obtained from Pi by a finite
sequence of the moves illustrated in Figure 5. By (I), one intersection of Pi and Qi is created
or eliminated, and thus (I) changes wi to wix

±1
i or x±1

i wi. In (II), two intersections of Pi and
Q` are created or eliminated for some ` ∈ [k]. Since x±1

i x∓1
i = 1, wj is unchanged under (II)

for any j ∈ [k].

Recall here that 〈x`〉 denotes the subgroup of Fk generated by x`.

Lemma 3.3. Let γ be a simple curve connecting Pi and sj (i 6= j) whose interior is disjoint
from

⋃
`∈[k] P`, and define P ′i as illustrated in Figure 6. Let P ′ be the linkage obtained from P

by replacing Pi with P ′i . For ` ∈ [k], if w` ∈ 〈x`〉, then w′` = w`.

Proof. Define a group homomorphism fij : Fk → Fk by fij(x`) = x` if ` 6= j, and fij(xj) =
xixjx

−1
i . Then, one can check that w′` = fij(w`) if ` 6= j, and w′j = x−1

i fij(wj)xi (see Figure 6).
Since w` = xe`` for some e` ∈ Z by the assumption, we have w′` = w` if ` 6= j. Also, one has

w′j = x−1
i fij(wj)xi = x−1

i (xixjx
−1
i )ejxi = wj .

This completes the proof.
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Qℓ

Figure 6: (Left) A move of Pi along γ. (Right) Intersections of P ′i and
⋃

`Q`.

Pi

Qj∗

P ′
i

Qj∗

Figure 7: A reconfiguration of Pi to P ′i .

As a consequence of Lemmas 3.2 and 3.3, we obtain the following key lemma.

Lemma 3.4. Suppose that P is reconfigurable to P ′. For j ∈ [k], if wj ∈ 〈xj〉, then w′j ∈ 〈xj〉.

Proof. It suffices to consider the case when there is i ∈ [k] such that P ′` = P` if ` 6= i, and
P ′i 6= Pi. Since Pi is isotopic to P ′i (relative to {si, ti}) in R2, the curve P ′i is obtained from Pi

by the moves in Lemmas 3.2 and 3.3. Therefore, these lemmas imply that if wj ∈ 〈xj〉 then
w′j ∈ 〈xj〉.

With this key lemma, we can prove Theorem 1.2 stating that P is reconfigurable to Q if
and only if wj ∈ 〈xj〉 for any j ∈ [k].

Proof of Theorem 1.2. First suppose that P is reconfigurable to Q, namely P is reconfigurable
to P ′ such that P ′i ∩Qi = {si, ti} and P ′i ∩Qj = ∅ for j ∈ [k]\{i}. Then, w′j = 1 for any j ∈ [k].
Since P ′ is reconfigurable to P, Lemma 3.4 implies that wj ∈ 〈xj〉 for any j ∈ [k].

The converse is shown by induction on the number, say n, of intersections of P and Q except
their endpoints. The case n = 0 is obvious. Let us consider the case n ≥ 1. If Pi ∩Qj = ∅ for
any pair of distinct i, j ∈ [k], then the reconfiguration is obviously possible. Otherwise, there
exists xix

−1
i or x−1

i xi in the product of the definition of wj∗ for some i, j∗ ∈ [k] (possibly i = j∗).
This means that Pi can be reconfigured to a curve P ′i as illustrated in Figure 7. This process
eliminates at least two intersections and we have w′j ∈ 〈xj〉 for any j ∈ [k] by Lemma 3.4. Thus,
the induction hypothesis concludes that P ′ is reconfigurable to Q.

By Theorem 1.2 and Remark 3.1, we obtain the following corollary.

Corollary 3.5. Let P = (P1, . . . , Pk) and Q = (Q1, . . . , Qk) be linkages on a plane (or a
sphere). If P is reconfigurable to Q, then µ(Pi, Qj) = 0 for any distinct i, j ∈ [k].

It is worth mentioning that the converse is not necessarily true as illustrated in Figure 4.
This means that a “non-commutative” tool such as the free group Fk is essential to describe
the complexity of the reconfiguration of curves on a plane.

4 Algorithms for Planar Graphs

In this section, we consider the reconfiguration in planar graphs and prove Theorems 1.3, 1.4,
and 1.5. We deal with one-face instances and two-face instances of Disjoint Paths Re-
configuration in Sections 4.1 and 4.2, respectively. Then, we discuss Disjoint s-t Paths
Reconfiguration in Section 4.3. A proof of a key theorem (Theorem 4.2) is postponed to
Section 5.
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4.1 One-Face Instance

We say that an instance (G,P,Q) of Disjoint Paths Reconfiguration is a one-face instance
if G is a plane graph and all the terminals are on the boundary of some face. We show that P
is always reconfigurable to Q in a one-face instance.

Proposition 4.1. For any one-face instance (G,P,Q) of Disjoint Paths Reconfigura-
tion, P is reconfigurable to Q.

Proof. We prove the proposition by induction on the number of vertices in G. Let I = (G,P,Q)
be a one-face instance of Disjoint Paths Reconfiguration.

If G is not connected, then we can consider each connected component separately. If G is
connected but not 2-connected, then there exist subgraphs G1 and G2 such that G = G1 ∪G2

and V (G1) ∩ V (G2) = {v} for some v ∈ V . For i = 1, 2, define Ii as the restriction of I to Gi

if some path in P ∪ Q uses an edge in Gi incident to v, and define Ii as the restriction of I to
Gi \ {v} otherwise. Since I1 and I2 are one-face instances (or trivial instances with at most one
terminal pair), the induction hypothesis shows that there exist reconfiguration sequences for I1

and I2. By combining them, we obtain a reconfiguration sequence from P to Q.
In what follows, suppose that G is 2-connected. Let F be a face of G whose boundary

contains all the terminals. Note that the boundary of F forms a cycle, because G is 2-connected.
Since there is a linkage, for some i ∈ [k], there exists an si-ti path Ri along ∂F that contains no
terminals other than si and ti. Since P and Q are linkages, Pj and Qj are disjoint from Ri for
j ∈ [k] \ {i}. Define P ′ (resp. Q′) as the linkage that is obtained from P (resp. Q) by replacing
Pi (resp. Qi) with Ri. Then, P ↔ P ′ and Q ↔ Q′.

Since (G \ Ri,P ′ \ {Ri},Q′ \ {Ri}) is a one-face instance, P ′ \ {Ri} is reconfigurable to
Q′ \ {Ri} in G \Ri by the induction hypothesis. This implies that P ′ is reconfigurable to Q′ in
G. Therefore, P is reconfigurable to Q in G.

4.2 Two-Face Instance

Let k ≥ 2. We say that an instance (G,P,Q) of Disjoint Paths Reconfiguration is a
two-face instance if G = (V,E) is a plane graph, s1, . . . , sk are on the boundary of some face
S, and t1, . . . , tk are on the boundary of another face T . The objective of this subsection is to
present a polynomial-time algorithm for two-face instances.

It suffices to consider the case when the graph is 2-connected, since otherwise we can easily
reduce to the 2-connected case. Hence, we may assume that the boundary of each face forms a
cycle. For ease of explanation, without loss of generality, we assume that G is embedded on R2

so that S is an inner face and T is the outer face. Furthermore, we may assume that s1, . . . , sk
lie on the boundary of S clockwise in this order and t1, . . . , tk lie on the boundary of T clockwise
in this order, because there is a linkage.

A vertex set U ⊆ V is called a terminal separator if U separates {s1, . . . , sk} and {t1, . . . , tk}.
For two curves (or paths) P and Q between ∂S and ∂T that share no endpoints, define µ(P,Q)
as in Definition 2.1. That is, µ(P,Q) is the number of times P crosses Q from left to right minus
the number of times P crosses Q from right to left, where we suppose that P and Q are oriented
from ∂S to ∂T . Since µ(Pi, Qj) takes the same value for distinct i, j ∈ [k] (see Appendix B),
this value is denoted by µ(P,Q). Roughly, µ(P,Q) indicates the difference of the numbers of
rotations around S of the linkages.

The existence of a linkage shows that the graph has no terminal separator of size less than k.
If the graph has no terminal separator of size k, then we can characterize the reconfigurability
by using µ(P,Q). The following is a key theorem in our algorithm, whose proof is given in
Section 5.
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Theorem 4.2. Let k ≥ 2. Suppose that a two-face instance (G,P,Q) of Disjoint Paths
Reconfiguration has no terminal separator of size k. Then, P is reconfigurable to Q if and
only if µ(P,Q) = 0.

By using this theorem, we can design a polynomial-time algorithm for two-face instances of
Disjoint Paths Reconfiguration and prove Theorem 1.3.

Proof of Theorem 1.3. Suppose that we are given a two-face instance I = (G,P,Q) of Disjoint
Paths Reconfiguration.

We first test whether I has a terminal separator of size k, which can be done in polynomial
time by a standard minimum cut algorithm. If there is no terminal separator of size k, then
Theorem 4.2 shows that we can easily solve Disjoint Paths Reconfiguration by checking
whether µ(P,Q) = 0 or not.

Suppose that we obtain a terminal separator U of size k. Then, we obtain subgraphs
G1 and G2 of G such that G = G1 ∪ G2, V (G1) ∩ V (G2) = U , {s1, . . . , sk} ⊆ V (G1), and
{t1, . . . , tk} ⊆ V (G2). We test whether V (Pi) ∩ U = V (Qi) ∩ U holds for any i ∈ [k] or not,
where we note that each of V (Pi)∩U and V (Qi)∩U consists of a single vertex. If this does not
hold, then we can immediately conclude that P is not reconfigurable to Q, because V (Pi) ∩ U
does not change in the reconfiguration. If V (Pi) ∩ U = V (Qi) ∩ U for i ∈ [k], then we consider
the instance Ii = (Gi,Pi,Qi) for i = 1, 2, where Pi and Qi are the restrictions of P and Q
to Gi. That is, Ii is the restriction of I to Gi. Then, we see that P is reconfigurable to Q
if and only if Pi is reconfigurable to Qi for i = 1, 2. Since I1 and I2 are one-face or two-face
instances, by solving them recursively, we can solve the original instance I in polynomial time.
See Algorithm 1 for a pseudocode of the algorithm.

Algorithm 1: Algorithm for two-face instances of DPR

Input: A two-face instance I = (G,P,Q) of DPR.
Output: Is P reconfigurable to Q?

1 Compute a terminal separator U of size k;
2 if such U does not exist then
3 if µ(P,Q) = 0 then
4 return YES
5 else
6 return NO

7 else
8 if V (Pi) ∩ U 6= V (Qi) ∩ U for some i ∈ [k] then
9 return NO

10 else
11 Construct G1 and G2;
12 Solve the restriction Ii of I to Gi for i = 1, 2, recursively;
13 if Ii is a YES-instance for i = 1, 2 then
14 return YES
15 else
16 return NO

4.3 Reconfiguration of s-t Paths

In this subsection, for Disjoint s-t Paths Reconfiguration in planar graphs, we show results
that are analogous to Theorems 4.2 and 1.3, which have been already stated in Section 1.2.
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Figure 8: (Left) Original graph G. (Right) Modification around s.

Theorem 1.5. Let G = (V,E) be a planar graph with distinct vertices s and t, and let P and
Q be s-t linkages. If there is no s-t separator of size k, then P is reconfigurable to Q.

Proof. Suppose that G, s, t, P, and Q are as in the statement, and assume that there is no s-t
separator of size k. We fix an embedding of G on the plane. If there is an edge connecting s
and t, then s and t are on the boundary of some face, and hence P is reconfigurable to Q in
the same way as Proposition 4.1. Thus, it suffices to consider the case when there is no edge
connecting s and t.

We now construct an instance of Disjoint Paths Reconfiguration by replacing s and
t with large “grids” as follows. Let e1, e2, . . . , e` be the edges incident to s clockwise in this
order. Note that ` ≥ k + 1 holds, because G has no s-t separator of size k. For i ∈ [`], we
subdivide ei by introducing p new vertices v1

i , v
2
i , . . . , v

p
i such that they are aligned in this order

and v1
i is closest to s, where p is a sufficiently large integer (e.g., p ≥ |V |2). For i ∈ [`] and

for j ∈ [p], we introduce a new edge connecting vji and vji+1, where vj`+1 = vj1. Define si = v1
i

for i ∈ [k] and remove s. Then, the graph is embedded on the plane and s1, . . . , sk are on the
boundary of some face clockwise in this order; see Figure 8. By applying a similar procedure
to t, we modify the graph around t and define t1, . . . , tk that are on the boundary of some face
counter-clockwise in this order. Let G′ be the obtained graph. Observe that G′ contains no
terminal separator of size k, because G has no s-t separator of size k.

By rerouting the given s-t linkages P and Q around s and t, we obtain linkages P ′ and Q′
from {s1, . . . , sk} to {t1, . . . , tk} in G′. Note that the restrictions of P and Q to G\{s, t} coincide
with those of P ′ and Q′, respectively. Then, we can take P ′ and Q′ so that |µ(P ′,Q′)| ≤ |V |.
Furthermore, by using at most |V | concentric cycles around s and t, we can reroute the linkages
so that the value µ(P ′,Q′) decreases or increases by one. Therefore, by using p ≥ |V |2 concentric
cycles, we can reroute P ′ and Q′ so that µ(P ′,Q′) becomes zero.

By Theorem 4.2, P ′ is reconfigurable to Q′ in G′ (in terms of Disjoint Paths Reconfig-
uration). Then, the reconfiguration sequence from P ′ to Q′ corresponds to that from P to Q
in G (in terms of Disjoint s-t Paths Reconfiguration). Therefore, P is reconfigurable to
Q in G.

Theorem 1.4. There is a polynomial-time algorithm for Disjoint s-t Paths Reconfigura-
tion in planar graphs.

Proof. Suppose that we are given a planar graph G = (V,E) with s, t ∈ V and s-t linkages
P = {P1, . . . , Pk} and Q = {Q1, . . . , Qk} in G. We first test whether G has an s-t separator of
size k. If there is no such a separator, then we can immediately conclude that P is reconfigurable
to Q by Theorem 1.5.
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Figure 9: Construction of G1, G2, and G3.

Suppose that G has an s-t separator of size k. Let X be the inclusionwise minimal vertex
set subject to s ∈ X and N(X) is an s-t separator of size k. Note that such X is uniquely
determined by the submodularity of |N(X)| and it can be computed in polynomial time by a
standard minimum cut algorithm. Similarly, let Y be the unique inclusionwise minimal vertex
set subject to t ∈ Y and N(Y ) is an s-t separator of size k. Let U = N(X), W = N(Y ),
G1 = G[X ∪ U ], G2 = G \ (X ∪ Y ), and G3 = G[Y ∪W ]; see Figure 9. Since V (Pi) ∩ U and
V (Pi)∩W do not change in the reconfiguration, we can consider the reconfiguration in G1, G2,
and G3, separately.

We first consider the reconfiguration in G1. Observe that each path in P contains exactly
one vertex in U , and the restriction of P to G1 consists of k paths from s to U that are vertex-
disjoint except at s. The same for Q. By the minimality of X, G1 contains no vertex set of size
k that separates {s} and U . Therefore, by the same argument as Theorem 1.5, the restriction
of P to G1 is reconfigurable to that of Q.

If U ∩W 6= ∅, then G \X contains no vertex set of size k that separates U and {t} by the
minimality of Y . In such a case, by shrinking U to a single vertex and by applying the same
argument as above, the restriction of P to G \X is reconfigurable to that of Q. By combining
the reconfiguration in G1 and that in G\X, we obtain a reconfiguration sequence from P to Q.

Therefore, it suffices to consider the case when U ∩ W = ∅. In the same way as G1,
we see that the restriction of P to G3 is reconfigurable to that of Q. This shows that the
reconfigurability from P to Q in G is equivalent to that in G2. By changing the indices if
necessary, we may assume that Pi ∩ U = Qi ∩ U for i ∈ [k]. If Pi ∩W 6= Qi ∩W for some
i ∈ [k], then we can conclude that P is not reconfigurable to Q. Otherwise, let P ′ and Q′ be the
restrictions of P and Q to G2, respectively. Since (G2,P ′,Q′) is a one-face or two-face instance
of Disjoint Paths Reconfiguration, we can solve it in polynomial time by Proposition 4.1
and Theorem 1.3. Therefore, we can test the reconfigurability from P to Q in polynomial time;
see Algorithm 2.

5 Proof of Theorem 4.2

The necessity (“only if” part) in Theorem 4.2 is immediately derived from Corollary 3.5.
In what follows in this section, we show the sufficiency (“if” part) in Theorem 4.2, which

is one of the main technical contributions in this paper. Assume that µ(P,Q) = 0 and there
is no terminal separator of size k. The objective is to show that P is reconfigurable to Q.
Our proof is constructive, and based on topological arguments. A similar technique is used in
[30, 35, 36, 41].
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Algorithm 2: Algorithm for planar s-t paths reconfiguration

Input: A planar graph G and s-t linkages P and Q.
Output: Is P reconfigurable to Q?

1 Compute X and Y together with s-t separators U and W of size k;
2 if such separators do not exist or U ∩W 6= ∅ then
3 return YES
4 else
5 Construct G2 = G \ (X ∪ Y );
6 Change the indices so that Pi ∩ U = Qi ∩ U for i ∈ [k];
7 if Pi ∩W 6= Qi ∩W for some i ∈ [k] then
8 return NO
9 else

10 Let P ′ and Q′ be the restrictions of P and Q to G2;
11 if (G2,P ′,Q′) is a YES-instance of DPR then
12 return YES
13 else
14 return NO

5.1 Preliminaries for the Proof

Let C be a simple curve connecting the boundaries of S and T such that C contains no vertex
in G, C intersects the boundaries of S and T only at its endpoints, and µ(Pi, C) = 0 for i ∈ [k].
Note that such C always exists, because the last condition is satisfied if C is disjoint from P.
Note also that µ(Qi, C) = 0 holds for i ∈ [k], because µ(P,Q) = 0.

Since T is the outer face, R2 \ (S ∪ T ) forms an annulus (or a cylinder).2 Thus, by cutting
it along C, we obtain a rectangle whose boundary consists of ∂S, ∂T , and two copies of C. We
take infinite copies of this rectangle and glue them together to obtain an infinite long strip R.
That is, for j ∈ Z, let Cj be a copy of C, let Rj be a copy of the rectangle whose boundary
contains Cj and Cj+1, and define R =

⋃
j∈ZR

j ; see Figure 10. By taking C appropriately,

we may assume that the copies of s1, . . . , sk lie on the boundary of Rj in this order so that s1

is closest to Cj and sk is closest to Cj+1. The same for t1, . . . , tk. Note that R is called the
universal cover of R2 \ (S ∪ T ) in the terminology of topology.

Since G is embedded on R2 \ (S ∪ T ), this operation naturally defines an infinite periodic
graph Ĝ = (V̂ , Ê) on R that consists of copies of G. A path in Ĝ is identified with the
corresponding curve in R. For v ∈ V and j ∈ Z, let vj ∈ V̂ denote the unique vertex in Rj

that corresponds to v. Since µ(Pi, C) = 0 for i ∈ [k], each path in Ĝ corresponding to Pi is
from sji to tji for some j ∈ Z, and we denote such a path by P j

i . We define Qj
i in the same way.

Since P and Q are linkages in G, {P j
i | i ∈ [k], j ∈ Z} and {Qj

i | i ∈ [k], j ∈ Z} are sets of

vertex-disjoint paths in Ĝ.
A path in Ĝ connecting the boundary of R corresponding to ∂S and that corresponding to

∂T is called an Ŝ-T̂ path. For an Ŝ-T̂ path P , let L(P ) be the region of R \ P that is on the
“left-hand side” of P . Formally, let r be a point in Rj for sufficiently small j, and define L(P )
as the set of points x ∈ R \ P such that any curve in R between r and x crosses P an even
number of times; see Figure 11. For two Ŝ-T̂ paths P and Q, we denote P � Q if L(P ) ⊆ L(Q),
and denote P ≺ Q if L(P ) ( L(Q). For two linkages P = (P1, . . . , Pk) and Q = (Q1, . . . , Qk)
in G with µ(Pi, C) = µ(Qi, C) = 0 for i ∈ [k], we denote P � Q if P j

i � Qj
i for any i ∈ [k] and

2More precisely, the annulus is degenerated when ∂S ∩ ∂T 6= ∅, but the same argument works even for this
case.
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Figure 10: (Left) Curve C in R2 \ (S ∪ T ). (Right) Construction of R.
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Figure 11: Definition of L(P ).

j ∈ Z, and denote P ≺ Q if P � Q and P 6= Q.

5.2 Case When P � Q

In this subsection, we consider the case when P � Q, and the general case will be dealt with in
Section 5.3. In order to show that P is reconfigurable to Q, we show the following lemma.

Lemma 5.1. If P ≺ Q, then there exists a linkage P ′ such that P ↔ P ′ and P ≺ P ′ � Q.

Proof. To derive a contradiction, assume that such P ′ does not exist. Let Ŵ := {v̂ ∈ V̂ | v̂ ∈
P j
i \ Q

j
i for some i ∈ [k] and j ∈ Z} and let W be the subset of V corresponding to Ŵ . If

W = ∅, then take an index i ∈ [k] such that Pi 6= Qi and let P ′ = (P ′1, . . . , P
′
k) be the set of

paths obtained from P by replacing Pi with Qi. Since Q is a linkage and all the vertices in P ′h
are contained in Qh for any h ∈ [k], P ′ is a desired linkage, which contradicts the assumption.

Thus, it suffices to consider the case when W 6= ∅. Let u ∈ W . Let û ∈ Ŵ be a vertex
corresponding to u and let i ∈ [k] and j ∈ Z be the indices such that û ∈ P j

i \ Q
j
i . Since

û ∈ P j
i \ Q

j
i implies û ∈ L(Qj

i ) \ L(P j
i ), there exists a face F̂ of Ĝ such that ∂F̂ contains an

edge of P j
i incident to û and F̂ ⊆ L(Qj

i ) \ L(P j
i ). Define (P j

i )′ as the sji -t
j
i path in Ĝ with

maximal L((P j
i )′) subject to (P j

i )′ ⊆ P j
i ∪ ∂F̂ ; see Figure 12. Note that such a path is uniquely

determined and P j
i ≺ (P j

i )′ � Qj
i .

Let P ′i be the si-ti path in G that corresponds to (P j
i )′. If P ′i is disjoint from Ph for any

h ∈ [k] \ {i}, then we can obtain a desired linkage P ′ from P by replacing Pi with P ′i , which
contradicts the assumption. Therefore, P ′i intersects Ph for some h ∈ [k] \ {i}. This together

with P j
i ≺ (P j

i )′ shows that (P j
i )′ intersects P j

i+1, where P j
k+1 means P j+1

1 . Since P j
i and

P j
i+1 are vertex-disjoint, the intersection of (P j

i )′ and P j
i+1 is contained in ∂F̂ , which implies

that ∂F̂ ∩ P j
i+1 contains a vertex v̂ ∈ V̂ ; see Figure 12 again. Since F̂ ⊆ L(Qj

i ), we obtain

v̂ ∈ L(Qj
i ) ∪ Q

j
i ⊆ L(Qj

i+1), and hence v̂ 6∈ Qj
i+1. Let v and F be the vertex and the face of

G that correspond to v̂ and F̂ , respectively. Then, v̂ ∈ P j
i+1 \ Q

j
i+1 implies that v̂ ∈ Ŵ and

v ∈W . Let J be a curve in F from u to v.
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Figure 13: Each blue path represents Pi. The dotted curve is part of J and the red dotted thick curve is C∗.

By the above argument, for any u ∈ W on Pi, there exist a vertex v ∈ W on Pi+1 and a
curve J from u to v contained in some face of G. By repeating this argument and by shifting
the indices of Pi if necessary, we obtain vi and Ji for i = 1, 2, . . . such that vi ∈ W is on Pi

(where the index is modulo k) and Ji is a curve from vi to vi+1 contained in some face. We
consider the curve J obtained by concatenating J1, J2, . . . in this order. Since |W | is finite, this
curve visits the same point more than once, and hence it contains a simple closed curve C∗.
Since C∗ is simple and visits vertices on Pi, Pi+1, . . . in this order, C∗ surrounds S exactly once
in the clockwise direction; see Figure 13. In particular, C∗ contains exactly one vertex on Pi

for each i ∈ [k]. Let U be the set of vertices in V contained in C∗. Then, |U | = k and G\U has
no path between {s1, . . . , sk} and {t1, . . . , tk} by the choice of C∗. Furthermore, U contains no
terminals, because U ⊆ W and W contains no terminals. Therefore, U is a terminal separator
of size k, which contradicts the assumption.

As long as P 6= Q, we apply this lemma and replace P with P ′, repeatedly. Then, this
procedure terminates when P = Q, and gives a reconfiguration sequence from P to Q. This
completes the proof for the case when P � Q.

5.3 General Case

In this subsection, we consider the case when P � Q does not necessarily hold. For i ∈ [k] and
j ∈ Z, define P j

i ∨Q
j
i as the sji -t

j
i path in Ĝ with maximal L(P j

i ∨Q
j
i ) subject to P j

i ∨Q
j
i ⊆ P

j
i ∪Q

j
i ;
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i .

see Figure 14. Note that such a path is uniquely determined, P j
i � P

j
i ∨Q

j
i , and Qj

i � P
j
i ∨Q

j
i .

Since Ĝ is periodic, for any j ∈ Z, P j
i ∨ Q

j
i corresponds to a common si-ti walk Pi ∨ Qi in G.

We now show that P ∨Q := (P1 ∨Q1, . . . , Pk ∨Qk) is a linkage in G.

Lemma 5.2. P ∨Q is a linkage in G.

Proof. We first show that Pi∨Qi is a path for each i ∈ [k]. Assume to the contrary that Pi∨Qi

visits a vertex v ∈ V more than once. Then, for j ∈ Z, there exist j1, j2 ∈ Z with j1 < j2 such
that P j

i ∨ Q
j
i contains both vj1 and vj2 . Since the path P j

i ∨ Q
j
i is contained in the subgraph

P j
i ∪ Q

j
i , without loss of generality, we may assume that P j

i contains vj2 . This shows that

vj1 ∈ L(P j
i ) ⊆ L(P j

i ∨Q
j
i ), which contradicts that vj1 is contained in P j

i ∨Q
j
i .

We next show that P1∨Q1, . . . , Pk∨Qk are pairwise vertex-disjoint. Assume to the contrary
that Pi ∨ Qi and Pi′ ∨ Qi′ contain a common vertex v ∈ V for distinct i, i′ ∈ [k]. Since Ĝ is

periodic, there exist j, j′ ∈ Z such that P j
i ∨ Q

j
i and P j′

i′ ∨ Q
j′

i′ contain v0 (i.e., the copy of
v in R0). We may assume that (j, i) is smaller than (j′, i′) in the lexicographical ordering,
that is, either j < j′ holds or j = j′ and i < i′ hold. Since P j

i ∨ Q
j
i ⊆ P j

i ∪ Q
j
i , we may

also assume that v0 ∈ P j
i by changing the roles of P j

i and Qj
i if necessary. Then, we obtain

v0 ∈ P j
i ⊆ L(P j′

i′ ) ⊆ L(P j′

i′ ∨Q
j′

i′ ), which contradicts that v0 is contained in P j′

i′ ∨Q
j′

i′ .

We also see that µ(Pi ∨ Qi, C) = 0 for i ∈ [k] by definition, and hence µ(P,P ∨ Q) = 0.
Since P � P ∨Q and µ(P,P ∨Q) = 0, P is reconfigurable to P ∨Q as described in Section 5.2.
Similarly, Q is reconfigurable to P ∨ Q, which implies that P ∨ Q is reconfigurable to Q.
By combining them, we see that P is reconfigurable to Q, which completes the proof of the
sufficiency in Theorem 4.2.

6 PSPACE-Completeness

We first observe that Disjoint Paths Reconfiguration and Disjoint s-t Paths Recon-
figuration are in PSPACE by using PSPACE = NPSPACE (a corollary of Savitch’s theorem
[48]). As a certificate, we receive a reconfiguration sequence. In our polynomial-space algo-
rithm, we read linkages in the certificate one by one, and check whether the linkage is indeed a
linkage and whether two consecutive linkages are obtained by a single reconfiguration step. At
each step, the working memory only requires to store the graph G and two consecutive linkages.
Thus, the algorithm runs in polynomial space. This is a non-deterministic algorithm, but by
PSPACE = NPSPACE, we conclude that the problems belong to PSPACE.

For the proof of PSPACE-hardness, we reduce the nondeterministic constraint logic recon-
figuration (NCL reconfiguration) to our problem. In the NCL reconfiguration, we consider an
undirected cubic graph, where each edge is associated with weight one or two and each vertex
is incident to three weight-2 edges (called an OR vertex ) or incident to one weight-2 edge and
two weight-1 edges (called an AND vertex ). We call such an undirected graph an AND/OR
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Figure 15: (Left) A weight-2 edge gadget. (Right) A weight-1 edge gadget.

graph. An NCL configuration is an orientation of the edges of an AND/OR graph in which
at each vertex the total weight of the incoming arcs is at least two. A flip of an arc is a pro-
cess of changing the direction of the arc. In the NCL reconfiguration, we are given two NCL
configurations of an AND/OR graph, and need to determine whether we can obtain one from
the other by a sequence of flips in such a way that all the intermediate orientations are NCL
configurations. It is known that the NCL reconfiguration is PSPACE-complete [23], even when
the AND/OR graph is planar and of bounded bandwidth [58].

6.1 General Graphs and Two Paths

Theorem 1.1. The Disjoint s-t Paths Reconfiguration is PSPACE-complete even when
k = 2 and the maximum degree of G is four.

Proof. We have already observed that the problem is in PSPACE. To show the PSPACE-
hardness, we now give a transformation of a given AND/OR graph H = (V (H), E(H)) to
an undirected graph G = (V (G), E(G)). Each weight-2 edge e = {u, v} ∈ E(H) of H is
mapped to the following weight-2 edge gadget Ge (see Figure 15):

V (Ge) = {we,u, we,v, re,1, re,2},
E(Ge) = {{we,u, re,1}, {we,u, re,2}, {we,v, re,1}, {we,v, re,2}}.

Similarly, each weight-1 edge e = {u, v} ∈ E(H) of H is mapped to the following weight-1 edge
gadget Ge (see Figure 15):

V (Ge) = {we,u, we,v, be,1, be,2},
E(Ge) = {{we,u, be,1}, {we,u, be,2}, {we,v, be,1}, {we,v, be,2}}.

Let v ∈ V (H) be an OR vertex, and e, f, g ∈ E(H) be three weight-2 edges incident to v.
Then, v is mapped to the following OR vertex gadget Gv (see Figure 16):

V (Gv) = {we,v, wf,v, wg,v, bv,1, bv,2},
E(Gv) = {{we,v, bv,1}, {we,v, bv,2}, {wf,v, bv,1}, {wf,v, bv,2},

{wg,v, bv,1}, {wg,v, bv,2}}.

Note that the vertices with the same label are identified.
An AND vertex v ∈ V (H) that is incident to one weight-2 edge e and two weight-1 edges

f, g is mapped to the following AND vertex gadget Gv (see Figure 16):

V (Gv) = {we,v, wf,v, wg,v, rv,1, rv,2, bv,1, bv,2, kv},
E(Gv) = {{we,v, bv,1}, {we,v, bv,2}, {wf,v, rv,1}, {wg,v, rv,2},

{rv,1, kv}, {rv,2, kv}, {bv,1, kv}, {bv,2, kv}, {wf,v, wg,v}}.
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Figure 16: (Left) An OR vertex gadget. (Right) An AND vertex gadget.

Define
V (G) = {s, t} ∪

⋃
v∈V (H)

V (Gv) ∪
⋃

e∈E(H)

V (Ge).

A vertex of V (G) is red if it is of the form rx,i for some vertex/edge x ∈ V (H) ∪E(H) and
i ∈ {1, 2}; a vertex of V (G) is blue if it is of the form bx,i for some vertex/edge x ∈ V (H)∪E(H)
and i ∈ {1, 2}; a vertex of V (G) is white if it is of the form we,v for some vertex v ∈ V (H)
and edge e ∈ E(H); a vertex of V (G) is black if it is s, t or of the form kv for some vertex
v ∈ V (H). The number of red vertices is equal to 2|V a(H)|+ 2|E2(H)|, where V a(H) is the set
of AND vertices and E2(H) is the set of weight-2 edges; The number of blue vertices is equal
to 2|V (H)|+ 2|E1(H)|, where E1(H) is the set of weight-1 edges; The number of white vertices
is equal to 3|V (H)| = 2|E(H)|; The number of black vertices is equal to 2 + |V a(H)|.

Assume that the elements of V a(H) ∪ E2(H) are arbitrarily ordered as x1, x2, . . . , xR and
the elements of V (H) ∪ E1(H) are arbitrarily ordered as y1, y2, . . . , yB. Then, define

E(G) =
⋃

v∈V (H)

E(Gv) ∪
⋃

e∈E(H)

E(Ge)

∪ {{rxi,2, rxi+1,1} | i ∈ {1, 2, . . . , R− 1}}
∪ {{byi,2, byi+1,1} | i ∈ {1, 2, . . . , B − 1}}
∪ {{s, rx1,1}, {s, by1,1}} ∪ {{rxR,2, t}, {byB ,2, t}}.

This completes the construction of G. Figure 17 may help the reader understand.
We now describe the way how an NCL configuration of H translates to an s-t linkage

{P1, P2} of G. We force that P1 goes through all the red vertices and P2 goes through all the
blue vertices. As a sequence of vertices, P1 is constructed as follows.

1. The path starts at s. Let rx0,2 = s.

2. Now we iterate over i ∈ {1, . . . , R}. As an invariant at the beginning of the iteration, we
assume that we have just visited the vertex rxi−1,2. Then, the path continues to rxi,1. We
consider two separate cases.

(a) Consider the case where xi = {u, v} is a weight-2 edge. Let the edge be oriented
from u to v in the NCL configuration. Then, the path visits wxi,u, and continues to
rxi,2.

(b) Consider the case where xi is an AND vertex that is incident to one weight-2 edge e
and two weight-1 edges f and g. If e is oriented toward xi, then the path visits kxi

and continues to rxi,2. If e is not oriented toward xi, then the path visits wf,xi
, wg,xi

and continues to rxi,2.

3. After the whole iteration, the path now visits rxR,2. Then, the path continues to t and we
finish the construction of P1.

Similarly, as a sequence of vertices, P2 is constructed as follows.
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Figure 17: Mapping an NCL configuration to an s-t linkage {P1, P2}. In the NCL configuration, the vertex label
A stands for an AND vertex, and the vertex label O stands for an OR vertex. The path P1 is colored red and
the path P2 is colored blue.

1. The path starts at s. Let by0,2 = s.

2. Now we iterate over i ∈ {1, . . . , B}. As an invariant at the beginning of the iteration, we
assume that we have just visited the vertex byi−1,2. Then, the path continues to byi,1. We
consider three separate cases.

(a) Consider the case where yi = {u, v} is a weight-1 edge. Let the edge be oriented from
u to v in the NCL configuration. Then, the path visits wyi,u, and continues to byi,2.

(b) Consider the case where yi is an OR vertex that is incident to three weight-2 edges
e, f , and g. At least one of those edges is directed toward yi. Let e be such an edge.
Then, the path visits we,yi and continues to byi,2.

(c) Consider the case where yi is an AND vertex that is incident to one weight-2 edge e
and two weight-1 edges f and g. If e is oriented toward yi, then the path visits we,yi

and continues to byi,2. If e is not oriented toward yi, then the path visits kyi and
continues to byi,2.

3. After the whole iteration, the path now visits byB ,2. Then, the path continues to t and we
finish the construction of P2.

The construction is illustrated in Figure 17. The constructed s-t linkage P = {P1, P2} is
created from the NCL configuration σ. The following claim ensures that the constructed paths
are indeed vertex-disjoint.

Claim 6.1. The paths P1 and P2 are internally vertex-disjoint.

Proof. The paths P1 and P2 start at s and ends at t. By the construction, the red vertices
are visited by P1 only and the blue vertices are visited by P2 only. Hence, if they are not
vertex-disjoint, they will share a white vertex or a black vertex.

Suppose that they share a white vertex. Let one of the shared white vertices be of the form
we,v for some edge e ∈ E(H) and an end-vertex v of e.

As the first case, suppose that v is an OR vertex. Note that e is a weight-2 edge in this
case. Since we,v is visited by P1, by Step 2(a), e is oriented from v to the other end-vertex of e.
Since we,v is visited by P2, by Step 2(b), e is oriented toward v. Thus, the orientation of e is in
conflict and we reach a contradiction.

As the second case, suppose that v is an AND vertex. We further distinguish two cases.
First, consider the case where e is a weight-2 edge. Then, since we,v is visited by P1, by Step
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2(a), e is oriented from v to the other end-vertex of e. On the other hand, since we,v is visited
by P2, by Step 2(c), e is oriented toward v. Thus, the orientation of e is in conflict and we reach
a contradiction.

Second, consider the case where e is a weight-1 edge. Then, since we,v is visited by P2, by
Step 2(a), e is oriented from v. On the other hand, since we,v is visited by P1, by Step 2(b), the
weight-2 edge incident to v is not oriented toward v. They together mean that the total weight
of incoming arc to v is at most one. This is a contradiction since the orientation does not meet
the requirement to be an NCL configuration.

Next, suppose that P1 and P2 share a black vertex. Such a black vertex only exists in an
AND vertex gadget Gv, where v is an AND vertex of H that is incident to one weight-2 edge e
and two weight-1 edges f and g. Namely, the black vertex is of the form kv. Since kv is visited
by P1, by Step 2(b), e is oriented toward v. On the other hand, since kv is visited by P2, by
Step 2(c), e is not oriented toward v. This is a contradiction.

In all cases, we derive a contradiction. Thus, P1 and P2 are internally vertex-disjoint.

We now study how a flip in an orientation in an NCL configuration corresponds to a constant-
length sequence of reconfiguration steps of paths.

Claim 6.2. Let P = {P1, P2} be an s-t linkage of G that is created from an NCL configuration
σ. If an NCL configuration σ′ is obtained from σ by a flip of a single edge, then an s-t linkage
P ′ = {P ′1, P ′2} of G that is created from σ′ can be obtained from P by at most a constant number
of reconfiguration steps in G.

Proof. Assume that we are given an NCL configuration σ of H. Let P = {P1, P2} be an s-t
linkage of G that is created from σ. By the construction, the path P1 passes through all the
red vertices; the path P2 passes through all the blue vertices.

As the first case, consider a flip of a weight-1 edge f that connects two AND vertices u, v
from (u, v) to (v, u). Then, the blue path P2 passes through bf,1, wf,u, bf,2 of the weight-1 edge
gadget in this order. Let P ′2 be a blue path that is created from the NCL configuration obtained
after flipping (u, v) to (v, u). To obtain an s-t linkage {P1, P

′
2}, we replace the part bf,1, wf,u, bf,2

of P2 with bf,1, wf,v, bf,2.
This is possible only if P1 does not pass through wf,v; we now observe this is indeed the

case. If P1 passes through wf,v, then by the construction of P1, the path P1 passes through
rv,1, wf,v, wg,v, rv,2 in this order where g is the other weight-1 edge incident to v. This happens
only when a unique weight-2 edge incident to v is not oriented toward v. Therefore, after
flipping to (v, u) the total sum of the incoming edges to v will be 1. This is a contradiction to
the property of an NCL configuration.

As the second case, consider a flip of a weight-2 edge e that connects a vertex u and an
AND vertex v from (u, v) to (v, u). Then, the red path P1 passes through re,1, we,u, re,2 of the
weight-2 edge gadget in this order. Let P ′1 be a red path that is created from the orientation
obtained after flipping to (v, u). To obtain a family of internally vertex-disjoint paths P ′1, P2,
we want to replace the part re,1, we,u, re,2 of P1 with re,1, we,v, re,2.

This is possible only if P2 does not pass through we,v. However, since e is oriented toward v,
P2 passes through we,v. Thus, in order to make we,v vacant, we apply the following operations
before the above transformation. We first replace the part rv,1, kv, rv,2 of P1 by rv,1, wf,v, wg,v,
rv,2, where f and g are weight-1 edges incident to v. This is possible since f and g are oriented
toward v in σ. Next, we replace the part bv,1, we,v, bv,2 of P2 by bv,1, kv, bv,2. This way, we can
make we,v vacant with two extra reconfiguration steps.

As the third but final case, consider a flip of a weight-2 edge e that connects a vertex u and
an OR vertex v from (u, v) to (v, u). Then, the red path P1 passes through re,1, we,u, re,2 of the
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weight-2 edge gadget in this order. Let P ′1 be a red path that is created from the orientation
obtained after flipping to (v, u). To obtain a family of internally vertex-disjoint paths P ′1, P2,
we want to replace the part re,1, we,u, re,2 of P1 with re,1, we,v, re,2.

This is possible only if P2 does not pass through we,v. If this is the case, there is no
problem. However, in some cases, P2 indeed passes through we,v. Then, we first replace the part
bv,1, we,v, bv,2 with bv,1, wf,v, bv,2 or bv,1, wg,v, bv,2, where f, g are other weight-2 edges incident
to v, to make we,v vacant. We now observe that this extra step can always be done. Suppose
not. Then, all the three vertices we,v, wf,v, wg,v are occupied by P2. This means that the edges
e, f, g are oriented as they leave v, and the total sum of edges incoming to v is zero. This is a
contradiction to the property of an NCL configuration.

In the second and third cases above, if u is an AND vertex, then we replace the part bu,1,
ku, bu,2 of P2 by bu,1, we,u, bu,2, and replace the part ru,1, wf ′,u, wg′,u, ru,2 of P1 by ru,1, ku,
ru,2, where f ′, g′ are other weight-2 edges incident to u. Then, we obtain an s-t linkage of G
that is created from σ′.

To argue the reverse direction of correspondence, we first observe that a reconfiguration step
maintains the property that the paths go through the red and blue vertices.

Claim 6.3. Let P = {P1, P2} be an s-t linkage of G such that P1 goes through all the red vertices
and P2 goes through all the blue vertices. If an s-t linkage P ′ = {P ′1, P ′2} of G is obtained by a
single reconfiguration step in G from P, then P ′1 goes through all the red vertices and P ′2 goes
through all the blue vertices.

Proof. A single reconfiguration step changes one of P1 and P2, but not both. We distinguish
two cases.

First, assume that P1 is reconfigured to another path P ′1, where in this case P2 = P ′2. Since
all the blue vertices are occupied by P2, the path P ′1 cannot pass through any blue vertex. The
removal of the blue vertices from G results in a graph with the following property: each red
vertex separates s and t. Therefore, P ′1 must go through all the red vertices.

Second, assume that P2 is reconfigured to another path P ′2, where in this case P1 = P ′1.
Since all the red vertices are occupied by P1, the path P ′2 cannot pass through any red vertex.
The removal of the red vertices from G yields a graph with the following property: each blue
vertex separates s and t. Therefore, P ′2 must go through all the blue vertices.

We now describe a canonical way of constructing an NCL configuration σ of H from an s-t
linkage P = {P1, P2} of G where P1 goes through all the red vertices and P2 goes through all
the blue vertices.

Let e = {u, v} be a weight-2 edge of H. The weight-2 edge gadget Ge of e has vertices re,1
and re,2 that are visited by P1. The path P1 should visit one of we,u and we,v, but not both.
If P1 visits we,u, then the edge e is oriented toward v in σ. If P1 visits we,v, then the edge e is
oriented toward u in σ.

Let e = {u, v} be a weight-1 edge of H. The weight-1 edge gadget Ge of e has vertices be,1
and be,2 that are visited by P2. The path P2 should visit one of we,u and we,v, but not both.
If P2 visits we,u, then the edge e is oriented toward v in σ. If P2 visits we,v, then the edge e is
oriented toward u in σ.

This finishes the description of the construction of an NCL configuration. We call the
constructed NCL configuration the canonical NCL configuration obtained from {P1, P2}. We
observe that if P = {P1, P2} is an s-t linkage of G that is created from an NCL configuration
σ, then σ is the canonical NCL configuration obtained from P.
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Claim 6.4. Let P = {P1, P2} be an s-t linkage of G such that P1 goes through all the red
vertices and P2 goes through all the blue vertices. Then, the canonical NCL configuration σ
obtained from P is indeed an NCL configuration of H.

Proof. We check that σ satisfies the weight requirement at every vertex v of H.
Assume that v is an OR vertex which is incident to three weight-2 edges e, f , and g. We

observe that in the OR vertex gadget Gv, one of we,v, wf,v and wg,v is not occupied by the
red path P1. Suppose not. Then, out of four neighbors of the blue vertex bv,1 in Gv, the
three vertices we,v, wf,v and wg,v are already occupied. Therefore, the blue path P2 cannot be
vertex-disjoint with P1. This is a contradiction.

Therefore, in the canonical NCL configuration σ, one of the edges e, f , and g is oriented
toward v. This means the incoming weight to v is at least two, and the weight requirement is
satisfied at v.

Assume that v is an AND vertex which is incident to one weight-2 edge e and two weight-1
edges f and g. We observe that in the AND vertex gadget Gv, if we,v is occupied by P1, then
wf,v and wg,v are occupied by P1, too. To this end, assume that we,v is occupied by P1. Since P1

and P2 are vertex-disjoint, and bv,1 and bv,2 are of degree 3 that share we,v as one of the common
neighbors, the blue path P2 must go through the black vertex kv. Since the red vertices rv,1
and rv,2 are of degree 3 that share kv as a common neighbor, the red path P1 must go through
wf,v and wg,v. This finishes the proof of the observation.

Therefore, if we,v is not occupied by P1, then in the canonical NCL configuration σ the
weight-2 edge e is oriented toward v, in which case the weight requirement is satisfied at v. If
not, by the observation above, wf,v and wg,v are occupied by P1. Since P1 and P2 are vertex-
disjoint, the blue path P2 cannot go through any of wf,v and wg,v. This means that in the
canonical NCL configuration σ the two weight-1 edges f and g are oriented toward v, and in
this case the weight requirement is satisfied at v.

Claim 6.5. Let P = {P1, P2} be an s-t linkage of G such that P1 goes through all the red vertices
and P2 goes through all the blue vertices, and let σ be the canonical NCL configuration obtained
from P. Let P ′ = {P ′1, P ′2} be an s-t linkage of G obtained by a single reconfiguration step from
P and σ′ be the canonical NCL configuration obtained from P ′. Then, σ′ can be obtained from
σ by at most |V (H)|+ |E(H)| flips in H.

Proof. Suppose that we now want to transform P1 to P ′1 in such a way that P ′1 and P2 are
internally vertex-disjoint s-t paths. By Claim 6.3, P ′1 goes through all the red vertices.

Consider the red vertices re,1 and re,2 for an edge e = {u, v} ∈ E(H). Since P1 passes through
both of them, P1 must pass through exactly one of we,u and we,v. The same observation applies
to P ′1, too. If P1 passes through we,u and P2 does not pass through we,v, then we may reroute
P1 to pass through we,v instead of we,u so as to obtain P ′1.

Consider the red vertices rv,1 and rv,2 for an AND vertex v ∈ V (H) that is incident to
one weight-2 edge e and two weight-1 edges f and g. Then, P1 must pass through either kv
or wf,v, wg,v. The same observation applies to P ′1, too. If P1 passes through kv and P2 passes
through neither wf,v nor wg,v, then we may reroute P1 to pass through wf,v, wg,v so as to obtain
P ′1. If P1 passes through wf,v and wg,v, and P2 does not pass through kv, then we may reroute
P1 to pass through kv so as to obtain P ′1.

Rerouting within an AND vertex gadget does not correspond to flips in an orientation. On
the other hand, rerouting within an edge gadget corresponds to a flip in an orientation. Namely,
rerouting P1 to pass through we,v instead of we,u is mapped to a flip of the direction of e. If one
rerouting operation involves the reconnection within several edge gadgets, then the operation
is mapped to a set of flips of the corresponding edges.
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We now argue that such a set of flips can be performed sequentially. To this end, imagine that
one rerouting operation of P1 to P ′1 is decomposed into a number of reconfiguration steps each of
which involves only one edge gadget. Then, the sequence of those decomposed reconfiguration
steps together yields P ′1 from P1, and each step corresponds to a single flip in H. Since two or
more edge gadgets do not share a vertex in G, such a decomposition is well-defined, and we are
done.

Similarly, we may study the case where we transform P2 to P ′2 in such a way that P1 and
P ′2 are internally vertex-disjoint s-t paths. Rerouting within an AND vertex gadget and an OR
vertex gadget is similar, and does not correspond to a flip in an orientation. On the other hand,
rerouting within an edge gadget corresponds to a flip of the corresponding edge.

When we are able to reroute a path within an edge gadget Ge for an edge e = {u, v} ∈ E(H),
the other path passes through neither we,u nor we,v. This means that, even without e, the total
weights of incoming arcs to u and v are at least two, respectively. Therefore, the flip described
above maintains the property that the resulting orientation is again an NCL configuration.

There can be several gadgets that are involved in one reconfiguration step. However, the
number of such gadgets is at most |V (H)|+|E(H)|. Hence, that reconfiguration step corresponds
to at most |V (H)|+ |E(H)| flips in H.

Let σ′ be the canonical NCL configuration in Claim 6.5, and P ′′ = (P ′′1 , P
′′
2 ) be the family

of two internally vertex-disjoint s-t paths of G that is created from σ′. Note that P ′′ does not
have to be identical to P ′. However, P ′′ can be obtained from P ′ by at most |V (H)|+ |V a(H)|
reconfiguration steps (recall that V a(H) is the set of AND vertices of H). This is because the
situations in edge gadgets are identical in P ′ and P ′′, and reconfiguration steps would be needed
only around vertex gadgets.

As a summary, we have proved that the reduction is sound, complete, and polynomially
bounded. See Figure 18. We now complete the proof of Theorem 1.1. Let σ and τ be two NCL
configurations. Then, define two s-t linkages P = (P1, P2) and Q = (Q1, Q2) of G as they are
created from σ and τ , respectively. Suppose that we may transform σ to τ by a sequence of
flips in such a way that all the intermediate orientations are NCL configurations. Then, the
correspondence above gives a sequence of reconfiguration steps to transform P to Q so that
all the intermediate sets of two s-t paths are internally vertex-disjoint. On the other hand,
suppose that we may transform P to Q by reconfiguration steps. Then, the correspondence
above gives a sequence of flips to transform σ to τ so that all the intermediate orientations are
NCL configurations.

It is useful to note that the reduction can be modified so that G in the constructed instance
of Disjoint s-t Paths Reconfiguration has bounded bandwidth if the AND/OR graph H
in a given instance of the NCL reconfiguration has bounded bandwidth. A brief sketch is given
in Appendix C. This shows that Theorem 1.1 holds even for graphs of bounded bandwidth and
maximum degree four.

6.2 Planar Graphs of Bounded Bandwidth with Unbounded k

A similar reduction proves the PSPACE-completeness for planar graphs of bounded bandwidth
when the number of paths is unbounded.

Theorem 1.6. The Disjoint Paths Reconfiguration is PSPACE-complete when the graph
G is planar and of bounded bandwidth.

Proof. We have already observed that the problem is in PSPACE. To show the PSPACE-
hardness, we now give a transformation of a given planar AND/OR graph H = (V (H), E(H)) of
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Figure 18: The correspondence between flips in NCL configurations and reconfiguration steps for vertex-disjoint
paths.
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bounded bandwidth to an undirected planar graph G = (V (G), E(G)) of bounded bandwidth.
Each edge e = {u, v} ∈ E(H) of H is mapped to the following edge gadget Ge (see Figure 19):

V (Ge) = {we,u, we,v, se, te},
E(Ge) = {{we,u, se}, {we,u, te}, {we,v, se}, {we,v, te}}.

Let v ∈ V (H) be an OR vertex, and e, f, g ∈ E(H) be three weight-2 edges incident to v.
Then, v is mapped to the following OR vertex gadget Gv (see Figure 20):

V (Gv) = {we,v, wf,v, wg,v, av, bv, cv, dv, sv, tv, s
o
v, t

o
v},

E(Gv) = {{we,v, av}, {we,v, bv}, {we,v, tv}, {wf,v, av}, {wf,v, sv},
{wg,v, bv}, {wg,v, sv}, {av, cv}, {av, dv}, {bv, cv}, {bv, dv},
{cv, sv}, {cv, so

v}, {cv, tov}, {dv, tv}, {dv, so
v}, {dv, tov}}.

Note that the vertices with the same label are identified.
An AND vertex v ∈ V (H) that is incident to one weight-2 edge e and two weight-1 edges

f, g is mapped to the following AND vertex gadget Gv (see Figure 21):

V (Gv) = {we,v, wf,v, wg,v, sv, tv},
E(Gv) = {{we,v, sv}, {we,v, tv}, {wf,v, sv}, {wg,v, tv}, {wf,v, wg,v}}.

Define

V (G) =
⋃

v∈V (H)

V (Gv) ∪
⋃

e∈E(H)

V (Ge),

E(G) =
⋃

v∈V (H)

E(Gv) ∪
⋃

e∈E(H)

E(Ge).

This completes the construction of G. Figure 22 may help the reader understand.
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Figure 22: Mapping an NCL configuration to a linkage. In the NCL configuration, the vertex label A stands for
an AND vertex, and the vertex label O stands for an OR vertex.

We note that if H is planar and of bounded bandwidth, then so is G. To see that G is
planar, observe that each gadget can be drawn on the plane without edge crossing in such a
way that the vertices shared with other gadgets are placed on its outer face. Then, a plane
drawing of G can be obtained from a plane drawing of H by replacing each vertex and edge of
H by the corresponding gadget. To see that the bandwidth of G is bounded, observe that each
gadget is of constant size. Therefore, by giving a slack of constant width c for each vertex of
H, we may obtain an injective mapping of the vertices of G to Z whose bandwidth is at most
c times the bandwidth of H.3

In the constructed graph G, we consider the following pairs of vertices:

{(se, te) | e ∈ E(H)} ∪ {(sv, tv) | v ∈ V (H)} ∪ {(so
v, t

o
v) | v ∈ V o(H)},

where V o(H) denotes the set of OR vertices in H. The number of pairs is |E(H)|+ |V (H)|+
|V o(H)|.

We now describe the way how an NCL configuration σ of H translates to a linkage

P = {Pe | e ∈ E(H)} ∪ {Pv | v ∈ V (H)} ∪ {P o
v | v ∈ V o(H)}

of G, where Pe joins se and te for every e ∈ E(H), Pv joins sv and tv for every v ∈ V (H),
and P o

v joins so
v and tov for every v ∈ V o(H). For convenience, Pe is called a red path for every

e ∈ E(H), and P o
v is called a blue path for every v ∈ V o(H). Similarly, for every v ∈ V (H), Pv

is called a green path if v is an AND vertex, and a purple path if v is an OR vertex.
First, we specify the red paths Pe for all e = {u, v} ∈ E(H). The path Pe connects se and te

and its length is two. Therefore, there will be a unique middle vertex. If the edge e is oriented
from u to v in the NCL configuration σ, then the path Pe visits we,u as its middle vertex. If e is
oriented from v to u in σ, then Pe visits we,v as its middle vertex. This finishes the specification
of the red paths Pe.

Next, we specify the green paths Pv that connect sv and tv for all AND vertices v ∈ V (H).
Recall that v is incident to a weight-2 edge e and two weight-1 edges f, g. If e is oriented toward

3The constant c can be chosen as 16, but this particular choice is not relevant.
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v, then Pv passes through we,v and its length is two. Otherwise, f and g must be oriented
toward v. Then, Pv passes through wf,v and wg,v and its length is three. This finishes the
specification of the green paths Pv.

Finally, we specify the purple paths Pv that connect sv and tv and the blue paths P o
v that

connect so
v and tov for all OR vertices v ∈ V o(H). Recall that v is incident to three weight-2

edges e, f, g. We have three cases, which are not exclusive. If e is oriented toward v, then the
purple path Pv passes through cv, av, we,v (or cv, bv, we,v), and the blue path P o

v passes through
dv. If f is oriented toward v, then Pv passes through wf,v, av, dv, and P o

v passes through cv.
If g is oriented toward v, then Pv passes through wg,v, bv, dv, and P o

v passes through cv. This
finishes the specification of the purple paths Pv and the blue paths P o

v . Note that the lengths
of purple paths are always four and the lengths of blue paths are always two.

This finishes the construction of P. With this construction, we say that the linkage P is
created from the NCL configuration σ.

Claim 6.6. The constructed paths are vertex-disjoint.

Proof. Each path visits vertices in the corresponding gadget only, and within each OR gadget
the two constructed paths do not share vertices by the construction rule. Therefore, it suffices
to examine the situation at identified vertices between an edge gadget and an AND/OR vertex
gadget.

Let v be an OR vertex that are incident to three weight-2 edges e, f, g. Assume that the
corresponding OR vertex gadget is constructed as above.

Suppose that the vertex we,v is shared by two of the constructed paths. One of those paths
is the red path Pe that connects se and te; the other path is the purple path Pv that connects sv
and tv. Since Pe passes through we,v, the edge e is not oriented toward v. On the other hand,
since Pv passes through we,v, the edge e is oriented toward v. This is a contradiction, and thus
we,v is not shared by two paths.

Suppose that the vertex wf,v is shared by two of the constructed paths. One of those paths
is the red path Pf , which means that the edge f is not oriented toward v. Then, the other
path is the purple path Pv. By the construction, it holds that f is oriented toward v. This is a
contradiction. The same conclusion holds when wg,v is shared by two paths.

Let v be an AND vertex that are incident to one weight-2 edge e and two weight-1 edges
f, g. Assume that the corresponding AND vertex gadget is constructed as above.

Suppose that the vertex we,v is shared by two of the constructed paths. One of those paths
is the red path Pe that connects se and te; the other path is the green path Pv that connects sv
and tv. Since Pe passes through we,v, the edge e is not oriented toward v. On the other hand,
since Pv passes through we,v, the edge e is oriented toward v. This is a contradiction, and thus
we,v is not shared by two paths.

Suppose that the vertex wf,v is shared by two of the constructed paths. One of those paths
is the red path Pf that connects sf and tf , which means that the edge f is not oriented toward
v. The other path is the green path Pv that connects sv and tv, which means that f is oriented
toward v. This is a contradiction. The same conclusion holds when wg,v is shared by two paths.

In summary, there is no vertex in the instance G that is shared by two or more constructed
paths.

We now study how a flip in an orientation maps to a sequence of reconfiguration steps of
paths.

Claim 6.7. Let P be a linkage of G that is created from an NCL configuration σ. If an NCL
configuration σ′ is obtained from σ by an flip of a single edge, then a linkage P ′ of G that is
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created from σ′ can be obtained from P by at most a constant number of reconfiguration steps
in G.

Proof. Assume that we are given an NCL configuration σ of H. Let

P = {Pe | e ∈ E(H)} ∪ {Pv | v ∈ V (H)} ∪ {P o
v | v ∈ V o(H)}

be a linkage of G that is created from σ. By the construction, each of the colored paths passes
through all the vertices of the corresponding color.

As the first case, consider a flip of a weight-1 edge f that connects two AND vertices u, v
from (u, v) to (v, u). Then, the red path Pf passes through sf , wf,u, tf of the weight-1 edge
gadget in this order. The path P ′f is obtained by replacing it with sf , wf,v, tf .

This is possible only if wf,v is not passes through by any other paths; we now observe this
is indeed the case. Suppose that wf,v is passed through by another path. Then, such a path
should be a green path Pv in the AND vertex gadget Gv. When Pv passes through wf,v, a unique
weight-2 edge e incident to v is not oriented toward v in σ by the construction. Therefore, after
flipping to (v, u) the total sum of the incoming edges to v will be 1. This is a contradiction to
the property of an NCL configuration.

As the second case, consider a flip of a weight-2 edge e that connects a vertex u and an AND
vertex v from (u, v) to (v, u). Then, the red path Pe passes through se, we,u, te of the weight-2
edge gadget Ge in this order. The path P ′e is obtained by replacing it with se, we,v, te.

This is possible only if we,v is not passes through by an other paths. However, since e is
oriented toward v, a green path Pv in the AND vertex gadget Gv passes through we,v. Thus, in
order to make we,v vacant, we apply the following operations before the above transformation.
Since e can be flipped, after the flip the total sum of the incoming edges to v should be at
least two, which means that the other two weight-1 edges f , g that are incident to v should be
directed toward v. Therefore, wv,f and wv,g are not occupied by any other paths in P. This
implies that by rerouting the green path Pv to pass through wv,f , wv,g before rerouting Pe to
P ′e we obtain the linkage that corresponds to σ′.

As the third but final case, consider a flip of a weight-2 edge e that connects a vertex u and
an OR vertex v from (u, v) to (v, u). Then, the red path Pe passes through se, we,u, te of the
edge gadget Ge in this order. The P ′e is obtained by replacing it with se, we,v, te.

This is possible only if we,v is not passed through by any other paths. If this is the case,
there is no problem. However, in some cases, we,v is indeed passed through by another path.
Then, such a path should be a purple path Pv in the OR vertex gadget Gv. By construction,
the edge e is oriented toward v in σ. Since e can be flipped, after the flip the total sum of the
incoming edges to v should be at least two, which means that one of the other two weight-2
edges f , g that are incident to v should be directed toward v. Therefore, wv,f or wv,g is not
occupied by any other paths in P. This implies that by rerouting the purple path Pv to pass
through wv,f or wv,g before rerouting Pe to P ′e, possibly with two more reconfiguration steps
involving the blue path P o

v , we obtain the linkage that corresponds to σ′.
In the second and third cases above, if u is an AND vertex, then we reroute a green path

Pu in the AND vertex gadget Gu to pass through we,u. Then, we obtain a linkage P ′ of G that
is created from σ′.

To argue the reverse direction of correspondence, we describe a canonical way of constructing
an NCL configuration σ of H from a linkage P of G.

Let e = {u, v} be an edge of H. We note that a path connecting se and te cannot go through
both of we,u and we,v due to the vertex-disjointness of the paths in P. If Pe goes through we,u,
then the edge e is oriented toward v in σ. If Pe goes through we,v, then the edge e is oriented
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toward u in σ. We call the obtained orientation σ the canonical NCL configuration obtained
from P.

Claim 6.8. Let P be a linkage of G. Then, the canonical NCL configuration σ obtained from
P is indeed an NCL configuration of H.

Proof. We check that σ satisfies the weight requirement at every vertex v of H.
Let v be an OR vertex of H that is incident to three weight-2 edges e, f and g. The

corresponding OR vertex gadget is given as in Figure 20. Since the blue path in the gadget Gv

contains a vertex cv or dv, the purple path in Gv contains at least one of we,v, wf,v and wg,v.
This shows that one of we,v, wf,v and wg,v is not occupied by any red paths. Therefore, in the
canonical NCL configuration σ, one of the edges e, f and g is oriented toward v. This means
that the weight requirement is satisfied at v.

Next, let v be an AND vertex of H that is incident to one weight-2 edge e and two weight-1
edges f and g. The green path between sv to tv either goes through we,v or wf,v, wg,v. If it goes
through we,v, then the red path Pe does not go through we,v due to vertex-disjointness. In this
case, the weight-2 edge e is oriented toward v in σ. If the green path goes through wf,v and
wg,v, then the red paths Pf and Pg do not go through wf,v and wg,v, respectively. In this case,
the two weight-1 edges f and g are oriented toward v in σ. Hence, in both cases, the weight
requirement is satisfied at v.

Claim 6.9. Let P be a linkage of G and σ be the canonical NCL configuration obtained from
P. Let a linkage P ′ be obtained by a single reconfiguration step from P and σ′ be the canonical
NCL configuration obtained from P ′. Then, σ′ can be obtained from σ by at most one flip in
H.

Proof. We distinguish cases by colors of paths that are reconfigured by one step.
First, consider a case where P and P ′ differ by one red path associated with an edge gadget

Ge. Assume that Pe is reconfigured to P ′e. Without loss of generality, assume that Pe passes
through se, we,u, te, and P ′e passes through se, we,v, te in this order. Then, to obtain σ′ from σ
we just need to flip the direction of the edge e.

Next, consider a case where P and P ′ differ by one path that is not a red path. Then, the
canonical NCL configuration σ′ obtained from P ′ is identical to σ. Therefore, we need no flip
to construct σ′.

Let σ′ be the canonical NCL configuration in Claim 6.9, and P ′′ be the linkage created from
σ′. Note that P ′′ does not have to be identical to P ′. However, P ′′ can be obtained from P ′ by
O(|V (H)|) reconfiguration steps. This is because the situations in edge gadgets are identical in
P ′ and P ′′, and reconfiguration steps would be needed only around vertex gadgets.

As a summary, we have proved that the reduction is sound, complete, and polynomially
bounded. See Figure 23. We now complete the proof of Theorem 1.6. Let σ and τ be two NCL
configurations. Then, define two linkages P and Q as they correspond to σ and τ , respectively.
Suppose that we may transform σ to τ by a sequence of flips in such a way that all the
intermediate orientations are NCL configurations. Then, the correspondence above gives a
sequence of reconfiguration steps to transform P to Q so that all the intermediate families
of paths are vertex-disjoint. On the other hand, suppose that we may transform P to Q by
reconfiguration steps. Then, the correspondence above gives a sequence of flips to transform σ
to τ so that all the intermediate orientations are NCL configurations.
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Figure 23: The correspondence between flips in NCL configurations and reconfiguration steps for vertex-disjoint
paths.
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7 Concluding Remarks

We leave several open problems for future research. We proved that Disjoint Paths Recon-
figuration can be solved in polynomial time when the problem is restricted to the two-face
instances. On the other hand, we do not know whether Disjoint Paths Reconfiguration
in planar graphs can be solved in polynomial time for fixed k, and even when k = 2, if we drop
the requirement that inputs are two-face instances.

We did not try to minimize the number of reconfiguration steps when a reconfiguration
sequence exists. It is an open problem whether a shortest reconfiguration sequence can be
found in polynomial time for Disjoint Paths Reconfiguration restricted to planar two-
face instances.

A natural extension of our studies is to consider a higher-genus surface. As a preliminary
result, in Appendix A, we give a proof (sketch) to show that when the number k of curves is
two, the reconfiguration is always possible for any connected orientable closed surface Σg of
genus g ≥ 1. Note that this result does not refer to graphs embedded on Σg, but only refers to
the case when curves can pass through any points on the surface. It is not clear what we can
say for Disjoint Paths Reconfiguration for graphs embedded on Σg, g ≥ 1.
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A Curves on Closed Surfaces

Let Σg denote a connected orientable closed surface of genus g. For instance, Σ0 is a 2-sphere
S2 and Σ1 is a torus. In contrast to the 2-sphere case, when k = 2, the reconfiguration is always
possible on Σg for g ≥ 1.

Theorem A.1. Let P = (P1, P2) and Q = (Q1, Q2) be linkages on Σg for g ≥ 1. Then, P is
always reconfigurable to Q.

Proof Sketch. A small perturbation allows us to assume that the curves intersect transversally.
The proof is by induction on the number of intersection points of P and Q, say n. The case
n = 4 is obvious since they intersect only at the endpoints. Suppose that the statement holds
up to n − 1. We first cut the surface Σg along P and Q. Let S be a connected component.
Then, ∂S is a disjoint union of alternating cycles of edges derived from P and Q. If ∂S has
a 2-cycle, then one can eliminate this cycle by a single step. On the other hand, if ∂S has at
least six edges, then there are two edges derived from Pi for some i = 1, 2, and thus one can
find another P ′ such that the number of intersections between the curves in P ′ and Q is less
than n.

Therefore, we shall consider the case where ∂S is a 4-cycle and show that there is a connected
component S such that the genus of the closed surface obtained by capping its boundary with
disks is at least 1. Then, one finds a desired P ′ after some steps. Assume that there is no such
an S, that is, all connected components are disks, and hence we have a cell decomposition of
Σg. Let m be the number of 2-cells, namely disks. Then, the numbers of 1- and 0-cells are 2m
and m+ 2, respectively. It follows that the Euler characteristic of Σg is (m+ 2)− 2m+m = 2,
and thus g = 0 (see [18, Section 1.1.1] for example). This is a contradiction.
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B µ(Pi, Qj) Takes the Same Value

In this section, we only consider piecewise smooth curves and paths on a plane. For an oriented
curve C, let C denote the curve with the opposite orientation. We first summarize basic
properties of µ that follow from definition.

(A1) µ(C1, C2) = −µ(C2, C1) = −µ(C1, C2) for any oriented curves C1 and C2.

(A2) Suppose that C1∪C2 is an oriented curve obtained by concatenating two oriented curves C1

and C2, and let C3 be another oriented curve. Then, µ(C1∪C2, C3) = µ(C1, C3)+µ(C2, C3)
and µ(C3, C1 ∪ C2) = µ(C3, C1) + µ(C3, C2).

(A3) µ(C1, C2) = 0 for any oriented closed curves C1 and C2 (by the Jordan curve theorem).

By using these properties, we show that µ(Pi, Qj) takes the same value in a two-face instance.

Lemma B.1. In a two-face instance (G,P,Q) of Disjoint Paths Reconfiguration, µ(Pi, Qj)
takes the same value for any distinct i, j ∈ [k].

Proof. Let sk+1 and sk+2 be points on ∂S such that sk, sk+1, sk+2, and s1 lie on ∂S clockwise
in this order. Similarly, let tk+1 and tk+2 be points on ∂T such that tk, tk+1, tk+2, and t1 lie on
∂T clockwise in this order. Then, there exist simple curves Pk+1 from sk+1 to tk+1 and Pk+2

from sk+2 to tk+2 such that {P1, . . . , Pk, Pk+1, Pk+2} forms a linkage in R2 \ (S ∪ T ). Similarly,
let Qk+1 and Qk+2 be simple curves such that {Q1, . . . , Qk, Qk+1, Qk+2} forms a linkage in
R2 \ (S∪T ). In what follows, we show that µ(Pi, Qj) = µ(Pk+1, Qk+2) for any distinct i, j ∈ [k].

Let i, j ∈ [k] with i 6= j. Let Cs be a curve in S from sk+1 to si, and let Ct be a curve
in T from ti to tk+1. Since Pi ∪ Ct ∪ Pk+1 ∪ Cs and Pj ∪ Qj are oriented closed curves, by
(A3), we obtain µ(Pi ∪ Ct ∪ Pk+1 ∪ Cs, Pj ∪Qj) = 0. Since Pj ∩ (Pi ∪ Ct ∪ Pk+1 ∪ Cs) = ∅ and
Qj ∩ (Cs ∪ Ct) = ∅, this together with (A2) shows that µ(Pi, Qj) + µ(Pk+1, Qj) = 0. By (A1),
we obtain µ(Pi, Qj) = µ(Pk+1, Qj).

By the same argument, we can show that µ(Pk+1, Qj) = µ(Pk+1, Qk+2). Therefore, we
obtain µ(Pi, Qj) = µ(Pk+1, Qk+2) for any distinct i, j ∈ [k], which completes the proof.

C Variation of the Reduction for Theorem 1.1.

In this section, we briefly sketch the modification of the proof for Theorem 1.1 to show that
the PSPACE-completeness of Disjoint s-t Paths Reconfiguration also holds for graphs of
bounded bandwidth.

The basic line of reduction is identical to the proof for Theorem 1.1. We require the con-
structed graph G to have bounded bandwidth if the AND/OR graph H in a given instance of
the NCL reconfiguration has bounded bandwidth.

To ensure that G has bounded bandwidth, we only change the construction of two paths,
the red path P1 and the blue path P2. In the original proof of Theorem 1.1, we have a choice
of the ordering along which P1 goes through all the AND vertex gadgets and weight-2 edge
gadgets, and P2 goes through all the AND vertex gadgets, OR vertex gadgets and weight-1
edge gadgets. We will exploit this freedom.

Since H has bounded bandwidth, there exists an injective map π : V (H) → Z such that
|π(u) − π(v)| ≤ c for some constant c. Let H◦ be the graph that is obtained from H by
subdividing each edge of H, i.e., replacing each edge of H by a path of length two. We construct
an injective map π◦ : V (H◦)→ Z as follows. For each vertex v ∈ V (H), set π◦(v) = 4π(v). For
a vertex w ∈ V (H◦) that is used for subdividing an edge {u, v} ∈ E(H), where π(u) < π(v), we
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set π◦(w) as π◦(w) ∈ {π(u) + 1, π(u) + 2, π(u) + 3}. This is possible since the AND/OR graph
H is 3-regular. Observe that the bandwidth of π◦ is at most 4c + 3. For more information on
the bandwidth of graphs obtained by graph operations, see [12].

Now, we replace each vertex ofH◦ by the corresponding gadget given in the proof of Theorem
1.1. To ease the presentation, we add one isolated blue vertex to each weight-2 edge gadget,
one isolated red vertex to each weight-1 edge gadget, and one isolated red vertex to each OR
vertex gadget so that each gadget contains at least one red and at least one blue vertices.
Note that each gadget is of constant order (at most eight), even after adding isolated vertices.
Therefore, this replacement may increase the bandwidth at most by the factor of eight. Denote
by V be the constructed vertex set and by π′ the implied injective map of bandwidth at most
8 · (4c+ 3) + 7, where π′ satisfies that 8π◦(w) ≤ π′(v) ≤ 8π◦(w) + 7 if v ∈ V is contained in the
gadget corresponding to w ∈ V (H◦).

We insert s and t to V and set π′(s) = min{π′(v)}− 1, π′(t) = max{π′(v)}+ 1. To wire the
red path P1, we follow the increasing order of the values of π′. Namely, the path P1 starts at
s, visits the red vertices in the increasing order of π′ (with the routing within each gadget as
the proof of Theorem 1.1), and terminates at t. Since each gadget contains a red vertex, each
edge {x, y} of P1 satisfies |π′(x)− π′(y)| ≤ 15. Wiring the blue path P2 is similarly done. This
completes the whole reduction.

The constructed instance has bounded bandwidth, and the correctness is immediate from
the proof of Theorem 1.1 since we only makes use of the freedom of ordering for the construction
of P1 and P2.

Thus, Disjoint s-t Paths Reconfiguration is PSPACE-complete even when k = 2 and
G has bounded bandwidth and maximum degree four.
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