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Abstract

This paper applies a polynomial optimization-based framework towards the superstabilizing control
of an Autoregressive with Exogenous Input (ARX) model given noisy data observations. The recorded
input and output values are corrupted with L-infinity-bounded noise where the bounds are known. This
is an instance of Error in Variables (EIV) in which true internal state of the ARX system remains
unknown. The consistency set of ARX models compatible with noisy data has a bilinearity between
unknown plant parameters and unknown noise terms. The requirement for a dynamic compensator to
superstabilize all consistent plants is expressed using polynomial nonnegativity constraints, and solved
using sum-of-squares (SOS) methods in a converging hierarchy of semidefinite programs in increasing size.
The computational complexity of this method may be reduced by applying a Theorem of Alternatives to
eliminate the noise terms. The effectiveness of this method is demonstrated on control of example ARX
models.

1 Introduction

Data Driven Control (DDC) is a class of algorithms that perform control of plants consistent with measured
data without requiring a system identification step first (Hou and Wang, 2013). Recent design methods for
state space models are based on Willem’s Fundamental Lemma (Berberich et al., 2020; De Persis and Tesi,
2020), Matrix S-Lemma (van Waarde et al., 2020), and/or a theorem of alternatives (Dai and Sznaier, 2018).

Most DDC applications involve structured process noise in dynamics. The Error in Variables (EIV) case
is considerably less studied for control. Prior work about system identification and state estimation of EIV-
affected systems includes (Cerone, 1993; Cerone et al., 2011; Norton, 1987; Séderstrom, 2018). Polynomial
optimization for system identification of EIV Autoregressive with Exogenous Inputs (ARX) models has
previously been considered in Chapter 6 of (Cheng, 2016) using rank-minimization, but the EIV control task
was not previously addressed. This paper is a continuation of research started by the authors in (Miller et al.,
2022a,b) for EIV control with full-state feedback.

Superstability is a computationally tractable restriction of stability used in control and static output
feedback (Polyak and Halpern, 2001; Polyak and Shcherbakov, 2002). Superstability allows for the design
of controllers with guaranteed performance bounds on the growth of the L..,-norm of the state/output
(Sznaier and Bianchini, 1995), which was extended to the matrix transfer function case in (Chen et al.,
2005). Data-driven superstabilization of ARX models under process noise was performed in (Cheng et al.,
2015).

To the best of our knowledge, this paper is the first work that addresses output-feedback DDC with noisy
input-output measurements.

The contributions of this work are,
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e Formulation and solution of EIV ARX superstabilization as a Polynomial Optimization Problem (POP)
using Sum of Squares (SOS) methods.

e Application of a Theorem of Alternatives to form a POP where noise terms (Au, Ay) are eliminated.

e Accounting of the computational complexity to solve the Semidefinite Programs (SDPs) with and
without utilizing the Theorem of Alternatives.

This paper has the following structure: Section 2 introduces preliminaries such as notation, ARX models,
Superstability applied to ARX models, and SOS methods. Section 3 presents a POP for superstabilizing
control involving the variables (a,b, Au, Ay). Section 4 utilizes a Theorem of Alternatives to create an
equivalent POP in terms of (a,b). Section 5 tabulates the computational complexity of these SDPs. Section
6 applies the derived methods towards example superstabilization problems. Section 7 introduces extensions
such as process noise and Switched ARX models. Section 8 concludes the paper.

2 Preliminaries

ARX Autoregressive with Exogenous Inputs
BSA  Basic Semialgebraic

DDC Data Driven Control

EIV  Error in Variables

LP Linear Program

POP Polynomial Optimization Problem
PSD  Positive Semidefinite

SDP  Semidefinite Program

SOS  Sum of Squares

WSOS Weighted Sum of Squares

2.1 Notation

The set of real numbers is R and the n-dimensional real Euclidean vector space is R™. The set of integers
between r and s is r..s. The n-dimensional nonnegative real orthant is R”. The set of n x m real-valued
matrices is R"*™. The transpose of a matrix M is MT. The identity matrix is I, the all-ones matrix is 1,
and the all-zeros matrix is 0. The Li-norm of a vector z is ||z|; = Y ., |z;|. The Lo norm of a vector z is
[|2]lcc = max;e1..n|2z;] The vertical concatenation of vectors x and y is [x;y]. The lag operator A applied to
a sequence {z;} is Ax; = x;_1. The cross-correlation z x y between {z:}*_; and {y;}},, is

(T*Y)j = D Titj—ntm—1Yi, J=l.k+n—m. (1)

The cardinality of a finite set A is |.A|. The set of natural numbers is N, and the set of n-dimensional multi-
indices is N". Every polynomial p(z) may be defined with respect to some set A C N" as p(x) = > c 4 Ca®®
with all coefficients ¢, # 0. The degree of a polynomial p(z) is deg p. The ring of real-valued polynomials with
indeterminates x is R[x], and its subset of polynomials with degree d or less is R[z]<4. The notation (R[z])*
will denote a k-vector of polynomials in 2. The coefficient vector of a polynomial p(z) is ¢ = coeff[p(z)].



2.2 ARX Models

An ARX model with input-output sequence (u,y) and parameters (a, b) such that n, > n, obeys dynamics
for times ¢t € 1..7":

Yt = — E:l;l a;Yt—i + E?:bl biug_;. (2)
The ARX model in (2) may be represented as a rational transfer function in the lag operator A with
b B(A
G(}\) Zz 1 _ ( ) (3)

T+ a1+ AN

The numerator B and denominator A of (3) are each polynomials in A\. The function (3) satisfies B(0) =
and is assumed to be strictly proper (G(0) = 0).

Let C'(\) be a dynamic compensator with parameters (a, b) of length (7, 7) following the structure of
(3), yielding polynomials (A(\), B(\)) with C(\) = B(\)/(1 + A(\)). Application of C()) in feedback with
G()) yields the following closed-loop transfer function G (\):

G\ B+ A(N)
T+GNC) — (1+ AN)(1 + AN) + BOBO)

(4)

The closed-loop system parameter a® related to (4) is
a = coeff[(1 + A(N)(1 + A(\)) + BWB(\) —1]. (5)

A single ARX system in (2) is stable if the roots of 1 + A(\) are contained within the exterior of the
unit disc {\ | /Re(A)2 +Im(\)2 > 1}. This stability may be verified through numerical computation of
roots or with the Jury stability criterion (Ogata, 1995). These methods are computationally expensive to
employ when designing stabilizing compensators C' (as in (4))such that (5) is stable, given that the methods
all involve polynomial constraints on the entries of (a, lN))

2.3 Superstability

Superstability (Blanchini and Sznaier, 1995; Polyak and Halpern, 2001; Polyak and Shcherbakov, 2002) is
a conservative notion of stability that possesses simpler computational properties. An ARX system is
superstable if ||a|l; < 1. If the system satisfies ||al|1 < 7 for some value 7y € [0, 1), then a bound on |y;| based
on the initial condition given v = 0 may be found as Vt > 0 : |y;| < /™t maxyco. n, 1]|2_¢| (Theorem
A.1.(a) of (Polyak and Shcherbakov, 2002) when starting at time ¢ = 1). The superstability norm constraint
la’||; < 1 from (5) is affine-expressible in the compensator parameters (@, b).

Superstability may be imposed for classes of plants. A single controller C' can simultaneously supersta-
bilize a set (a,b) of plants if the closed-loop system (4) is superstable for each individual plant.

2.4 Sum of Squares

A Basic Semialgebraic (BSA) set K is the locus of a finite number of bounded-degree polynomial inequality
and equality constraints:

KZ{IER"|gk($)20,hk/($)=0}, (6)

for all indices k = 1..N;, ¥’ = 1..N.. BSA sets may be intersected by concatenating their describing
polynomials {g} and {h}. The z-projection operator 7% : X x Y — X is 7 : (z,y) — z. A BSA set
K C X x Y has an z-projection 7°K = {z € X | (z,y) € K}. BSA sets are not closed under projection,
instead the projection of a BSA set is generically the union of disjoint BSA sets.

A polynomial is nonnegative if Vo € R™ : p(z) > 0. A polynomial p(z) is SOS if there exists an integer
s, a polynomial vector v € (R[z])®, and an s x s Positive Semidefinite (PSD) Gram matrix @ = 0 such
that p(x) = v(2)TQu(x). SOS polynomials are a subset of nonnegative polynomials, given that the square



of any real number is nonnegative. The set of SOS polynomials is X[z] C R[z], and its subset of degree-2d
polynomials is ¥[x]<2q¢ C R[z]<2q4 (SOS polynomials are always even).
A sufficient condition for a polynomial p(x) to be positive over a BSA set K is (Putinar, 1993)

p(z) = oo(z) + 32, 0i(@)gi(x) + 22 d5(2)h; (Ta)
Joo(z) € B[z], o(z) € (SN, ¢ € (R[] (7b)
The Weighted Sum of Squares (WSOS) set X[K] is the set of polynomials that admit a certificate in (7) (called
a Putinar Psatz). The Putinar certificate in (7) is necessary and sufficient if an Archimedean condition holds:
JR > 0] R—|z|% € X[K]. Every Archimedean BSA set is compact, and compact sets may be rendered
Archimedean by adjoining R — ||x]|3 > 0 to the descriptor constraints if a valid R is previously known. The

moment-SOS hierarchy for optimization involves increasing the degree 2d to obtain higher-order Putinar

multipliers (7b) (Lasserre, 2009). Certifying that a degree-2d polynomial p(x) is SOS requires 1 + N, Gram

matrices of maximal size ("jl'd), and the approximate per-iteration runtime of an SDP originating from the

moment-SOS hierarchy is approximately O(n%?) when d is fixed.

3 Superstabilizing Control

This section presents a POP to perform superstabilizing control of EIV ARX models.

3.1 Problem Statement

A set of input-output observations D = (a,9) are recorded for an ARX dynamical system within a time
horizon of T. The ground-truth is the input-output data (u,y) following dynamics (2). The records in D
are corrupted by L..-bounded input noise (Au € RT+"~1) and measurement noise (Ay € RT+7) as

J=y+ Ay, [AY]loo < €y (8a)
U =u+ Au, |Au]|oo < €q. (8b)

The combination of input and measurement noise is the EIV setting. Substitution of (8) into (2) yields

G — Ayp = (— 20 ilie—i + Yooy bitiy—s)
T a3 b ) )

3.2 Consistency Sets

The (Au, Ay)-constant terms in (9) may be written as

he = e+ 3002 @iffe—i — D42y bithe—i. (10)
Eq. (9) may therefore be expressed in terms of h; as
0=hs+ (— Z?:al a; Ays_; + Z?:bl biAut_i) — Ay;. (11)

The set of parameters (a,b) and noise values (Au, Ay) consistent with data D is

_ a € R™, beR™ [Aulloo < €u
P Ay € RT+m -1 AY]|oo < €y . (12)
Ay e RT+ma | Eq. (11) Vt = 1.T

The set of parameters (a,b) consistent with data in D is
P(a,b) = 7P (a,b, Au, Ay). (13)

Equivalently, a plant (a,b) is a member of P if there exists an admissible L.-bounded noise process (Au, Ay)
that could have generated D.
The following assumption will be required to obtain convergence:



A1 The set P is compact.
Remark 1. Compactness of P by Al implies that its projection P is also compact.

Remark 2. Determining membership (if a fized plant (a,b) € P) is a Linear Program (LP) with variables
Au, Ay, given that P has a bilinear description.

3.3 Full Program
The coefficients a® have maximal length ng = ng + ng.
Problem 1. A program to perform superstabilizing control (or to find an infeasibility certificate if v* > 1)
18
¥*= min_ 7y Y(a,b, Au, Ay) € P: v > |ja|;. (14a)

v€ER,(a, b)

The Li-norm constraint in (14) may be equivalently represented by a lifted sequence of inequalities.
The Li-norm of a vector € R" may also be expressed as |z||1 = ming,erra Y, m; © —m; < x; < my
(Gouveia et al., 2013). Letting m;(a,b) : P — R be a set of functions for i = 1..n, + 14, expression (14) may
be written as

7= H(mz) gl (15a)

V(a,b, Au, Ay) € P : (15b)
7= 3 mi(a,b) > 0 (150)
mi(a,b) — a'(a,b) >0 Vi=1.ng (15d)
mi(a,b) + a'(a,b) >0 Vi =1.ng. (15¢)

3.4 Full Sum-of-Squares Program

Problem 1 may be solved using SOS programming. The nonnegativity constraints in (15¢)-(15e) may each
be realized as Psatz constraints in the sense of (7). The degree-d polynomial restriction to Problem 1 is
presented in Eq. (16). The decision variables of Eq. (16) are the L;-certificates m and the gain . The >
symbols in (15) are tightened to > in Eq. (16) due to the Putinar Psatz’s (7) positivity certificate.

Ya = miny (16a)
a€R™, beR™ (16b)
m; € (Rla, b])23, Vi € 1.ng (16¢)
v = i mi(a,b) € B[Pl<a (16d)
mi(a,b) — al'(a,b) € B[P]<aq Vi=1.ng (16e)
mi(a,b) + al'(a,b) € B[P]<aq Vi=1.ng. (16f)

Theorem 3.1. The functions m; have continuous selections.

Proof. Let M ¢ : P =2 R™ be the set-valued map defining the closed convex solution region (a, b) — {m €
R | Sy <y, Vicomy > 4aft(a,b)} from (15) given (v,a,b). Note that the functions a§'(a,b) from
(5) are linear (continuous) functions of (a,b) given (&,b). Theorem 2.4 of (Mangasarian and Shiau, 1987)
proves that M is a lower-semicontinous map (image of linear inequalities under perturbations in the right-
hand side). Michael’s Theorem (9.1.2 in (Aubin and Frankowska, 2009)) suffices to show that a continuous
selection exists, because M., ¢ is lower-semicontinuous with closed convex images, P is compact, and R"<
is a Banach space. O

Theorem 3.2. The bounds from Eq. (16) will converge to limg vy = v* from Problem 1 with v} >
Yig1 = ---Y" when P is Archimedean.



Proof. Let (v, m) be a solution to Problem 1 with each m;(a,b) continuous over P (by Theorem 3.1). For
each € > 0, there exists functions 1;(a, b) € Ra, b] such that sup(, ) ep|(mi(a,b) + €) — m(a,b)| < € by the
Stone Weierstrass theorem over the compact P. Define r;(a,b) = m;(a,b) +e—1m;(a,b) as the approximation
error. The finite-degree polynomial variates (v + ne€, m;) are feasible solutions to (14) with

0 <m;(a,b) — ac(a,b) < m;(a,b) — aq(a,b) (17a)
0<y—>,mi(a,b) < (y+nu)e—>,mi(a,b). (17b)

The multipliers for Putinar Psatz certificates for (17a) and (17b) have finite (exponential) degree in terms
of degm,; (Nie and Schweighofer, 2007). Therefore it holds that for each e, there exists some degree d such
that v4 = v+ nge. Because lime_o v* +nge = ", it holds that limg_,o 7] = 7v*. The sequence is decreasing
with 75 > 77, because the WSOS cones satisfy L[P]<2q4 C X[P]<2a+1)-

O

4 Alternatives Control

Eq. (16) involves a total of 2(n, + ny + T) — 1 variables (a,b, Au, Ay). The Psatz expressions such as in
(16d) will therefore have Gram matrices of size (2("a+"§+T)+d) at each fixed degree d. Performance of Eq.
(16) is therefore polynomial in T for fixed (n4, np, d), and is jointly combinatorial in all parameters.

A theorem of alternatives may be utilized to eliminate the noise terms (Au, Ay) from Putinar expressions.
This Alternatives algorithm scales in a linear manner based on 7' and possesses Gram matrices of maximal
size ("“Jrgﬁd). Letting n, = 3,n, = 2,7 = 10, this maximal size is ( ) = 465 for Full and (5“) = 6 for
Alternatives.

4.1 ARX Alternatives Psatz

Let g(a,b) be a function defined over P. Because ¢(a,b) is a function of (a,b) alone, the following positivity
criteria are equivalent by projection:

q(a,b) >0 Y(a,b) € P (18a)
q(a,b) >0 V(a, b, Au, Ay) € P. (18b)

The following statement is a strong alternative to (18):
3(a, b, Au,Ay) € P: —q(a,b) > 0. (19)

Dual variable functions may be defined according to the Putinar multipliers in constraint description (12)
with

YvE(a,b) >0 Vt=(—np+1).T7 -1 (20a)
¢E(a,b) >0 Vt = (—ng +1).T (20b)
ue(a,b) vVt =1..T. (20¢)

The (a,b) dependence in terms (*, (T, 1) will be omitted to simplify notation. Additionally, the term
¥t will refer to the vector {1;"}I_, (with similar vectorial definitions for 1=, (*, ). The nonnegativity
constraints in (20a) and (20b) are required to hold for all (a,b) € P.

A weighted sum ® may be developed from ¢, multipliers in (20), and the description (12), by forming

= —q(a,b) + iy (21)
+ ZtT e (352 bl — 37 @iy — Ayy)
+ Et—— (np—1) (T/Jt (€u — Aug) + 9y (€u + AUt))
+ Et:—(na—l) (Ct (ey —Aye) + ¢ (ey + Ayt)) .



The terms in (21) that are constant in (Au, Ay) may be collected into
Qa,b) = —q(a,b) + €17 (%" +7) (22)
+hT 417 (T +¢).
Using the cross-correlation operator x from (1), Eq. (21) may be rewritten as
= Q(a,b) + (1 b)" Au — (s x [13a))" Ay (23)
+ W7 =) T Au+ (¢ =) Ay.

A Lagrangian dual function g(a,b) may be defined as
g9(a,b) = sup ®(a, b, Au, Ay). (24)

Au€RT+"p  AycRT+na

The coefficients of (Au, Ay) in (23) must be zero in order to ensure that g(a,b) is bounded. The value of
this dual function is

Q(avb) 1/}+_1/}_:/L*b
g(a,b) = (r=¢ =px[l;d (25)
00 Else.

Problem 2. A feasibility program to certify (18) is

v, Ci,ﬁ;?(fimm (20) @(a,0) >0 V(a,b) P (26a)
Y —yT = pxb (26b)
¢t —¢ =px(1;a] (26¢)

Theorem 4.1. Problem 2 certifies (18) and is a strong alternative of (19).

Proof. Sufficiency: The statement g(a,b) < 0 is a sufficient condition for invalidation of (19). Assuming that
(19) holds with —g > 0, then ® is constructed by the addition of the nonnegative —¢q plus nonnegative weights
(¢T, ¢*F) times nonnegative constraints (e, €y) plus free weights 1, times data-consistency equality conditions
(11). The supremal value of a nonnegative term ® being negative with g(a,b) < 0 is a contradiction.
Necessity: The constraints in (12) are affine (Au, Ay). Necessity follows if constraints are concave
(including affine) in the eliminated variables by Section 5.8 (Boyd et al., 2004). O

Proposition 4.2. The multiplier functions (Y=, ¢*, p) may each be chosen to be polynomial in the compact
set P.

Proof. This proof is omitted for brevity, as it follows using arguments from the proof of Theorems 4.4
(continuity) and 4.5 (polynomial approximability) of (Miller et al., 2022a). O

Forming a Psatz with Problem 2 requires an additional assumption:
A2 An Archimedean set IT O P is known in advance.

Eq. (27) is a Psatz that can certify (18) at degree d.

¢ (a,b) € (S[]<q) 0 (27a)
(*(a,b) € (B[M<gq)" (27Db)
p(a,b) € (Rla,bl<aa—1)" (27¢)
—Q(a,b; *,¢E; ) € B[ <aq (from (22)) (274d)
Yt =T =pxb, T —(¢ =pxl;al. (27e)

Proposition 4.3. Eq. (27) will converge to a positivity certificate for (18) as d — oo under A1 and A2.

Proof. Proposition 4.2 ensures that there exists at least one polynomial certificate ()=, ¢*, p). Given that
polynomials have finite degree, letting d — oo will ensure that a polynomial will be reached at some finite
d. O



4.2 Alternatives for Superstabilization

The Alternatives Psatz in Eq. (27) may be employed for superstabilizing EIV control. The Alternatives
program to solve Problem 1 is described in Eq. (28). Eq. (28) is structurally identical to (16), with the
difference that m is now a function of (a,b) and the positivity constraints in (28d)-(28f) are imposed using

Eq. (27) (S[P]Z50)-

Ya = miny (28a)
a€R"™, beR™ (28b)
m; € (Rla,b])23, Vi€ l.ng (28¢)
v = iy mi(a,b) € S[Pl<ad (284)
mi(a,b) — a$(a,b) € L[P]<aq Vi=1.ng (28¢)
mi(a,b) + a$(a,b) € L[Pl<aq Vi =1.1n. (28f)

5 Computational Complexity

This section will tabulate the computational complexity of imposing that a polynomial ¢(a,b) € Rla, bl<24
is nonnegative over P using the Putinar (Full) Psatz in (7) and the Alternatives Psatz in (27). We will use
the quantity N = n, + np in this analysis. The Full program in (16) and the Alternatives program in Eq.
(28) each have 2n. + 1 instances of their respective Psatz certificates. Table 1 compiles the sizes of the
optimization variables in the Full and Alternatives programs. The notation R and S, in the table refers to
the length of a real vector and the dimension of a PSD matrix, respectively. This analysis treats the set
IT = R™ ™7 in the Alternatives program to simplify tabulation. If the BSA set II has N polynomial-defined
constraints, then the Alternatives program has 1 set of variables corresponding to entries in the Alternatives
column in 1 and Ny sets of variable with smaller sizes.

Table 1: Size of Superstabilizing Psatz.

| # polynomials | Full | Alternatives
o0 1 S.,. 2(N+1;)—1+d S.,. (Nc-li-d)
'(Z):t 2(nb + T — 1) S+ (2(N+’1;):11+d—1 S+ (N;—d)
¢t 2na+T) | 8 (TR s (V)
M T (2(N+1;)d 12+2d 2) R(N;fjl_l)

Remark 3. The Alternatives program is more efficient than the Full program for each d given that N <
2(N+T).

Remark 4. Section 4 eliminated (Au, Ay) and presented a Psatz (27) in terms of the (nq + np) variables
(a,b). Given that P in (12) is bilinear in terms of the groups [(a,b), (Au, Ay)] and each a in (5) is linear
n (a,b), an Alternatives program in terms of (Au, Ay) could have been created by eliminating (a,b). This
approach would be more complex than Eq. (28), because (Au, Ay) has a total of 2T + ng +np — 1 > ng +np
variables.

6 Numerical Examples

MATLAB (2020b) code to reproduce the below experiments is located at https://github.com/jarmill/eiv_arx.
These routines require Mosek (ApS, 2020) and YALMIP (Lofberg, 2004).
We tested the effectiveness of the proposed method using a discrete-time model of

)\2
1405 —1.21A2 — 0.605)3°

G =


https://github.com/jarmill/eiv_arx

This system is open-loop unstable with unstable poles z = % = +1.1. For comparison purpose, we first solve
the model-based superstabilization problem. This is addressed by minimizing v with ||a®||; < v and known
a,b from (29) to search for control coefficients @, b. A superstabilizing controller will occur with v < 1, and
a smaller v results in a faster controller. A special case v = 0 corresponds to the deadbeat control, i.e.
all closed-loop poles are located at the origin. For model (29), two types of controllers can be found. The
low-order controller is obtained with nz = 3,n; = 2 and v = 0.4417:

1.829)\2
C\) = . 30
) 1—0.50+1.46)\2 — 0.73\3 (30)
The deadbeat controller is obtained with ng = 4,n; = 3 and v = 0:
0.73X — 1.464)\% — 0.8833)3
C(\) = 31
() 1 — 0.5\ 4 1.46A2 (31)
Remark 5. Note that we design using A = %, the controller is improper in A but is physically realizable in

zZ.

For the data-driven setup, we used the deadbeat controller as the benchmark, i.e. v = 0. The system
is excited using uniformly distributed input [Ju¢||c < 1, initial output {y:};'_,.,,1 and noise ||Ay|ls <
€y, ||Aul|oo < €, with T' = 10 samples. We start from the noise-free data, i.e. €, = €, = 0. Directly applying
Full Eq. (16) (with d = 2) leads to an intractable problem. Using the Alternatives Eq. (28) (with d = 1)
leads to the same ¢;-optimal deadbeat controller as in (31). This indicates that there is no gap between the
original problem and its alternative form. For specific complexity, see Table 2.

Table 2: Size of Superstabilizing Psatz (Model (29) with n, = 3,n, = 2,7 = 10).

| # polynomials | Full | Altern.

o0 | 1 165 | 6
| 22 30 |6
¢t | 26 30 |6
po |10 465 | 6

Next, we show the effect of changing T' (Table 3) and e (Table 4) on the performance index +.

Table 3: v v.s. T with ¢, = ¢, = 0.02.

T |20 40 60 80
v | 0.4365 | 0.3132 | 0.2732 | 0.2515

Table 4: v v.s. € = ¢, = ¢, with T' = 80.

e | 0.02 0.04 0.06 0.08
v | 0.2515 | 0.4924 | 0.7312 | 0.9755

Several conclusions can be drawn from the tables.
a) For the noisy trajectory, v # 0, the learned controller is no longer deadbeat.
b) As we increase T', the consistency set shrinks, hence we get a faster controller.

¢) Larger noise leads to a larger consistency set, which makes it harder to find a single robust controller.
This issue may be alleviated by collecting more samples.

The performance v can also be improved by selecting a higher order controller. This is illustrated by
Table 5 in which ny, = n, — 1.

Remark 6. This behaviour is mot seen in the model-based control since any controller order with n, >
4,np > 3 leads to the deadbeat control. However, for data-driven control, the extra order helps to reduce .



Table 5: vy vs. n, with €, = ¢, = 0.01,7 = 10.

ng | 4 6 8 10
v | 0.6926 | 0.5436 | 0.5167 | 0.5166

7 Extensions

7.1 Process Noise

Lo-bounded process noise wy with [|w]|eo < €, can be added into the ARX model (2) with
Yo = — Doy @il—i + Yty biwg—i + wy. (32)

With process noise, the equality constraint in (11) is relaxed to a pair of inequalities for each t = 1.7 — 1
as

—€w < he + (= 300 aildys—i + Y000 bidug i) — Ayp < €y (33)

The full program in (16) may be executed with process noise by posing Psatz constraints over an enlarged
consistency set of
a € R, beR™ [Aul|oo < €u
Py : Ay € RT+me—1 lAY|oo < € (34)
Ay € RT+ne | Ineq. (33) holds V¢t = 1..T

The Alternatives Psatz in (27) may be derived for the set P, by defining functions i (a,b) that are
nonnegative over 7%*P,, replacing (22) with

Q" (a,b) = —q(a,b) + b (u* —p7) + 1T (u" +p7)
+e T @WT + 7))+ 6,17 (T +¢), (35)

and every instance of y in (27¢)-(27c) with pt — p~.

7.2 Switched ARX Models

The switched setting involves Ny ARX models (subsystems) with per-subsystem parameters (a”,b*) and
lengths (n¥ n¥) for k = 1..Ny. A switching sequence S takes on values S(t) € 1..N; for each t € 1..T. The
ground-truth switched ARX model given S is

nf(t) S(t)

Ye=—2>04 ais(t)ytfi +30 bis(t)utfi- (36)

Performing a substitution as in (8) allows for the creation of a consistency set P ({ay, bx }n=,, Au, Ay).
The projection 7%*P3 ({a, by}~ ,) has neys = Zi\f:sl n¥ + n¥ variables. The superstabilization problem for
switched ARX with a known switching sequence involves finding subsystem-controllers (a*, I;k) such that
each subsystem-closed-loop transfer functions in (4) is superstable. An Alternatives Psatz (modification of
(27)) would involve Gram matrices of maximal size ("Sy;+d).

8 Conclusion

This paper proposed an algorithm to perform superstabilizing control of EIV-corrupted ARX systems. The
controller (d,i)) is recovered by solving a POP using the moment-SOS hierarchy of SDPs. Utilizing the
Theorem of Alternatives results in a significantly more tractable program as compared to the Full case.

Future work involves forming superstabilizing controllers for Multi-Input Multi-Output systems using
Matrix Fraction Descriptions (Chen et al., 2005) and for Linear-Parameter Varying systems.
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