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Abstract—Sustained research efforts have been devoted to learning
optimal controllers for linear stochastic dynamical systems with unknown
parameters, but due to the corruption of noise, learned controllers are
usually uncertified in the sense that they may destabilize the system.
To address this potential instability, we propose a “plug-and-play”
modification to the uncertified controller which falls back to a known
stabilizing controller when the norm of the difference between the
uncertified and the fall-back control input exceeds a certain threshold.
We show that the switching strategy is both safe and efficient, in the
sense that: 1) the linear-quadratic cost of the system is always bounded
even if original uncertified controller is destabilizing; 2) in case the
uncertified controller is stabilizing, the performance loss caused by
switching converges super-exponentially to 0 for Gaussian noise, while
the converging polynomially for general heavy-tailed noise. Finally, we
demonstrate the effectiveness of the proposed switching strategy via
numerical simulation on the Tennessee Eastman Process.

I. INTRODUCTION

Learning a controller from noisy data for an unknown system
has been a central topic to adaptive control and reinforcement
learning [1], [2], [3], [4] for the past decades. A main challenge
to directly applying the learned controllers to the system is that
they are usually uncertified, in the sense it can be very difficult
to guarantee the stability of such controllers due to process and
measurement noise. One way to address this challenge is to deploy an
additional safeguard mechanism. In particular, assuming the existence
of a known stabilizing controller, empirically the safeguard may be
implemented by falling back to the stabilizing controller from the
uncertified controller, when potential safety breach is detected.

Motivated by the above intuition, this paper proposes such a
switching strategy, provides a formal safety guarantee and quan-
tifies the performance loss incurred by the safeguard mechanism,
for discrete-time Linear-Quadratic Regulation (LQR) setting with
independent and identically distributed process noise with bounded
fourth-order moment. We assume the existence of a known stabilizing
linear feedback control law u = K0x, which can be achieved either
when the system is known to be open-loop stable (in which case
K0 = 0), or through adaptive stabilization methods [5], [6]. Given
an uncertified linear feedback control gain K1, a modification to the
control law u = K1x is proposed: the controller normally applies
u = K1x, but falls back to u = K0x for t consecutive steps once
‖(K1 − K0)x‖ exceeds a threshold M . The proposed strategy is
analyzed from both stability and optimality aspects. In particular, the
main results include:

1) We prove the LQ cost of the proposed controller is always
bounded, even if K1 is destabilizing. This fact implies that
the proposed strategy enhances the safety of the uncertified
controller by preventing the system from being catastrophically
destabilized.

2) Provided K1 is stabilizing, and M, t are chosen properly, we
compare the LQ cost of the proposed strategy with that of the
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linear feedback control law u = K1x, and quantify the maxi-
mum increase in LQ cost caused by switching w.r.t. the strategy
hyper-parameters M, t as merely O(t1/4 exp(−constant ·M2))
in the case of Gaussian process noise, which decays super-
exponentially as the switching threshold M tends to infinity. We
also discuss the extension to general noise distributions with
bounded fourth-order moments, where the above asymptotic
performance gap becomes O(t1/4M−1).

The performance of the proposed switching scheme is further vali-
dated by simulation on the Tennessee Eastman Process example. We
envision that the switching framework could be potentially applicable
in a wider range of learning-based control settings, since it may
combine the good empirical performance of learned policies and
the stability guarantees of classical controllers, and the “plug-and-
play” nature of the switching logic may minimize the required
modifications to existing learning schemes.

A preliminary version of this paper [7] has been submitted to IEEE
CDC 2022. The main contributions of the current manuscript over
the conference submission are: i) the switching scheme has been
redesigned, such that the upper bound on LQ cost (Theorem 2) no
longer depends on K1; ii) the conclusions have been extended to
noise distributions with bounded fourth-order moments; iii) proofs
of all theoretical results are included in the current version of the
manuscript.

Related Works

Switched control systems: Supervisory algorithms have been
developed to stabilize switched linear systems [8], [9], [10], and other
nonlinear systems that are difficult to stabilize globally with a single
controller [11], [12], [13]. However, most of the paper focuses on the
stability of the switched system, while the (near-)optimality of the
controllers are less discussed. Building upon this vein of literature,
the idea of switching between certified and uncertified controllers to
improve performance was proposed in [14], whose scheme guarantees
global stability for general nonlinear systems under mild assumptions.
However, no quantitative analysis of the performance under switching
is provided. In contrast, we specialize our results for linear systems
and prove that switching may induce only negligible performance
loss while ensuring safety.

Adaptive LQR: Adaptive and learned LQR has drawn significant
research attention in recent years, for which high-probability estima-
tion error and regret bounds have been proved for methods including
optimism-in-face-of-uncertainty [15], [16], thompson sampling [17],
policy gradient [18], robust control based on coarse identification [19]
and certainty equivalence [20], [21], [22], [23]. All the above
approaches, however, involve applying a linear controller learned
from finite noise-corrupted data, which has a nonzero probability
of being destabilizing. Furthermore, given a fixed length of data, the
failure probabilities of the aforementioned methods depend on either
unknown system parameters or statistics of online data, which implies
the failure probability cannot be determined a priori, and hence it
can be challenging to design an algorithm that strictly satisfies a pre-
defined specification of safety. In [24], a “cutoff” method similar to
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the switching strategy described in the present paper is applied in an
attempt to establish almost sure guarantees for adaptive LQR, which
are nevertheless asymptotic in nature, and the extra cost caused by
switching is not analyzed. By contrast, this manuscript provides both
non-asymptotic and asymptotic bounds for the switching strategy.

Nonlinear controller for LQR: Nonlinearity in the control of
linear systems has been studied mainly due to practical concerns such
as saturating actuators. The performance of LQR under saturation
nonlinearity has been studied in [25], [26], [27], which are all based
on stochastic linearization, a heuristics that replaces nonlinearity with
approximately equivalent gain and bias. By contrast, the present paper
treats nonlinearity as a design choice rather than a physical constraint,
and provides rigorous performance bounds without resorting to any
heuristics.

Outline

The remainder of this paper is organized as follows: Section II
introduces the problem setting and describes the proposed switching
strategy. The main results are provided in Section III and Section IV
for Gaussian process noise and noise with bounded fourth-order
moments respectively. Section V validates the performance of the
proposed strategy with a industrial process example. Finally, Sec-
tion VI concludes the paper.

Notations

The set of nonnegative integers are denoted by N, and the set
of positive integers are denoted by N∗. For a square matrix M ,
ρ(M) denotes the spectral radius of M , and tr(M) denotes the
trace of M . For a real symmetric matrix M , M � 0 denotes
that M is positive definite. ‖v‖ denotes the 2-norm of a vector v
and ‖M‖ is the induced 2-norm of the matrix M , i.e., its largest
singular value. For P � 0, 〈v, w〉P = vTPw is the P -inner
product of vectors v, w, and ‖v‖P = ‖P 1/2v‖ is the P -norm of
a vector v. For two positive semidefinite matrices P � 0, Q � 0,
‖Q‖P = ‖P−1/2QP−1/2‖ = sup‖v‖P=1 ‖v‖2Q. For a random
vector X , X ∼ N (µ,Σ) denotes X is Gaussian distributed with
mean µ and covariance Σ. P(·) denotes the probability operator, E(·)
denotes the expectation operator, and 1E is the indicator function
of the random event E. For functions f(x), g(x) with non-negative
values, f(x) = O(g(x)) means lim supx→∞ f(x)/g(x) < ∞, and
f(x) = Θ(g(x)) means f(x) = O(g(x)) and g(x) = O(f(x)).

II. PROBLEM FORMULATION AND PROPOSED SWITCHING

STRATEGY

Consider the following discrete-time linear plant:

xk+1 = Axk +Buk + wk, (1)

where k ∈ N is the time index, xk ∈ Rn is the state vector, uk ∈ Rm
is the input vector, and wk ∈ Rn is the process noise. Without loss
of generality, the system is assumed to be controllable. We further
assume that the initial state x0 = 0, and that {wk} are independent
and identically distributed with covariance matrix W � 0.

We measure the performance of a controller uk(x0:k) in terms of
the infinite-horizon quadratic cost defined as:

J = lim sup
T→∞

1

T
E

[
T−1∑
k=0

xTkQxk + uTkRuk

]
, (2)

where Q � 0, R � 0 are fixed weight matrices specified by the
system operator. It is well known that the optimal controller is the
linear feedback controller of the form u(x) = K∗x, where the

optimal gain K∗ can be determined by solving the discrete-time
algebraic Riccati equation.

In this paper, we assume that the system and input matrices A,B
are unavailable to the system operator, and hence she cannot deter-
mine the optimal feedback gain K∗. Instead, she has the following
two feedback gains:

• Primary gain K1, typically learned from data, which can be
close to K∗ but does not have stability guarantees;

• Fallback gain K0, which is typically conservative but always
guaranteed to be stabilizing, i.e., ρ(A+BK0) < 1.

Ideally, the system operator would want to use K1 as much as
possible, as it usually admits a better performance. However, since
K1 is not necessarily stabilizing, a switching strategy is deployed in
pursuit of both safety and performance of the system. The block
diagram of the closed-loop system under the proposed switching
strategy is shown in Fig. 1, and the switching logic is described in
Algorithm 1. In plain words, the proposed switched control strategy
is normally applying u = K1x, while falling back to u = K0x for
t consecutive steps once ‖(K1 −K0)x‖ exceeds a threshold M .

Switching
logic

K0

ξ > 0

z−1

K1

ξ = 0
Plant

(eq. (1))

z−1

Switched Control Strategy
(Algorithm 1)

ξ
w

u x

Fig. 1: Block diagram of the closed-loop system under the proposed
switching strategy. The controller selects u = K1x when ξ = 0 and
u = K0x when ξ > 0, where ξ is an internal counter determined by
the switching logic.

Algorithm 1 Proposed switched control strategy
Input: Current state x, primary gain K1, fallback gain K0, current

counter value ξ, switching threshold M , dwell time t
Output: Control input u, next counter value ξ′

1: if ξ > 0 then
2: u← K0x
3: else
4: if ‖(K1 −K0)x‖ ≥M then
5: ξ ← t, u← K0x
6: else
7: u← K1x

8: ξ′ ← max{ξ − 1, 0}

III. MAIN THEORETICAL RESULTS

This section is devoted to proving the stability of the proposed
switching strategy as well as quantifying performance loss it incurs.
It is assumed throughout this section that the process noise obeys a
Gaussian distribution, i.e., wk ∼ N (0,W ).



A. Upper Bound on the LQ Cost

In this subsection, we prove that when M and t are fixed, the
LQ cost associated with the proposed switched controller is always
bounded, regardless of the choice of the underlying primary gain
K1 and hyper-parameters M, t. Notice that naively implementing
the linear controller u = K1x without the switching results in an
infinite LQ cost when K1 is destabilizing. As a result, the proposed
switching strategy ensures the stability of the closed-loop system.

Since the fallback gain K0 is stabilizing, there exists P0 � 0 that
satisfies the discrete-time Lyapunov equation

(A+BK0)TP0(A+BK0)− P0 +Q+KT
0 RK0 = 0, (3)

and hence there exists 0 < ρ0 < 1 such that

(A+BK0)TP0(A+BK0) ≺ ρ0P0. (4)

The following lemma constructs a quadratic Lyapunov function from
P0 and states that the Lyapunov function has bounded expectation:

Lemma 1. Assuming that ρ0, P0 satisfy (3), let V0,k = xTk P0xk,
then it holds for any k that

EV0,k ≤
4(1 + ρ0)(M2‖B‖2‖P0‖+ tr(WP0))

(1− ρ0)2
. (5)

Based on the fact that the LQ cost can be upper bounded in terms
of the expectation of the quadratic Lyapunov function V0,k defined
above, we have the following theorem:

Theorem 2. Assuming that P0, ρ0 satisfy (3) and (4), the LQ cost
defined in (2) satisfies

J ≤
(

8(1 + ρ0)‖B‖2‖P0‖
(1− ρ0)2

+ 2‖R‖
)
M2 +

8(1 + ρ0) tr(WP0)

(1− ρ0)2
.

(6)

Proof. By definition of J , we only need to prove E(‖xk‖2Q+‖uk‖2R)
is not greater than the RHS of (6) for any k. Notice that

‖xk‖2Q + ‖uk‖2R = ‖xk‖2Q+KT
0 RK0

+ ‖uk‖2R − ‖K0xk‖2R
≤ ‖xk‖2P0

+ ‖uk‖2R − ‖K0xk‖2R (7)

By the switching strategy, it holds uk = K0xk+∆uk, where ∆uk :=
(K1 −K0)xk1{uk=K1xk} satisfies ‖∆uk‖ ≤M , and hence,

‖uk‖R ≤ ‖K0xk‖R +M‖R‖1/2,

which implies

‖uk‖2R − ‖K0xk‖2R ≤ 2M‖R‖1/2‖K0x‖R +M2‖R‖
≤ 2M‖R‖1/2‖xk‖P0 +M2‖R‖. (8)

Substituting (8) into (7), we get

‖xk‖2Q+‖uk‖2R ≤ (‖xk‖P0 +M‖R‖1/2)2 ≤ 2(‖xk‖2P0
+M2‖R‖).

(9)
Taking the expectation on both sides of (9) and applying Lemma 1,
the conclusion follows.

B. Upper bound on performance loss caused by switching

In this subsection, we quantify the extra LQ cost caused by the
conservativeness of switching when K1 is stabilizing. Let JK1 denote
the LQ cost associated with the closed-loop system under the linear
controller u = K1x, and JK1,M,t denote the LQ cost associated
with the closed-loop system under our proposed switched controller
with primary gain K1 and hyper-parameters M, t. To quantify the

behavior of the system under switching, we resort to a common
quadratic Lyapunov function for A+BK1 and (A+BK0)t, which
always exists for sufficiently large dwell time t. Formally speaking,
the following inequalities holds:{

(A+BK1)TP (A+BK1) ≺ ρP,
((A+BK0)t)TP (A+BK0)t ≺ ρP,

(10)

where 0 < ρ < 1 and P � 0. Notice that ρ, P that satisfy the first
inequality always exist due to the stability of A + BK1, and given
ρ, P , the quantity t that satisfy the second inequality exists since
limt→∞(A+BK0)t = 0 by the stability of A+BK0.

Before proving the main result, we need a supporting theorem,
which quantifies the tail bound for an exponentially weighted sum of
potentially dependent random variables with Gaussian-like tails:

Theorem 3. Let {Xi} be a sequence of random variables that satisfy
P(Xi ≥ a) ≤ C1 exp(−C2a

2) for any i = 0, 1, . . . and any a > 0,
where C1, C2 are positive constants. Let Sk =

∑k
i=0 %

k−iXi, where
0 < % < 1, then for any a ≥ 2C

−1/2
2 (1− %1/2)−1, it holds

P(Sk ≥ a) ≤ C̃1 exp
(
−C̃2a

2
)
, (11)

where C̃1 = 2C1(min{%−1 − 1, 1})−1, C̃2 = (1− %1/2)2C2.

Remark 4. Notice that if Xis are jointly Gaussian distributed, then
(11) can be trivially proved by computing the covariance of Sk, which
is also Gaussian. In essence, Theorem 3 serves as an extension of
the result for jointly Gaussian random variables, by allowing non-
Gaussian random variables with Gaussian-like tail distribution, and
removing any restriction on the joint distribution between random
variables.

By leveraging Theorem 3, we can bound the fourth moment of the
state xk as well as the probability of the switching:

Theorem 5. Assume that P0, ρ0 satisfy (3) and (4), and that ρ, P, t
satisfy (10). Let W̃ =

∑∞
τ=0(A+BK0)τW ((A+BK0)τ )T , K =

‖K1 −K0‖, and a0 = (8n‖W̃‖‖P‖‖P−1‖)1/2(1− ρ1/4)−1. If the
threshold M ≥ a0K is large enough, then the following statements
hold:

1) The fourth moments of xk is bounded:

E‖xk‖4P0
≤ 8(Q‖P0‖2P + (n2 + 2n)‖P0‖2W̃−1), (12)

where

Q =
6ρ(tr(W̃P )2) + (1− ρ)(n2 + 2n)‖P‖2

W̃−1

(1− ρ)(1− ρ2)
,

2) The probability of not using feedback gain K1 satisfies:

P(uk 6= K1xk) ≤ tE(M/K),

where

E(a) =
4n

ρ−1/2 − 1
exp

(
− (1− ρ1/4)2

2n‖W̃‖‖P‖‖P−1‖
a2
)
,

which decays super-exponentially w.r.t. the threshold M .

We are now ready to state the main theorem of this subsection:

Theorem 6. With ρ0, P0, ρ, P, a0, W̃ ,K,Q, E defined the same as
in Theorem 5, assuming that the dwell time t satisfies (10) and the
threshold M ≥ a0K, it holds that

JK1,M,t − JK1 ≤ 2C1C2G + (C2
2 + C3)G2, (13)



where

G = C4(tE(M/K))1/4, C1 =
√

tr(WP )‖Q1‖P /(1− ρ),

C2 = ‖∆1‖‖Q1‖P0

∞∑
s=0

‖As1‖Q1 , C3 = ‖∆2‖‖P−1
0 ‖,

C4 = 23/4(Q‖P0‖2P + (n2 + 2n)‖P0‖2W̃−1)1/4,

Q1 = Q+KT
1 RK1, A1 = A+BK1,

∆1 = B(K0 −K1), ∆2 = KT
0 RK0 −KT

1 RK1.

Proof. Let x̌0 = x0 and x̌k+1 = A1x̌k + wk, then

JK1 = lim
T→∞

1

T

T−1∑
k=0

E‖x̌k‖2Q1
.

On the other hand, we have

JK1,M,t = lim sup
T→∞

1

T

T−1∑
k=0

E[xTkQxk + uTkRuk],

and therefore we only need to prove E[xTkQxk+uTkRuk]−E‖x̌k‖2Q1

is no greater than the RHS of (13) for any k. Notice that

xTkQxk + uTkRuk − ‖x̌k‖2Q1
= ‖xk‖2Q1

− ‖x̌k‖2Q1
+ xTk ∆2xk1Fk ,

where Fk = {uk 6= K1xk} denotes the event that the fallback mode
is active and the gain K1 is not applied at step k. We will next bound
E‖xk‖2Q1

− E‖x̌k‖2Q1
and E(xTk ∆2xk1Fk ) respectively.

a) Bounding E‖xk‖2Q1
− E‖x̌k‖2Q1

: Notice that

xk = A1xk−1 + wk−1 + ∆1xk−11Fk−1 ,

and by recursively applying this expansion, we get

xk = Ak1x0 +

k−1∑
s=0

Ak−s−1
1 (ws + ∆1xs1Fs)

= x̌k +

k−1∑
s=0

Ak−s−1
1 ∆1xs1Fs .

Hence,

‖xk‖Q1 ≤ ‖x̌k‖Q1 + ‖∆1‖Q1

k−1∑
s=0

‖Ak−s−1
1 ‖Q1‖xs‖Q11Fs .

From the fact that E(
∑n
i=1Xi)

2 ≤ (
∑n
i=1

√
EX2

i )2 for any random
variables X1, . . . , Xn, we have

E‖xk‖2Q1
≤

(√
E‖x̌k‖2Q1

+

‖∆1‖Q1‖Q1‖P0

k−1∑
s=0

‖Ak−s−1
1 ‖

√
E[‖xs‖2P0

1Fs ]

)2

where by Cauchy-Schwarz inequality and Theorem 5, it holds√
E
[
‖xs‖2P0

1Fs

]
≤ (E‖xs‖4P0

)1/4P(Fs)
1/4 ≤ G

for any s. Furthermore, we have E‖x̌k‖2Q1
≤ C2

1 guaranteed by (10).
Hence,

E‖xk‖2Q1
− E‖x̌k‖2Q1

≤ 2C1C2G + C2
2G2.

b) Bounding E(xTk ∆2xk1Fk ): Notice

xTk ∆2xk1Fk ≤ ‖∆2‖‖xk‖21Fk ≤ C3‖xk‖2P0
1Fk .

Following a similar argument to part (a), we can get

E(xTk ∆2xk1Fk ) = C3G2.

Combining the above two parts, we obtain the desired conclusion.

The below corollary indicates that under proper choice of t, the
performance loss caused by switching can decay super-exponentially
M is enlarged:

Corollary 7. When K1 is held constant, and M, t are varied, it holds

JK1,M,t − JK1 = O(t1/4 exp(−cM2)) (14)

as M → ∞, t → ∞, t1/4 exp
(
−cM2

)
→ 0, where c =

(1−ρ1/4)2/(16‖W̃‖‖P‖‖P−1‖‖K1−K0‖2) is a system-dependent
constant.

IV. EXTENSION TO NOISE DISTRIBUTIONS WITH BOUNDED

FOURTH-ORDER MOMENTS

In this section, instead of Gaussian distributed noise, the theoretical
results are extended to the case where the process noise {wk} is i.i.d.
according to a distribution that is heavier-tailed with bounded fourth-
order moment.

Assumption 8. The process noise {wk} is i.i.d. with:

Ewk = 0, E(wkw
T
k ) = W, E‖wk‖4 = µ4.

On one hand, Theorem 2 still holds since its proof only requires
Ewk = 0 and E(wkw

T
k ) = W . On the other hand, Theorems 5

and 6, which rely on the sub-Gaussian tail, need to be adjusted. The
following theorem parallels Theorem 5:

Theorem 9. Assume that P0, ρ0 satisfy (3) and (4), that ρ, P, t
satisfy (10), and that Assumption 8 holds. Let

W̃ =

∞∑
τ=0

(A+BK0)τW ((A+BK0)τ )T

and

µ̃4 =
‖P0‖2µ4

1− ρ20
+

2ρ0 tr(WP0)

(1− ρ20)(1− ρ0)
.

If ‖K1 −K0‖ ≤ K, then the following statements hold:
1) The fourth moments of xk is bounded:

E‖xk‖4P0
≤ 8(Q̃‖P0‖2P + µ̃4), (15)

where

Q̃ =
6ρ(tr(W̃P )2) + (1− ρ)‖P‖2P0

µ̃4

(1− ρ)(1− ρ2)
,

2) The probability of not using feedback gain K1 satisfies:

P(uk 6= K1xk) ≤ tP(M/K),

where

P(a) =
‖P‖2P0

µ̃4

(1− ρ1/4)4(1− ρ)a4
,

which decays polynomially w.r.t. the threshold M .

The following theorem parallels Theorem 6:

Theorem 10. Under Assumption 8, with ρ0, P0, ρ, P, W̃ ,K, µ̃4,
Q̃,P defined the same as in Theorem 9, and C1, C2, C3 defined



the same as in Theorem 6, assuming that the dwell time t satisfies
(10), it holds that

JK1,M,t − JK1 ≤ 2C1C2G̃ + (C2
2 + C3)G̃2,

where
G̃ = 23/4(Q̃‖P0‖2P + µ̃4)1/4(tP(M/K))1/4.

Proof. The proof parallels that of Theorem 6, except that the bound
on (E‖xs‖4P0

)1/4P(Fs)
1/4 should be G̃ in place of G.

Corollary 11. Under Assumption 8, when K1 is held constant, and
M, t are varied, it holds

JK1,M,t − JK1 = O(t1/4/M) (16)

as M →∞, t→∞, t1/4/M → 0.

V. NUMERICAL SIMULATION

This section demonstrates the safety guarantee and near-optimality
of the proposed switching scheme by simulation on the Tennessee
Eastman Process (TEP) [28], which is a commonly used process
control system. In this simulation, we consider a simplified version
of TEP similar to the one in [29] with full-state-feedback. The system
has state dimension n = 8 and input dimension m = 4. The system
is open-loop stable, and therefore the fallback controller is chosen as
K0 = 0. The LQ weight matrices are chosen as Q = I,R = I , and
the process noise distribution is chosen to be wk ∼ N (0, I).

A. Destabilizing K1

In this subsection, the primary feedback gain is chosen as K1 =
K∗ + 0.331m1Tn , where K∗ is the optimal gain, such that ρ(A +
BK1) ≈ 1.01. The trajectories of state norms with and without
switching are compared in Fig. 2a, from which it can be observed
that the proposed switching strategy prevents the state from exploding
exponentially.

B. Stabilizing K1

In this subsection, the primary feedback gain is chosen to be the
optimal gain, i.e., K1 = K∗. The trajectories of state norms with
and without switching are compared in Fig. 2b. To quantify the
relationship between the performance loss and the threshold M , we
fix K1 = K∗ and t = 10, and increase M from 0.4 to 3.1. We
evaluate the performance loss JK

∗,M,t − J∗ for each M , where J∗

is the optimal cost, by the empirical average of 105 trajectories, each
of which has a length of 103. The empirical relative performance
gap (ĴK

∗,M,t − J∗)/J∗ against M is plotted in a double-log plot
in Fig. 3. It can be observed that the performance gap converges
to zero faster than a straight line (i.e., exponential convergence)
as the switching threshold M increases, which validates the super-
exponential convergence property proved in Corollary 7.

VI. CONCLUSION

This paper introduces a plug-and-play switching strategy which en-
hances the safety of uncertified linear state-feedback controllers. The
strategy guarantees an upper bound on the LQ cost. Furthermore, the
extra cost caused by switching as the switching threshold increases
is quantified as decaying super-exponentially when the process noise
is Gaussian, and decaying polynomially when the process noise
obeys a heavy-tailed distribution with bounded fourth-order moments.
Future directions include extending the switching strategy with near-
optimality guarantee to more general classes of systems.
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Fig. 2: Comparison of trajectories of state norms with and without
switching, under the same realization of process noise. Parameters of
the switching strategy are set to be M = 1, t = 10.
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Fig. 3: Double-log plot of relative performance gap against switching
threshold M : super-exponential convergence to zero.
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APPENDIX A
PROOF OF LEMMA 1

Proof. From the switching strategy, it holds

xk+1 = A0xk + dk + wk,

where A0 = A + BK0, and dk = B(K1 − K0)xk1{uk=K1xk}
satisfies ‖dk‖ ≤ M‖B‖, and hence ‖dk‖P0 ≤ M‖B‖‖P0‖1/2.
Therefore, it holds

V0,k+1 = ‖xk+1‖2P0
≤ (‖A0xk‖P0 + ‖dk + wk‖P0)2

= (1 + σ)‖A0xk‖2P0
+ (1 + σ−1)‖dk + wk‖2P0

,

≤ (1 + σ)ρ0V0,k + (1 + σ−1)‖dk + wk‖2P0
(17)

where σ = (ρ−1
0 − 1)/2, and the last inequality follows from (3).

Notice

E‖dk + wk‖2P0
≤ E(‖dk‖P0 + ‖wk‖P0)2

≤2(E‖dk‖2P0
+ E‖wk‖2P0

) ≤ 2(M‖B‖2‖P0‖+ tr(WP0)) =: B,

where the last inequality follows from the fact that E‖wk‖2P0
=

tr(E(wkw
T
k )P0) = tr(WP0). Therefore, it follows from (17) that

EV0,k+1 ≤ (1 + σ)ρ0EV0,k + (1 + σ−1)B,

and therefore by induction on k it holds

EV0,k ≤
(1 + σ−1)B

1− (1 + σ)ρ0
. (18)

Substituting the expressions for σ and B into (18) leads to the
conclusion.
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Proof. Let us choose σ = %1/2, then for any a > 0, considering the
fact that a =

∑∞
i=0 σ

i(1− σ)a, it holds

{Sk ≥ a} ⊆

{
k∑
i=0

%k−iXi ≥
k∑
i=0

σk−i(1− σ)a

}

⊆
k⋃
i=0

{%k−iXi ≥ σk−i(1− σ)a} =

k⋃
i=0

{Xi ≥ (σ/%)k−i(1− σ)a}

and hence,

P(‖Sk‖ ≥ a) ≤ C1

∞∑
i=0

βα
i

,

where β = exp(−(1− σ)2C2a
2) ∈ (0, 1/2] since a ≥ 2C

−1/2
2 (1−

σ)−1, and α = (σ/%)2 = ρ−1 > 1. Next we only need to prove

S :=
∞∑
i=0

βα
i

≤ 2β

min{α− 1, 1} .

By Bernoulli’s inequality, for i ≥ 1,

αi − 1 = (1 + α− 1)i − 1 ≤ 1 + i(α− 1)− 1 = i(α− 1),

and αi − 1 ≤ i(α− 1) also holds for i = 0. Hence

S = β

∞∑
i=0

βα
i−1 ≤ β

∞∑
i=0

βi(α−1) =
β

1− βα−1
.

When 0 < β ≤ 1/2 and 1 < α < 2, by Bernoulli’s inequality,

βα−1 = (1 + β − 1)α−1 ≤ 1 + (α− 1)(β − 1),

and hence,

1− βα−1 ≥ (α− 1)(1− β) ≤ (α− 1)/2,

which implies S ≤ 2β/(α − 1). Noticing that S decreases mono-
tonically as α increases, when α > 1, we always have S ≤
2β/min{α− 1, 1}.
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A. Supporting lemmas

By combining the t consecutive steps of applying the fallback gain
into a single step, we can transform the original system into a new
linear time-varying system which is stable with a common Lyapunov
function defined by ρ, P in (10). To be specific, denote the state
sequence of the transformed system by {x̃j = xi(j)}, which is a
subsequence of the state sequence {xk} of the original closed-loop
system, indexed by

i(0) = 0, i(j + 1) =

{
i(j) + 1 ui(j) = K1xi(j),

i(j) + t otherwise.
(19)

It follows that the transformed system evolves as

x̃j+1 = Ãj x̃j + w̃j , (20)

where Ãj , w̃j are defined as:

Ãj =

{
A+BK1 ui(j) = K1xi(j),

(A+BK0)t, otherwise,
(21)

w̃j =

{
wi(j) ui(j) = K1xi(j),∑t
τ=1(A+BK0)t−τwi(j)+τ−1 otherwise.

(22)

The next two lemmas are two properties of the transformed system
that will pave the way for proving Theorem 5:

Lemma 12. Let Ṽj = x̃Tj P x̃j , then it holds for any j that

EṼ 2
j ≤ Q, (23)

where Q is defined in Theorem 5.

Proof. From (10) and (21), it follows that

Ṽj+1 ≤ ρṼj + ηj , (24)

where ηj = 2w̃Tj PÃj x̃j + w̃Tj Pw̃j . From E(w̃Tj PÃj x̃j) =
E(E(w̃j |x̃j)TPÃj x̃j) = 0, it follows that Eηj = tr(E(w̃jw̃

T
j )P ) ≤

tr(W̃P ), and hence

EṼj ≤ tr(W̃P )/(1− ρ). (25)

To proceed, we square and take the expectations on both sides of (24),
and obtain

EṼ 2
j+1 ≤ ρ2EṼ 2

j + 2ρE(Ṽjηj) + Eη2j . (26)

a) Bound on E(Ṽjηj):

E(Ṽjηj) = 2E(w̃Tj PÃj x̃j Ṽj) + E(w̃Tj Pw̃j Ṽj),

where:
• E(w̃Tj PÃj x̃j Ṽj) = E(E(w̃j |x̃j)TPÃj x̃j Ṽj) = 0;
• E(w̃Tj Pw̃j Ṽj) = tr(E(Ṽj)E(w̃jw̃

T
j )P ) = tr(W̃P ) ·EṼj , since

w̃j is independent of Ṽj .
Hence,

E(Ṽjηj) ≤ tr(W̃P )EṼj . (27)

b) Bound on Eη2j :

Eη2j =4E(x̃Tj Ã
T
j Pw̃jw̃

T
j PÃj x̃j)+

4E(w̃Tj PÃj x̃jw̃
T
j Pw̃j) + E(w̃Tj Pw̃jw̃

T
j Pw̃j),

where we can bound each term respectively as follows:
• E(x̃Tj Ã

T
j Pw̃jw̃

T
j PÃj x̃j) = tr(E(w̃jw̃

T
j )P ) · E(x̃Tj Ã

T
j PÃj

x̃j) ≤ ρ tr(W̃P )EṼj since w̃j is independent of x̃j and Ãj ;
• E(w̃Tj PÃj x̃jw̃

T
j Pw̃j) = tr{E[Ãj x̃jE(w̃Tj Pw̃jw̃

T
j | xj)]} = 0

by symmetry;

• E(w̃Tj Pw̃jw̃
T
j Pw̃j) = E‖w̃j‖4P ≤ ‖P‖2W̃−1 · E‖w̃j‖4W̃−1 ≤

‖P‖2
W̃−1Eν2 = (n2 + 2n)‖P‖2

W̃−1 , where ν ∼ χ2(n).
Hence,

Eη2j ≤ 4ρ tr(W̃P )EṼj + (n2 + 2n)‖P‖2W̃−1 . (28)

The conclusion follows from substituting (27), (28) and (25)
into (23) and applying induction.

Lemma 13. For a ≥ a0, it holds for any j that

P (‖x̃j‖ ≥ a) ≤ E(a),

where a0, E(a) are defined in Theorem 5.

Proof. Notice x̃j =
∑j−1
s=0(

∏k−1
r=s+1 Ãr)w̃s. From (10) and (21), it

follows that

‖x̃j‖P =

∥∥∥∥∥
j−1∑
s=0

P 1/2

(
j−1∏
r=s+1

Ãr

)
w̃s

∥∥∥∥∥
≤

∥∥∥∥∥
j−1∑
s=0

ρ(j−s−1)/2P 1/2w̃s

∥∥∥∥∥ ≤
j−1∑
s=0

ρ(j−s−1)/2‖w̃s‖P .

By (22), it holds w̃s|Fs−1 ∼ N (0,Ws), where Fs−1 is the σ-
algebra generated by w̃0, . . . , w̃s−1, and Ws ∈ {W,

∑t−1
τ=0(A +

BK0)τW ((A+BK0)τ )T }; in either case, it holds Ws � W̃ .
Hence, by a concentration bound on Gaussian random vectors [30,
Lemma 3.1], it holds for any s and any a > 0 that

P(‖w̃s‖P ≥ a) ≤ 2n exp(−a2/(2n‖W̃‖‖P‖)).

Invoking Theorem 3 with % = ρ1/2, and assuming w.l.o.g. that ρ ∈
(1/4, 1), it follows that

P(‖x̃j‖P ≥ a) ≤ 4n

ρ−1/2 − 1
exp

(
− (1− ρ1/4)2

2n‖W̃‖‖P‖
a2
)

for any a ≥ a0.
Meanwhile, it holds

{‖x̃j‖ ≥ a} ⊆ {‖x̃j‖P ≥ a‖P−1‖−1/2},

from which the conclusion follows.

B. Proof of Theorem 5

Now we are ready to prove Theorem 5, whose contents are restated
below:

E‖xk‖4P0
≤ 8(Q‖P0‖2P + (n2 + 2n)‖P0‖2W̃−1), (29)

P(uk 6= K1xk) ≤ tE(M/K). (30)

Proof. The proof is devoted to translating properties of the trans-
formed state sequence {x̃j} back into properties of the original
state sequence {xk}. In what follows we shall prove (29) and (30)
respectively.

a) Proof of (29): Let j = sup{s ∈ N | i(s) ≤ k}, i.e., x̃j is
the last state in the transformed state sequence that occurs no later
than xk. Consequently,

xk = (A+BK0)k−i(j)x̃j + w̃j .

From (3), it follows that

‖xk‖P0 ≤ ρ
(k−i(j))/2‖x̃j‖P0 + ‖w̃j‖P0 ≤ ‖x̃j‖P0 + ‖w̃j‖P0 .

Hence, applying the power means inequality ((a + b)/2)4 ≤ (a4 +
b4)/2, and taking the expectation on both sides, we have

E‖xk‖4P0
≤ 8(E‖x̃j‖4P0

+ E‖w̃j‖4P0
),

where:



• E‖x̃j‖4P ≤ Q by Lemma 12, and hence E‖x̃j‖4P0
≤ Q‖P0‖2P ;

• E‖w̃j‖4P0
≤ ‖P0‖2W̃−1E‖w̃j‖4W̃−1 ≤ ‖P0‖2W̃−1Eν2 = (n2 +

2n)‖P0‖2W̃−1 , where ν ∼ χ2(n).
Combining the above two items leads to the conclusion.

b) Proof of (30): Let I = {k ∈ N|∃j ∈ N s.t. i(j) = k},
i.e., I is the index set for states that occur in the transformed state
sequence. A sufficient and necessary condition for uk 6= K1xk is
that exactly one of xk, xk−1, . . . , xk−t+1 belongs to the transformed
state sequence and triggers the switching rule, and hence,

{uk 6= K1xk} ⊆
t−1⋃
τ=0

{‖(K1 −K0)xk−τ‖ ≥M,k − τ ∈ I}.

For each event in the RHS above, we have

P(‖(K1 −K0)xk−τ‖ ≥M,k − τ ∈ I)

=P(‖xk−τ‖ ≥M/K | k − τ ∈ I)P(k − τ ∈ I)

≤P(‖xk−τ‖ ≥M/K | k − τ ∈ I).

Since P(‖x̃j‖ ≥ M/K) ≤ E(M/K) for any j according to
Lemma 13, and k−τ ∈ I indicates xk−τ belongs to {x̃j}, it follows
that P(‖xk−τ‖ ≥M/K | k − τ ∈ I) ≤ E(M/K). Taking the union
bound over τ = 0, 1, . . . , t− 1, we reach the conclusion.
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In this appendix, we adopt the same definition of {x̃j}, {Ãj} and
{w̃j} as in (19) to (22).

A. Supporting lemmas

Lemma 14. Under Assumption 8, it holds

E‖w̃j‖4P0
≤ µ̃4 :=

‖P0‖2µ4

1− ρ20
+

2ρ0 tr(WP0)

(1− ρ20)(1− ρ0)
.

Proof. Let v =
∑t−1
i=0 A

ivi, where vi
d
= w1 independently. Accord-

ing to the definition of {w̃j} in (22), it holds E‖w̃j‖4P0
≤ E‖v‖4P0

for any j. It holds for the above defined v that

‖v‖4P0
= (vTP0v)2

=

t−1∑
i=0

t−1∑
j=0

t−1∑
k=0

t−1∑
l=0

(vTi (Ai)TP0A
jvj)(v

T
k (Ak)TP0A

lvl),

=

t−1∑
i=0

(vTi (Ai)TP0A
ivi)

2+

t−1∑
i=0

t−1∑
j=0
j 6=i

(vTi (Ai)TP0A
ivi)(v

T
j (Aj)TP0A

jvj) + L

≤
t−1∑
i=0

ρ2i0 ‖vi‖4P0
+

t−1∑
i=0

t−1∑
j=0
j 6=i

ρi+j0 ‖vi‖
2
P0
‖vj‖2P0

+ L,

where L consists of terms that are linear w.r.t. at least one of vi, and
hence EL = 0 since Evi = 0 and {vi} are mutually independent.
Therefore,

E‖v‖4P0
≤

t−1∑
i=0

ρ2i0 E‖vi‖4P0
+

t−1∑
i=0

t−1∑
j=0
j 6=i

ρi+j0 E‖vi‖2P0
E‖vj‖2P0

≤
∞∑
i=0

ρ2i0 ‖P0‖2µ4 +

∞∑
i=0

2i(ρ2i−1
0 + ρ2i0 ) tr(WP0) = µ̃4,

and hence E‖w̃j‖4P0
≤ µ̃4 for any j.

Lemma 15. Under Assumption 8, let Ṽj = x̃Tj P x̃j , then it holds for
any j that

EṼ 2
j ≤ Q̃, (31)

where Q̃ is defined in Theorem 9.

Proof. This proof parallels that of Lemma 12, and the only difference
is the bound on E(w̃Tj Pw̃jw̃

T
j Pw̃j): now by Lemma 14, it holds

E(w̃Tj Pw̃jw̃
T
j Pw̃j) = E‖w̃j‖4P ≤ ‖P‖2P0

µ̃4,

from which the conclusion follows.

Lemma 16. Under Assumption 8, for any a > 0, it holds for any j
that

P (‖x̃j‖ ≥ a) ≤ P(a),

where P(a) is defined in Theorem 9.

Proof. Similarly to the proof of Lemma 13, it holds

‖x̃j‖P ≤
j−1∑
s=0

ρ(j−s−1)/2‖w̃s‖P .

By Markov’s inequality, for any a > 0, it holds

P(‖w̃s‖P ≥ a) ≤ E‖w̃s‖4/a4 ≤ µ̃4‖P‖2P0
/a4,

where the last inequality follows from Lemma 14. Now let σ = ρ1/4.
Considering the fact that a ≥

∑j−s−1
s=0 σj−s−1(1− σ)a, it holds

P(‖x̃j‖P ≤ a) ≤
j−1∑
s=0

P(ρ(j−s−1)/2‖w̃s‖P ≥ σj−s−1(1− σ)a)

≤µ̃4‖P‖2P0
(1− ρ1/4)−4a−4

j−1∑
s=0

ρj−s−1

≤µ̃4‖P‖2P0
(1− ρ1/4)−4(1− ρ)−1a−4.

B. Proof of Theorem 9

Proof. This proof parallels Theorem 5, but the following bounds need
to be updated:
• E‖x̃j‖4P0

≤ Q̃‖P0‖2P for any j, according to Lemma 15;
• E‖w̃j‖4P0

≤ µ̃4 for any j, according to Lemma 14;
• P(‖xk−τ‖ ≥M/K | k − τ ∈ I) ≤ P(M/K) for any k and τ ,

according to Lemma 16.
Substituting the above bounds into the proof of Theorem 5 in
Appendix C-B leads to the conclusion.
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