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VARIATIONAL PRINCIPLE OF RANDOM PRESSURE

FUNCTION

RUI YANG1,2, ERCAI CHEN3 AND XIAOYAO ZHOU∗3

Abstract. This paper aims to develop a convex analysis ap-
proach to random pressure functions of random dynamical sys-
tems. Using some convex analysis techniques and functional anal-
ysis, we establish a variational principle for random pressure func-
tion, which extends Bis et al. work (A convex analysis approach
to entropy functions, variational principles and equilibrium states,
Comm. Math. Phys. (2022) 394 215-256) and Ruelle’s work
(Statistical mechanics on a compact set with Zν action satisfying
expansiveness and specification, Trans. Amer. Math. Soc. (1973)
187 237-251) to random dynamical systems.

The present paper provides a strategy of obtaining some proper
variational principles for entropy-like quantities of dynamical sys-
tems to link the topological dynamics and ergodic theory. As ap-
plications, we establish variational principles of maximal pattern
entropy and polynomial topological entropy of zero entropy sys-
tems of Z-actions, mean dimensions of infinite entropy systems
acting by amenable groups and preimage entropy-like quantities of
non-convertible random dynamical systems.

1. Introduction

Topological entropy and measure-theoretic entropy are vital topolog-
ical invariants to understand the complexity of the dynamical systems,
which is related by so-called variational principle [Mis75]:

htop(X, T ) = sup
µ∈M(X,T )

hµ(T ),

where htop(X, T ) denotes the topological entropy of X , and hµ(T ) de-
notes the measure-theoretic entropy of the invariant measure µ. Varia-
tional principle is a fundamental and important theorem in the theory
of topological dynamics, which allows the approaches and tools from
the ergodic theory to be invoked to study the dynamical behaviors of
topological dynamical systems. The previous work revealed that it is a
powerful tool to deal with the problems of local entropy theory, chaotic
phenomenons, multi-fractal analysis and other fields of dynamical sys-
tems. Topological pressure and its variational principle, equilibrium
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theory constitutes the hardcore part of thermodynamic formalism. In-
spired by statistical mechanics, Ruelle [Rue73] introduced the notion of
topological pressure for expansive topological dynamical systems, and
proved a variational principle for it in terms of an analogues role of
measure-theoretic entropy:

P (T, f) = max
µ∈M(X,T )

{s(µ) +

∫

fdµ},

where P (T, f) is the topological pressure of the continuous potential
f , and s(µ) = inff∈C(X){P (T, f)−

∫

fdµ} is given by the idea of topo-
logical pressure determining the measure-theoretic entropy. Without
the additional assumptions, for any dynamical system Walters [Wal75]
established another variational principle in terms of measure-theoretic
entropy, which can be stated as follows:

P (T, f) = sup
µ∈M(X,T )

{hµ(T ) +

∫

fdµ}.

Returning to the expansive homeomorphism dynamical systems, the
fact that the entropy map µ ∈ M(X, T ) 7→ hµ(T ) is upper semi-
continuous reclaims hµ0

(T ) = s(µ0) for any invariant measure µ0(cf.[Wal82,
Theorem 9.12]). Thus, the variational principle obtained by Walters
gives an extension of Ruelle’s result to any dynamical systems. Since
then, an important and quite active topic in dynamical systems is
how to build some proper bridges to relate the topological dynam-
ics and ergodic theory. A common approach, learned from the classi-
cal variational principle, is establishing some proper variational prin-
ciples between measure-theoretic entropy-like quantities, defined by
the measure-preserving structures, and the different types of entropy-
like quantities. See more results about the variational principles of
amenable groups [ST80, OP82], sofic groups [KL16], semi-groups [LMW18,
CRV18], weighted dynamical systems [FW16, Tsu23], partially hyper-
bolic systems [HHW17], random dynamical systems [Bog92, Kif01,
DZ15] and references therein. However, not all variants of topologi-
cal entropy enjoy the so-called variational principles since the system
may not exist invariant measures(e.g. dynamical systems acting by
semi-groups or non-autonomous dynamical systems), or difficultly for-
mulates an analogous role of measure-theoretic entropy. In this situ-
ation, one can either only obtain the partial variational principles or
establish Feng-Huang’s type of variational principles [FH12].

We address that it is the missing role of measure-theoretic entropy
that leads a more difficult task of establishing the proper variational
principles for some entropy-like quantities of dynamical systems. Very
recently, for every pressure function satisfies monotonicity, translation
invariance and convexity, which is summarized from the properties of
classical topological pressure, without involving the dynamics, for any
metric space Bis et al. [BCMP22] established an abstract variational
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principle for pressure function in terms of finitely additive probability
measures, and characterized the equilibrium measures that attains the
supremum. When the dynamics is given, the variational principles of
some pressure-like quantities and potential applications are also con-
sidered in an elaborate manner [CRV18, BCMP22, CN05]. The goal of
this paper is to develop the convex analysis approach to random pres-
sure function in context of random dynamical systems, and establish a
variational principle for it involving the invariant measures.

The dynamical systems of Z-actions, which we say deterministic dy-
namical systems, is given by a single homeomorphism map on a com-
pact metric space. However, in the real world the dynamical system
evolves as the random external perturbations by the random transfor-
mations and its iterates. The basic framework of random dynamical
systems was established by Ulam and von Neumann [UV45], and later
by Kakutani [Kak50] when they perused the classical random ergodic
theorems. The thermodynamic formalism of random dynamical sys-
tems was systematically stated in [Bog92, Arn98, Kif86, Kif01, Liu01].
In the random context, we extend the work of [Rue73, BCMP22] to
random pressure function as follows:

Theorem 1.1. Let G = Zk
+, k ≥ 1, or G be a countable infinite discrete

amenable group, and let Ω be a locally compact, separable metric space
with Borel σ-algebra B(Ω). Let T be an amenable random (or Zk

+)
dynamical system on compact metric space X over an ergodic measure-
preserving system (Ω,B(Ω),P, G). If Γ is a random pressure function
on L1

P(Ω, C(X)), then

Γ(0) = max
µ∈MP(Ω×X,G)

s(µ),

where s(µ) = inf{Γ(f)−
∫

fdµ : f ∈ L1
P(Ω, C(X))} is a concave upper

semi-continuous function on the set of invariant probability measures
on Ω×X.

The above theorem provides a new insight on how to link ergodic
theory and topological dynamical systems through the given random
pressure function. As applications, we apply it to some certain cases,
like zero entropy systems, infinite entropy systems of deterministic dy-
namical systems, and non-invertible random dynamical systems, see
Theorem 4.1, 4.3 and 4.6. However, to obtain the variational principle
in Theorem 1.1 more difficulties are encountered in random dynamical
systems that do not arise in [BCMP22].

(1) The Riesz representation theorem does not work in our current
setting since we shall deal with random continuous function rather than
the continuous function.
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(2) The relativized method (a modification of Misiurewicz’s technique
[Mis75]), which produces invariant measure of random dynamical sys-
tems developed in [Bog92, Kif01], only works for measure-theoretic en-
tropy rather than the integral of probability measures. Besides, unlike
Z-actions, constructing an invariant measure having certain marginal
on a base system is essential.

We shall use some new ideas and introduce some new tools to over-
come the two difficulties. For (1), we will introduce a new tool called
Stone vector lattice to replace the role of Riesz representation theorem,
and show the functional generated by the separation theorem of convex
sets is a pre-integral on a bounded function space. This allows us to
produce some probability measures. For (2), to drop the compactness
of Ω, we use outer measure theory and lift the probability measures
obtained in step (1) to Radon measures. Then the compactness of
Radon measures ensures us to get a probability measure by restricting
its σ-algebra to Borel σ-algebra. Finally, we employ Von Neumann’s L1

ergodic theorem to show the marginal of the measure is the probability
measure of base system.

The rest of this paper is organized as follows. In section 2, we clarify
the basic setting of random dynamical systems and recall some relevant
concepts. In section 3, we introduce the notion of random pressure
function and prove the Theorem 1.1. In section 4, we exhibit several
applications of the Theorem 1.1.

2. Preliminary

In this section, we briefly recall the setting of amenable random
dynamical systems and related concepts. A systemic treatment con-
cerning the theories of random dynamical systems are elaborated in
several nice monographs [Arn98, Kif86, Cra02, Liu01, DZ15].

Let G be a group and A,B be two subsets of G. By |A| we denote
the cardinality of A. The symmetric difference of A and B is defined
by A△B = (A\B)∪(B\A). A group G is said to be an amenable group
if there exists a sequence {Fn}n≥1 of non-empty finite subsets of G such
that

lim
n→∞

|gFn△Fn|

|Fn|
= 0

holds for any g ∈ G.
The sequence {Fn}n≥1 is called a Følner sequence of G. Amenable

group includes all finite groups, Abelian goups, and all finitely gener-
ated groups of sub-exponential growth. An example of non-amenable
group is the free group of rank 2. Throughout this paper, we always
assume that G is a countable infinite discrete amenable group.

Let G = Zk
+, or be an amenable group, and let X be a set. By an

action of G on the set X we mean a map α : G×X → X such that:

(1) α(eG, x) = x for every x ∈ X ;
4



(2) α(g1, α(g2, x) = α(g1g2, x) for every g1, g2 ∈ G and x ∈ X .

When g is fixed, we sometimes write gx := α(g, x), or Tgx := α(g, x) for
convenience. If G acts continuously on the compact metric space X , we
call the pair (X,G) a G-system. Let (Ω,F ,P) be a probability space.
If the G-action on Ω is measure-preserving, that is, P(A) = P(g−1A)
for all A ∈ F and g ∈ G, we call the quadruple (Ω,F ,P, G) a measure-
preserving system.

We always assume that the σ-algebra of a topological space X , de-
noted by B(X), is the usual Borel σ-algebra, which is generated by the
set of all open sets of X . Once (X, d) is a compact metric space, we
naturally associate a continuous function space C(X) consisting of the
set of real-valued continuous functions on X , which becomes a Banach
space endowed with the supremum norm || · ||∞.

An amenable random dynamical system(RDS for short) on compact
metric space (X, d) over a measure-preserving system (Ω,F ,P, G) is
generated by a family of continuous self-mappings {Tg,ω : g ∈ G, ω ∈ Ω}
on X satisfying

(i) (ω, x) 7→ Tg,ωx is measurable with respect to the product σ-
algebra F ⊗ B(X)1 on Ω×X ;

(ii) TeG,ω is the identity map on X for all ω;
(iii) Tg1g2,ω = Tg2,g1ω ◦ Tg1,ω for all g1, g2 ∈ G and ω.

When G = Zk
+ is endowed with the usual additive operation such

that conditions (i)-(iii) hold, the system is said to be a random Zk
+-

dynamical system, or non-invertible random dynamical system. The
measure-preserving system (Ω,F ,P, G) is a model of noise, and the
G-system (X,G) is perturbed by the noise. This shall be more clear if
we let

T : G× Ω×X → X, (g, ω, x) 7→ T (g, ω, x) := Tg,ω(x),

which shows the G-system can be affected by randomly choosing the
continuous transformations on X . Specially, when Ω is a single point,
no noise is imposed in this case and hence the random dynamical system
is exactly reduced to non-random case, the previous G-system (X,G).

To investigate the dynamics of RDS, one can also associate a system
(Ω × X,F ⊗ B(X),Θ, G) of G-action induced by skew product trans-
formation Θg on Ω×X given by Θg(ω, x) = (gω, Tg,ωx).

We give two examples of random dynamical systems.

Example 2.1. Let T2 be 2-dimensional torus and (Ω,B(Ω),P, θ) be an
ergodic Polish system. Let f : Ω → T2 be a measurable map. Then we
have a random dynamical system on T2 generated by the random map:

Tωx = Ax+ f(ω), x ∈ T2

1That is the smallest σ-algebra on Ω×X such that both the canonical projections
πΩ : Ω×X → Ω and πX : Ω×X → X are measurable.
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where A =

(

2 1
1 1

)

is a hyperbolic matrix.

Example 2.2. Let (Ω, σ) be the full shift over the k-symbols {1, ..., k}
with the left shift map σ on the product space Ω = {1, ..., k}Z+. Let
P be a σ-invariant probability measure on Ω. This gives a measure-
preserving driving system (Ω,B(Ω),P, σ). Let Tm = Rm/Zm, m ≥ 1,
be the m-dimensional torus with homeomorphism maps ϕj, j = 1, ..., k,
on Tm. Then for every ω = (ω1, ω2, ...) the map Tω : Tm → Tm, given
by Tω(x) = ϕω1

(x), and the iteration T n
ω ,

T n
ω =

{

Tσn−1ω ◦ Tσn−2ω ◦ · · · ◦ Tω, for n ≥ 1

id, for n = 0

give a random Z+-dynamical system.

We continue to collect several concepts related to the invariant mea-
sures of amenable random dynamical systems.

For each measurable in (ω, x) and continuous in x real-valued func-
tion f on Ω×X , we set

||f || :=

∫

||f(ω)||∞dP(ω),

where ||f(ω)||∞ = supx∈X |f(ω, x)|. The measurability of ||f(ω)||∞
in ω follows by the separability of X and the measurability of f . Let
L1
P(Ω, C(X)) denote the set of random continuous functions with ||f || <

∞. For instance, each element f belonging to L1-space L1(Ω,F ,P)
defines an element of L1

P(Ω, C(X)) by setting (ω, x) 7→ f(ω); every
continuous function g ∈ C(X) also defines an element of L1

P(Ω, C(X))
by setting (ω, x) 7→ g(x), and so is the multiplication of f and g given
by (ω, x) 7→ f(ω)g(x). The space L1

P(Ω, C(X)) becomes a Banach
space if we identify f and g by ||f − g|| = 0.

Let πΩ be the canonical projection from Ω×X to the first coordinate
Ω. A probability measure on (Ω ×X,F ⊗ B(X)) is said to have mar-
ginal P if the push-forward of µ under πΩ, say (πΩ)∗µ, is exactly the
probability measure P of the measure-preserving system (Ω,F ,P, G).
The set of such measures is denoted by PP(Ω × X). It is well-known
that [Cra02, Proposition 3.6] any µ ∈ PP(Ω × X) can disintegrate as
dµ(ω, x) = dµω(x)dP(ω), where µω is a family of conditional probability
measures on X for P-a.a ω2. Equip with the space PP(Ω×X) with the
weak∗-topology, that is, the smallest topology such that µ 7→

∫

fdµ
is continuous for all f ∈ L1

P(Ω, C(X)), which is compact in sense of
weak∗-topology [Kif01, Lemma 2.1]. The set of invariant measures,
denoted by MP(Ω × X,G), is the elements of µ ∈ PP(Ω × X) that is
invariant w.r.t. Θg for all g ∈ G.

2See [Cra02, Proposition 3.6] for the existence and uniqueness of disintegration.
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3. A convex approach to random dynamical systems

In this section, we aim to develop a convex analysis approach to
random pressure function of random dynamical systems, and establish
a variational principle for it.

3.1. Random pressure function. Given a deterministic system (X, T ),
i.e, a continuous self-map T on the compact metric space X , in Wal-
ters’ monograph [Wal82, Theorem 9.7, p.214] the topological pressure
P (T, ·) : C(X) → R has many fundamental properties, for instances,
monotonicity, translation invariance, convexity, Lipschitz, and coho-
mology. Especially, it satisfies the following properties:

(i) Monotonicity: for any f, g ∈ C(X) with f ≤ g, one has P (T, f) ≤
P (T, g).

(ii) Translation invariance: for any f ∈ C(X) and c ∈ R, one has
P (T, f + c) = P (T, f) + c.

(iii) Convexity: for any f, g ∈ C(X) and p ∈ [0, 1], one has P (T, pf+
(1− p)g) ≤ pP (T, f) + (1− p)P (T, g).

In fact, the readers who are familiar with the classical thermody-
namic formalism may observe many pressure-like quantities of dynam-
ical systems under group actions still possess the same properties as
the classical topological pressure. To treat this phenomenon in a uni-
fied manner, Bis et al. [BCMP22, Definition 2.1] axiomatically defined
the pressure function3 by requiring a function Γ : C(X) → R with the
properties:

(1) Monotonicity: for any f, g ∈ C(X) with f ≤ g, one has Γ(f) ≤
Γ(g).

(2) Translation invariance: for any f ∈ C(X) and c ∈ R, one has
Γ(f + c) = Γ(f) + c.

(3) Convexity: for any f, g ∈ C(X) and p ∈ [0, 1], one has Γ(pf +
(1− p)g) ≤ pΓ(f) + (1− p)Γ(g).

We borrow this idea to broaden the scope of pressure-like quantities
of amenable random dynamical systems. This allows us to formu-
late more general axiomatic definition for random pressure function on
L1
P(Ω, C(X)).

Definition 3.1. Let T = (Tg,ω) be a RDS over the measure-preserving
system (Ω,F ,P, G). A function Γ : L1

P(Ω, C(X)) → R is said to be a
random pressure function if it satisfies the following conditions:

(1) Monotonicity: f ≤ g ⇒ Γ(f) ≤ Γ(g) ∀f, g ∈ L1
P(Ω, C(X)).

(2) Translation invariance: Γ(f + c) = Γ(f) + c ∀f ∈ L1
P(Ω, C(X))

and c ∈ R.

3Actually, beyond the continuous function space they define the pressure function
on a Banach space B over the field R and X is only assumed to a metric space in
a more general framework.
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(3) Convexity: Γ(pf + (1 − p)g) ≤ pΓ(f) + (1 − p)Γ(g) ∀f, g ∈
L1
P(Ω, C(X)) and p ∈ [0, 1].

(4) Lipschitz: |Γ(f)− Γ(g)| ≤ ||f − g|| ∀f, g ∈ L1
P(Ω, C(X)).

(5) Semi-cohomology: Γ(f ◦ Θg) ≤ Γ(f) ∀f ∈ L1
P(Ω, C(X)) and

g ∈ G.

Remark 3.2. (i) The random pressure function admits the coho-
mology property if the equality in (5) of the definition holds.

(ii) We address that only condition (5) involves the dynamics, while
the rest of properties are independent of the given systems.

(iii) As we have mentioned, if Ω = {ω} is a single point and P is
a Dirac measure δω at ω, then the RDS is reduced to the G-
system (X,G), and L1

P(Ω, C(X)) is exactly C(X) with supre-
mum norm. Then, in this case, condition (4) in Definition 3.1
can be removed since it can be deduced by using (1) and (2).
Indeed, given f1, f2 ∈ C(X), one has

Γ(f1) ≤ Γ(f2 + ||f1 − f2||∞) = Γ(f2) + ||f1 − f2||∞.

Exchanging the role of f1 and f2 gives us the converse inequality.

3.2. The axiomatic definition of s(µ). Notice that the random
pressure function is an abstract definition by summarizing the previ-
ous properties from the (random) topological pressure [Bog92, Kif01].
There is no proper measure-theoretic entropy-like quantities for us to
link it with random pressure function by variational principle. Corre-
sponding to the role of measure-theoretic entropy in classical variational
principles, we introduce an analogous counterpart of measure-theoretic
entropy by using the idea of topological pressure determining measure-
theoretic entropy.

Our definition is highly inspired by the work of Ruelle [Rue73, The-
orem 5.1, p.245] and [Wal82, BCMP22]. Let (X, T ) be an expansive
dynamical system with specification property. Ruelle formulated a vari-
ational principle for topological pressure as follows:

P (T, f) = max
µ∈M(X,T )

{s(µ) +

∫

fdµ},

where s(µ) = inff∈C(X){P (T, f) −
∫

fdµ}. Later, without requiring
the additional conditions Walters [Wal82, Theorem 9.12] established
variational principle for any dynamical system:

P (T, f) = sup
µ∈M(X,T )

{hµ(T ) +

∫

fdµ}.

Moreover, if the topological entropy of the system is finite, he showed
that for any given invariant measure µ0, the entropy map µ 7→ hµ(T )
defined on M(X, T ) is upper semi-continuous (u.s.c.) at µ0 if and
only if hµ0

(T ) = s(µ0). In other words, measure-theoretic entropy is
8



completely determined by topological pressure in this case. Now we
inject the above idea to the random context.

Definition 3.3. Let T = (Tg,ω) be a RDS over the measure-preserving
system (Ω,F ,P, G), and let Γ be a random pressure function on L1

P(Ω, C(X)).
For every µ ∈ PP(Ω × X), we define the measure-theoretic entropy of
µ w.r.t. Γ as

s(µ) := inf{Γ(f)−

∫

fdµ : f ∈ L1
P(Ω, C(X))}.

We are in a position to provide some equivalent characterizations for
s(µ) by the certain convex domains of L1

P(Ω, C(X)).

Proposition 3.4. Under the setting of Definition 3.3, for every µ ∈
PP(Ω×X), we have

s(µ) = inf
f∈A

∫

fdµ

= inf
f∈Ã

∫

fdµ,

where
A = {f ∈ L1

P(Ω, C(X)) : Γ(−f) = 0}

and
Ã = {f ∈ L1

P(Ω, C(X)) : Γ(−f) ≤ 0}.

Proof. We first show s(µ) = inff∈A
∫

fdµ. This essentially follows from
the translation invariance of Γ. Indeed, if f ∈ A, one has

∫

fdµ = Γ(−f)−

∫

−fdµ ≥ s(µ).

Thus, s(µ) ≤ inff∈A
∫

fdµ. If f ∈ L1
P(Ω, C(X)), then Γ(−(Γ(f)−f)) =

0. This shows Γ(f)− f ∈ A and hence

Γ(f)−

∫

fdµ ≥ inf
f∈A

∫

fdµ.

We get s(µ) ≥ inff∈A
∫

fdµ.
The first equality implies that s(µ) ≥ inff∈Ã

∫

fdµ. Since L1
P(Ω, C(X))

is a linear space, we know that if f ∈ L1
P(Ω, C(X)) then its inverse el-

ement −f ∈ L1
P(Ω, C(X)). This shows

s(µ) = inf{Γ(f)−

∫

fdµ : f ∈ L1
P(Ω, C(X))}

= inf{Γ(−f) +

∫

fdµ : f ∈ L1
P(Ω, C(X))}

≤ inf
f∈Ã

∫

fdµ.

�
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Let (Ω, d) be a metric space. A function f : Ω → R is called
compactly supported if the support

spt(f) := {ω ∈ Ω : f(ω) 6= 0}

is a compact subset of Ω. The set of continuous compactly supported
functions on Ω is denoted by Cc(Ω). Note that a continuous function
f ∈ Cc(Ω) if and only if there exists compact subset K ⊂ Ω such that
f |Ω\K = 0. Using this fact, Cc(Ω) is a real linear space.

Proposition 3.5. We have the following statements:
(1) The set of finite linear combinations of the product of character-

istic function of measurable set of Ω and continuous function on X is
dense in L1

P(Ω, C(X)).
(2) The set of bounded function of L1

P(Ω, C(X)) is dense in L1
P(Ω, C(X)).

(3) Suppose that Ω is a locally compact and separable metric space
with Borel σ-algebra B(Ω). Then Cc(Ω×X) is dense in L1

P(Ω, C(X)).

Proof. (1). Let f ∈ L1
P(Ω, C(X)) and define the map

f̂ : (Ω,F) → (C(X),B(C(X)))

given by f̂(w) = f(ω, ·) ∈ C(X), where B(C(X)) is the Borel σ-algebra
on C(X) generated by all open balls of C(X) formed by

B(h, r) = {g ∈ C(X) : ||g − h||∞ < r}

with h ∈ C(X), r > 0. Let E be a countable dense subset of X . Then

||f(ω, ·)− h||∞ = sup
x∈X

|f(ω, x)− h(x)| = sup
y∈E

|f(ω, y)− h(y)|.

for all ω. Hence

f̂−1(B(h, r)) ={ω ∈ Ω : ||f(ω, ·)− h||∞ ≤ r}

= ∩
y∈E

{ω ∈ Ω : |f(ω, y)− h(y)| ≤ r} ∈ F ,

which implies that f̂ is measurable.
Let {gn : n ≥ 1} be a family of countable dense subset of C(X). For

n, k ≥ 1, we define

An,k = {g ∈ C(X) : ||g − gn||∞ <
1

k
},

B1,k = A1,k, Bn,k = An,k\ ∪
n−1
j=1 Aj,k, n ≥ 2.

Then {f̂−1(Bn,k) : n ≥ 1} is a measurable partition of Ω. For each
k ≥ 1, there exist positive integer nk and a P-measurable set Ωnk

=

Ω\ ∪nk

j=1 f̂
−1(Bj,k) so that P(Ωnk

) < 1
k
. We set

hk(ω, x) =

nk
∑

j=1

χf̂−1(Bj,k)
(ω)gj(x) + χΩnk

· 0.
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Therefore,

||f − hk|| =

∫

Ω\Ωnk

||f(ω)− hk(ω)||∞dP(ω) +

∫

Ωnk

||f(ω)||∞dP(ω)

≤

∫

Ωnk

||f(ω)||∞dP(ω) +
1

k
.

Since ||f || < ∞, one has
∫

Ωk
||f(ω)||∞dP(ω) → 0 as k goes to ∞ by

the absolute continuity of integrals. This shows (1).
(2) is a direct consequence of (1).
(3) Notice that the product σ-algebra B(Ω) ⊗ B(X) coincides with

the Borel σ-algebra B(Ω×X) generated by the open sets of Ω×X since
Ω × X has a family of countable topology basis. Clearly, Cc(Ω × X)
is a subset of L1

P(Ω, C(X)). By (1), it suffices to show for any f ∈
L1
P(Ω, C(X)) with the form χA · g, A ∈ B(Ω) and g ∈ C(X), can be

approximated by the elements of Cc(Ω×X). Ω is σ-compact4 since Ω
is a locally compact and separable metric space. By [ET13, Theorem
B.13, p.425], the probability measure P on Ω is regular in sense of

P(A) = sup
K⊂A,Kcompact

P(K) = inf
A⊂U,Uopen

P(U).

Fix ǫ > 0. Choose a compact set K and an open set U such that
K ⊂ A ⊂ U and P(U\K) < ǫ

2M
, where M = maxx∈X |g(x)| + 1. By

the Urysohn’s lemma for locally compact space [Rud87], there exists
f ∈ Cc(Ω) such that 0 ≤ f(ω) ≤ 1, f |K ≡ 1 and the compact support
spt(f) ⊂ U . Since f(ω)g(x) = 0 for any (ω, x) ∈ Ω×X\spt(f)×spt(g),
then f · g ∈ Cc(Ω×X) and

||χAg − fg|| =

∫

Ω

sup
x∈X

|χA(ω)g(x)− f(ω)g(x)|P(ω) < ǫ.

This shows that Cc(Ω×X) is a dense subset of L1
P(Ω, C(X)). �

Using Proposition 3.5, we can equivalently write the s(µ) by shrink-
ing the function space L1

P(Ω, C(X)) to compactly supported function
space Cc(Ω × X) and expanding the range of Γ(−·) to non-positive
values compared with Proposition 3.4.

Lemma 3.6. Suppose that Ω is a locally compact and separable met-
ric space. Let T = (Tg,ω) be a RDS over the measure-preserving
system (Ω,B(Ω),P, θ), and let Γ be a random pressure function on
L1
P(Ω, C(X)). Then for any µ ∈ PP(Ω×X),

s(µ) = inf
f∈Ãc

∫

fdµ,

where Ãc = {f ∈ Cc(Ω×X) : Γ(−f) ≤ 0}.

4A metric space is called σ-compact if it is a countable union of compact subsets.
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Proof. It follows from the Proposition 3.4 that we only need to show

s(µ) = inf
f∈Ã

∫

fdµ ≥ inf
f∈Ãc

∫

fdµ

for any µ ∈ PP(Ω ×X). Fix µ ∈ PP(Ω ×X). The map f 7→
∫

fdµ is
continuous. Indeed, for f1, f2 ∈ L1

P(Ω, C(X)), one has

|

∫

f1dµ−

∫

f2dµ| ≤

∫

Ω

∫

X

|f1(ω, x)− f2(ω, x)|dµω(x)dP(ω)

≤

∫

||(f1 − f2)(ω)||∞dP(ω)

= ||f1 − f2||.

Let f ∈ Ã and γ > 0. The Proposition 3.5,(3) allows us to choose
a sequence {fn} of the compactly supported continuous functions of
L1
P(Ω, C(X)) such that fn → f + γ

2
. Then we get

∫

fndµ →

∫

f +
γ

2
dµ,

and the Lipschitz property and translation property of Γ yields that

Γ(−fn) → Γ(−(f +
γ

2
)) < 0.

Thus, for sufficiently large N one has fN ∈ Ãc and
∫

fNdµ <
∫

fdµ+γ.
So inff∈Ãc

∫

fdµ ≤
∫

fdµ. This implies the desired inequality. �

3.3. Variational principle of random pressure function. In this
subsection, we give the proof of Theorem 1.1.

3.3.1. Some auxiliary tools. Notice that s(µ) is pretty different from
the (fiber) measure-theoretic entropy. Therefore, the previous method
considered in [Rue73, Wal82, Kif01, BCMP22] can not be directly ap-
plied to the present case since we are dealing with the integral of in-
variant measures rather than measure-theoretic entropy. Besides, we
also need to give a different construction of invariant measure whose
marginal is P in random situation, which is not involved in the deter-
ministic systems.

The difficult part for us is to get the inequality:

Γ(0) ≤ max
µ∈MP(Ω×X,G)

s(µ).

The central problem is how to construct a linear functional using the
information of random pressure function and relate it with a probability
measure on Ω×X having margin P?

It can be done by the following steps:
(a) We use separation theorem of convex sets to get a linear functional;
(b) We introduce Stone vector lattice to deal with random continuous
functions, and use pre-integral to replace the role of Riesz representa-
tion theorem;

12



(c) We introduce outer measure theory to overcome some problems
caused by the convergence of M(Ω × X), and obtain a probability
measure with margin P on Ω satisfying the desired inequality.

Before that, we first invoke the aforementioned three powerful tools.
The following separation theorem of convex sets presented in [DS88,

p.417] allows us to separate two disjoint closed convex sets by a proper
linear functional.

Lemma 3.7. Let V be a local convex linear topological space. Suppose
that K1, K2 are disjoint closed convex subsets and K1 is compact. Then
there exists a continuous real-valued linear functional L on V such that
L(x) < L(y) for any x ∈ K1 and y ∈ K2.

Ω×X is a locally compact metric space by the assumption of Ω in
Theorem 1.1. Although we can apply Riesz representation theorem to
produce a Radon measure on Ω×X whose weak∗ convergence holds for
all f ∈ Cc(Ω×X), the compositions of compactly supported continuous
functions on Ω×X and the iterations of Θg may not belong to Cc(Ω×
X) since the skew product transformation Θg is only measurable. To
overcome this difficulty, we shall introduce pre-integral to replace the
role of Riesz representation theorem.

By L we denote a family of real-valued functions on the set X . L is
said to be a vector lattice if L is

(i) a linear space;
(ii) f ∨ g := max{f, g} ∈ L, ∀ f, g ∈ L.

Additionally, L is said to be a Stone vector lattice if L is a vector lattice
and f ∧ 1 := min{f, 1} ∈ L for all f ∈ L.

Given a set X and the vector lattice L on X , the function L from L
to R is said to be a pre-integral if L is linear, positive, and L(fn) ↓ 0
whenever fn ∈ L and fn(x) ↓ 0 for all x ∈ X .

The following lemma comes from [Dud04, Theorem 4.5.2], which is
an analogue of the previous Riesz representation theorem in a more
general context.

Lemma 3.8. Let X be a set and L be a pre-integral on a Stone vector
lattice L. Then there exists a measure µ on (X, σ(L)) such that for all
f ∈ L

L(f) =

∫

fdµ,

where σ(L) is the smallest σ-algebra on X such that all functions in L
are measurable.

By means of pre-integral, one can obtain a measure on locally com-
pact metric space Ω×X . To get an invariant measure, a common trick
is considering a standard iterations of the measure under Θ. However,
the usual convergence of weak-topology endowed for Borel probabil-
ity measures on compact sets does not work for the current setting.

13



We place hope on some kind of convergence for locally compact metric
space arising in outer measure theory to overcome this obstruction.

We proceed to present some useful concepts and results given in outer
measure theory [Fol99, Mat95, Sim18]. Given a set X , a set function
µ : 2X → [0,∞] is said to be an outer measure on X if µ satisfies the
following conditions:

(i) µ(∅) = 0;
(ii) µ(A) ≤ µ(B), ∀ A ⊂ B;
(iii) ∀ Aj ⊂ X, j ≥ 1, µ(∪∞

j=1Aj) ≤
∑∞

j=1 µ(Aj).

For instance, the usual Lebesgue measure on Rn; the counting measure
on the set X given by µ(A) = #A for any finite subset A of X and
µ(A) = ∞ otherwise. If a subset A ⊂ X satisfies Carathéodory’s
condition, that is, for any S ⊂ X ,

µ(A) = µ(A ∩ S) + µ(A\S),

then A is called a µ-measurable set. Specially, an outer measure µ on
a metric space X is called Borel-regular if all Borel sets of X are µ-
measurable sets, and for any A ⊂ X , there exists a Borel set B ⊃ A
such that µ(B) = µ(A).

Now let X be a locally compact metric space. An outer measure µ
is called a Radon measure if the following conditions are satisfied:

(i) µ is Borel-regular;
(ii) µ(K) is finite for each compact set K ⊂ X ;
(iii) for any A ⊂ X , µ(A) = inf

Uopen,A⊆U
µ(U);

(iv) for any open set U ⊂ X , µ(U) = sup
Kcompact,K⊂U

µ(K).

One says that a sequence of Radon measures {µn}
∞
n=1 on X converges

weakly µ if

lim
n→∞

∫

fdµn =

∫

fdµ

for all ϕ ∈ Cc(X).
Using Urysohn’s lemma of locally compact metric space, one can

deduce from the definition of Radon measure that the following:

Lemma 3.9. [Mat95, Theorem 1.24] Let X be a locally compact metric
space. Suppose that {µn}

∞
n=1 and µ are Radon measures on X such that

µn weakly converges µ. Then

(i) for any open set O ⊂ X, lim infn→∞ µn(O) ≥ µ(O);
(ii) for any compact subset K ⊂ X, lim supn→∞ µn(K) ≤ µ(K).

The following lemma provides a criterion whether a sequence of
Radon measures may admit a sub-sequence converging weakly to some
Radon measures.

Lemma 3.10. [Sim18, Theorem 5.15] Let X be a locally compact and
σ-compact metric space. Let {µn}

∞
n=1 be a sequence of Radon measures
14



on X with the property that supn≥1 µn(K) < ∞ for each compact set K
of X. Then there exists a subsequence {µnk

}k≥1 which weakly converges
to a Radon measure µ on X.

Carathéodory’s theorem [Fol99, Proposition 1.11] says that the set
of all µ-measurable sets of X , denoted by σ(µ), is a σ-algebra. Then a
Radon measure (with µ(X) = 1) restricts to its Borel σ-algebra gives
us a Borel (probability) measure. Conversely, once there is a Borel
(probability) measure, we can obtain a Radon measure as follows:

Lemma 3.11. Let X be a locally compact, separable metric space and
µ be a Borel probability measure on X. For any A ⊂ X, we define

µ∗(A) = inf
B∈B(X),A⊂B

µ(B).

Then

(i) µ∗ is a Radon measure on X;
(ii) If f is a µ-integrable function on X, then

∫

fdµ =

∫

fdµ∗.(3·1)

Proof. (i) Clearly, µ∗ is an outer measure on X . By [Sim18, Lemma
5.9], to show that µ∗ is a Radon measure on X it suffices to show
(a) each open set of X is a countable union of compact sets of X ;
(b) µ∗ takes finite value for compact sets of X ;
(c) µ∗ is a Borel-regular outer measure on X .

Since each open set of X is a Fσ-set and any closed set of σ-compact
metric space X is still σ-compact, then each open set can be expressed
as a countable union of some compact sets of X . For any A ⊂ X and
n ≥ 1, one can choose a Borel set Bn ⊃ A such that µ(Bn) < µ∗(A)+ 1

n
.

We set B = ∩n≥1Bn. Then

µ∗(A) ≤ µ∗(B) ≤ µ(B) < µ∗(A) +
1

n
,

which implies that µ∗(A) = µ∗(B). Now assume that A ∈ B(X) and
S ⊂ X . Then there exists a Borel set S1 ⊃ S such that µ∗(S) = µ∗(S1).
Noting that µ∗|B(X) = µ, this yields that

µ∗(S) = µ(S1) = µ(S1 ∩A) + µ(S1\A)

= µ∗(S1 ∩ A) + µ∗(S1\A)

≥ µ∗(S ∩ A) + µ∗(S\A).

On the other hand, we have µ∗(S) ≤ µ∗(S ∩ A) + µ∗(S\A) by the
countable sub-additivity of outer measure µ∗. So µ∗ is Borel-regular.
This shows µ∗ is a Radon measure on X .

(ii) Recall that the integral
∫

fdµ∗ of f w.r.t. µ∗ is defined on the
measure space (X, σ(µ∗), µ∗|σ(µ∗)) as the the classical measure theory
done. Each µ-measurable function f on X is also µ∗-measurable since

15



σ(µ∗) ⊃ B(X). Then the equality (3·1) can be obtained by using the
fact µ∗|B(X) = µ and a standard approximation technique used in real
analysis. �

3.3.2. Proof of Theorem 1.1.

Proof. The translation invariance of Γ shows that Γ(−Γ(0)) = Γ(0)−
Γ(0) = 0. By Proposition 3.4, for all µ ∈ PP(Ω × X) we have s(µ) ≤
∫

Γ(0)dµ = Γ(0). This implies

sup
µ∈MP(Ω×X,G)

s(µ) ≤ Γ(0).

To get the converse inequality

Γ(0) ≤ sup
µ∈MP(Ω×X,G)

s(µ),(3·2)

we need to show for any ǫ > 0, there exists µ ∈ MP(Ω × X,G) such
that Γ(0)− ǫ < s(µ). By Proposition 3.6, this is equivalent to show

inf
f∈Ãc

∫

fdµ+

∫

cdµ+ ǫ > 0,(3·3)

where Ãc = {f ∈ Cc(Ω×X) : Γ(−f) ≤ 0} and c := −Γ(0). Equip the
bounded function space

L1
b(Ω, C(X)) = {f ∈ L1

P(Ω, C(X)) : f is bounded on Ω×X}

with subspace topology inherited from L1(Ω, C(X)), and define

Ãb = {f ∈ L1
b(Ω, C(X)) : Γ(−f) ≤ 0}.

Clearly, Ãc ⊂ Ãb. The convexity and Lipschitz property of Γ tells us Ãb

is a closed convex subset of L1
b(Ω, C(X)). Notice that Γ(c) = 0. Then

−(c + ǫ
2
) /∈ Ãb and hence −c /∈ Ãb +

ǫ
2
. Consider the disjoint closed

convex subsets K1 = {−c} and K2 = Ãb +
ǫ
2
. By Lemma 3.7, there

exists a continuous real-valued linear functional L on L1
b(Ω, C(X)) such

that for any f ∈ Ãb +
ǫ
2
,

L(f) > L(−c).(3·4)

We first obtain a Borel probability measure µ0 on (Ω×X,B(Ω×X))
such that for every f ∈ L1

b(Ω, C(X)),

L(f)

L(1)
=

∫

fdµ0.(3·5)

Let f ≥ 0 and λ > 0. By the translation invariance and monotonicity
of Γ, one has

Γ(−(λf + 1 + Γ(0))) = Γ(−λf)− 1− Γ(0)

≤ Γ(0)− 1− Γ(0) = −1 < 0.

Then L(−c) ≤ λL(f) + L(1 + Γ(0) + ǫ
2
) by (3·4) and the linearity of

L. If L(f) < 0, by letting λ → ∞ we get L(−c) = −∞. This implies
16



that L(f) must be non-negative. So L is a positive linear functional.
Let {gn(ω, x)}n be a sequence of L1

b(Ω, C(X)) such that gn(ω, x) is
pointwise decreasing to 0 for any fixed (ω, x) ∈ Ω×X . For every fixed
ω, one has the function sequences {gn(ω)}n on X , given by gn(ω) :=
gn(ω, ·), is pointwise decreasing to 0 for all x ∈ X . By Dini’s theorem,
one has gn(ω) converges uniformly 0 for each fixed ω, i.e., ||gn(ω)||∞ ↓ 0.
Then Levi’s monotone convergence theorem gives us

lim
n→∞

||gn − 0|| = lim
n→∞

∫

||gn(ω)||∞dP(ω) = 0.

Since L is positive, continuous and L(0) = 0, this yields that L(gn) ↓ 0.
Since L is positive and can take non-zero value for some f , we choose
g ∈ L1

b(Ω, C(X)) with 0 ≤ g ≤ 1 such that L(g) > 0. Then

L(1) = L(g) + L(1− g) > 0.

To sum up, L(·)
L(1)

is a pre-integral on Stone vector lattice L1
b(Ω, C(X)).

By Lemma 3.8, there exists a probability measure µ0 on (Ω×X, σ(L1
b(Ω, C(X)))

such that for every f ∈ L1
b(Ω, C(X)),

L(f)

L(1)
=

∫

fdµ0.(3·6)

Since each element in L1
b(Ω, C(X)) is measurable in (ω, x), the σ-

algebra σ(L1
b(Ω, C(X)) generated by the functions of L1

b(Ω, C(X)) is
contained in the product σ-algebra B(Ω)⊗ B(X). On the other hand,
let A ∈ B(Ω) and B be a closed subset of X . We set gn(ω, x) :=
χA(ω) · bn(x) ∈ L1

b(Ω, C(X)), where bn(x) = 1 − min{nd(x,B), 1}.
Then limn→∞ gn(ω, x) = χA(ω)χB(x) for all (ω, x). Therefore, A×B ∈
σ(Lb(Ω, C(X)). This shows that σ(Lb(Ω, C(X)) = B(Ω) ⊗ B(X) =
B(Ω×X), namely µ0 is a Borel probability measure on Ω×X .

Next, we construct an invariant probability measure on Ω×X with
marginal P. Let f ∈ L1

b(Ω, C(X)) and g ∈ G. Then

||f ◦Θg|| =

∫

sup
x∈X

|f(gω, Tg,ωx)|dP(ω) ≤

∫

||f(gω)||∞dP(ω) = ||f ||

by the fact P is G-invariant. So f ◦ Θg belongs to L1
b(Ω, C(X)). By

(3·6) and the linearity of L, for all f ∈ L1
b(Ω, C(X)), one has

L( 1
|Fn|

∑

g∈Fn
f ◦Θg)

L(1)
=

∫

fd
1

|Fn|

∑

g∈Fn

(Θg)∗µ0(3·7)

for any family of Følner sequences {Fn}n≥1 of G. Then

µn =
1

|Fn|

∑

g∈Fn

(Θg)∗µ0
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is a sequence of Borel probability measures on Ω × X . For any A ⊂
Ω×X , we define

µ∗
n(A) = inf

B∈B(Ω×X),B⊃A
µn(B).

By Lemma 3.11, {µ∗
n}n≥1 is a sequence of Radon measures on Ω ×X .

Since µ∗
n(K) = µn(K) ≤ 1 for each compact set K of Ω×X and every

n ≥ 1, then by Lemma 3.10, without loss of generality we may assume
that µ∗

n converges to a Radon measure µ∗ on Ω×X . Notice that µ∗ is
Borel-regular. The measure

µ := µ∗|B(Ω×X),

which is a restriction of µ∗ on B(Ω×X), is a Borel measure on Ω×X .
We need to show µ ∈ MP(Ω×X,G). Let L1(Ω,B(Ω),P) denote the

usual L1-space with norm || · ||L1. Given f ∈ L1(Ω,B(Ω),P), by setting

f̃ |{ω}×X = f(ω) for every ω, this yields a function f̃ ∈ L1
P(Ω, C(X)).

Clearly, χ̃A = χA×X for any A ∈ B(Ω). Let {Fn}n≥1 be a Følner
sequence of G. By L1-mean ergodic theorem [KL16, Theorem 4.23],
one has

||
˜1

|Fn|

∑

g∈Fn

χA ◦ g − P(A)|| =

∫

|
1

|Fn|

∑

g∈Fn

χA ◦ g(ω)− P(A)|dP(ω)

=||
1

|Fn|

∑

g∈Fn

χA ◦ g − P(A)||L1 → 0, n → ∞.

The continuity of L implies that

lim
n→∞

L( 1
|Fn|

∑

g∈Fn
χ̃A ◦Θg)

L(1)
= lim

n→∞

˜L( 1
|Fn|

∑

g∈Fn
χA ◦ g)

L(1)
= P(A).

(3·8)

Let K be a compact subset of Ω. Since µ∗
n|B(Ω×X) = µn for each n, one

has

P(K)
by (3·8)
= lim

n→∞

L( 1
|Fn|

∑

g∈Fn
χ̃K ◦Θg)

L(1)

by (3·7)
= lim

n→∞

∫

χK×Xdµ
∗
n

(3·9)

= lim sup
n→∞

µ∗
n(K ×X)

by Lemma 3.9

≤ µ∗(K ×X) = µ(K ×X).

By [ET13, Theorem B.13, p.425], P is regular, that is, for any A ∈ B(Ω)

P(A) = sup
K⊂A,K is compact

P(K) ≤ µ(A×X), by (3·9).(3·10)

The similar arguments give us P(A) ≥ µ(A×X). Thus P(A) = µ(A×
X) for all A ∈ B(Ω). Specially, we have µ(Ω × X) = 1. This shows
(πΩ)∗µ = P and hence µ ∈ PP(Ω×X).
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The remaining is to show µ is Θg-invariant for all g ∈ G. For every
f ∈ Cc(Ω×X), one has

lim
n→∞

L( 1
|Fn|

∑

g∈Fn
f ◦Θg)

L(1)

by (3·7)
= lim

n→∞

∫

fdµn(3·11)

by Lemma 3.11,(ii)
= lim

n→∞

∫

fdµ∗
n

=

∫

fdµ∗ =

∫

fdµ.

Let f ∈ L1
b(Ω, C(X)) and choose f∗ ∈ Cc(Ω×X) such that ||f − f∗|| <

L(1)ǫ
3||L||

by Proposition 3.5,(3), where ||L|| is the operator norm of L. By

(3·11), for sufficiently large n,

|
L( 1

|Fn|

∑

g∈Fn
f∗ ◦Θg)

L(1)
−

∫

f∗dµ| <
ǫ

3
.

So

|
L( 1

|Fn|

∑

g∈Fn
f ◦Θg)

L(1)
−

∫

fdµ| ≤ |
L( 1

|Fn|

∑

g∈Fn
f ◦Θg)

L(1)
−

L( 1
|Fn|

∑

g∈Fn
f∗ ◦Θg)

L(1)
|+

|
L( 1

|Fn|

∑

g∈Fn
f∗ ◦Θg)

L(1)
−

∫

f∗dµ|+ |

∫

f∗dµ−

∫

fdµ|

< ǫ.

This shows that

lim
n→∞

L( 1
|Fn|

∑

g∈Fn
f ◦Θg)

L(1)
=

∫

fdµ(3·12)

holds for all f ∈ L1
b(Ω, C(X)). Let h ∈ G and f ∈ L1

b(Ω, C(X)).
Replacing f by f ◦Θh in (3·12), we have

|

∫

f ◦Θhdµ−

∫

fdµ| = lim
n→∞

1

L(1)|Fn|
|L(

∑

g∈hFn∆Fn

f ◦Θg)|

≤ lim
n→∞

||L|| · ||f ||

L(1)

|hFn∆Fn|

|Fn|
= 0.

Note that Cc(Ω × X) is dense in L1
P(Ω, C(X)). So is L1

b(Ω, C(X)). A
standard approximation approach shows that

∫

f ◦ Θhdµ =
∫

fdµ for
all f ∈ L1

P(Ω, C(X)) and h ∈ G. This shows µ ∈ MP(Ω×X,G).
Finally, we show µ exactly satisfies inequality (3·3):

inf
f∈Ãc

∫

fdµ+

∫

cdµ+ ǫ > 0.
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For each f ∈ Ãc and g ∈ G, one has f◦Θg ∈ Ãb by the semi-cohomology
of Γ. It follows from (3·11) that

∫

fdµ = lim
n→∞

1

|Fn|

∑

g∈Fn

L(f ◦Θg)

L(1)
≥

1

L(1)
inf
f∈Ãb

L(f),(3·13)

which implies that s(µ) ≥ 1
L(1)

infg∈Ãb
L(g) by Proposition 3.6. There-

fore, one has

s(µ) +

∫

cdµ+ ǫ ≥
1

L(1)
inf

f∈Ãb+
ǫ
2

L(f) +
L(c)

L(1)
+

ǫ

2

=
1

L(1)
( inf
f∈Ãb+

ǫ
2

L(f) + L(c)) +
ǫ

2
> 0, by (3·4).

Recall that PP(Ω × X) is endowed with the weak∗-topology, which
is compact. It is easy to see that MP(Ω×X,G) is a non-empty closed
subset of PP(Ω × X). Since s(µ) is upper semi-continuous concave
function on MP(Ω×X,G), then the set

Mmax(T,Γ) := {µ ∈ MP(Ω×X,G) : Γ(0) = s(µ)}

is a non-empty compact convex subset of MP(Ω × X,G). Thus, the
supremum can be attained for some invariant measures. �

Suppose that Ω = {ω} is a single point, and G = Zk
+, or G is an

amenable group continuously acting on the compact metric space X
with continuous self-maps {Tg : g ∈ G} on X . If the pressure function
Γ : C(X) → R satisfies the following properties:

(1) Monotonicity: f ≤ g ⇒ Γ(f) ≤ Γ(g) ∀f, g ∈ C(X).
(2) Translation invariance: Γ(f + c) = Γ(f) + c ∀f ∈ C(X) and

c ∈ R.
(3) Convexity: Γ(pf+(1−p)g) ≤ pΓ(f)+(1−p)Γ(g) ∀f, g ∈ C(X)

and p ∈ [0, 1].
(4) Semi-cohomology: Γ(f ◦ Tg) ≤ Γ(f) ∀f ∈ C(X) and g ∈ G,

then, by Theorem 1.1, we can obtain the following variational principle
of pressure function for dynamical systems of G-actions.

Theorem 3.12. Let G = Zk
+, k ≥ 1, or G be an amenable group con-

tinuously acting on the compact metric space (X, d). If Γ is a pressure
function on C(X), then

Γ(0) = max
µ∈M(X,G)

s(µ),

where s(µ) = inf{Γ(f)−
∫

fdµ : f ∈ C(X)} is a concave upper semi-
continuous function on the set of G-invariant Borel probability mea-
sures M(X,G).
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4. Some applications of main result

In this section, we exhibit several applications of the Theorem 1.1,
and formulate the new variational principles of the entropy-like quan-
tities of dynamical systems, including some entropy-like quantities of
the zero and infinite entropy systems, and preimage entropy-like quan-
tities of non-invertible random dynamical systems. The main results
are Theorem 4.1, 4.3 and 4.6.

4.1. Zero entropy systems. According to the possible value of topo-
logical entropy, dynamical systems can divided into zero entropy sys-
tems, finite entropy systems and infinite entropy systems. Although
the zero entropy systems are viewed as a class of “simple” system with
lower topological complexity, it may possess the complicated dynamical
behaviors detecting by some zero entropy-like quantities, for instance,
topological sequence entropy, maximal pattern entropy, and polynomial
topological entropy are such candidates.

In this subsection, we are interested in the connections between the
topological and ergodic aspects of zero entropy-systems, and we estab-
lish variational principles for these zero entropy-like quantities.

We first review the precise definitions of the aforementioned zero
entropy-like quantities.

4.1.1. Topological sequence entropy. Let (X, T ) be a topological dy-
namical system (TDS for short), where X is a compact metric space
with a metric d and T : X → X is a homeomorphism map. Given
a sequence S = {i0, i1, · · · } ⊂ Z≥0 of non-negative integers with i0 <
i1 < · · · ր ∞, we define the Bowen metric dSn w.r.t. the sequence S as

dSn(x, y) = max
0≤j≤n−1

d(T ij(x), T ij(y))

for any x, y ∈ X .
A set F is an (n, ǫ, S)-separated set of X if dSn(x, y) > ǫ for any

distinct x, y ∈ F . Let f ∈ C(X). The topological sequence pressure
w.r.t. S is defined by

PS(T, f) = lim
ǫ→0

lim sup
n→∞

1

n
log sup

F⊂X

{
∑

x∈F

e
∑n−1

j=0 f(T ij x)},

where the supremum is taken over the set of (n, ǫ, S)-separated sets of
X .

By letting f = 0 and hS
top(T ) := PS(T, 0), we call hS

top(T ) the topo-
logical sequence entropy of X w.r.t. S.

For any such sequence S, Goodman [Goo74, Theorem 3.1] estab-
lished the partial variational principle of topological sequence entropy:

sup
µ∈M(X,T )

hS
µ(T ) ≤ hS

top(T ),
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where hS
µ(T ) is the measure-theoretic sequence entropy of µ w.r.t. S

introduced by Kushnirenko [Kus67], and for some TDSs the strict in-
equality can occur.(cf.[Goo74, Section 5])

Taking the supremum S over all sub-sequences of non-negative in-
tegers, the supremum of the topological sequence pressure of f is given
by

P ∗(T, f) = sup
S

PS(T, f).

Letting f be zero potential and h∗
top(T,X) := P ∗(T, 0), we call

h∗
top(T,X)maximal pattern entropy(or supremum of topological sequence

entropy)5 of X .
We proceed to recall another topological invariant introduced by

Katok and Thouvenot [KT97], which is useful for classifying the zero
entropy-systems.

4.1.2. Polynomial topological entropy. Let (X, T ) be a TDS and f ∈
C(X) be a continuous potential. Let ⌈u⌉ denote the smallest integer
greater than u. We define polynomial topological pressure of f as

Ppol(T, f) = lim
ǫ→0

lim sup
n→∞

1

logn
log sup

F⊂X

{
∑

x∈F

e
∑⌈log n⌉

j=0 f(T jx)},

where the supremum ranges over the set of (n, ǫ)-separated sets of X6.
In definition of polynomial topological pressure, we only consider the

Birkhoff sum of x whose time begins with 0 and ends with ⌈log n⌉ rather
than n as we have done for the classical topological pressure. Such a
formulation is to guarantee that the polynomial topological pressure
Ppol(T, ·) : C(X) → R satisfies the translation invariance Ppol(T, f +
c) = Ppol(T, f) + c.

When f = 0 is zero potential, we call hpol
top(T,X) := Ppol(T, 0) the

polynomial topological entropy of X7. It seems that a proper variational
principle for polynomial topological entropy is still missing for lasting
a long time due to the lack of the role of measure-theoretic entropy.
Therefore, we have the following question:

Question 1: how to define proper measure-theoretic entropy-like quan-
tities such that the variational principles hold for maximal pattern en-
tropy and polynomial topological entropy?

5In [HY09], for any TDS (X,T ), Huang and Ye defined the maximal pattern
entropy of X , and proved that it is equal to the supremum of topological sequence
entropy over all subsequences of non-negative integers, which explains the reason
why we call h∗

top(T,X) the maximal pattern entropy.
6Namely, the (n, ǫ, S)-separated sets of X by considering S = Z≥0.
7It is also called slow entropy in the original literature [KT97].
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4.1.3. Variational principle of zero entropy-like quantities. It is imme-
diate to check from the definitions that both P ∗(T, ·) and Ppol(T, ·)
are pressure functions on C(X). Thus, by Theorem 3.12 we have the
following variational principles:

Theorem 4.1. Let (X, T ) be a TDS.

(i) If h∗
top(T,X) < ∞, then

h∗
top(T,X) = max

µ∈M(X,T )
h∗
µ(T ),

where h∗
µ(T ) = inff∈C(X){P

∗(T, f)−
∫

fdµ}.

(ii) If hpol
top(T,X) < ∞, then

hpol
top(T,X) = max

µ∈M(X,T )
hpol
µ (T ),

where hpol
µ (T ) = inff∈C(X){Ppol(T, f)−

∫

fdµ}.

4.2. Infinite entropy systems.

4.2.1. Mean dimensions of Z-actions. Contrary to the zero entropy
systems, infinite entropy systems admit the quiet complicated dynam-
ics, while we get no extra information about the systems except the
entropy is infinite. To capture the topological complexity of infinite
entropy systems, mean dimension, introduced by Gromov [Gro99], and
metric mean dimension, introduced by Lindenstrauss andWeiss [LW00],
are two vital quantities for us to understand the geometric structures
and topological structures of infinite entropy systems. Recall that the
classical variational principle states that the topological entropy is the
supremum of the measure-theoretic entropy over the set of invariant
measures, that is,

htop(X, T ) = sup
µ∈M(X,T )

hµ(T ).

It is the missing role of measure-theoretic counterpart in infinite en-
tropy systems that prevents us to obtain some proper variational prin-
ciples for mean dimension and metric mean dimension. Very recently,
Lindenstrauss and Tsukamoto’s pioneering work [LT18] gave the first
analogue of classical variational principle. More precisely, by inject-
ing the rate-distortion theory into ergodic theory, for any TDS (X, T )
with a metric d they established the following variational principle for
(upper) metric mean dimension:

mdimM(T,X, d) = lim sup
ǫ→0

1

log 1
ǫ

sup
µ∈M(X,T )

Rµ,L∞(ǫ)

where mdimM(T,X, d) denotes upper metric mean dimension ofX , and
Rµ,L∞(ǫ) denotes L∞-rate distortion dimension of µ. See [CDZ22] for
an extension of this result. We remark that a counter-example is given
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in [LT18, Section VIII] to show the order of supµ∈M(X,T ) and lim supǫ→0

can not be exchanged. Thus, the variational principle

mdimM(T,X, d) = sup
µ∈M(X,T )

{lim sup
ǫ→0

1

log 1
ǫ

Rµ,L∞(ǫ)}

does not hold for any TDS.
One says that a TDS (X, T ) admits marker property if for any N > 0

there exists an open set U ⊂ X with the property that

U ∩ T nU = ∅, 1 ≤ n ≤ N, and X = ∪n∈ZT
nU.

For instance, aperiodic minimal systems and their extensions have
marker property. This property was used to obtain the Voronoi tiling
of Zk [GLT16, Section 4], which was extensively used to deal with the
embedding problems of dynamical systems. For systems with marker
property, Lindenstruass and Weiss [LT19] also proved the variational
principle for mean dimension:

mdim(X, T ) = min
d∈D(X)

sup
µ∈M(X,T )

lim sup
ǫ→0

1

log 1
ǫ

Rµ,L1(ǫ),

where mdim(X, T ) denotes the mean dimension of X , Rµ,L1(ǫ) denotes
L1-rate distortion dimension of µ8, and D(X) is the set of all compatible
metrics on the topology of X . We remark that in [LT19] it holds that
for any TDS

mdim(X, T ) ≤ inf
d∈D(X)

sup
µ∈M(X,T )

lim sup
ǫ→0

1

log 1
ǫ

Rµ,L1(ǫ)

≤ inf
d∈D(X)

mdimM(T,X, d),

then to get the desired equality the marker property is imposed to find
the metric such that mdim(X, T ) = mdimM(T,X, d)9. Voronoi tiling
is still not developed yet for amenable groups since the structure of the
group does not supply an easy generalization of the variational principle
to amenable groups. Besides, since the marker property implies non-
aperiodicity, while a“simple” example: the full shift on [0, 1]Z with
a metric given by d(x, y) =

∑

n∈Z 2
−|n||xn − yn|, has lots of periodic

points such that Lindenstrauss-Tsukamoto’s variational principle holds
for mean dimension:

mdimM(σ, [0, 1]Z, d) = lim sup
ǫ→0

1

log 1
ǫ

Rµ,L1(ǫ) = 1,

where µ = L⊗Z, and L is the Lebesgue measure on [0, 1].
Based on these facts, we pose the following question:

8Due to the pretty lengthy definitions, we refer the readers to [LT18] for the
precise definitions of L1 and L∞- rate distortion functions.

9It is an open problem posed in [GLT16, LT19] whether for any TDS (X,T ),

there exists a metric on X such that mdim(X,T ) = mdimM (T,X, d).
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Question 2: For any G-system (X,G), without assuming the marker
property, how to define proper measure-theoretic entropy-like quantities
such that the variational principles hold for mean dimension and metric
mean dimension?

4.2.2. Mean dimensions of G-actions. We first introduce the mean di-
mension with potential ofG-actions. Let (X,G) be aG-system. Denote
by F(G) the set of non-empty finite subsets of G. Given an open open
cover U of X , we define ordx(U) =

∑

U∈U χU(x) − 1 for every x ∈ X
and

D(U) = min
V≻U

ord(V),

where the infimum is taken over all finite open cover of X that refines
U , and ord(V) = maxx∈X ordx(V) is the order of V.

Let F ∈ F(G) and define UF = ∨g∈F g
−1U . Then the function

F ∈ F(G) 7→ D(UF ) satisfies the condition of Ornstein-Weiss theorem
[OW87] and hence there exists a negative number(only depending on G
and the map), which we denote it by mdim(G,U), such that the limit

lim
n→∞

D(UFn
)

|Fn|

exists and does not depend on the choice of Følner sequences {Fn}n≥1

of G. Then the mean dimension of X is defined by

mdim(X,G) = sup
U

mdim(G,U),

where the supremum is taken over all finite open covers of X .
To apply our main result, we need to define a notion called mean

dimension with potential, however we do not follow Tsukamoto’s ap-
proach [Tsu20, p.4] since it does not satisfy the desired convexity when
the mean dimension with potential is regarded as a function on C(X).

Fix a Følner sequence {Fn}n≥1 of G. The set of finite open cover
V that refines U and attains the minimal D(UFn

) is denoted by Pn.
Let f be a continuous potential on X . Let F ∈ F(G) and define
SFn

(x) =
∑

g∈Fn
f(gx) as the Birkhoff sum of x w.r.t. F . We set

mdim(G, f,U ; {Fn}) := lim sup
n→∞

1

|Fn|
sup
V∈Pn

ord(f,V),

where ord(f,V) = maxx∈X{ordx(V) + SFn
f(x)}. We define the mean

dimension of X with potential f as

mdim(X,G, f ; {Fn}) = sup
U

mdim(G, f,U ; {Fn}).

It is easy to see that mdim(X,G) = mdim(X,G, 0; {Fn}) if f is zero
potential.

Next, we follow Tsukamoto’s approach [Tsu20] to define the metric
mean with potential of G-actions. Let F ∈ F(G) and d be a metric on
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X . The Bowen metric w.r.t. F is given by

dF (x, y) = max
g∈F

d(gx, gy).

A set E ⊂ X is a (dF , ǫ)-separated set if dF (x, y) > ǫ for any x, y ∈ F
with x 6= y. Let ǫ > 0 and f ∈ C(X). We put

PF (X, f, d, ǫ) = sup{
∑

x∈E

eSF f(x) : E is a (dF , ǫ)-separated set of X}.

Then the metric mean dimension of X with potential f 10 is given by

mdimM(G,X, f, d) = lim sup
ǫ→0

1

log 1
ǫ

lim sup
n→∞

1

|Fn|
logPFn

(X, f ·log
1

ǫ
, d, ǫ).

Letting f = 0 and mdimM(G,X, d) := mdimM(G,X, 0, d), we call
mdimM(G,X, d) the metric mean dimension of X .

4.2.3. Variational principles of infinite entropy-like quantities.

Proposition 4.2. Let (X,G) be a G-system. Thenmdim(G, ·,U ; {Fn})
and mdimM(G,X, ·, d) are two pressure functions on C(X).

Proof. For every Følner sequence {Fn} of G, we show the quantity
mdim(G, ·,U ; {Fn}) is a pressure function. The remaining statements
can be similarly verified. By the definition, we only need to check the
cohomology.

Let {Fn} be a Følner sequence of G. Fix g ∈ G and V ∈ Pn. Then

ord(f ◦ g,V) = max
x∈X

{ordx(V) + SgFn
f(x)}

≤ max
x∈X

{ordx(V) + SFn
f(x)}+ |gFn△Fn| · ||f ||∞.

This implies that mdim(G, f ◦ g,U ; {Fn}) ≤ mdim(G, f,U ; {Fn}) for
all g ∈ G. �

Therefore, we can apply the Theorem 3.12 to the two types of pres-
sure functions and obtain the following variational principles for mean
dimensions whose forms are more close to the classical ones, which do
not assume that the marker property.

Theorem 4.3. Let (X,G) be a G-system.

(i) If mdim(X,G) < ∞, then for every Følner sequence {Fn} of G

mdim(X,G) = max
µ∈M(X,G)

mdimµ(X,G; {Fn}),

where mdimµ(X,G; {Fn}) = inff∈C(X){mdim(X,G, f ; {Fn}) −
∫

fdµ}.

10Actually, by some more effort one can show the quantity mdimM (G,X, f, d) is
independent of the choice of Følner sequence {Fn} of G.
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(ii) If mdimM(G,X, d) < ∞, then

mdimM(G,X, d) = max
µ∈M(X,G)

mdimM(G, µ,X, d),

where mdimM(G, µ,X, d) = inff∈C(X){mdimM(G,X, f, d)−
∫

fdµ}.

4.3. Non-invertible RDSs.

4.3.1. Preimage entropies and variational principles of Z+-action. We
review some progress of variational principles for preimage entropy-like
quantities. A general fact is if T is a homeomorphism map, then the
topological entropies of the forward orbits and backward orbits coin-
cide, that is, htop(T,X) = htop(T

−1, X). For non-invertible map T on
X , the cardinality of the iterated preimage set T−nx of x is in general
not a single point and even uncountable, so the backward orbits may
possess pretty complicated preimage structures. To describe how “non-
invertible” a system is and how “non-invertibility” contributes to the
entropy, many types of preimage entropy-like quantities were intro-
duced and investigated from the topological and measure-theoretical
viewpoints through the growth rate of preimages and the condition
entropy [LP92, Hur95, NP99, CN05, WZ21, WZ22].

Cheng and Newhouse [CN05] defined topological preimage entropy
of X as

hpre(T ) = lim
ǫ→0

lim sup
n→∞

1

n
sup

x∈X,k≥n

log sn(T, T
−kx, ǫ),

where sn(T, Z, ǫ) denotes the maximal cardinality of the (n, ǫ)-separated
sets of a non-empty subset Z of X , and established a variational prin-
ciple for it in terms of measure-theoretic preimage entropy:

hpre(T ) = sup
µ∈M(X,T )

hpre,µ(T ).

where hpre,µ(T ) = supα∈PX
hpre,µ(T, α) = supα∈PX

lim
n→∞

1
n
hµ(α

n|B−),

and B− = ∩∞
j=0T

−jB is the infinite past σ-algebra related to the Borel
σ-algebra B. Unfortunately, the recent work in [W23, SYZ23] posed
some examples showing that the Cheng-Newhouse’s variational princi-
ple fails, that is, there exists TDSs such that supµ∈M(X,T ) hpre,µ(T ) <
hpre(T ). Now, turning eyes to two kind of pointwise preimage entropy:

hm(T ) = lim
ǫ→0

lim sup
n→∞

1

n
sup
x∈X

log sn(T, T
−nx, ǫ),

hp(T ) = sup
x∈X

lim
ǫ→0

lim sup
n→∞

1

n
log sn(T, T

−nx, ǫ).

For systems with uniform separation of preimages11, Wu and Zhu [WZ21,
Theorem B, Corollary A.1] established variational principles for it in

11If for some ǫ0 > 0, d(x, y) < ǫ0 and T (x) = T (y) implies that x = y.
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terms of pointwise measure-theoretic preimage entropy:

hp(T ) = hm(T ) = sup
µ∈M(X,T )

hm,µ(T ) < ∞.

where hm,µ(T ) = supα∈PX
hm,µ(T, α) = supα∈PX

lim sup
n→∞

1
n
hµ(α

n|T−nB).

In the context of non-invertible RDS, Wang et al. [WWZ23, Theorem
B] extended the partial result in [WZ21] to random pointwise preimage
pressure Ppre,m(T, f), yet the corresponding variational principle is still
vacant for another random pointwise preimage pressure Ppre,p(T, f).

4.3.2. Preimage entropies-like quantities of non-invertible RDSs. We
assume that G = Z+. A random Z+ dynamical system(non-invertible
RDS) over (Ω,F ,P, θ) is generated by mappings Tω : X → X with
iterates

T n
ω =

{

Tθn−1ω ◦ Tθn−2ω ◦ · · · ◦ Tω, for n ≥ 1

id, for n = 0

such that (ω, x) 7→ Tωx is measurable and x 7→ Tωx is continuous for
all ω.

We define a family of Bowen metrics {dωn : n ∈ N, ω ∈ Ω} on X ,
where

dωn(x, y) = max
0≤j≤n−1

d(T j
ωx, T

j
ωy),

for any x, y ∈ X . Given f ∈ L1
P(Ω, C(X)), we set

Snf(ω, x) =
n−1
∑

j=0

f ◦Θj(ω, x) =
n−1
∑

j=0

f(θjω, T j
ωx).

Let E be a non-empty set of X . A set F ⊂ E is an (ω, n, ǫ)-separated
set if dωn(x, y) > ǫ for any x, y ∈ F with x 6= y. Let sn(T,E, ω, ǫ) denote
the maximal cardinality of (ω, n, ǫ)-separated sets of E.

Topological preimage entropy was firstly introduced by Cheng and
Newhouse [CN05] and was extended to topological preimage pressure
by Zeng et al. [ZYZ07], which were further investigated by the several
authors for non-invertible RDSs [Z07, MC09, ZLL09]. We define

Ppre,n(T, f, ω, ǫ, k)

= sup
x∈X

sup{
∑

y∈F

eSnf(ω,y) : F is an (ω, n, ǫ)-separated set of T−k
ω x}

The quantity Ppre,n(T, f, ω, ǫ, k) is measurable in ω [ZLL09, Lemma
2.1]. Then we set

Ppre(T, f, ǫ) = lim sup
n→∞

1

n
sup
k≥n

∫

logPpre,n(T, f, ω, ǫ, k)dP(ω).

The random topological preimage pressure of f is defined by

P ∗
pre(T, f) = lim

ǫ→0
Ppre(T, f, ǫ).
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Letting f = 0 and h∗
pre(T ) := P ∗

pre(T, 0), we call h∗
pre(T ) random

topological preimage entropy of X .
A pointwise approach is considered to define pointwisee preimage

entropy by Hurley [Hur95]. See also [WZ21, LWZ20, WWZ23] for the
extension of pointwise preimage entropies in both Z+-actions and non-
invertible RDSs. We put

Ppre,n(T, f, ω, x, ǫ)

= sup{
∑

y∈E

eSnf(ω,y) : E is an (ω, n, ǫ)-separated set of T−n
ω x}.

In [WWZ23], Wang, Wu and Zhu showed that both the quantities
Ppre,n(T, f, ω, x, ǫ) and supx∈X Ppre,n(T, f, ω, x, ǫ) are measurable in ω.
This allows us to define

Ppre,m(T, f, ǫ) = lim sup
n→∞

1

n

∫

log sup
x∈X

Ppre,n(T, f, ω, x, ǫ)dP(ω),

Ppre,p(T, f, ǫ) = sup
x∈X

lim sup
n→∞

1

n

∫

logPpre,n(T, f, ω, x, ǫ)dP(ω).

The random pointwise preimage pressures of f are defined by

P ∗
pre,m(T, f) = lim

ǫ→0
Ppre,m(T, f, ǫ),

P ∗
pre,p(T, f) = lim

ǫ→0
Ppre,p(T, f, ǫ).

Letting f = 0, h∗
pre,m(T ) := P ∗

pre,m(T, 0) and h∗
pre,p(T ) := P ∗

pre,p(T, 0),
we call h∗

pre,m(T ), h
∗
pre,p(T ) random topological preimage entropies of X .

For any f ∈ L1
P(Ω, C(X)), it is clear that

P ∗
pre,p(T, f) ≤ P ∗

pre,m(T, f) ≤ P ∗
pre(T, f),

and the three types of preimage topological pressures do not depend
on the choice of the compatible metrics on X .

4.3.3. Variational principles of preimage entropy-like quantities. We
show the preimage pressures-like quantities are random pressure func-
tions on L1

P(Ω, C(X)).

Proposition 4.4. Let T = (Tω) be a RDS over the measure-preserving
system (Ω,F ,P, θ). Let f, g ∈ L1

P(Ω, C(X)). Then P ∗
pre(T, ·) satisfies

the following statements:

(1) h∗
pre(T )− ||f || ≤ P ∗

pre(T, f) ≤ h∗
pre(T ) + ||f ||.

(2) P ∗
pre(T, ·) : L

1
P(Ω, C(X)) −→ R ∪ {∞} is either finite value or

constantly ∞.
(3) (monotonicity) If f ≤ g, then P ∗

pre(T, f) ≤ P ∗
pre(T, g).

(4) (translation invariance) P ∗
pre(T, f + c) = P ∗

pre(T, f) + c for any
c ∈ R.
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(5) (Lipschitz and convexity) If h∗
pre(T ) < ∞, then

|P ∗
pre(T, f)− P ∗

pre(T, g)| ≤ ||f − g||

and P ∗
pre(T, ·) is convex on L1

P(Ω, C(X)).
(6) (cohomology) P ∗

pre(T, f + g ◦Θ− g) = P ∗
pre(T, f).

Furthermore, the above properties are also valid for P ∗
pre,p(T, ·), P

∗
pre,m(T, ·).

Proof. These properties can be essentially directly verified by defini-
tions. Due to the completeness, we only give a sketch for P ∗

pre(T, ·).
(1-2). It follows from the inequality

e
∑n−1

j=0 −||f(θjω)||∞Ppre,n(T, 0, ω, ǫ, k) ≤ Ppre,n(T, f, ω, ǫ, k)

≤ e
∑n−1

j=0
||f(θjω)||∞Ppre,n(T, 0, ω, ǫ, k).

for any k ≥ n and ω ∈ Ω.
(5). Let 0 < ǫ < 1, k ≥ n and ω ∈ Ω. Then

Ppre,n(T, f, ω, ǫ, k) ≤ e
∑n−1

j=0 ||(f−g)(θjω)||∞Ppre,n(T, g, ω, ǫ, k),

which implies that P ∗
pre(T, f) ≤ P ∗

pre(T, g) + ||f − g||. Exchanging the
role of f and g one has

P ∗
pre(T, g) ≤ P ∗

pre(T, f) + ||f − g||.

Let p ∈ [0, 1], and let E be an (ω, n, ǫ)-separated set of T−k
ω x. Ap-

plying Hölder’s inequality,
∑

y∈E

epSnf(ω,y)+(1−p)Sng(ω,y) ≤ (
∑

y∈E

eSnf(ω,y))p(
∑

y∈E

eSng(ω,y))(1−p),

which yields that P ∗
pre(T, pf+(1−p)g) ≤ pP ∗

pre(T, f)+(1−p)P ∗
pre(T, g).

(6) Let F be an (ω, n, ǫ)-separated set of T−k
ω x. Notice that for every

(ω, x) and 0 < ǫ < 1,
∑

y∈F

(1/ǫ)Sn(f+g◦Θ−g)(ω,y) =
∑

y∈F

(1/ǫ)Snf(ω,y)+g(θnω,Tn
ω y)−g(ω,y).

Then the result holds by considering the inequality
∑

y∈F

(1/ǫ)Snf(ω,y)−||(g(θnω)||∞−||(g(ω)||∞

≤
∑

y∈F

(1/ǫ)Sn(f+g◦Θ−g)(ω,y)

≤
∑

x∈F

(1/ǫ)Snf(ω,y)+||(g(θnω)||∞+||(g(ω)||∞ .

. �
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Definition 4.5. Let T = (Tω) be a RDS over the measure-preserving
system with h∗

pre(T ) < ∞. For any µ ∈ PP(Ω×X), we respectively de-
fine the measure-theoretic preimage entropy, measure-theoretic point-
wise preimage entropies of µ

h∗
pre,µ(T ) = inf{P ∗

pre(T, f)−

∫

fdµ : f ∈ L1
P(Ω, C(X))},

h∗
p,µ(T ) = inf{P ∗

pre,p(T, f)−

∫

fdµ : f ∈ L1
P(Ω, C(X))},

h∗
m,µ(T ) = inf{P ∗

pre,m(T, f)−

∫

fdµ : f ∈ L1
P(Ω, C(X))}.

Based on the Proposition 4.4 and Theorem 1.1, one can formulate
the following variational principles of random preimage entropy-like
quantities without requiring the uniform separation of preimages.

Theorem 4.6. Let Ω be a locally compact and separable metric space
with Borel σ-algebra B(Ω). Let T = (Tω) be a random Z+ dynamical
system over an ergodic measure-preserving system (Ω,B(Ω),P, θ). If
h∗
pre(T ) < ∞, then

h∗
pre(T ) = max

µ∈MP(Ω×X,G)
h∗
pre,µ(T ),

h∗
pre,p(T ) = max

µ∈MP(Ω×X,G)
h∗
p,µ(T ),

h∗
pre,m(T ) = max

µ∈MP(Ω×X,G)
h∗
m,µ(T ).

Remark 4.7. (i) When Ω is a single point, for systems with the
property of uniform separation of preimages, Li, Wu and Zhu
[LWZ20, Theorem A, Proposition 4.2] showed that

hm,µ(T ) = inf{Ppre,m(T, f)−

∫

fdµ : f ∈ C(X)},

= inf{Ppre,p(T, f)−

∫

fdµ : f ∈ C(X)},

where Ppre,m(T, f), Ppre,p(T, f) are point-wise preimage pressure
of f respectively.

Hence, the Definition 4.3 is compatible with hm,µ(T ) under
Z+-actions, which also provides a strategy to extend the varia-
tional principles of pointwise preimage entropies given in [WZ21]
to any finite preimage entropy systems without assuming the
condition of the uniform separation of preimages.
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