
APPROXIMATE CONTROL OF THE MARKED LENGTH SPECTRUM
BY SHORT GEODESICS

KAREN BUTT

Abstract. The marked length spectrum (MLS) of a closed negatively curved manifold
(M, g) is known to determine the metric g under various circumstances. We show that in
these cases, (approximate) values of the MLS on a sufficiently large finite set approximately
determine the metric. Our approach is to recover the hypotheses of our main theorems in
[But22], namely multiplicative closeness of the MLS functions on the entire set of closed
geodesics of M . We use mainly dynamical tools and arguments, but take great care to
show the constants involved depend only on concrete geometric information about the given
Riemannian metrics, such as the dimension, sectional curvature bounds, and injectivity
radii.

1. Introduction

The marked length spectrum of a closed negatively curved Riemannian manifold (M, g)
of negative curvature is a function on the free homotopy classes of closed curves in M which
assigns to each class the length of its unique geodesic representative. It is conjectured
that this function completely determines the metric g up to isometry [BKB+85], and this
is known under various conditions, namely in dimension 2 [Ota90, Cro90], in dimensions
3 or more when one of the metrics is locally symmetric [Ham99, BCG95], and in general
when the metrics are sufficiently close in a suitable Ck topology [GL19, GKL22]. (See the
introductions to [But22, GL19] for more detailed discussions.)

In the case where (M, g) has constant negative curvature and dimension at least 3, the
fundamental group of M already determines g by Mostow Rigidty [Mos73]. When dimM =
2, the Teichmüller space of all such metrics has finite dimension 6 genus(M)− 6. Here it is
known that the marked length spectrum on a sufficiently large finite subset determines the
metric up to isometry. (See [FM11, Theorem 10.7] and the introduction to [Ham03].)

In the case of variable curvature, on the other hand, the space of all negatively curved
metrics on M is infinite-dimensional, so no finite set can suffice. It is nevertheless natural
to ask if finitely many closed geodesics can approximately determine the metric. As far as
we know, this question has not been previously considered in the literature. In this paper,
we do this two cases: in dimension 2, and in dimension at least 3 when one of the metrics is
locally symmetric. As mentioned above, these are two of the main cases where it is already
known that the full marked length spectrum determines the metric up to isometry.

In [But22], we showed that in each of the above situations, two metrics are bi-Lipschitz-
equivalent with constant close to 1 when the marked length spectra are multiplicatively close.
In light of this, we answer our question by first proving that for arbitrary closed negatively
curved manifolds, finitely many closed geodesics determine the full marked length spectrum
approximately (Theorem 1.2). In fact, we do not require the lengths of the finitely many
free homotopy classes to coincide exactly, but only approximately.
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1.1. Statement of the main result. To state our main result precisely, we first introduce
some notation. Let Lg denote the marked length spectrum of (M, g). Since the set of free
homotopy classes of M can be identified with conjugacy classes in the fundamental group Γ
of M , we will write Lg(γ) for the length of the geodesic representative of the conjugacy class
of γ ∈ Γ with respect to the metric g. If (N, g0) is another negatively curved Riemannian
manifold with fundamental group isomorphic to Γ, there is a homotopy equivalence f : M →
N inducing this isomorphism. If f∗ denotes the induced map on fundamental groups, then
Lg0 ◦ f∗ makes sense as a function on Γ as well. Our work investigates what can be said
about g and g0 satisfying the hypothesis below:

Hypothesis 1.1. For L > 0, let ΓL := {γ ∈ Γ | Lg(γ) ≤ L}. Now let ε > 0 small and
suppose

1− ε ≤ Lg(γ)

Lg0(f∗γ)
≤ 1 + ε

for all γ ∈ ΓL.

If L is sufficiently large, we obtain estimates for the ratio Lg/Lg0 on all of Γ in terms of
ε and L in Theorem 1.2 below. Moreover, our estimates do not depend on the particular
pair of metrics under consideration; they are uniform for all (M, g) and (N, g0) with pinched
sectional curvatures and injectivity radii bounded away from zero.

Theorem 1.2. Let (M, g) and (N, g0) be closed Riemannian manifolds of dimension n with
sectional curvatures contained in the interval [−Λ2,−λ2]. Let Lg and Lg0 denote their marked
length spectra. Let Γ denote the fundamental group of N and let iN denote its injectivity
radius. Suppose there is a homotopy equivalence f : M → N and let f∗ denote the induced
map on fundamental groups. Then there is L0 = L0(n,Γ, λ,Λ, iN) so that the following
holds: Suppose the marked length spectra Lg and Lg0 satisfy Hypothesis 1.1 for some ε > 0
and L ≥ L0. Then there exist constants C > 0 and 0 < α < 1, depending only on n, Γ, λ,
Λ, iN , so that

1− (ε+ CL−α) ≤ Lg(γ)

Lg0(f∗γ)
≤ 1 + (ε+ CL−α)

for all γ ∈ Γ.

Remark 1.3. Note that M and N need not be diffeomorphic a priori, as shown by Farrell–
Jones [FJ89, FJ94] and Aravinda–Farrell [AF04, AF03]. All of our results cover this case as
well.

Remark 1.4. Throughout the proof of Theorem 1.2, we use several constants which depend
on iM , the injectivity radius of M . This dependence on iM can be replaced with a dependence
on iN in light of Hypothesis 1.1. Indeed, since the injectivity radius of a negatively curved
manifold is half the length of the shortest closed geodesic [Pet06, p.178], we can write 2iM =
lg(γ) for some homotopy class γ. So long as L is sufficiently large for ΓL to be non-empty,
we have lg(γ) ≥ (1− ε)lg0(γ). Since lg0(γ) ≥ 2iN for any γ ∈ Γ, we obtain iM ≥ (1− ε)iN .

Remark 1.5. One can obtain similar conclusions to those in Theorem 1.2 by combining
Proposition 2.4, the proof of which occupies the vast majority of this paper, with finite
Livsic theorems such as [GL21, Theorem 1.2] and [Kat90]. However, our direct method in
Section 2 yields estimates which depend only on concrete geometric information (dimension,
sectional curvature, injectivity radius) and not on the given flows; see Remark 2.10.
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1.2. Applications to rigidity. Since the conclusion of Theorem 1.2 is the main hypothesis
in [But22], we recover versions of all our quantitative marked length spectrum rigidity results
from only finite data, i.e., only assuming Hypothesis 1.1. Let ε̃ = ε̃(ε, L, n,Γ, λ,Λ, iM) =
ε + CL−α as in the conclusion of Theorem 1.2. This theorem states that Hypothesis 1.1
results in

1− ε̃ ≤ Lg(γ)

Lg0(f∗γ)
≤ 1 + ε̃ (1.1)

for all γ ∈ Γ. Applying Theorems 1.2 and 1.4 in [But22] yields the following two corollaries.

Corollary 1.6. Let (M, g) be a closed Riemannian manifold of dimension at least 3 with
fundamental group Γ and sectional curvatures contained in the interval [−Λ2, 0). Let (N, g0)
be a locally symmetric space. Assume there is a homotopy equivalence f : M → N and
let f∗ denote the induced map on fundamental groups. Then there exists small enough ε0

(depending on Γ) so that whenever ε̃ ≤ ε0 and (1.1) holds, there is a C2 map F : M → N
homotopic to f and constants c1(ε̃, n,Γ,Λ) < 1, C2(ε̃, n,Γ,Λ) > 1 such that for all v ∈ TM
we have

c1‖v‖g ≤ ‖dF (v)‖g0 ≤ C2‖v‖g. (1.2)

More precisely, there is a constant C = C(n,Γ,Λ) so that c1 = 1−Cε̃1/8(n+1) +O(ε̃1/4(n+1))
and C2 = 1 + Cε̃1/8(n+1) +O(ε̃1/4(n+1)).

Remark 1.7. If Ñ is a real, complex or quaternionic hyperbolic space, we can take c1 =
1 − Cε1/4(n+1) + O(ε1/2(n+1)) and C2 = 1 + Cε1/4(n+1) + O(ε1/2(n+1)). See [But22, Theorem
1.2].

Corollary 1.8. Let (M, g) be a closed negatively curved Riemannian manifold with funda-
mental group Γ. Let (N, g0) be another closed negatively curved manifold with fundamental
group Γ and assume the geodesic flow on T 1N has C1+β Anosov splitting for some 0 < β < 1.
Suppose the marked length spectra of M and N are ε̃-close as in (1.1). Then there is a con-
stant C depending only on Ñ such that

(1− Cε̃β)(1− ε̃)nVol(M) ≤ Vol(N) ≤ (1 + Cε̃β)(1 + ε̃)nVol(M).

If, in addition, (N, g0) is locally symmetric and ε is sufficiently small (depending on n =
dimN), then β can be replaced with 2 in the above estimates and the constant C depends
only n.

Applying [But22, Theorem 1.1] yields the following.

Corollary 1.9. Let M be a compact surface of higher genus with fundamental group Γ. Fix
λ,Λ, v0, D0 > 0. Given any A > 1, there exists a large enough L = L(A, λ,Λ, v0, D0,Γ)
so that for any pair of Riemannian metrics g and h on M with sectional curvatures in the
interval [−Λ2,−λ2], volume bounded below by v0, diameter bounded above by D0 and marked
length spectra satisfying Lg(γ) = Lh(γ) for all {γ ∈ Γ |,Lg(γ) ≤ L}, there is an A-Lipschitz
map f : (M, g)→ (M,h).

1.3. Structure of the paper. In Section 2, we start by stating the key dynamical facts
used in our proof of Theorem 1.2. Specifically, we use an estimate for the size of a covering of
the unit tangent bundle T 1M by certain small “flow boxes” in addition to a Hölder estimate
for a certain orbit equivalence between the geodesic flows of M and N . We then prove the
theorem assuming these two facts. See the introduction to Section 2 below for a rough sketch
of the argument.
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The rest, and vast majority, of this paper is devoted to proving the above-mentioned
covering lemma and Hölder estimate. The proofs rely on a few well-established consequences
of the hyperbolicity of the geodesic flow. However, the standard results from the theory
of Anosov flows (uniformly hyperbolic flows) are stated very generally and thus contain a
multitude of constants which depend on the given flow in arguably mysterious ways. As
a result, considerable technical difficulties arise in ensuring the constants depend only on
select geometric and topological properties of (M, g) and (N, g0).

The main components of this analysis are as follows. In Section 3, we use geometric
arguments involving horospheres to investigate the local product structure of the geodesic
flow, a key mechanism responsible for many of the salient features of hyperbolic dynamical
systems. Indeed, the results of this section are used to prove both the covering lemma and
the Hölder estimate. The covering lemma is then quickly proved in Section 4. Before proving
the desired Hölder estimate, we show that the homotopy equivalence f : M → N (via which
we are able to compare the marked length spectrum functions Lg and Lg0) can be taken to
be a quasi-isometry with controlled quasi-isometry constants, i.e., depending only on n, Γ,
λ, Λ, iM , iN . This is done in Section 5. Finally, in Section 6, we prove the orbit equivalence
of geodesic flows in [Gro00] is Hölder continuous, also with controlled constants.

Acknowledgements. I am very grateful to my advisor Ralf Spatzier for many helpful
discussions and for help reviewing this paper. I thank Vaughn Climenhaga, Dmitry Dolgo-
pyat, Andrey Gogolev, and Thang Nguyen for helpful conversations. I also thank Nicholas
Wawrykow for help with making the figures. This research was supported in part by NSF
grant DMS-2003712.

2. Proof of main theorem

In this section, we will prove Theorem 1.2 assuming two key statements: a covering lemma
(Lemma 2.1 below) and a Hölder estimate (Proposition 2.4 below). These statements are
proved in Sections 4 and 6, respectively.

The basic idea is to start by covering the unit tangent bundle T 1M with finitely many
sufficiently small “flow boxes”, that is, sets obtained by flowing local transversals for some
small fixed time interval (0, δ). On the one hand, any periodic orbit of the flow that visits
each of these boxes at most once is short, i.e., has period at most δ times the total number
of boxes. On the other hand, any periodic orbit that is long, i.e., of length more than δ
times the number of boxes, must return to at least one of the boxes more than once before
it closes up. In other words, long periodic orbits contain shorter almost-periodic segments.
By the Anosov closing lemma, these are in turn shadowed by periodic orbits. This allows
us to approximate the lengths of long closed geodesics with sums of lengths of short ones.
We then use a Hölder continuous orbit equivalence F : T 1M → T 1N to argue that similar
approximations hold for the corresponding closed geodesics in N . From this, we are able to
estimate the ratio of Lg(γ)/Lg0(γ) for all long geodesics γ given our assumed estimate holds
for short ones (Hypothesis 1.1).

We now introduce the precise statements of the aforementioned covering lemma and Hölder
estimate. Let W si for i = s, u denote the strong stable and strong unstable foliations for the
geodesic flow φt on the unit tangent bundle T 1M . For δ > 0, let W si

δ (v) = W si(v)∩B(v, δ),
where B(v, δ) denotes a ball of radius δ in T 1M with respect to the Sasaki metric. (See
Section 3 for some background on the stable/unstable foliations and the Sasaki metric.)
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Let P (v, δ) = ∪v′∈W ss
δ (v)W

su
δ (v′) and let R(v, δ) = ∪t∈(−δ/2,δ/2)φ

tP (v, δ). We will call
R(v, δ) a δ-rectangle. For our proof of Theorem 1.2, we use the following estimate for the
number of δ-rectangles needed to cover T 1M .

Lemma 2.1. Let iM denote the injectivity radius of M . There is small enough δ0 =
δ0(n, λ,Λ, iM) and a constant C = C(n,Γ, λ,Λ, iM) so that for any δ < δ0, there is a covering
of T 1M by at most C/δ2n+1 δ-rectangles.

Remark 2.2. The main difficulty is showing that the constant C does not depend on the
metric g, but only on n, Γ, λ, Λ, diam(M).

Remark 2.3. Rectangles of the form R(v, δ) are often used to construct Markov partitions,
e.g. in [Rat73]. However, in Lemma 2.1, we are not constructing a partition, meaning we do
not require the rectangles to be measurably disjoint.

Now consider the geodesic flows φt and ψt on T 1M and T 1N , respectively. Recall that a
homeomorphism F : T 1M → T 1N is an orbit equivalence if there is some function (cocycle)
a(t, v) so that

F(φtv) = ψa(t,v)F(v)

for all v ∈ T 1M and for all t ∈ R. Since M and N are homotopy-equivalent compact
negatively curved manifolds, such an F exists by [Gro00]. Our proof of Theorem 1.2 relies
on the following estimates for the regularity of F .

Proposition 2.4. Suppose (M, g) and (N, g0) are a pair of homotopy-equivalent compact
Riemannian manifolds with sectional curvatures contained in the interval [−Λ2,−λ2]. Let
iM and iN denote their respective injectivity radii. Then there exists an orbit equivalence of
geodesic flows F : T 1M → T 1N which is C1 along orbits and transversally Hölder continu-
ous. More precisely, there is small enough δ0 = δ0(λ,Λ, iM) together with constants C and
A, depending only on n, Γ, λ, Λ, iM , iN , so that the following hold:

(1) d(F(v),F(φtv)) ≤ At for all v ∈ T 1M̃ and t ∈ R,

(2) d(F(v),F(w)) ≤ Cd(v, w)A
−1λ/Λ for all v, w ∈ T 1M̃ with d(v, w) < δ0.

Remark 2.5. It is a standard fact that any orbit equivalence of Anosov flows is C0-close to a
Hölder continuous one; in other words, there are constants C and α, depending on the given
flows, i.e., on the metrics g and g0, so that d(F(v),F(w)) ≤ Cd(v, w)α [FH19, Theorem
6.4.3]. However, we are claiming the stronger statement that for the orbit equivalence in
[Gro00], there is a uniform choice of C and α for all (M, g) and (N, g0) with pinched sectional
curvatures and injectivity radii bounded away from 0.

To prove Theorem 1.2, we start with a covering of T 1M by δ-rectangles (see Lemma 2.1).
Let δ0 be as in Proposition 2.4, then make δ0 smaller if necessary so that Lemma 2.1 holds as
well. This choice of δ0 depends only on n, λ,Λ, iM . Now fix δ ≤ δ0, together with a covering
T 1M = ∪mi=1R(vi, δ). By Lemma 2.1, we can take m ≤ Cδ2n+1. Since δ is now fixed, we use
the notation Ri for the rectangle R(vi, δ) and Pi for the transversal P (vi, δ).

Let v ∈ T 1M . Then v ∈ Pi if and only φtv ∈ Ri for all t ∈ (−δ/2, δ/2). Moreover, if v is
tangent to a closed geodesic of length τ , then for any rectangle Ri, the set

{t ∈ (−δ/2, τ − δ/2)|φtv ∩Ri 6= ∅}

is a (possibly empty) disjoint union of intervals of length δ.
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Definition 2.6. Fix a covering of T 1M by δ-rectangles R1, . . . , Rm as above. Suppose η is
a closed geodesic of length τ with η′(0) = v. Suppose that for each i, the set

{t ∈ (−δ/2, τ − δ/2)|φtv ∩Ri 6= ∅}
consists of at most a single interval. Then we say η is a short geodesic (with respect to the
covering R1, . . . Rm).

Remark 2.7. Let L = L(δ) = Cδ−2n, where C is the constant in the statement of Lemma
2.1. If η is a short geodesic, then lg(η) ≤ mδ ≤ Cδ−2n = L.

Proposition 2.8. Let γ be any closed geodesic in M . Then there is k ∈ N (depending on
γ) and short geodesics η1, . . . , ηk+1 so that∣∣∣∣∣lg(γ)−

k+1∑
i=1

lg(ηi)

∣∣∣∣∣ < 2kCδ

for some constant C = C(λ,Λ, iM).

Proof. If γ is already a short geodesic, then k = 0 and η1 = γ. If not, then let i be the
smallest index so that γ crosses through Ri in at least two time intervals. Let v ∈ Pi tangent
to γ and let t1 > 0 be the first time so that φt1v ∈ Pi. By the Anosov closing lemma, there
is w1 tangent to a closed geodesic γ1 of length t′1 with |t1 − t′1| < Cδ, where C depends
only on the sectional curvature bounds λ and Λ and the injectivity radius iM (see Lemma
3.12). Similarly, applying the Anosov closing lemma to the orbit segment {φtv | t ∈ [t1, τ ]}
gives w2 tangent to a closed geodesic γ2 of length t′2 with |(τ − t1) − t′2| < Cδ. This means
|lg(γ)− lg(γ1)− lg(γ2)| < 2Cδ.

Iterating the above process, we can “decompose” γ into short geodesics. More precisely,
if γ1 is not a short geodesic, then there is some other rectangle Rj through which γ1 crosses
twice. By the same argument as above, we get |lg(γ1) − lg(γ1,1) − lg(γ1,2)| < 2Cδ for some
γ1,1, γ1,2 ∈ Γ. Continuing in this manner, we get the desired conclusion. �

Next, we show that lg0(γ) is still well-approximated by the sum of the g0-lengths of the same
free homotopy classes η1, . . . , ηk+1 that were used to do the approximation with respect to
g. For this, we use the estimates for the regularity of the orbit equivalence F : T 1M → T 1N
in Proposition 2.4. Recall that a(t, v) denotes the time-change cocycle, i.e. F(φtv) =
ψa(t,v)F(v).

Lemma 2.9. Let γ and η1, . . . , ηk+1 as in Proposition 2.8. Then an analogous estimate holds
in (N, g0), namely, ∣∣∣∣∣lg0(γ)−

k+1∑
i=1

lg0(ηi)

∣∣∣∣∣ < 2kCδα,

where C depends only on Γ, λ, Λ, iM , iN , and α is the Hölder exponent in the statement of
Proposition 2.4.

Proof. As in the proof of Proposition 2.8, let v ∈ T 1M tangent to γ. By the Anosov
closing lemma, there is w1 ∈ T 1M tangent to a closed geodesic γ1 of length t′1 such that
d(v, w1) < Cδ, for some C = C(λ,Λ, iM) (Lemma 3.12). Additionally, d(φt1v, φt

′
1w1) < Cδ.

By Proposition 2.4, we know d(F(v),F(w1)) < Cδα. Moreover, since F(v) and F(w1)
remain Cδα-close after being flowed by times a(t1, v) and a(t′1, w), respectively, it follows
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that |a(t1, v) − a(t′1, w1)| < 2Cδα. (We defer the short proof of this fact to Section 3; see
Lemma 3.2.)

Similarly, the Anosov closing lemma applied to the orbit segment {φtv | t ∈ [t1, l(γ)]} gives
w2 tangent to a closed geodesic γ2 of length t′2. By an analogous argument, |a(lg(γ)− t1, v)−
a(t′2, w2)| < 2Cδα. Since a(t, v) is a cocycle we get |a(lg(γ), v)−a(t′1, w1)−a(t′2, w2)| < 4Cδα.

Using that F is a Γ-equivariant orbit-equivalence, it follows that a(lg(γ), v) = lg0(γ) when-
ever v ∈ T 1M is tangent to the closed geodesic γ. So the estimate in the previous paragraph
can be rewritten as |lg0(γ) − lg0(γ2) − lg0(γ2)| < 4Cδα. As such, we can iterate the process
in Proposition 2.8 and get an additive error of 4Cδα at each stage. �

Proof of Theorem 1.2. Recall from Remark 2.7 that L = L(δ) = Cδ−2n for some C =
C(n,Γ, λ,Λ, iM). Since we fixed δ ≤ δ0 = δ0(n, λ,Λ, iM), we see that L ≥ L0 = L(δ0).
By Lemma 2.1, this choice of L0 depends only on n, Γ, λ, Λ, iM .

Recall as well that we are assuming

1− ε ≤ Lg(γ)

Lg0(γ)
≤ 1 + ε

for all γ ∈ ΓL := {γ ∈ Γ | lg(γ) ≤ L} (see Hypothesis 1.1). We then have

lg(γ) ≤
k+1∑
i=1

lg(γi) + 2kCδ (Proposition 2.8)

≤ (1 + ε)
k+1∑
i=1

lg0(γi) + 2kCδ (Hypothesis 1.1)

≤ (1 + ε)lg0(γ) + (1 + ε)2k(2C ′δα + Cδ) (Proposition 2.9)

≤ (1 + ε)lg0(γ) + kC ′′δα.

Using this, we consider the ratio

lg(γ)

lg0(γ)
≤ (1 + ε) +

kC ′′δα

lg0(γ)

≤ 1 + ε+
kC ′′δα∑k+1

i=1 lg0(γi)− 2kδ
(Proposition 2.9)

≤ 1 + ε+
kC ′′δα

2kiN − 2kδ

= 1 + ε+
C ′′δα

2iN − 2δ
.

In the last inequality, we used the fact that lg0(γ) ≥ 2iN for all γ.
Finally, by the definition of L in Remark 2.7, we have δ = CL−1/2n, where C is a constant

depending only on n, Γ, a, b, iM . So we can write that the ratio lg(γ)/lg0(γ) is between
1± (ε+C ′L−α/2n), where α is the Hölder exponent in the statement of Proposition 2.4. �

Remark 2.10. There is a way to obtain approximate control of the marked length spectrum
from finitely many geodesics by combining Proposition 2.4 with the finite Livsic theorem in
[GL21], but our direct method above yields better estimates.

Let a(t, v) denote the time change function for the orbit equivalence F in Proposition
2.4. By the definition of a(t, v) in (6.3) (see also [But22, Lemma 2.24]), this cocycle is
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differentiable in the t direction. Let a(v) = d
dt
|t=0a(t, v). It follows from (6.3) and Lemma

6.8 that a(v) is of Cα regularity, where α is the same Hölder exponent as in the statement
of Proposition 2.4. It follows from Lemma 6.2 and the proof of [But22, Lemma 2.24] that
‖a(v)‖C0 ≤ A, where A is the constant in Lemma 6.2. Hence, ‖a‖Cα ≤ A + C, where C is
the constant in Proposition 2.4.

Now let {φtv}0≤t≤lg(γ) be the g-geodesic representative of the free homotopy class γ. Then

lg0(γ) =
∫ lg(γ)

0
a(φtv) dt. Let f(v) = (a(v)− 1)/‖a− 1‖Cα . Then ‖f‖Cα ≤ 1 and Hypothesis

1.1 implies

1

lg(γ)

∣∣∣∣∣
∫ lg(γ)

0

f(φtv) dt

∣∣∣∣∣ ≤ ε

A+ C

for all γ ∈ ΓL. Setting L =
(

ε
C+A

)−1/2
means that f satisfies the hypotheses of Theorem 1.2

in [GL21]. This theorem implies that for all γ ∈ Γ, the ratio Lg/Lg0 is between 1±C ′
(

ε
C+A

)τ
,

where C ′ and τ are constants depending on the given flow. Our direct method above yields
an exponent of α/4n in place of τ .

3. Local product structure

We consider the distance d on T 1M induced by the Sasaki metric gS on T 1M , which is
in turn defined in terms of the Riemannian inner product g on M (see [dC92, Exercise 3.2]
for the definition). Throughout the rest of this paper, we will make use of the following
standard facts relating the Sasaki distance d to the distance dM on M coming from the
Riemannian metric g and the distance dT 1

qM
on Sn−1 ∼= T 1

qM . Let v, w ∈ T 1M be unit

tangent vectors with footpoints p and q respectively. Let v′ ∈ T 1
qM be the vector obtained

by parallel transporting v along the geodesic joining p and q. Then we have

dM(p, q), dT 1
qM

(v′, w) ≤ d(v, w) ≤ dM(p, q) + dT 1
qM

(v′, w). (3.1)

For convenience, we will often write d in place of dM when it is clear from context that we
are considering the distance between points as opposed to between unit tangent vectors.

Recall the geodesic flow on the unit tangent bundle of a negatively curved manifold is
Anosov, and thus has local product structure. This means every point v has a neighborhood
V which satisfies: for all ε > 0, there is δ > 0 so that whenever x, y ∈ V with d(x, y) ≤ δ
there is a point [x, y] ∈ V and a time |σ(x, y)| < ε such that

[x, y] = W ss(x) ∩W su(φσ(x,y)y)

[FH19, Proposition 6.2.2]. Moreover, there is a constant C0 = C0(δ) so that d(x, y) < δ
implies dss(x, [x, y]), dsu(φ

σ(x,y)[x, y], y) ≤ C0d(x, y), where dss and dsu denote the distances
along the strong stable and strong unstable manifolds, respectively.

To describe the stable and unstable distances dss and dsu, we first recall the stable and
unstable manifolds W ss and W su for the geodesic flow have the following geometric descrip-
tion (see, for instance, [Bal95, p. 72]). Let v ∈ T 1M̃ . Let p ∈ M̃ be the footpoint of v and
let ξ ∈ ∂M̃ be the forward projection of v ∈ T 1M̃ to the boundary. Let Bξ,p denote the

Busemann function on M̃ and let Hξ,p denote its zero set. Then the lift of W ss(v) to T 1M̃ is

given by {−gradBξ,p(q) | q ∈ Hξ,p}. If η denotes the projection of −v to the boundary ∂M̃ ,

then the lift of W su(v) to T 1M̃ is analogously given by {gradBη,p(q) | q ∈ Hη,p}.
Now let v ∈ T 1M and w ∈ W ss(v). Let p and q denote the footpoints of v and w

respectively. Define the stable distance dss(v, w) to be the horospherical distance h(p, q), i.e.,
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the distance obtained from restricting the Riemannian metric g on M̃ to a given horosphere.
The unstable distance is defined analogously.

From the above description of W ss and W su in terms of normal fields to horospheres, it
follows that the local product structure for the geodesic flow enjoys stronger properties than
those for a general Anosov flow given in the first paragraph. First, the product structure is
globally defined, meaning the neighborhood V in the first paragraph can be taken to be all
of T 1M̃ (see, for instance, [Cou04]). Second, the bound on the temporal function σ can be
strengthened:

Lemma 3.1. If d(v, w) < δ, then |σ(v, w)| < δ. for all δ

Proof. Let p and q denote the footpoints of v and w respectively. Then by (3.1), we know
d(p, q) < δ. Let ξ denote the forward boundary point of v and let η denote the backward
boundary point of w. Let p′ ∈ Hξ,p and q′ ∈ Hη,q be points on the geodesic through η and
ξ. Then d(p′, q′) = |σ(v, w)|. Moreover, since the geodesic segment through p′ and q′ is
orthogonal to both Hξ,p and Hη,q, it minimizes the distance between these horospheres. In
other words, |σ(v, w)| = d(p′, q′) ≤ d(p, q) < ε. �

This allows us to deduce the following key lemma, which was used in the proof of Propo-
sition 2.9.

Lemma 3.2. Consider the geodesic flow φt on the universal cover T 1M̃ . Suppose d(v, w) <
δ1 and d(φsv, φtw) < δ2. Then |s− t| < δ1 + δ2.

Proof. Since [φsv, φsw] = [φsv, φtw], we have

φσ(φsv,φsw)φsw = φσ(φsv,φtw)φtw.

Thus σ(φsv, φsw) + s = σ(φsv, φtw) + t. Rearranging gives

s− t = σ(φsv, φtw)− σ(φsv, φsw) = σ(φsv, φtw)− σ(v, w).

By Lemma 3.1, the absolute value of the right hand side is bounded above by δ1 + δ2, which
completes the proof. �

Now assume (M, g) has sectional curvatures between −Λ2 and −λ2. We will show the
constant C0 in the definition of local product structure can be taken to depend only on λ, Λ
and diam(M), whereas a priori it depends on the metric g. For our purposes, it will suffice
to show the following proposition, which is formulated using the Sasaki distance d between
vectors in T 1M instead of the stable/unstable distances dss and dsu between vectors on the
same horosphere. In fact, we will show later (Lemma 6.5) that the Sasaki distance d between
vectors on the same stable/unstable manifold is comparable to dss and dsu, respectively.

Proposition 3.3. Suppose (M, g) has sectional curvatures between −Λ2 and −λ2. Then
there is small enough δ0 = δ0(λ,Λ, diam(M)) so that the following holds. Let u ∈ T 1

p M̃ . Let

u1 ∈ W ss(u) and u2 ∈ W ss(x) so that d(u1, u2) ≤ diam(T 1M), where d denotes the distance
in the Sasaki metric. Then there exists a constant C0 = C0(λ,Λ, diam(M)) so that whenever
d(u1, u2) < δ0, we have d(u, ui) ≤ C0d(u1, u2) for i = 1, 2.

Remark 3.4. In our context, the dependence of the constant C0 on the diameter of M can be
replaced with a dependence on the injectivity radius iM . Indeed, by [Gro82, Section 0.3], the
volume of M is bounded above by a constant V0 depending only on n, Γ, and λ. A standard
argument (see, for instance, the proof of Lemma 3.9 in [But22]) then shows the diameter is
bounded above by D0 = D0(iM , V0,Λ).



10 KAREN BUTT

Our proof of Proposition 3.3 relies on the geometry of horospheres, and we use many of
the methods and results from the paper [HIH77] of the same title. However, we additionally
consider the Sasaki distances between unit tangent vectors in T 1M̃ instead of just distances
between points in M̃ .

Let ξ ∈ ∂M̃ and let B = Bξ be the associated Busemann function. Suppose p ∈ M̃ is

such that B(p) = 0. Let v ∈ T 1
p M̃ perpendicular to gradB(p) and consider the geodesic

γ(s) = expp(sv). Define f(s) = B(γ(s)). This is the distance from γ(s) to the zero set of B.
Moreover, f ′(s) = 〈gradB, γ′〉 = cos θ, where θ is the angle between γ′(s) and gradB(γ(s)).
In particular, f ′(0) = 0.

Lemma 3.5. For all s ∈ R we have f(s) ≤ Λ
2
s2 and cos θ(s) = f ′(s) ≤ Λs.

Proof. We have f ′′(s) = 〈∇γ′gradB, γ′〉 = 〈∇γ′T
gradB, γ′T 〉, where γ′T denotes the component

of γ′ which is tangent to the horosphere through ξ and γ(s). Note ‖γ′T‖ = sin(θ), where as
before, θ is the angle between γ′(s) and gradB(γ(s)).

Thus f ′′(s) = 〈J ′(0), J(0)〉, where J is the stable Jacobi field along the geodesic through
γ(s) and ξ with J(0) = γ′T (s). (See, for instance, [BCG95, p.750–751].) By [Bal95, Propo-
sition IV.2.9 ii)], we have ‖J ′(0)‖ ≤ Λ‖J(0)‖, which shows f ′′(s) ≤ Λ‖J(0)‖2 ≤ Λ. Since
f(0) and f ′(0) are both 0, Taylor’s theorem implies that for any s, there is s̃ ∈ [0, s] so that

f(s) = f ′′(s̃)
2
s2. Thus, f(s) ≤ Λ

2
s2 for all s ≥ 0. Moreover, since f ′(0) = 0, integrating f ′′(s)

shows cos θ = f ′(s) ≤ Λs. �

Lemma 3.6. Fix S > 0. Then there is a constant c = c(λ, S) such that for all s ∈ [0, S] we
have f(s) ≥ c

2
s2 and cos θ = f ′(s) ≥ cs.

Proof. As in [HIH77, Section 4], we use fλ(s) to denote the analogue of the function f(s), but
defined in the space of constant curvature −λ2. By considering the appropriate comparison
triangles, it follows that f(s) ≥ fλ(s) and f ′(s) ≥ f ′λ(s) [HIH77, Lemma 4.2]. As in the
proof of the previous lemma, we know f ′′λ (s) = 〈J(0), J ′(0)〉, where ‖J(0)‖ = sin θ. Solving
the Jacobi equation explicitly in constant curvature gives f ′′λ (s) = λ sin2 θ. For all s ∈ [0, S],
this is bounded below by λ sin2 θ(S), which is a constant depending only on the value of S
and the space of constant curvature −λ2. In other words, there is a constant c = c(λ, S) so
that f ′′λ (s) ≥ c for all s ∈ [0, S]. As in the proof of the previous lemma, Taylor’s theorem
then implies fλ(s) ≥ c

2
s2, and integrating f ′′λ on the interval [0, s] gives f ′λ(s) ≥ cs. �

Remark 3.7. From the above proof it is evident that f ′λ(s)/s→ 0 as s→∞, and as such the
only way to get a positive lower bound for cos θ/s is to restrict to a compact interval [0, S].
This is reasonable for our purposes, since in the end, we will be applying the results of this
section to the compact manifold M as opposed to its universal cover M̃ . In Hypothesis 3.8
below, we explain how we choose S based on diam(M).

For the proofs of the next several lemmas, we will consider the following setup (see Figure
1 below). Let u be a unit tangent vector with footpoint p . Let v ∈ T 1

pM perpendicular to u
and let γ(t) = expp(tv). Fix s > 0 and let u1 ∈ W ss(u) be such that such that the geodesic
determined by u1 passes through γ(s). Let p1 denote the footpoint of u1. Let η denote the
geodesic segment joining p and p1 and let α denote the angle this segment makes with the
vector u. Let q be the orthogonal projection of p1 onto the geodesic γ. Consider the geodesic
right triangle with vertices p1, q, γ(s). Let θ denote the angle at γ(s) and let θ1 denote the
angle at p1.
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Figure 1.

Hypothesis 3.8. For our purposes, it is reasonable to assume d(p, p1) ≤ diam(M), where
p, p1 ∈ M̃ . By [HIH77, Theorem 4.6, Proposition 4.7], this forces s ≤ S, where S is a
constant depending only on diam(M) and the lower sectional curvature bound −Λ2. So we
assume s ≤ S from now on.

Lemma 3.9. Let u1 ∈ W ss(u) as in Figure 1, and assume s ≤ S (see Hypothesis 3.8).
Then there is a constant C = C(Λ, diam(M)) so that d(u, u1) ≤ Cs. If u2 ∈ W ss(u), then
d(u, u2) ≤ Cs as well.

Proof. Consider the setup in Figure 1. Let η denote the geodesic joining p and p1 and let
Pη : TpM → Tp1M denote parallel transport along this geodesic. Recall

d(u, u1) ≤ dM(p, p1) + dT 1
p1
M(Pu, u1).

To bound dM(p, p1), we use the triangle inequality together, Lemma 3.5, and Hypothesis 3.8:

d(p, p1) ≤ d(p, q) + d(p1, q) ≤ s+ d(p1, γ(s)) ≤ s+ Λs2/2 ≤ (1 + ΛS/2)s.

To bound dT 1
p1
M(Pu, u1), we first find bounds for the angles θ and θ1. We know from

Lemma 3.5 that sin(π/2 − θ) = cos θ ≤ Λs. Moreover, sin(π/2 − θ) ≥ (2/π)(π/2 − θ) for
0 ≤ π/2 ≤ θ. Since the interior angles of geodesic triangles in M sum to less than π, we
know θ + θ1 < π/2. Thus, θ1 < π/2− θ ≤ (π/2)Λs.

Now let α denote the angle between u and η′ at the point p. Then α is also the angle
between Pu and η′ at the point p1, since parallel transport is an isometry and η′ is a
geodesic. Since the angle sum of the geodesic triangle with vertices p, p1 and q is less
than π, the angle in Tp1M between η′ and [p1, q] is strictly less than α. Thus if we rotate
η′ towards Pu, we must pass through the tangent vector to [p1, q] along the way. Hence
dTp1M(Pu, u1) < θ1 ≤ (π/2)Λs, which completes the proof of the upper bound for d(u, u1).
The estimate for d(u, u2) follows by an analogous argument. �

Lemma 3.10. Again, consider the setup in Figure 1 and Hypothesis 3.8. For all s ∈ [0, S]
we have θ1 ≥ cs for some c = c(λ,Λ, diam(M)).

Proof. Consider the following comparison triangle with vertices p′1, q
′, x in the space of con-

stant curvature −Λ2: suppose there is a right angle at the vertex q′ and the lengths of the
two legs are equal to dM(q, p1) and dM(q, γ(s)). Let θ′ denote the angle at x and let θ′1 denote
the angle at p′1. Since triangles in M are thicker than in the space of constant curvature
−Λ2, we have θ1 ≥ θ′1 and cos(θ′) ≥ cos(θ). Now by [Bea12, Theorem 7.11.3] we have

θ′1 ≥ sin(θ′1) =
cos(θ′)

cosh(Λ d(q, p1))
≥ cos(θ)

cosh(Λ d(γ(s), p1))
.
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By Lemma 3.6, we can bound the numerator below by cs for some c = c(λ,Λ, diam(M)).
Using Lemma 3.5 and Hypothesis 3.8, we get d(γ(s), p1) = f(s) ≤ Λs2/s ≤ ΛS2/2. So
the denominator is bounded above by some constant depending only λ,Λ, diam(M), which
completes the proof. �

Lemma 3.11. Let u ∈ T 1
pM . Let u1 ∈ W ss(u) be such that the footpoints p and p1 of u and

u1 are distance t apart. Then d(u, u1) ≤ (1 + Λ)t.

Proof. Let η denote the geodesic joining p and p1. Let Pη : TpM → Tp1M denote parallel
transport along η. Let v0 ∈ T 1

pM be the vector contained in the plane spanned by u and
η′(0) so that 〈u, v0〉 = 0 and 〈η′(0), v0〉 > 0. Let V (s) denote the parallel vector field along
η(s) with initial value V (0) = v0. Let θ(s) be the angle between V (s) and −gradB(η(s)).
Then θ1 = π/2− θ(t) is the angle between u1 and Pηu. We have

sin(π/2− θ) = cos(θ) = 〈V (t),−gradB(η(t))〉 =

∫ t

0

〈V (s),∇V gradB(η(s))〉 ds.

By the same argument as in the proof of Lemma 3.5, this integral is bounded above by Λt.
Hence, d(u, u1) ≤ dM(p, p1) + dTp1M(Pηu, u1) ≤ t+ Λt. �

Proof of Proposition 3.3. Consider the hypersurface formed by taking the exponential im-
age of gradB(p)⊥. For i = 1, 2, let xi denote the point on this hypersurface which is on
the geodesic determined by ui. Let vi ∈ T 1

pM perpendicular to u for i = 1, 2 such that
expp(sivi) = xi, where si = d(p, xi). Let γi(s) = expp(svi).

Now suppose without loss of generality that s1 ≥ s2 and let s = s1. By Lemma 3.9, we have
d(u, u1) ≤ Cs for some C = C(Λ, diam(M)). So it suffices to bound d(u1, u2)/s from below
by some constant depending only on the desired parameters. Now let c = c(λ,Λ, diam(M))
be the constant from the statement of Lemma 3.10, and let β such that c− 2(1 + Λ)β = c/2.
Let s′ = βs. Let q1 and q2 denote the orthogonal projections of p1 and p2 onto the tangent
plane gradB(p)⊥. See Figure 2 below.

Figure 2.

We consider the cases d(q1, q2) ≥ s′ and d(q1, q2) ≤ s′ separately. In the first case, we
obtain d(u1, u2) ≥ dM(p1, p2) ≥ d(q1, q2) ≥ βs1, which shows d(u, u1) ≤ C

β
d(u1, u2).

We now consider the case d(γ1(s), γ2(s)) ≤ s′. The geodesic determined by p1 and q1 inter-
sects the unstable horosphere W su(u) at some point we will call p3. Let u3 = gradBη,p(p3).
As before, let θ1 denote the angle between u1 and the geodesic determined by the points p1

and q1. Then d(u1, u3) ≥ θ1 ≥ cs by Lemma 3.10.
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We now bound d(u2, u3) from above. Lemma 3.11 gives d(u2, u3) ≤ (1 + Λ)d(p2, p3). By
the triangle inequality and Lemma 3.5, d(p2, p3) ≤ s′ + Λs2. So if s′ ≤ βs, we obtain
d(u2, u3) ≤ (1 + Λ)(β + Λs)s. We now claim that there is δ0 sufficiently small so whenever
d(u1, u2) < δ0, we also have s is small enough to guarantee Λs ≤ β. To see this, first note
that d(u1, u2) ≥ d(p1, p2) ≥ d(p1, q1). Now consider a comparison right triangle in the space
of constant curvature −λ2 with hypotenuse equal to d(γ(s0), p1) = f(s) and an angle θ equal
to the angle between gradB and γ′ at the point γ(s0). Let x denote the length of the side
opposite to the angle θ. Then, using the fact that triangles in M are thinner than this
comparison triangle, together with [Bea12, Theorem 7.11.2 ii)], Lemma 3.6 and Hypothesis
3.8, gives

sinh(d(p1, q1)) ≥ sinh(x) = sin(θ(s)) sinh(f(s)) ≥ sin(θ(S)) sinh(cs2).

So if d(u1, u2) ≤ δ we see that sinh(cs2) ≤ Cδ, where C depends only on λ and S. In
other words, there is small enough δ0 = δ0(λ,Λ, diam(M)) to ensure s is as small as desired,
which in this case means small enough for Λs ≤ β = β(λ,Λ, diam(M)). Thus, we now have
d(u2, u3) ≤ 2(1 + Λ)βs.

Finally, d(u1, u2) ≥ d(u1, u3) − d(u2, u3) ≥ s1(c − 2(1 + Λ)β). By the choice of β, this is
bounded below by c

2
s. Hence d(u, u1) ≤ Cs1 ≤ 2C

c
d(u1, u2). Reversing the roles of u1 and u2

and repeating the same argument gives the analogous upper bound for d(u, u2). �

Proposition 3.3 allows us to deduce the following refinement of the Anosov Closing Lemma,
where we can say the constants involved depend only on concrete geometric information
about (M, g), namely the diameter and the sectional curvature bounds. Note that now the
setting is T 1M as opposed to the universal cover T 1M̃ .

Lemma 3.12. There is δ0 = δ0(λ,Λ, diam(M)) sufficiently small so that the following holds.
Suppose v, φtv ∈ T 1M so that d(v, φtv) < δ ≤ δ0. Then either v and φtv are on the same
local flow line or there is w with d(v, w) < Cδ so that w is tangent to a closed geodesic of
length t′ ∈ [t−Cδ, t+Cδ], where C is a constant depending only on the diameter of M and
the sectional curvature bounds λ and Λ.

Proof. Let δ0 be the constant in Proposition 3.3. The proof of the usual Anosov Closing
Lemma in [Fra18, Figure 2] (see also [Bow75, 3.6, 3.8]) shows the constant C depends only
on the local product structure constant C0. By Proposition 3.3, we know this depends only
on λ,Λ, diam(M). �

4. Covering lemma

In this section, we prove the following covering lemma, which was one of the key statements
we used in the proof of the main theorem.

Lemma 2.1. There is small enough δ0 = δ0(n, λ,Λ, diam(M)) together with a constant
C = C(n,Γ, λ,Λ, diam(M)) so that for any δ < δ0, there is a covering of T 1M by at most
C/δ2n+1 δ-rectangles.

We start with a preliminary lemma.

Lemma 4.1. Let B(v, δ) be a ball of radius δ in T 1M with respect to the Sasaki metric.
There is small enough δ0 = δ0(n), depending only on the dimension n, so that for all δ < δ0

we have vol(B(v, δ)) ≥ cδ2n+1 for some constant c = c(n).
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Proof. First we claim B(v, δ) ⊃ BM(p, δ/2) × BSn−1(v, δ/2), where BM(p, δ/2) is a ball of
radius δ/2 in M and BSn−1(v, δ/2) is a ball of radius δ/2 in the unit tangent sphere T 1

pM .
This follows immediately from (3.1). Since M is negatively curved, Theorem 3.101 ii) in
[GHL90] implies volBM(p, δ/2) ≥ βnδ

n/2n, where βn is the volume of the unit ball in Rn. By

Theorem 3.98 in [GHL90], we have volBSn−1(v, δ/2) = βn−1δn−1

2n−1 (1 − n−1
6(n+1)

δ2 + o(δ4)). Then

for δ less than some small enough δ0, we can write

BSn−1(v, δ/2) ≥ βn−1δ
n−1

2n−1

(
1− 2

n− 1

6(n+ 1)
δ2

)
≥ cδn+1,

for some c = c(n). The quantity δ0 depends only on the coefficients of the Taylor expansion
of volBSn−1(v, δ/2), which depend only on the geometry of Sn−1. So we can say δ0 depends
only on n. Therefore, the volume of the Sasaki ball B(v, δ) is bounded below by cδ2n+1 for
some other constant c = c(n) depending only on n. �

Proof of Lemma 2.1. Let δ0 and C as in Proposition 3.3. Let c = 1/C and let δ < δ0/2c.
Let v1, . . . , vm be a maximal cδ-separated set in T 1M with respect to the Sasaki metric. We
claim that the balls B(v1, cδ), . . . , B(vm, cδ) cover T 1M . If not, there is some v such that
d(v, vi) ≥ cδ for all i. This contradicts the fact that v1, . . . , vm was chosen to be a maximal
cδ-separated set.

This implies that the rectangles R(v1, δ) . . . R(vm, δ) cover T 1M as well. Indeed, let w ∈
B(v, cδ). Then by Lemma 3.1 there is a time σ = σ(v, w) < cδ and a point [v, w] ∈ T 1M
so that [v, w] = W ss(v) ∩ W su(φσw). Thus d(v, φσw) ≤ δ0 and Proposition 3.3 implies
dss(v, [v, w]), dsu([v, w], φσw) < Ccδ = δ as desired.

Now we estimate m. Since v1, . . . , vm if cδ-separated, it follows that for i 6= j we have
B(vi, c δ/2) ∩B(vj, c δ/2) = ∅. Hence

m inf
i

vol(B(vi, cδ/2)) ≤ vol(T 1M) = vol(Sn−1)vol(M).

By [Gro82, 0.3 Thurston’s Theorem], we have vol(M) is bounded above by a constant de-
pending only on n, Γ and the upper sectional curvature bound −λ2. This, together with
Lemma 4.1, gives m ≤ C/δ2n+1 for some constant C = C(n,Γ, λ,Λ, diam(M)). �

5. Pseudo-isometry estimates

Recall (M, g) and (N, g0) are compact negatively curved manifolds with a given isomor-
phism between their fundamental groups. Since M and N are K(π, 1) spaces, there is a
homotopy equivalence M → N inducing this isomorphism; moreover, we can assume it is of
C1 regularity, since every continuous map is homotopic to a differentiable one. Now lift this
C1 homotopy equivalence to a map f : M̃ → Ñ , which is equivariant with respect to the
actions of Γ ∼= π1(M) ∼= π1(N) on M̃ and Ñ . It is well-known that f is a pseudo-isometry
(see, for instance, [BP92, Proposition C.1.2]), meaning there exist constants A and B so that
for all x1, x2 ∈ M̃ we have

A−1dg(x1, x2)−B ≤ dg0(f(x1), f(x2)) ≤ Adg(x1, x2). (5.1)

This is a special case of the perhaps more widely used concept of a quasi-isometry, which is
when there is also an additive constant on the righthand side of (5.1). In our case, however,
the absence of this additive constant is crucial for our remaining arguments.
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In this section, we show the constants A and B depend only on the fundamental group
Γ, the injectivity radius of (M, g) and the sectional curvature bounds for (M, g) and (N, g0)
(Proposition 5.1 below).

Proposition 5.1. Suppose f : M̃ → Ñ is a Γ-equivariant C1 map as above. Now let g and
g0 be Riemannian metrics on M and N with sectional curvatures contained in the interval
[−Λ2,−λ2], and suppose the injectivity radii of (M, g) and (N, g0) are bounded below by iM
and iN , respectively. Then there are constants A and B depending only n,Γ, a, b, iM so that
(5.1) holds for all x1, x2 ∈ M̃ .

We start by finding a uniform Lipschitz bound for f , in other words, proving the second
inequality in the above proposition (Corollary 5.4 below). A key tool we use is Gromov
compactness. LetM(D0, v0,Λ) be the space of all Riemannian metrics onM with diameter at
most D0, volume at least v0 and absolute sectional curvatures at most Λ2. This space satisfies
certain pre-compactness properties. We will use a refinement of Gromov’s theorem due to
Greene–Wu [GW88], namely that any sequence (M, gn) ∈ M(D0, v0,Λ) has a subsequence
(M, gnk) converging in the following sense: there is a Riemannian metric g∞ on M such that
in local coordinates we have gijnk → gij∞ in the C1,α norm and the limiting gij∞ have regularity
C1,α, for some 0 < α < 1.

Lemma 5.2. Suppose f : M → N is a C1 map. Suppose g and g0 are Riemannian metrics
on M and N with (M, g) ∈ M(D0, v0,Λ) and (N, g0) ∈ M(D′0, v

′
0,Λ

′). Then there exists a
constant A = A(f,D0, D

′
0, v0, v

′
0,Λ,Λ

′) so that

‖df‖g,g0 := sup
v∈TM

‖dfp(v)‖g0
‖v‖g

≤ A.

Proof. If gn → g in the C1,α topology, then, in particular, ‖v‖gn → ‖v‖g∞ uniformly on
compact sets. This means if gn → g and gn0 → g0, then dfgn,gn0 → dfg,g0 .

Now suppose for contradiction that the statement of the lemma is false. This means
there are sequences gn ∈ M(D0, v0,Λ) and gn0 ∈ M(D′0, v

′
0,Λ

′) so that ‖df‖gn,gn0 → ∞.
After passing to convergent subsequences, we have ‖df‖gn,gn0 → ‖df‖g∞,g∞0 for some C1,α

Riemannian metrics g∞ and g∞0 . Since f is C1 and the unit tangent bundle of M is compact,
the derivative df(v) is uniformly bounded in v. In other words, ‖df‖g∞,g∞0 < ∞, which is a
contradiction. So the statement of the lemma must be true. �

Lemma 5.3. Suppose that (M, g) has sectional curvatures in the interval [−Λ2,−λ2] and in-
jectivity radius at least iM . Then there are constants v0 = v0(iM , n) and D0 = D0(n, λ,Γ, iM)
so that (M, g) ∈M(D0, v0,Λ).

Proof. First, the desired absolute sectional curvature bound holds by assumption. Second,
by Gromov’s systolic inequality, we know vol(M, g) ≥ v0, where v0 is a constant depending
only on n and iM [Gro83, 0.1.A]. It now remains to bound the diameter from above. By
[Gro82, Section 0.3], the volume is bounded above by a constant V0 depending only on n, Γ,
and λ. A standard argument (see, for instance, the proof of Lemma 3.9 in [But22]) shows
the diameter is bounded above by D0 = D0(iM , V0,Λ). �

Corollary 5.4. Let (M, g) and (N, g0) be closed Riemannian manifolds of dimension n with
sectional curvatures in the interval [−Λ2,−λ2], and assume there is an isomorphism between
their fundamental groups. Then there is an A-Lipschitz map f : M → N inducing this
isomorphism, where A depends only on n,Γ, λ,Λ, and the injectivity radii iM and iN .
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Given that f is A-Lipschitz, we now show the second estimate in the definition of pseudo-
isometry. We follow the approach of [BP92, Proposition C.12], but we need to check the
constants depend only on the desired parameters n, Γ, λ, Λ and iN .

First, let h : Ñ → M̃ be a C1 homotopy inverse of f . By Corollary 5.4, h is also A-
Lipschitz. Now consider the following fundamental domain DM for the action of Γ on M̃
(see [BP92, Proposition C.1.3]). Fix p ∈ M̃ . Let

DM = {x ∈ M̃ | d(x, p) ≤ d(x, γ.p)∀γ ∈ Γ}. (5.2)

Claim 5.5. The diameter of DM satisfies diam(DM) ≤ 2 diam(M).

Proof. Let x ∈ M̃ so that d(p, x) > diam(M). This means there is some γ ∈ Γ so that
d(x, γ.p) < d(x, p). In other words, any geodesic in M̃ starting at p stays in DM for a time
of at most diam(M). So if x1, x2 ∈ DM so that d(x1, x2) = diam(DM), then d(x1, x2) ≤
d(x1, p) + d(x2, p) ≤ 2 diam(M), which proves the claim. �

Claim 5.6. For all x ∈ M̃ , we have d(h ◦ f(x), x) ≤ 2(1 + A2)diam(M).

Proof. Since h and f are both continuous and Γ-equivariant, so is h ◦ f , and thus it suffices
to check the statement for x in a compact fundamental domain DM . Since f and h are
A-Lipschitz, it follows that the function x 7→ d(h ◦ f(x), x) is (1 + A2)-Lipschitz:

|d(h ◦ f(x), x)− d(h ◦ f(y), y)| ≤ d(h ◦ f(x), h ◦ f(y)) + d(x, y) ≤ (1 + A2)d(x, y).

Noting d(x, y) ≤ DM ≤ 2 diam(M) completes the proof. �

Proof of Proposition 5.1. We can now use the argument in [BP92] verbatim. By the previous
claim, we obtain

d(h(f(x1)), h(f(x2)) ≥ d(x1, x2)− 4(1 + A2)diam(M).

Then, the Lipschitz bounds for f and h give

d(f(x1), f(x2)) ≥ A−1d(h ◦ f(x1), h ◦ f(x2)) ≥ A−1
(
d(x1, x2)− 4(1 + A2)diam(M)

)
,

which completes the proof. �

6. Hölder estimate

In this section, we show the following, which was one of the main ingredients in the proof
of Theorem 1.2.

Proposition 2.4. Suppose (M, g) and (N, g0) are a pair of homotopy-equivalent compact
Riemannian manifolds with sectional curvatures contained in the interval [−Λ2,−λ2]. Let
iM and iN denote their respective injectivity radii. Then there exists an orbit equivalence of
geodesic flows F : T 1M → T 1N which is C1 along orbits and transversally Hölder continu-
ous. More precisely, there is small enough δ0 = δ0(λ,Λ, iM) together with constants C and
A, depending only on n, Γ, λ, Λ, iM , iN , so that the following hold:

(1) d(F(v),F(φtv)) ≤ At for all v ∈ T 1M̃ and t ∈ R,

(2) d(F(v),F(w)) ≤ Cd(v, w)A
−1λ/Λ for all v, w ∈ T 1M̃ with d(v, w) < δ0.

We will take F to be the map in [Gro00], whose construction we now recall. As in Section
5, consider a C1 homotopy equivalence M → N , which we lift to a Γ-equivariant map
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f : M̃ → Ñ . By Proposition 5.1, there are constants A and B, depending only on n, λ, Λ,
Γ, iM , so that

A−1d(p, q)−B ≤ d(f(p), f(q)) ≤ Ad(p, q). (6.1)

Let η be a bi-infinite geodesic in M̃ and let ζ = f(η) be the corresponding geodesic in Ñ ,
where f : ∂2M̃ → ∂2Ñ is obtained from extending the quasi-isometry f to a map ∂M̃ → ∂Ñ .

Let Pζ : Ñ → ζ denote the orthogonal projection. Note this projection is Γ-equivariant,

i.e., γPζ(x) = Pγζ(γx). If (p, v) ∈ T 1M̃ is tangent to η, define F0(p, v) to be the tangent

vector to ζ at the point Pζ ◦ f̃(p). Thus F0 : T 1M̃ → T 1Ñ is a Γ-equivariant map which
sends geodesics to geodesics. As such, we can define a cocycle b(t, v) to be the time which
satisfies

F0(φtv) = ψb(t,v)F0(v). (6.2)

It is possible for a fiber of the orthogonal projection map to intersect the quasi-geodesic
f̃(η) in more than one point; thus, F0 is not necessarily injective. In order to obtain an
injective orbit equivalence, we follow the method in [Gro00] and average the function b(t, v)
along geodesics. Let

al(t, v) =
1

l

∫ t+l

t

b(s, v) ds. (6.3)

There is a large enough l, depending only on the quasi-isometry constants A and B and the
upper sectional curvature bound −λ2, so that t 7→ al(t, v) is injective for all v. (The idea
of the proof is to compute the derivative d

dt
al(t, v) and choose large enough l so that it is

always nonzero. For details, see [But22, Lemma 2.24].) An injective orbit equivalence F is
then given by

F(v) = ψal(0,v)F0(v)

for al injective as above. (See [But22, Proposition 2.25] for a proof that F is injective.)
We now proceed to find a Hölder estimate for F . Most of the work is finding estimates

for the map F0 from (6.2) (Proposition 6.6).
We will repeatedly use the following fact about quasi-geodesics remaining bounded dis-

tance away from their corresponding geodesics:

Lemma 6.1 (Theorem III.H.1.7 of [BH13]). Let f be the quasi-isometry from Section 5. Let
c(t) be any geodesic in M̃ and let η be its corresponding geodesic in Ñ obtained from the
boundary map f : ∂M̃ → ∂Ñ . Then there is a constant R, depending only on the pseudo-
isometry constants A and B of f and the upper sectional curvature bound −λ2 for N , so
that d(f(c(t)), Pη(f(c(t))) ≤ R for any t ∈ R.

Lemma 6.2. Let b(t, v) as in (6.2). Let A,B as in (6.1). Then b(t, v) satisfies

At−B′ ≤ b(t, v) ≤ At.

for all t, where B′ is a constant depending only on λ,A,B.

Proof. Recall b(t, v) = d(Pηf(p), Pηf(q)), which is bounded above by d(f(p), f(q)) because
orthogonal projection is a contraction in negative curvature. This quantity is in turn bounded
above by At, using the Lipschitz bound for f in (6.1).

Next, let R be the constant in Lemma 6.1. Then d(f(p), Pη(f(p)) ≤ R, which implies
b(t, v) ≥ d(f(p), f(q)) − 2R. The desired estimate then follows from the lower bound for
d(f(p), f(q)) in (6.1). �
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Lemma 6.3. There is small enough δ0 = δ0(Λ) so that for any δ ≤ δ0 the following holds.
Fix v ∈ T 1M̃ and let x ∈ M̃ be a point such that the orthogonal projection Pv(x) of x
onto the bi-infinite geodesic determined by v is the footpoint of v. Let w ∈ W su(v) and
suppose further that dsu(v, w) < δ. Then there is a constant C = C(n,Γ, λ,Λ, iM) so that
d(Pv(x), Pw(x)) < Cδ.

Proof. Let p and q denote the footpoints of v and w, respectively. Let u ∈ T 1
pM be the

vector tangent to the curve in the horosphere connecting p and q. Let γ(s) = expp(su).
Let s0 be such that γ(s0) intersects the geodesic determined by w. We claim there are
positive constants δ0 = δ0(Λ) and C = C(Λ) so that if d(v, w) ≤ δ ≤ δ0 then s0 ≤ Cδ. By
[HIH77, Proposition 4.7] we know tanh(Λs0) ≤ Cdsu(v, w) ≤ Cδ, where C is some constant
depending only on Λ, which proves the claim.

Now let θ denote the angle between the geodesic segment [x, γ(s0)] and the geodesic
determined by w. We start by showing θ is close to π/2. In the case where x and p coincide,
the above angle θ is the same as the angle θ in Lemma 3.5. Thus, cos θ ≤ Λs0.

Otherwise, let t0 = d(x, p) 6= 0. We consider two further cases: d(x, γ(s0)) ≤ δ and
d(x, γ(s0)) ≥ δ. For the proof in the first case, we start by noting that

d(p, Pw(x)) ≤ d(p, γ(s0)) + d(Pw(x), γ(s0))

≤ d(p, q) + d(q, γ(s0) + d(Pw(x), γ(s0)) + d(x, γ(s0).

Since d(v, w) < δ (by assumption), so is d(p, q). By Lemma 3.5, d(q, γ(s0)) ≤ Λs2
0 ≤ Cδ2.

Finally, note d(x, Pw(x)) ≤ d(x, γ(s0)). So applying the hypothesis d(x, γ(s0)) ≤ δ completes
the proof in this case.

Now we consider the case d(x, γ(s0)) ≥ δ. Let v0 ∈ T 1
xM such that expx(t0v0) = p. For

0 < s ≤ s0, let v(s) ∈ Tx0M such that expx(t0v(s)) = γ(s). Then X(s) := d
dt
|t=t0 expx(tv(s))

is a vector field along γ(s). The hypothesis d(x, γ(s0)) ≥ δ allows us to bound

‖X(s)‖
‖X(s0)‖

=
d(x, γ(s))

d(x, γ(s0)
≤ 1 +

s0

d(x, γ(s0))
≤ 1 +

s0

δ
≤ 1 + C, (6.4)

where C is a constant depending only on Λ.
We now claim there is a constant C = C(n,Γ, λ,Λ, iM) so that

cos θ =
〈gradBξ(γ(s0)), X(s0)〉

‖X(s0)‖
≤ Cs0. (6.5)

Since 〈gradBξ(γ(0)), X(0)〉 = 0, the fundamental theorem of calculus gives

〈gradBξ(γ(s0)), X(s0)〉 =

∫ s0

0

d

ds
〈gradBξ(γ(s)), X(s)〉 ds.

So the desired bound for cos(θ) follows from bounding the integrand from above by C‖X(s0)‖
for all s ∈ [0, s0]. In light of (6.4), it suffices to find an upper bound of the form C‖X(s)‖.
To this end, we rewrite integrand using the product rule:

d

ds
〈gradB(γ(s)), X(s)〉 = 〈∇γ′gradB(γ(s)), X(s)〉+ 〈gradB(γ(s)),∇γ′X(s)〉. (6.6)

The first term on the righthand side is bounded above by

‖X(s)‖|〈∇gradBγ′(γ(s)), u〉| = ‖X(s)‖HessBξ(γ
′(s), u)
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for some unit vector u. Next, using that the Hessian is symmetric bilinear form, together
with Lemma 3.5, we have

HessBξ(γ
′(s), u) ≤ 1

4
HessBξ(γ

′(s) + u, γ′(s) + u) ≤ Λ

4
‖γ′(s) + u‖ ≤ Λ

2
.

Now we consider the second term in (6.6). First note that ∇γ′X(s) = J ′s(t0), where Js(t)
is the Jacobi field along the geodesic ηs(t) = expx(tv(s)) with initial conditions Js(0) = 0
and J ′s(0) = v(s). In order to bound ‖J ′s(t0)‖, we let e1(t) = η′(t), e2(t), . . . , en(t) be a
parallel orthonormal frame along η(t). Let f1(t), . . . , fn(t) such that Js(t) =

∑n
i=1 fi(t)ei(t).

The fact that Js satisfies the Jacobi equation means f ′′1 (t) = 0, so f1(t) = 〈v(s), η′(0)〉t and
|f ′1(t)| ≤ ‖v(s)‖ = ‖X(s)‖. Now let J⊥s denote the component of Js which is perpendicular
to ηs. By [Bal95, Proposition IV.2.5], we have

‖(J⊥s )′(t0)‖ ≤ cosh(Λt0)‖(J⊥s )′(0)‖ ≤ cosh(ΛR)‖X(s)‖,
where R is the constant in Lemma 6.1. This completes the verification of (6.5).

Now let q′ be the orthogonal projection of x onto the geodesic determined by w. We use
our bound for cos θ to show d(p, q′) is small. Consider the geodesic triangle with vertices
x, q′ and γ(s0). The angle at q′ is π/2 by definition of orthogonal projection, and we have
just shown the angle θ at γ(s0) satisfies cos θ ≤ Cs0, where s0 < Cδ. Then by [Bea12,
Theorem 7.11.2 iii)] tanh(d(q′, γ(s0)) ≤ Cδ tanh(d(x, q′)) ≤ Cδ, where C is the constant in
(6.5). Thus, for δ0 sufficiently small in terms of C, we see that d(q′, γ(s0) ≤ 2Cδ whenever
δ < δ0. Now recall from the first paragraph that d(p, γ(s0)) = s0 ≤ Cδ. Noting that
d(p, q′) ≤ d(p, γ(s0)) + d(q′, γ(s0)) completes the proof. �

Proposition 6.4. Let δ0 = δ0(Λ) be as small as in the previous lemma. Suppose w ∈ W su(v)
and dsu(v, w) < δ0. Then there is a constant C = C(n,Γ, λ,Λ, iM) so that d(F0(v),F0(w)) ≤
Cdsu(v, w)Aλ/Λ, where A is the constant in Proposition 5.1. The analogous statement holds
if w ∈ W ss(v) instead.

Proof. Let p and q denote the footpoints of v and w, respectively. By definition, F0(v) =
Pη1(f(p)) and F0(w) = Pη2(f(q)) for the appropriate bi-infinite geodesics η1 and η2 in Ñ .
By the triangle inequality,

d(Pη1(f(p)), Pη2(f(q)) ≤ d(Pη1(f(p)), Pη1(f(q))) + d(Pη1(f(q)), Pη2f(q)). (6.7)

We start by estimating the first term. Let dsu(v, w) = δ. Then d(p, q) < δ. By (6.1), we
have d(f(p), f(q)) < Aδ. Since orthogonal projection is a contraction in negative curvature,
the second term is bounded above by d(f(p), f(q)) ≤ Ad(p, q).

Thus it remains to bound d(Pη1(f(q)), Pη2(f(q))), which we do by applying Lemma 6.3.
Since F(v) and F(w) are on the same weak unstable leaf, there is w′ on the orbit of w so
that F(v) and F(w′) are on the same strong unstable leaf. In light of Lemma 6.3, it suffices
to find a Hölder estimate for dsu(F(v),F(w′)).

Again, let δ = dsu(v, w) for simplicity. Since the unstable distance exponentially expands
under the geodesic flow, there is some positive time t so that dsu(φ

tv, φtw) = 1. More
precisely, [HIH77, Proposition 4.1] implies Λt ≥ log(1/δ).

Next, note that d(F0(φtv),F0(φtw′)) ≤ d(F0(φtv),F0(φtw)) ≤ 2R + A, where R is as in
Lemma 6.1 and A is the Lipschitz constant for f . Indeed, since f is A-Lipschitz, we have
d(f(φtv), f(φtw)) ≤ A, and d(f(φtv), Pη1f(φtv)) ≤ R. By [HIH77, Theorem 4.6], we also
have the bound dsu(F0(φtv),F0(φtw′)) ≤ 2

Λ
sinh(Λ(2R + A)/2).
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By [HIH77, Proposition 4.1], we have the following estimate for how the unstable distance
gets contracted under the geodesic flow:

dsu(F0(v),F0(w′)) ≤ e−λb(t,v)dsu(ψ
b(t,v)F0(v), ψb(t,v)F0(w′)).

Now recall b(t, v) ≥ A−1t−B′ from Lemma 6.2. This, together with the previous paragraph,
gives

dsu(F(v),F(w′)) ≤ e−λ(A−1t−B′) 2

Λ
sinh(Λ(2R + A)/2) = Ce−λA

−1t

for some constant C = C(λ,Λ, A,B). Finally, we use t ≥ log(1/δ)
Λ

to obtain dsu(F0(v),F0(w′)) ≤
CδA

−1λ/Λ for some other constant C = C(λ,A,B). By Lemma 6.3, the second term in (6.7)

is thus bounded above by CδA
−1λ/Λ for some other constant C = C(λ,Λ, A,B), which com-

pletes the proof. �

Lemma 6.5. There is small enough δ0, depending only on the curvature bounds λ and Λ,
so that if w ∈ W ss(v) and d(v, w) < δ0, then

c1d(v, w) ≤ dss(v, w) ≤ c2d(v, w),

where c1 and c2 are constants depending only on λ and Λ. The analogous statement holds
for dsu.

Proof. By [HIH77, Theorem 4.6], we have dss(v, w) ≤ Λ
2

sinh(2/Λ d(p, q)). Thus, if d(p, q) is

small enough (depending on Λ), we have h(p, q) ≤ 4
Λ
d(p, q) ≤ 4

Λ
d(v, w).

By Lemma 3.11, d(v, w) ≤ (1 + Λ)d(p, q). By the other estimate in [HIH77, Theorem 4.6],
there is a constant C, depending only on λ, so that d(p, q) ≤ Ch(p, q) for all p, q with d(p, q)
sufficiently small in terms of λ. �

Proposition 6.6. There exists small enough δ0, depending only on λ, Λ, diam(M), so that

for any v, w ∈ T 1M̃ satisfying d(v, w) < δ0 we have d(F0(v),F0(w)) ≤ Cd(v, w)A
−1λ/Λ for

some constant C = C(n,Γ, λ,Λ, iM).

Proof. By Lemma 3.1, we know that for any v, w ∈ T 1M with d(v, w) = δ, there is a time
σ = σ(v, w) ∈ [−δ, δ] and a point [v, w] ∈ T 1M̃ so that

[v, w] = W ss(v) ∩W su(φσw).

Let α = A−1λ/Λ be the exponent from Proposition 6.4. Applying Proposition 6.4, followed
by Lemma 6.5 and Proposition 3.3, and finally Lemma 3.1, we have

d(F0(v),F0([v, w])) ≤ C ′dss(v, [v, w])α ≤ Cd(v, φσw)α ≤ C(2d(v, w))α

for some constants C and C ′ depending only on n,Γ, λ,Λ, iM , diam(M). By a similar argu-
ment,

d(F0([v, w], φσw) ≤ Cd(v, w)α.

Finally, as in the beginning of the proof of Proposition 6.4, we have

d(F(w),F(φσw)) ≤ Aδ.

Now, d(F0(v),F0(w)) ≤ Cd(v, w)α follows from the triangle inequality. �

Lemma 6.7. There is a constant C = C(λ,Λ, t) so that d(φtv, φtw) < Cd(v, w) for all
d(v, w) ≤ δ0, where δ0 depends only on λ, Λ, diam(M).
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Proof. As before, consider [v, w] = W ss(v) ∩W su(φσ(v,w)w). The distance between w and
φσ(v,w) remains constant under application of φt, and since v and [v, w] are on the same stable
leaf, their distance contracts under application of φt. Finally, since [v, w] and φσ(v,w)w are
on the same strong unstable leaf, [HIH77, Proposition 4.1], Lemma 6.5 and Proposition 3.3
imply

d(φt[v, w], φtφσ(v,w)w) ≤ eΛtdsu([v, w], φσ(v,w)w) ≤ eΛtCd(v, w)

for some constant C depending only on λ, Λ, diam(M). �

Lemma 6.8. Let C denote the constant in Proposition 6.6, and let α = A−1λ/Λ denote the
Hölder exponent. Then there is a constant C1 = C1(C, t) so that

|b(t, v)− b(t, w)| ≤ C1d(v, w)α.

Proof. By Proposition 6.6, we have d(F0(v),F0(w)) ≤ Cd(v, w)α and d(F0(φtv),F0(φtw)) ≤
Cd(φtv, φtw)α. Applying Lemma 6.7 shows d(F0(φtv),F0(φtw)) ≤ C1d(v, w)α, where C1

depends on C and t. The desired result now follows from Lemma 3.2. �

Proof of Proposition 2.4. We want to find a Hölder estimate for Fl(v) = ψal(0,v)F0(v), where

al(0, v) = 1
l

∫ l
0
b(t, v) dt. By the triangle inequality,

d(Fl(v),Fl(w)) ≤ d(ψal(0,v)F0(v), ψal(0,v)F0(w)) + d(ψal(0,v)F0(w), ψal(0,w)F0(w)).

To bound the first term, note that for all t ∈ [0, l] we have b(t, v) ≤ At ≤ Al by Lemma
6.2. Hence the average al(0, v) is bounded above by A. By Lemma 6.7 and Proposition 6.6,
we have

d(ψal(0,v)F0(v), ψal(0,v)F0(w)) ≤ Cd(F0(v),F0(w)) ≤ Cd(v, w)α,

where C depends only on l and the constant from Proposition 6.6. As such, C depends only
on n, Γ, λ, Λ, iM . By Lemma 6.8, the second term is bounded above by

|al(0, v)− al(0, w)| ≤ 1

l

∫ l

0

|b(t, v)− b(t, w)| dt,≤ Cd(v, w)α,

where C again depends only on n, Γ, λ, Λ, iM . �
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