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WELL-ROUNDED TWISTS OF IDEAL LATTICES FROM IMAGINARY
QUADRATIC FIELDS

NAM H. LE, DAT T. TRAN, HA T. N. TRAN

Abstract. In this paper, we investigate the properties of well-rounded twists of a given

ideal lattice of an imaginary quadratic field K. We show that every ideal lattice I of K

has at least one well-rounded twist lattice. Moreover, we provide an explicit algorithm

to compute all well-rounded twists of I.

1. Introduction

A lattice of full rank in a Euclidean space is called well-rounded if its set of minimal vectors

spans the whole space. Well-rounded lattices are important in discrete optimization, in

particular in the study of sphere packing, sphere covering, and kissing number problems

[9], as well as in coding theory [1, 2, 6, 7].

A well-rounded twist of a lattice is defined in [3]. A method for computing all well-rounded

twists of a given ideal lattice I of a real quadratic field K is also presented in this paper.

It requires us to compute all principal ideals 〈x〉 ⊂ I such that N(x)2 ≤ N(I)2∆K/3 and

its generator x where ∆K is the discriminant of K (see Section 3 in [3]). It is known

that finding all ideals of norm bounded and finding a generator of a principal ideal are

hard problems, especially when ∆K is large (see [8]). This method is therefore infeasible

and hence one cannot always compute all well-rounded twists of a given ideal lattice I.

In contrast, we can show that this task is feasible for an arbitrary imaginary quadratic

field K. Indeed, in this paper we prove that every ideal lattice I of K has at least

one well-rounded twist lattice (see Proposition 10). This result can be considered as a

particular case of the one in [11] which proves that every lattice (in any dimension) has

at least a well-rounded twist. However, in our proof, we make use of an independent idea

and argument from the ones in [11]. Indeed Proposition 10 is implied from the proofs

of Lemma 3 and Theorem 2. We remark that a similar result for real quadratic fields

has not been proved in [3]. Moreover, we provide algorithms to compute all well-rounded

twists of I (see Section 4). In particular, we give an upper bound for the number of such

well-rounded twists (see Corollary 3). The main idea is as below.
1
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Let K be an imaginary quadratic field and let I be an integral ideal of K with a Z-basis

B = {u, v}. We define the function

F (B) = F (u, v) =
1

4

[

(

ℑ(u2) + ℑ(v2)
)2 −ℑ(uv)2

]

here we denote by ℑ(z) the imaginary part of z ∈ C (see 3 for an explicit formula). Note

that a well-rounded twist of I is determined by a good basis of I (see Definition 4). By

Proposition 6, the basis B is good if and only if F (B) ≤ 0. This inequation only has

finitely many solutions as a result of Proposition 8. In addition, it provides us a necessary

condition for finding all good bases B, that is the imaginary part of u2 and of v2, denoted

by ℑ(u2) and ℑ(v2), in absolute value are at most vol(I) (see ii) in Proposition 8). Thus

one first lists all elements x ∈ I such that
(

ℑ(x2)
)2 ≤ vol2(I). Theorem 1 says that there

are only finitely many possibilities for x. After that, for each x found, we solve F (x, y) ≤ 0

for all possible y such that {x, y} is a good basis of I. Finally, Theorem 2 shows that

given such an x, there are at most two good bases of the form {x, y}, up to similarity.

The proof of this theorem also gives us explicit formulae to compute those bases. Hence,

we can construct all good bases of the ideal I demonstrated in Section 4.

Employing the algorithms presented in Section 4, we can first find all well-rounded twists

of an ideal lattice I of K and after that check which lattices are similar using Remark 6.

A natural question arisen from our work is how to compute only similar classes instead

of all well-rounded twists of I. In other words, assume that we have computed a list L of

some well-rounded twists lattice of I, we would like to find a method to eliminate well-

rounded twists J that are similar to the ones in L before explicitly computing a basis for

J . Another question is how to compute all well-rounded twists of ideal lattices in higher

degree number fields. These open questions requires us a further research in the future.

The structure of this paper is as follows. In Section 2, we recall some basic definitions and

properties of well-rounded lattices in R2 as well as of good bases and twists of a lattice.

Our main results (Theorem 1, Theorem 2 and Theorem 10) are presented in Section 3.

Based on the results of this section, we construct algorithms to compute all well-rounded

twists of an ideal I of K and demonstrate them by an example in Section 4. We prove

the correctness and analyze the complexity of these algorithms in Section 5.
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2. Background

In this section we recall some basic definitions and properties of well-rounded lattices

(twists) in R2, and then of well-rounded ideal lattices arisen from imaginary quadratic

fields.

Definition 1. Two planar lattices Λ1,Λ2 ⊂ R2 are called similar, denoted Λ1 ∼ Λ2,

if there exists a positive real number α and a 2 × 2 real orthogonal matrix U such that

Λ2 = αUΛ1.

See [4] for more details. Moreover, if B is a basis of Λ1 then αUB is a basis of Λ2 and if

B′ is a basis of Λ2 then there exists a basis B of Λ1 such that B′ = αUB (we call B and

B′ are two similar bases). Thus, one has the following result.

Proposition 1. Suppose Λ1,Λ2 are two lattices of R2. Then Λ1 ∼ Λ2 if and only if

there exist bases B1 = {x1, y2} and B2 = {x2, y2} of Λ1 and Λ2 respectively such that

|cos(x1, y1)| = |cos(x2, y2)| and
‖x1‖
‖y1‖

=
‖x2‖
‖y2‖

, where (xi, yi) is the angle between two

vectors xi and yi, i = 1, 2.

In this section, we will denote by Λ a lattice in R2 and by B = {x, y} a basis of Λ with

x = (a, c), y = (b, d) ∈ R2.

Definition 2. For each real number α > 0, we define the matrix

Tα =





α 0

0
1

α



 .

The lattice TαΛ is called the twisting lattice or the twist of Λ with respect to α.

Proposition 2. Let B = {x = (a, c), y = (b, d)} be a basis of a lattice Λ. Then for all

α > 0, there exist x′ = (e, f) ∈ R2 and f > 0 such that the lattice generated by TαB is

similar to the lattice generated by B′ = {(1, 0), x′}.

Proof. By Proposition 1, we prove that there exists x′ ∈ R2 such that
‖Tαx‖
‖Tαy‖

=
1

‖x′‖ and

|cos (Tαx, Tαy)| is equal to the absolute value of the cosine of the angle between (1, 0) and

x′. We consider

z =
1

α4a2 + c2
(

abα4 + cd, α2(ad− bc)
)

,

then ‖z‖ =
1

α4a2 + c2

√

(abα4 + cd)2 + α4(ad− bc)2 =

√

α4b2 + d2

α4a2 + c2
=

‖Tαy‖
‖Tαx‖

.
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It also implies that ‖ − z‖ =
‖Tαy‖
‖Tαx‖

. There are two cases:

• Case 1: If ad− bc > 0, we choose x′ = z.

• Case 2: If ad− bc < 0, we choose x′ = −z.

For both cases, it is clear that |cos (Tαx, Tαy)| is equal to the absolute value of the cosine

of the angle between (1, 0) and x′. �

Remark 1. This proposition is shown in particular case of the following statement: every

planar lattice is similar to a lattice with a basis B′ as described in Proposition 2 and hence

planar lattices are identified with SO2(R)\SL2(R)/SL2(Z) (see [11]).

The idea of Proposition 2 is similar to [3] (see the function in [15] in this paper). For

each given basis B, there are two vectors satisfying Proposition 2. However, we can add

the condition that ‖x′‖ ≥ 1 to have the uniqueness of x′. We denote x′ by τ(α,B) to

emphasize that it depends on α and B.

Definition 3. Let Λ be a lattice in R2.

i) The set of the minimal vectors of Λ is

S(Λ) = {x ∈ Λ : ‖x‖ = λ1(Λ)} ,

where λ1(Λ) = min
06=x∈Λ

‖x‖.
ii) The lattice Λ is called well-rounded if spanR(S(Λ)) = R2.

iii) If Λ is well-rounded and {x1, x2} is its basis such that x1, x2 ∈ S(Λ), then {x1, x2} is

called a minimal basis of A.

iv) A basis {x1, x2} is twistable if there exists a matrix Tα such that ‖Tαx‖ = ‖Tαy‖.

Remark 2. Note that if S(Λ) contains two independent vectors then these vectors form

a minimal basis for Λ. This fact is not true for lattices of higher dimension (see [10] for

more details).

The following lemma is a result of Proposition 1 and the definition of well-rounded lattices.

Lemma 1. Two well-rounded lattices are similar if and only if there exist their minimal

bases B1 = {x1, y2} and B2 = {x2, y2} such that |cos(x1, y1)| = |cos(x2, y2)|.

Proposition 3. Let β =
d2 − c2

a2 − b2
. Then B is twistable if and only if β > 0. If this is the

case, then α is unique and α = β1/4.

Proof. See Proposition 1 of [3]. �
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To emphasize that α and β are functions depending on the basis B of Λ, we will write

αΛ(B) and βΛ(B) for α, β. Note that αΛ(B) = (βΛ(B))1/4.

Proposition 4. If B is a twistable basis with the twisting matrix Tα, then

cos θTαB =
ac + bd

ad+ bc
.

Proof. See Proposition 2 in [3]. �

Proposition 5. If

∣

∣

∣

∣

ac + bd

ad+ bc

∣

∣

∣

∣

≤ 1

2
then B is twistable.

Proof. See Proposition 3 of [3]. �

In this case, since | cos θTαB| ≤
1

2
where β =

d2 − c2

a2 − b2
and α = β1/4, the lattice TαΛ is

well-rounded. Moreover, {Tαx, Tαy} is a minimal basis of TαΛ.

Definition 4. We call a basis B of Λ good for twisting or a good basis if

∣

∣

∣

∣

ac + bd

ad+ bc

∣

∣

∣

∣

≤ 1

2
.(1)

This definition is equivalent to the following statement: there exists α > 0 such that TαΛ

is well-rounded with a minimal basis TαB.

By transforming inequation (1), a basis B is a good basis if

a2c2 + abcd+ b2d2 − (ad− bc)2

4
≤ 0 and ad+ bc 6= 0.(2)

From the first inequality of (2), one may define the polynomial

F (B) =(ac)2 + abcd+ (bd)2 − (ad− bc)2

4

=

(

ac+ bd +
ad + bc

2

)(

ac + bd− ad+ bc

2

)

.(3)

Frow now, we only need to consider the basis B = {(a, c); (b, d)} where ad+ bc 6= 0.

We have the following result that is similar to Theorem 1 in [3].

Proposition 6. Let Λ be a lattice in R2.

(i) A basis B is good for twisting if and only if F (B) ≤ 0.

(ii) If B is good for twisting, then min{(ac)2, (bd)2} ≤ vol2(Λ)

4
.

Proof. (i) This fact can be easily implied from the definition of F .
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(ii) Recall that vol2(Λ) = (ad− bc)2. Since B is good for twisting, it follows that

0 ≥ (ac)2 + abcd+ (bd)2 − vol2(Λ)

4
=

(ac)2 + (bd)2

2
+

(ac + bd)2

2
− vol2(Λ)

4

≥ (ac)2 + (bd)2

2
− vol2(Λ)

4
.

Hence min
{

(ac)2, (bd)2
}

≤ vol2(Λ)

4
.

�

For D positive and squarefree, we put K = Q(
√
−D) and

δ =











√
−D, if −D 6≡ 1 mod 4

1 +
√
−D

2
, if −D ≡ 1 mod 4

.

The ring of integers of K is OK = Z [δ]. The embeddings σ1, σ2 : K −→ C are given by

σ1 (x+ yδ) = x+ yδ, σ2(x+ yδ) =







x− yδ if D 6≡ 1 (mod 4)

x+ y(1− δ) if D ≡ 1 (mod 4).

We have σ2 = σ1. Hence we denote by σK the embedding from K into R2 defined by

σK = (ℜσ2,ℑσ2) , where ℜ and ℑ stand for the real and imaginary parts, respectively.

Now let I ⊂ OK be an ideal and {t, y + gδ} its Z-basis where 0 ≤ y < t, g|y, t and

0 < g ≤ t. This basis is called the canonical basis of I.

Suppose u, v ∈ I form a Z-basis of I, then we can represent the lattice ΛK(I) = σK(I) as

ΛK(I) =





ℜ(u) ℜ(v)
−ℑ(u) −ℑ(v)



Z2 =





u+ u

2

v + v

2
u− u

2i

v − v

2i



Z2.

where ℜ(z) = z + z

2
,ℑ(z) = z − z

2i
.

Proposition 7. Let B = {u, v} be a twistable basis of I. Then cos θTαB =
ℑ(u2) + ℑ(v2)

2ℑ(uv) .

Proof. Proposition 4 provides that

cosTαB =

u2 − u2

4i
+

v2 − v2

4i
uv − uv

2i

=
ℑ(u2) + ℑ(v2)

2ℑ(uv) .

�
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3. Main results

From now on, we follow the notations used in Section 2. The second inequality of (2)

becomes

ℜ(u)ℑ(v) + ℜ(v)ℑ(u) 6= 0(4)

Applying Proposition 6, we obtain a similar result as the one in Theorem 2 in [3] as below.

Proposition 8. Let I be an ideal with a basis B = {u, v}. Then, we have the following

statements.

(i) A basis B is good for twisting if and only if F (u, v) ≤ 0, in which case the twisting

matrix Tα is given by α =

(ℑ(v)2 − ℑ(u)2
ℜ(u)2 − ℜ(v)2

)

1

4

.
(ii) If B is good for twisting, then

min
{

(

ℑ(u2)
)2

,
(

ℑ(v2)
)2
}

≤ vol2 (ΛK(I)) .

(iii) A basis {u, v} is good for twisting if and only if so is the basis {v, u}. Moreover,

their well-rounded twisting lattices are similar.

Proof. The two first statements are corollaries of Proposition 6. The last one can be

implied by applying (i) and Proposition 2. �

From (3), one obtains that F (B) = F1(B)F2(B) where

F1(B) =
u2 − u2

4i
+

v2 − v2

4i
+

uv − uv

4i
= −1

2

(

ℑ(u2) + ℑ(v2) + ℑ(uv)
)

and(5)

F2(B) =
u2 − u2

4i
+

v2 − v2

4i
− uv − uv

4i
= −1

2

(

ℑ(u2) + ℑ(v2)−ℑ(uv)
)

.

A similar version for Proposition 5 of [3] is the following.

Proposition 9. Let I ⊂ OK be an ideal. The hexagonal lattice is a twist of ΛK(I) if and

only if I has a basis B = {u, v} such that F (B) = 0.

Proof. We use the fact that F (u, v) = 0 if and only if ℑ(u2) + ℑ(v2) = ±ℑ(uv). Equiva-
lently, one has |cos θTαB| =

1

2
. In this case, the twist lattice of Λ is hexagonal. �

Our goal is to compute all good bases of a given ideal lattice ΛK(I), up to similarity. Now

we fix a suitable element x ∈ I and find all good bases of the form {x, y} of I.

Definition 5. For x ∈ I, we say that x can be extended to a (good) basis if there exists

y ∈ I such that {x, y} is a (good) basis of I.
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Let {u, v} be any basis of I and write x = au+ cv for a, c ∈ Z without loss the generality,

we can assume a ≥ 0. Then x can be extended to a basis if and only if there exists

y = bu+ dv ∈ I such that ad− bc = ±1. This occurs if and only if (a, c) = 1. Combining

with Proposition 8 we obtain the following initial strategy to compute all well-rounded

twists of a given ideal lattice ΛK(I), up to similarity.

� Step 1: Find a basis {u, v} of I.

� Step 2: List all x = au + cv ∈ I such that
(

ℑ(x2)
)2 ≤ vol2(ΛK(I)), a ≥ 0 and

gcd(a, c) = 1.

� Step 3: For each x found in Step 2, we solve F (x, y) ≤ 0 for all possible y such that

{x, y} is a basis of I. Note that such basis must satisfy the condition (4).

Remark 3. In step 2, we have to list all elements x such that
(

ℑ(x2)
)2 ≤ vol2(ΛK(I)).

For example, I = OK with K = Q(
√
−5). We consider the elements a and c

√
−5

(a, c ∈ Z). The square of a or c
√
−5 (a, c ∈ Z) has zero imaginary part. It means the

inequation
(

ℑ(x2)
)2 ≤ vol2 (ΛK(I)) may have infinitely many solutions. We can avoid

this by using an idea given by Theorem 2.

Lemma 2. Let I 6= (0) be an integral ideal of OK . For all x 6= 0 and x ∈ I, we can

choose a Z-basis B = {u, v} of I such that ℑ(uv) and ℑ(vx) are non-zero.

Proof. Fix the canonical basis B = {t, y + gδ} of I. Clearly, we have ℑ (t(y + gδ)) 6= 0.

If ℑ(x) = 0, we choose u = t, v = y + gδ for t, g > 0, y ≥ 0 such that y < t, g|t, y and

tg|N(y+ gδ). Then the basis B′ = {u, v} satisfies ℑ(uv) 6= 0 and ℑ(vx) 6= 0. If ℑ(x) 6= 0,

we choose u = y+gδ, v = t, then B′ = {u, v} satisfies that ℑ(uv),ℑ(vx) are non-zero. �

There are only finitely many x ∈ I such that it can extend to a good basis. The proof of

Lemma 3 describes accurately a method to find all those elements.

Lemma 3. Suppose that D is square-free and positive such that −D 6≡ 1 (mod 4). Then

there are finitely many elements z ∈ I such that z can extend to a good basis of I, up to

similarity.

Proof. Fix
{

t, y + g
√
−D

}

the canonical basis of I where 0 ≤ y < t, g|t, y and tg|(y2 +
g2D). An arbitrary element of I has the form z = (at + cy) + cg

√
−D for some a, c ∈ Z.

By Proposition 8, we only consider the existence of an extendable basis {z, z′} with
(

ℑ(z2)
)2 ≤ vol2(ΛK(I)). It is equivalent to |c(at + cy)| ≤ t

2
. There are three cases.
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Case 1: Solve the inequation 0 < |c(at + cy)| ≤ t

2
. There are finitely many pairs (a, c)

satisfying the inequalities.

Case 2: If c = 0, then z = at. Thus z can be extended to a good basis if and only if

there exists z′ = (bt + dy) + dg
√
−D such that {z, z′} is a good basis of I. It

occurs when ad = ±1. In other words, one has a = ±1.

Case 3: If c 6= 0 and at+ cy = 0, then z can be extended to a good basis if there exists

an element (bt + dy) + dg
√
−D such that

∣

∣

∣

∣

∣

∣

−cy

t
b

c d

∣

∣

∣

∣

∣

∣

= ±1. It is equivalent to

that c(dy + bt) = ±t. Therefore c is a divisor of t. Because t 6= 0, there are

finitely many such pairs (a, c).

�

If −D ≡ 1 (mod 4), the canonical basis of an ideal I of OK with K = Q(
√
−D) is

t, y + g
1 +

√
−D

2
where 0 ≤ y < t, g|t, y. We can write an arbitrary element of I as

2at+ 2cy + cg

2
+

cg
√
−D

2
. By Proposition 8, if this element can be extended to a good

basis of I, then |(2at + 2cy + cg)c| ≤ t. By using an argument similar to the one in the

proof of Lemma 3, one obtains the following lemma.

Lemma 4. Suppose that D is a square-free and positive integer such that −D ≡ 1 (mod 4).

Then there are finitely many elements z ∈ I such that z can be extended to a good basis

of I, up to similarity.

From Lemma 3 and Lemma 4, the following result is obtained.

Theorem 1. Let I be a nonzero ideal of OK . Then there are finitely many elements in I

that can be extended to a good basis of I.

From the proof of Lemma 3 and Lemma 4, we can list all elements of I which can be

extended to a basis of I. The proofs of two lemmas also yield an explicit method to find

those elements. We replace Step 2 of strategy (in page 6) by listing all elements of I

which can be extended to a basis of I. The next result gives us a more efficient method to

compute these bases.

Lemma 5. Let I be an integral ideal with the basis {u, v}. Assume that an element

x = au + cv ∈ I, that can be extended to a basis B = {x, y} with y = bu + dv. Then we

have the following.
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(i) If a = 0, then we can choose x = v, y = u+ dv and hence

F1(B) =− ℑ(x2)

2
d2 +

(

−ℑ(uv)− ℑ(x2)

2

)

d− ℑ(x2) + ℑ(u2) + ℑ(uv)
2

(6)

F2(B) =− ℑ(x2)

2
d2 +

(

−ℑ(uv) + ℑ(x2)

2

)

d− ℑ(x2) + ℑ(u2)−ℑ(uv)
2

.(7)

(ii) If a 6= 0 and ad− bc = 1, then

a2F1(B) =− ℑ(x2)

2
b2 −

[

a

(

2ℑ(uv)
2

+
ℑ(x2)

2

)

+ 2c
ℑ(v2)
2

]

b(8)

− a2
(ℑ(x2)

2
+

ℑ(uv)
2

)

− ℑ(v2)
2

(1 + ac)

a2F2(B) =− ℑ(x2)

2
b2 −

[

a

(

2ℑ(uv)
2

− ℑ(x2)

2

)

+ 2c
ℑ(v2)
2

]

b(9)

− a2
(ℑ(x2)

2
− ℑ(uv)

2

)

− ℑ(v2)
2

(1− ac).

Proof. (i) From (5), we have

F1(B) = −1

2

(

ℑ(x2) + ℑ(y2) + ℑ(xy)
)

=
−ℑ(x2)

2
− ℑ((u+ dv)2)

2
+

ℑ(v(u+ dv))

2

=
−ℑ(x2)

2
− 1

2

(

(u2 − u2) + d2(v2 − v2) + 2d(uv − uv)

2i

)

− 1

2

v(u+ dv)− v(u+ dv)

2i

=
−ℑ(x2)

2
d2 −

(

ℑ(uv) + ℑ(x2)

2

)

d− ℑ(x2) + ℑ(u2) + ℑ(uv)
2

.

It is the result of (6). By using a similar computation, we obtain the result in (7).

(ii) Here we have ad− bc = 1, d =
1 + bc

a
. Using equation (5) leads to the following.

a2F1(B) = −a2

2

(

ℑ(x2) + ℑ((bu+ dv)2) + ℑ((au+ cv)(bu+ dv))
)

= −a2

2

(

ℑ(x2) + ℑ
(

(

bu+
1 + bc

a
v

)2
)

+ ℑ
(

(au+ cv)

(

bu +
1 + bc

a
v

))

)

= −a2

2

[

ℑ(x2) + ℑ (bx+ v)2 + aℑ ((au+ cv)(bx+ v))
]

= −a2ℑ(x2)

2
− ℑ(x2)

2
b2 − ℑ(v2)

2
− 2bℑ ((au+ cv)v)

2
− abℑ(x2)

2
− a2ℑ(uv) + acℑ(v2)

2

= −ℑ(x2)

2
b2 −

[

a

(

ℑ(uv) + ℑ(x2)

2

)

+ cℑ(v2)
]

b− a2
(ℑ(x2)

2
+

ℑ(uv)
2

)

− ℑ(v2)
2

(1 + ac).

Thus (8) is proved. The result in (9) can be obtained by using a similar computation. �
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When ℑ(x2) 6= 0, the right sides of (6) and (7) are degree two polynomials in d with the

same discriminants. Indeed, we have (note that v = x)

∆F1(B) =

(

−ℑ(uv)− ℑ(x2)

2

)2

− 4
ℑ(x2)

2

(ℑ(x2) + ℑ(u2) + ℑ(uv)
2

)

= −3 (ℑ(x2))
2

4
+ ℑ(uv)2 − ℑ(x2)ℑ(u2) = −3ℑ(x2)

4
+

(uv − uv)2 − (u2 − u2)(v2 − v2)

(2i)2

=

(

uv − vu

2i

)2

− 3 (ℑ(x2))
2

4
= vol2 (ΛK(I))−

3 (ℑ(x2))
2

4
.

(10)

Similarly, one obtains that F2(B) has the same discriminant as of F1(B). Analogously,

the discriminants of polynomials (in b) on the right side of (8) and (9) are

a2

(

vol2 (ΛK(I))−
3 (ℑ(x2))

2

4

)

.(11)

The next result is an analogy to Theorem 3 in [3].

Theorem 2. Let I be an ideal of OK and let x ∈ I such that
(

ℑ(x2)
)2 ≤ vol2(ΛK(I)).

Then x can be extended to at most two good bases of I, up to similarity.

Proof. Let us fix a basis {u, v} of I such that ℑ(uv) 6= 0 and ℑ(vx) 6= 0. Such a basis

exists by Lemma 2. The condition ℑ(vx) 6= 0 implies that aℑ(uv) + cℑ(v2) 6= 0. Express

x = au+ cv for some a, c ∈ Z, and suppose that y = bu+ dv for some b, d ∈ Z and {x, y}
is a good basis. We will employ the inequality F (x, y) ≤ 0 and the equality ad− bc = ±1

to solve for all possible b and d. We consider two cases.

• Case 1: If a = 0 , then ad − bc = ±1. It implies that b = ±1 and c = ±1, so

x = ±v and y = ±u+ dv. By possibly replacing x with −x and y with −y, which

does not change the similarity class of the given basis, we may assume that our

basis {x, y} is of the form {x, y} = {v, u + dv}. We will show that there are at

most two integers d such that this is a good basis.

Let fi(d) = Fi(x, y) and Fi(x, y) are as in (6) and (7). By Proposition 6, we must

find all d such that f1(d) and f2(d) have opposite signs, or such that at least one

of them are zero. Using (6) and (7), we divide our proof into 2 cases.

– Case 1.1. If ℑ(x2) = 0, the functions in (6) and (7) become

f1(d) = −ℑ(uv)d− ℑ(u2) + ℑ(uv)
2

and

f2(d) = −ℑ(uv)d− ℑ(u2)−ℑ(uv)
2

.



12 NAM H. LE, DAT T. TRAN, HA T. N. TRAN

There are at least one of f1(d) and f2(d) which are equal to zero if and only

if d = β1 or d = β2 where

β1 =
ℑ(u2) + ℑ(uv)

−2ℑ(uv) and β2 =
ℑ(u2)−ℑ(uv)

−2ℑ(uv) .(12)

In addition, f1(d) and f2(d) have opposite signs if d ∈ (β1, β2). Therefore,

d ∈ [β1, β2]. However, β2−β1 = 1, there are at most two values of d satisfying

the condition.

– Case 1.2. If ℑ(x2) 6= 0, the functions in (6) and (7) are second degree

polynomials with the same discriminants ∆ = vol2 (ΛK(I)) −
3 (ℑ(x2))

2

4
by

(10). The polynomial f1(d) has two roots

β11 =

−
(

−ℑ(uv)− ℑ(x2)

2

)

+
√
∆

−ℑ(x2)
, β12 =

−
(

−ℑ(uv)− ℑ(x2)

2

)

−
√
∆

−ℑ(x2)
.(13)

The polynomial f2(d) has two roots

β21 =

−
(

−ℑ(uv) + ℑ(x2)

2

)

+
√
∆

ℑ(x2)
, β22 =

−
(

−ℑ(uv) + ℑ(x2)

2

)

−
√
∆

−ℑ(x2)
.(14)

There are at least one of f1(d) and f2(d) which are equal to zero if and only if

d ∈ {β11, β12, β21, β22}. In these cases, we have F (B) = f1(d)f2(d) = 0, then

one obtains four hexagonal twist lattices (by Proposition 9). Therefore, they

are all similar. Thus there is at most one d, up to similarity. In addition,

f1(d) and f2(d) have opposite signs if and only if d ∈ (β11, β21) = J1 or

d ∈ (β12, β22) = J2. These open intervals have width one. As a result they

only contain at most one integer. Hence, there are at most two d satisfying

the condition.

• Case 2: If a 6= 0, then d =
1 + bc

a
. Multiplying by −1 if necessary we may

assume a > 0. We again explicitly compute all y = bu+ dv ∈ I such that {x, y} is

a good basis of I, up to similarity. By possibly replacing y with −y we may assume

ad − bc = 1, and solve for d in terms of b as d =
1 + bc

a
. Setting fi(b) = Fi(x, y),

we wish to find all integers b such that d =
1 + bc

a
∈ Z, and that either f1(b) and

f2(b) have opposite signs or such that at least one of them are zero. From (8) and

(9), one can consider two cases as below.
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– Case 2.1. If ℑ(x2) = 0, the functions in (8) and (9) become

a2f1(b) =−
(

aℑ(uv) + cℑ(v2)
)

b− a2
(

+
ℑ(uv)

2

)

− ℑ(v2)
2

(1 + ac) and

a2f2(b) =−
(

aℑ(uv) + cℑ(v2)
)

b− a2
(

−ℑ(uv)
2

)

− ℑ(v2)
2

(1− ac).

The condition aℑ(uv)+ cℑ(v2) 6= 0 follows that a2f1(b) and a2f2(b) are linear

polynomials in b. The roots of a2f1(b) and a2f2(b) are respectively

β1 =

a2
(ℑ(uv)

2

)

+
ℑ(v2)
2

(1 + ac)

− (aℑ(uv) + cℑ(v2)) and β2 =

a2
(−ℑ(uv)

2

)

+
ℑ(v2)
2

(1− ac)

− (aℑ(uv) + cℑ(v2)) .(15)

There are at least one of f1(b) and f2(b) which are equal to zero if and only if

b = β1 or b = β2. In addition, a2f1(b) and a2f2(b) have opposite signs if and

only if b ∈ [β1, β2] = J . The interval J has width a, so the equation bc+1 ≡ 0

mod a has at most one solution in J . Therefore, there are at most two pairs

(b, d) satisfying the above condition as we expect.

– Case 2.2. If ℑ(x2) 6= 0, the functions in (6) and (7) are second degree poly-

nomials with the same discriminants ∆ = a2

(

vol2 (ΛK(I))−
3 (ℑ(x2))

2

4

)

by

(11). Then the polynomial a2f1(b) has two roots

β11 =

[

a

(

ℑ(uv) + ℑ(x2)

2

)

+ cℑ(v2) +
√
∆

]

−ℑ(x2)
and(16)

β12 =

[

a

(

ℑ(uv) + ℑ(x2)

2

)

+ cℑ(v2)−
√
∆

]

−ℑ(x2)
.

The polynomial a2f2(b) has two roots

β21 =

[

a

(

ℑ(uv)− ℑ(x2)

2

)

+ cℑ(v2) +
√
∆

]

−ℑ(x2)
and(17)

β22 =

[

a

(

ℑ(uv)− ℑ(x2)

2

)

+ cℑ(v2)−
√
∆

]

−ℑ(x2)
.

There are at least one of a2f1(b) and a2f2(b) which are equal to zero if and only

if b ∈ {β11, β12, β21, β22}. In these cases, we have four hexagonal twist lattices

(by Proposition 9) and therefore, they are similar. Moreover, there is at most

one d, up to similarity. In addition, a2f1(b) and a2f2(b) have opposite signs if

and only if d ∈ (β11, β21) = J1 or d ∈ (β12, β22) = J2. This open intervals have



14 NAM H. LE, DAT T. TRAN, HA T. N. TRAN

width a, so they contain at most one integer which is a solution of bc+1 ≡ 0

mod a. Hence, there are at most two expected pairs (b, d).

�

If −D 6≡ 1 mod 4, the ring of integers OK of K = Q(
√
−D) has the canonical basis {u =

1, v =
√
−D}. Using the proof of Theorem 2, one can show that OK only has the following

good bases x = au + cv, y = bu + dv for (a, c, b, d) ∈ {(1, 0, 0, 1), (1, 0, 0,−1), (0, 1, 1, 0)}.
Since all well-rounded lattices defined by these bases are similar, one obtains that OK has

only one well-rounded twist up to similarity. We have the following corollary that is an

analogy with the result of Corollary 3 in [3].

Corollary 1. Let D be a square-free integer such that −D 6≡ 1 (mod 4), and let K =

Q(
√
−D). Then the lattice ΛK has a unique well-rounded twist, which is an orthogonal

lattice, up to similarity.

Proof. The canonical basis of OK is
{

1,
√
−D

}

and vol(ΛK) =
√
D. Suppose that x =

a+ c
√
−D can be extended to a good basis. By Proposition 8, it is sufficient to consider

the case in which |ac| ≤ 1

2
, (a, c) = 1 and a ≥ 0. It implies (a, c) ∈ {(0, 1), (0,−1), (1, 0)}.

• If (a, c) = (0, 1) then x =
√
−D. By Theorem 2, the basis to which x extends is

{
√
−D, 1}. The well-rounded twist lattice of this basis is orthogonal.

• If (a, c) = (0,−1), the result is the same with the case (a, c) = (0, 1).

• If (a, c) = (1, 0) then x = 1, by Theorem 2, the basis to which x extends is

{1,
√
−D}. Thus the well-rounded twist lattice of this basis is orthogonal.

Therefore, for all cases, OK has a unique well-rounded twist which is similar to an orthog-

onal lattice, up to similarity. �

Corollary 2. Let D be a square-free integer such that −D ≡ 1 (mod 4), and let K =

Q(
√
−D). Then the lattice ΛK has a unique well-rounded twist, which is a hexagonal

lattice, up to similarity.

Proof. The canonical basis of OK is

{

1,
1 +

√
−D

2

}

and vol(ΛK) =

√
D

2
. Suppose that

x = a+ c

(

1 +
√
−D

2

)

can be extended to a good basis. By Proposition 8, it is sufficient

to consider the case in which |(2a + c)c| ≤ 1, (a, c) = 1 and a ≥ 0. It implies (a, c) ∈
{(1, 0), (1,−2), (0, 1), (1,−1)}. By using a similar argument as the one of Theorem 2, we

can compute all tuples (a, c, b, d) such that F (au + cv, bu + dv) ≤ 0, where u = 1, v =
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1 +
√
−D

2
. One can easily checks that the value of F at all bases are equal to zero.

Therefore, these bases have only one well-rounded twist lattice, which is hexagonal, up to

similarity. �

Remark 4. Our results on well-rounded twist lattices of the ring of integers OK (Corollar-

ies 1 and 2) are more general compared to Lemma 2.2 in [5] which states that the lattices

OK is well-rounded (without twisting) if and only if D = 1, 3. Indeed, when D = 1 then

OK = Z[i] which is well-rounded and orthogonal, and is a particular case of Corollary 1.

When D = 3, then OK = Z

[

1 +
√
−3

2

]

which is well-rounded and hexagonal, and is a

particular case of Corollary 2.

Now let I be an integral ideal of K = Q(
√
−D) with the canonical basis {t, y + gδ}. In

case y 6= 0, we can easily apply a similar argument as in the proof of Theorem 2 to find

upper bounds for the number of well-rounded twists of I which are presented in Corollaries

3 and 4 as below. Note that these results may not be true for real quadratic fields and a

similar result has not been proved in [3].

Corollary 3. Let D be a squarefree integer with −D 6≡ 1 (mod 4) and let I be an ideal

of Q(
√
−D) with the canonical basis {t, y + gδ}. Then I has at most 6 + 2

[

y + 1

2

]

well-

rounded twists.

Proof. The result can be easily obtained from counting the number solutions of the in-

equations |(at + cy)c| ≤ t

2
, a ≥ 0, and (a, c) = 1 and by applying Theorem 2. �

Moreover, Corollary 3 can be implied immediately from Algorithm 1. Similarly, one has

the following result when −D ≡ 1 (mod 4).

Corollary 4. Let D be a squarefree integer with where −D ≡ 1 (mod 4) and let I

be an ideal of Q(
√
−D) with the canonical basis {t, y + gδ}. Then I has at most 6 +

2

[

2y + g + 1

2

]

well-rounded twists.

Proposition 10. Every ideal of OK has at least one well-rounded twist lattice.

Proof. We prove this theorem for the case −D 6≡ 1 mod 4, the case −D ≡ 1 mod 4 can

be proved using a similar argument.

As in the proof of Lemma 3, one can see that z = 1.t + 0.(y + g
√
−D) = t is an element

of I which can be extended to a good basis. Moreover, since ℑ(z2) = 0, by setting u = t
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and v = y + g
√
−D and using (15), one has β1 =

t + 2y

−2t
and β2 =

−t + 2y

−2t
. There are

at most two integers and at least one integers in the interval [β1, β2]. Using an argument

similar to the one in the proof of Theorem 2, we obtain a good basis of I. It provides

that I has a well-rounded twist lattice. �

Remark 5. In [11], it is proved that every lattice (in any dimension) has at least a well-

rounded twist, thus, Proposition 10 can be considered as a particular case of the mentioned

result. Our proof, however, uses an independent argument and result from the ones in [11].

Indeed Proposition 10 is implied from the proofs of Lemma 3 and Theorem 2. We remark

that a similar result has not been proved in [3] for real quadratic fields.

4. Algorithms and a numerical example

The proof of Theorem 2 gives us explicit formulae (see 12, 13, 14, 15, 16 and 17) to compute

all well-rounded twists of an ideal I given by any Z-basis {u, v} of I. In practice, I is

given by the canonical basis that can be efficiently computed if two generators of I over

OK are provided. We also note that the conditions ℑ(uv) 6= 0 and ℑ(vx) 6= 0 in Theorem

2 is necessary only if ℑ(x2) = 0. We can exchange the two vectors in the canonical basis

of I to have these conditions. Moreover, the canonical basis provides us simpler formulae

for β1, β2, β11, β12, β21, β22 than the ones in a general case shown as below.

In case −D 6≡ 1 (mod 4), then {t, y + g
√
−D} is the canonical basis of I. Let u = t, v =

y + g
√
−D.

1. If a = 0,ℑ(x2) = 0, from ad − bc = ±1, one has c = ±1. In these cases, since

ℑ(uv) = tg
√
D 6= 0, equations in (12) become β1 =

−1

2
, β2 =

1

2
. It implies that d = 0

and b = ±1. We only receive the tuple (0, 1, 1, 0) as others give the same well-rounded

twist lattices, up to similarity.

2. If a = 0,ℑ(x2) 6= 0, then it implies c2 = 1. Let α =
t

2y
. Then (13) and (14) become

β11 = −1

2
− α−

√

α2 − 3

4
, β21 = β11 + 1(18)

β12 = −1

2
− α +

√

α2 − 3

4
, β22 = β12 + 1.(19)

3. If a 6= 0,ℑ(x2) = 0 and c = 0, the equation (15) becomes

β1 =
−1

2
− y

t
, β2 = β1 + 1,(20)
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where u = t, v = y+ g
√
−D. If a 6= 0,ℑ(x2) = 0 and c 6= 0, the equation (15) becomes

β1 = −a

2
, β =

a

2
,(21)

where u = y + g
√
−D, v = t.

4. If a 6= 0,ℑ(x2) 6= 0, denote by β =
t

2c(at + cy)
, then (16),(17) become

{β11, β12} =

{

−ac− 2

2c
+ aβ ± a

√

β2 − 3

4

}

,(22)

{β21, β22} =

{

ac− 2

2c
+ aβ ± a

√

β2 − 3

4

}

.(23)

In the case −D ≡ 1 (mod 4), then

{

t, y + g
1 +

√
−D

2

}

is the canonical basis of I. Let

u = t, v = y + g
1 +

√
−D

2
.

1. If a = 0,ℑ(x2) = 0, it implies that
2y + g

2
g
√
D = 0, which cannot happen.

2. If a = 0,ℑ(x2) 6= 0, then c2 = 1. Let α =
t

2y + g
. Then (13),(14) become

β11 = −1

2
− α−

√

α2 − 3

4
, β21 = β11 + 1(24)

β12 = −1

2
− α +

√

α2 − 3

4
, β22 = β12 + 1.(25)

3. If a 6= 0,ℑ(x2) = 0 and c = 0, then (15) becomes

β1 = −1

2
− 2y + g

2t
and β2 = β1 + a.(26)

where u = t, v = y + g
1 +

√
−D

2
. If a 6= 0,ℑ(x2) = 0 and c 6= 0, then (15) becomes

β1 = −a

2
, β2 =

a

2
.(27)

where u = y + g
1 +

√
−D

2
, v = t.

4. If a 6= 0,ℑ(x2) 6= 0, denote by β =
t

c(2at + 2cy + cg)
, then (16),(17) become

{β11, β12} =

{

−ac− 2

2c
+ aβ ± a

√

β2 − 3

4

}

,(28)

{β21, β22} =

{

−ac + 2

2c
+ aβ ± a

√

β2 − 3

4

}

.(29)

Finally, we have a more efficient strategy to find all good bases of an ideal lattice I

compared to the one in page 6 as follows.
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� Step 1*: Find the canonical basis {u, v} = {t, y + gδ} of I.

� Step 2*: List all elements of I which can be extended to a basis of I.

� Step 3*: For each x found in Step 2, identifying all good bases {x, y} by using the

formulae above. Note that such basis must satisfy the condition (4).

In Step 2*, in case −D 6≡ 1 mod 4, we want to find x = au+ cv = (at + cy) + cg
√
−D

which can be extended to a good basis of I. It is equivalent to |(at + cy)c| ≤ t

2
. Lemma

3 provides us an idea to list all pairs (a, c).

In Case 1, the inequality 0 < |(at + cy)c| ≤ t

2
implies 0 < |c| ≤ t

2
and a ≤ y + 1

2
. If

a = 0, then c = ±1 and we also have 0 < y ≤ t

2
. For each a ∈

[

1,
y + 1

2

]

, we must find c

satisfing that

− t

2
≤ (at + cy) c ≤ t

2
.(30)

Let α =
t

2y
(α > 0), by considering (30) as the inequation system in c, we obtain

−aα−
√
a2α2 + α ≤ c ≤ −aα −

√
a2α2 − α(31)

−aα +
√
a2α2 − α ≤ c ≤ −aα +

√
a2α2 + α.(32)

Since −1 < −aα +
√
a2α2 − α and −aα +

√
a2α2 + α < 1 for all a ≥ 1, the inequal-

ity (32) implies that c = 0, it is contradict to |c| > 0. Moreover, if a ≥ 2, then
(

−aα −
√
a2α2 − α

)

−
(

−aα−
√
a2α2 + α

)

< 1 and if a = 1, then
(

−aα −
√
a2α2 − α

)

−
(

−aα −
√
a2α2 + α

)

≤
√
2. Therefore, for each a ≥ 2, we get at most one c and when

a = 1, we have at most two c.

In Case 3, if y = 0, then a = 0 and c = ±1. If y 6= 0, one has the conditions at+ cy = 0

and gcd(a, c) = 1. Thus, c = − t

gcd(t, y)
and a =

y

gcd(t, y)
.

Similarly, in the case −D ≡ 1 mod 4, one obtains a ≤ 2y + g + 1

2
and then chooses

nonzero c satisfying (31), 2at + 2cy + g 6= 0 and gcd(a, c) = 1 where α =
t

2y + g
. More-

over, the conditions 2at + 2cy + cg = 0 and gcd(a, c) = 1 imply that a =
2y + g

gcd(2t, 2y + g)

and c = − 2t

gcd(2t, 2y + g)
.

In the case −D 6≡ 1 (mod 4), a good basis of I has a following form

{

at+ c(y + g
√
−D), bt + d(y + g

√
−D)

}

.
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Condition (4) can be rewritten as follow.

(at + cy)d+ (bt+ dy)cg 6= 0.(33)

We compute all good bases of ΛK(I) by the following algorithm.

Algorithm 1. (For −D 6≡ 1 mod 4)

• Input: D, t, y, g where
{

t, y + g
√
−D

}

is the canonical basis of I.

• Output: The list L of all tuples (a, c, b, d) where
{

at + c(y + g
√
−D), bt + d(y + g

√
−D)

}

is a good basis of I, up to similarity.

Step 1: Add (1, 0, b, 1) into L where b ∈
[

−1

2
− y

t
,
1

2
− y

t

]

.

Step 2: If y = 0, then add (0, 1, 1, 0) into L.

Step 3: If y 6= 0, then

3.1. Compute c = − t

gcd(t, y)
and a =

y

gcd(t, y)
, then replace {a, c} with {−c,−a}.

Using (21) to compute β1, β2 = β1 + a. Add (a, c,−b,−d) satisfies (33) into

L where d ∈ [β1, β2] such that 1 + dc is a multiple of a and b =
1 + cd

a
.

3.2. If t ≥ 2y, then compute α =
t

2y
and compute β11, β12 using (18),(19). Let

β21 = β11+1 and β22 = β12+1. Add all tuples (0, 1, 1, d) satisfies (33) into L

where d ∈ [β11, β21] ∪ [β12, β22]. For each integer a in

[

1,
y + 1

2

]

, compute all

nonzero integers c satisfying (31) and at+cy 6= 0 and gcd(a, c) = 1. Compute

β =
t

2c(at+ cy)
and β11, β12 by using (22). Let β21 = β11 + a, β22 = β12 + a.

Add (a, c, b, d) satisfies (33) into L where b ∈ [β11, β21] ∪ [β12, β22] satisfying

that 1 + bc is a multiple of a and d =
1 + bc

a
.

3.3. If t < 2y, for each integer a in

[

1,
y + 1

2

]

, compute all nonzero integers c

satisfying (31), at+ cy 6= 0 and gcd(a, c) = 1. Compute β =
t

2c(at+ cy)
and

β11, β12 by using (22). Let β21 = β11 + a and β22 = β12 + a. Add (a, c, b, d)

satisfies (33) into L where b ∈ [β11, β21] ∪ [β12, β22] satisfying that 1 + bc is a

multiple of a and d =
1 + bc

a
.

Example 1. Consider K = Q(
√
−201) and I = 〈6 + 3

√
−201〉 an ideal of K. We will

find all good bases of I as follow.

The canonical basis of I is
{

615, 6 + 3
√
−201

}

. Here D = −201, t = 615, y = 6, g = 3.

We follow all the steps of Algorithm 1 as below.

Step 1: Since b ∈
[−209

410
,
201

410

]

, we have b = 0. Add (1, 0, 0, 1) into L.
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Step 2: We ignore Step 2 since y = 6 6= 0.

Step 3: 3.1. We have c = − 615

gcd(615, 6)
= −205 and a =

6

gcd(615, 6)
= 2. Replace

(a, c) with (−c,−a), one has a = 205, c = −2. Then using (21), one obtains

β1 = −102.5, β2 = 102.5. We choose d ∈ [β1, β2] such that
1− 2d

205
is an

integer. Thus d = −102 and hence b = 1. We add (2,−205,−1, 102) into L.

3.2. Since t ≥ 2y, one obtains

α =
t

2y
=

205

4
, β11 ≈ −102.99, β21 ≈ −101.99, β12 ≈ −0.5, β22 ≈ 0.5.

Then, d ∈ [−102.99,−101.99] ∪ [−0.5, 0.5]. Thus d = −102 or d = 0. Hence,

we add (0, 1, 1,−102), (0, 1, 1, 0) into L.

Since a ∈
[

1,
7

2

]

, then a ∈ {1, 2, 3}.
• When a = 1, one implies c = −102 that satisfies (31) and gcd(a, c) = 1.

Then β =
−205

204
, β11 ≈ −0.99, β21 ≈ 0.01, β12 ≈ −2.01, β22 ≈ −1.01.

It implies b ∈ {0,−2} and d ∈ {1, 205}, respectively.
• When a = 2, then c = −205. Since at + cy = 2.615 − 205.6 = 0, then

we eliminate the pair (2,−205).

• When a = 3, there is no value c satisfying (31).

Thus, L contains there are 6 tuples listed the following table of which each column contains

tuples defining the same lattice.

(1,0,0,1) (2,-205,-1,102) (0,1,1,-102)

(0,1,1,0) (1,-102,-2,205) (1,-102,0,1)
.

Therefore, there are 3 well-rounded twists of I, up to similarity, defined by the following

tuples
{

(1, 0, 0, 1), (2,−205,−1, 102), (0, 1, 1,−102)
}

.

Remark 6. Once can easily checks the similarity of well-rounded twists defined by tuples

(a, b, c, d) in L obtained from above algorithms by computing | cos θTαB| (see Lemma 1).

Indeed, one has | cos θTαB| =
∣

∣

∣

∣

(at+ cy)c+ (bt + dy)d

(at+ cy)d+ (bt + dy)c

∣

∣

∣

∣

in case −D 6≡ 1 mod 4 and

| cos θTαB| =

∣

∣

∣

∣

∣

∣

∣

∣

(

at+ c.
2y + g

2

)

c+

(

bt + d.
2y + g

2

)

d

(

at+ c.
2y + g

2

)

d+

(

bt + d.
2y + g

2

)

c

∣

∣

∣

∣

∣

∣

∣

∣

in case −D ≡ 1 mod 4.

In the case −D ≡ 1 (mod 4), a good basis of I has a following form

{

at + c

(

y + g
1 +

√
−D

2

)

, bt + d

(

y + g
1 +

√
−D

2

)}

.
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Condition (4) can be rewritten as follow.

(

at + c.
2y + g

2

)

d+

(

bt + d.
2y + g

2

)

c 6= 0.(34)

We compute all good bases of ΛK(I) by the following algorithm.

Algorithm 2. (For −D ≡ 1 mod 4)

• Input: D, t, y, g where

{

t, y + g
1 +

√
−D

2

}

is the canonical basis of I.

• Output: The list L of all tuples (a, c, b, d) where
{

at+ c

(

y + g
1 +

√
−D

2

)

, bt+ d

(

y + g
1 +

√
−D

2

)}

is a good basis of I.

Step 1: Add (1, 0, b, 1) into L where b is an integer belonging to

[

−1

2
− 2y + g

2t
,
1

2
− 2y + g

2t

]

.

Step 2: 2. 1. Compute a =
2y + g

gcd(2t, 2y + g)
and c = − 2t

gcd(2t, 2y + g)
, then replace {a, c}

with {−c,−a}. Using (27) to compute β1, β2 = β1 + a. Add (a, c,−b,−d)

satisfies (34) into L where d ∈ [β1, β2] such that 1+dc is a multiple of a and

b =
1 + bc

a
.

2. 2. If t ≥ 2y + g, compute α =
t

2y + g
and β11 and β12 by using (24) and (25).

Let β21 = β11 + 1 and β22 = β12 + 1. Add all tuples (0, 1, 1, d) satisfies (34)

into L where d ∈ [β11, β21]∪ [β12, β22]. For each integer a in

[

1,
2y + g + 1

2

]

,

compute all nonzero integers c satisfying (31), gcd(a, c) = 1 and 2at+2cy+

cg 6= 0. Compute β =
t

c(2at+ 2cy + cg)
and β11, β12 using (28). Let β21 =

β11+a, β22 = β12+a. Add (a, c, b, d) satisfies (34) into L where b ∈ [β11, β21]∪
[β12, β22] satisfying that 1 + bc is a multiple of a and d =

1 + bc

a
.

2. 3. If t < 2y + g, for each integer a in

[

1,
2y + g + 1

2

]

, compute all nonzero

integers c satisfying (31), gcd(a, c) = 1 and 2at + 2cy + cg 6= 0. Compute

β =
t

c(2at + 2cy + cg)
and β11, β12, β21 = β11 + a, β22 = β12 + a using (28).

Add (a, c, b, d) satisfies (34) into L where b ∈ [β11, β21] ∪ [β12, β22] satisfying

that 1 + bc is a multiple of a and d =
1 + bc

a
.

5. Analysis of Algorithm 1 and Algorithm 2

In this section, we will prove the correctness and the complexity of Algorithms 1 and 2.
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5.1. Correctness. Let I be an ideal with the canonical basis {t, y + gδ}. We prove

that tuples (a, c, b, d) outputted from Algorithm 1 form good bases {z, z′} where z =

at+ c (y + gδ) and z′ = bt+ d (y + gδ).

Definition 6. Suppose that I is an ideal of OK and {t, y + gδ} its canonical basis. A

good tuple is a tuple (a, c, b, d) of integer numbers satisfying that {z, z′} is a good basis

of I where z = at+ c (y + gδ), z′ = bt+ d (y + gδ). A pair (a, c) is called extendable for

I if z = at+ c (y + gδ) can be extended to a good basis of I.

We prove the correctness of Algorithm 1 as below.

Proposition 11. All tuples (a, c, b, d) in the output of Algorithm 1 are good tuples of

I. Inversely, the output of Algorithm 1 completely exports all good tuples of I, up to

similarity.

Proof. We notice that (a, c, b, d) is a good tuple if and only if (a, c) is extendable. By the

argument of given in the proof of Lemma 3, the pair (a, c) is extendable if and only if

gcd(a, c) = 1 and |c(at+ cy)| ≤ t

2
. Hence, it is trivial to prove this proposition using the

computation shown before Algorithm 1. �

Similarly, we can show the correctness of Algorithm 2 as below.

Proposition 12. All tuples (a, c, b, d) in output of Algorithm 2 are good tuples of I. In-

versely, the output of Algorithm 2 completely exports all good tuples of I, up to similarity.

5.2. Complexity. In this section, we provide an upper bound for the number of loops

and operations in Algorithms 1 and 2.

Lemma 6. The total number of loops of Algorithm 1 is at most y + 2. In addition, an

upper bound for the number of operations (expect addition) of each loop in Algorithm 1 is

57.

Proof. It is easy to see the first statement. Since the maximum number of operations in

Algorithm 1 occurs when a ∈
[

1,
y + 1

2

]

and it took us 57 operations (expect addition),

the second statement is obtained. �

Lemma 7. The largest number computed in Algorithm 1 is
5t(y + 1) + 8

8
.

Proof. First, we have |c| ≤ t

2
and a ≤ y + 1

2
. Using (18) and (19), one obtains that

−1

2
− 2α ≤ β11, β12 ≤ −1

2
.
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In case of applying (22), since c < 0 and a > 0, one has

1

2
≤
∣

∣

∣

∣

∣

ac− 2

2c
+ aβ ± a

√

β2 − 3

4

∣

∣

∣

∣

∣

≤ |ac− 2|
2

+ 2a|β| ≤ t(y + 1) + 8

8
+

t(y + 1)

2
=

5t(y + 1) + 8

8
.

In the other words, we have the following inequality |βij| ≤
5t(y + 1) + 8

8
.

If we employ (20),(21) to compute β1, then |β1| ≤ y + 1.

Thus
5t(y + 1) + 8

8
is the maximum number computed in Algorithm 1. �

Similarly, we have the following results for Algorithm 2.

Lemma 8. In Algorithm 2, the total number of loops of is at most 2y+g+2 and an upper

bound for the number of operations of each loop is 65. In addition, the largest number

computed in this algorithm is
5t(2y + g + 1) + 4

4
.
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