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Abstract— In this paper, we propose a model predictive
control (MPC) method for real-time intervention of spreading
processes, such as epidemics and wildfire, over large-scale
networks. The goal is to allocate budgeted resources each time
step to minimize the risk of an undetected outbreak, i.e. the
product of the probability of an outbreak and the impact of that
outbreak. By using dynamic programming relaxation, the MPC
controller is reformulated as a convex optimization problem, in
particular an exponential cone programming. We also provide
sufficient conditions for the closed-loop risks to asymptotically
decrease and a method to estimate the upper bound of when the
risk will monotonically decrease. Numerical results are provided
for a wildfire example.

I. INTRODUCTION

Modeling, analysis and control of epidemics and wildfires
have been studied intensely due to their significant social
and economic impacts, see the recent surveys [1]–[4]. These
events are usually modeled as spreading process in which
an initial localized outbreak spreads rapidly to neighboring
nodes in a network, and causes harm or risk of harm to the
nodes it touches. The task of intervention is to reduce the
risks of an outbreak by allocating resources (e.g. vaccines,
social distance) to nodes/links.

There are several challenges for resource allocation of
large-scale spreading processes. Firstly, the available re-
sources at any given time are often limited. Secondly, some
types of resources (e.g. water bombing attacks on a wildfire)
can be difficult or impossible to widely distribute across the
network. Moreover, the large-scale nature of the spreading
processes, e.g. global transport network for epidemics or
large geographic areas for bushfires, imposes computational
challenges in terms of real-time computation of responses.
Therefore, it is important to develop scalable resource al-
location methods resulting in sparse solutions, subject to
meaningful budget constraints.

A natural tool for developing such intervention strategies
is optimal control with the objective of minimizing the risk
of an outbreak, which is defined as the expected accumulated
impact of the event over the time horizon. Typical models for
spreading processes are the Susceptible-Infected-Susceptible
(SIS) model and the Susceptible-Infected-Removed (SIR)
model [5]. These models are stochastic which can further
increase the complexity of optimal control problem. By using
mean-field approximation [6], one can obtain approximate
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models in the form of nonlinear deterministic ordinary dif-
ferential equations (ODEs). It is proven [7] that solutions of
these deterministic ODE systems are upper bounds of the
expected value of solutions of the corresponding stochastic
models. Thus, they are usually the object of study in control
design.

Various methods have been proposed for resource allo-
cation subject to budget constraints. Convex optimization
techniques such as semidefinite programming (SDP) [8] and
geometric programming (GP) [9], [10] have been applied. In
[11], a novel logarithmic resource model was proposed for
encouraging sparsity solutions for the GP-based approaches.
Further explorations in surveillance study of spreading pro-
cesses can be found in [12]. However, all these methods offer
static intervention strategies only. That is, the resource allo-
cation is determined by a single-step optimization problem
based on the current state instead of allocated over time.

Dynamic resource allocation, in particular using Model
Predictive Control (MPC), has been studied recently for
epidemic intervention. In [13], nonlinear MPC is applied to
reduce the epidemic spread. The works [14], [15] investigate
MPC approaches to control study of the COVID-19 outbreak
in Germany. In [16], robust economic MPC with rigorous
convergence guarantees was developed for the containment
of stochastic epidemic processes. However, these approaches
do not provide sparse resource allocation.

In [17], a multi-stage sparse resource allocation method
was developed by extending the single-stage approach [11],
[12]. Different from the MPC approaches [13]–[16], this
method allocates resources by minimizing a risk upper
bound, which is a linear value (cost-to-go) function con-
structed by dynamic programming. The resulting optimal
control problem (OCP) can be reformulated as a convex
optimization problem, in particular an exponential cone
program (ECP), which can be efficiently solved by the state-
of-art tools (e.g. MOSEK [18]).

In this paper we, we build on [17] by providing a theoreti-
cal analysis of the closed-loop behavior when the this multi-
stage resource allocation approach is applied recursively,
in an MPC framework. In particular, we prove recursive
feasibility and provide sufficient conditions for the closed-
loop risk bound to asymptotically decrease. Moreover, we
formulate a convex optimization problem to estimate the time
at which the risk will begin to monotonically decrease. We
also provide results of the numerical experiments performed
by implementing the proposed MPC approach on a wildfire
example.

The remainder of this paper is structured as follows. The
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spreading process model and control setup are presented in
Section II. Section III gives the proposed approach and some
theoretical results with proofs found in Section IV. Finally,
an illustrative example of a wildfire is presented in Section V.

Notation. Throughout the paper, ≥ is an element-wise
operator, e.g., the matrices A,B satisfying A ≥ B implies
Aij ≥ Bij for all (i, j). And A 	 B means Aij ≥ Bij for all
(i, j) and there exist some pairs (i, j) such that Aij > Bij .
We call A a nonnegative matrix if A ≥ 0.

II. PROBLEM FORMULATION

A. Spreading Process over Networks

We consider an SIS spreading process on a graph G(V, E)
with node set V = {1, 2, . . . , n} and edge set E = {(i, j) :
i 6= j ∈ V}, where each node i has a state Xi(t) ∈ {0, 1}
indicating that it is infectious (Xi(t) = 1) or susceptible
(Xi(t) = 0). In this process, an infected node i recovers with
probability δi(t)∆t to Xi(t + ∆t) = 0 and an susceptible
node i can be infected (i.e. Xi(t+ ∆t) = 1) by its neighbor
node j with probability βij(t)∆t, where ∆t is a small time
interval. By using mean-field approximation [6], we obtain
n coupled deterministic differential equations:

ẋi(t) = (1− xi(t))
n∑
j=1

βijxj(t)− δixi(t), (1)

where xi(t) := P (Xi(t) = 1) is the probability of a node i
being infected at time t.

By applying Euler forward method to (1), we obtain a
discrete-time model in compact form of

x(k + 1) =
[
A−B(x(k))

]
x(k), (2)

where x(k) =
[
x1(kh), . . . , xn(kh)

]>
is the state at time

step k ∈ N, and the matrices A,B are given by

Aij =

{
1− hδi, i = j,

hβij , (i, j) ∈ E ,
Bij(x) = hxiβij . (3)

We assume that the time interval h > 0 satisfies hδj ≤ 1 and
h
∑n
i=1 βij < 1 for all j ∈ V . Note that (2) is well-defined,

i.e., x(0) ∈ [0, 1]n ⇒ x(k) ∈ [0, 1]n for all k.

B. Risk Model

We define the risk of an outbreak x as the impact over the
time horizon, i.e.,

R(x) =

∞∑
`=0

αkCx(k), (4)

where x(k) is state of (2) with initial condition x(0) = x.
Here C =

[
c1, . . . , cn

]
> 0 is a row vector defining the cost

associate with each node. The discount factor α ∈ (0, 1] is
used to trade-off between near-term cost and long-term cost.

C. Intervention Model
The goal of intervention is to reduce the risk by allocating

certain amount of resources at each time step k to reduce the
spreading rate βij on particular edges or increase recover rate
δi on particular nodes. We assume that changes on βij and
δi are bounded and persist for all time, i.e.,

βij(−1) ≥ · · · ≥ βij(k − 1) ≥ βij(k) ≥ · · · ≥ β
ij
> 0,

∆i > δi ≥ · · · ≥ δi(k) ≥ δi(k − 1) ≥ · · · ≥ δi(−1) > 0,

for all k ∈ N, where βij(−1) = βij and δi(−1) = δi are
the unmodified rates. It is easy to verify that

A ≥ A(k − 1) ≥ A(k) ≥ A, ∀k ∈ N, (5)

where the matrices A,A are given by (3) with rates (βij , δi)

and (β
ij
, δi), respectively. To make A nonnegative we as-

sume h∆i ≤ 1 for all i ∈ V .

D. Resource Model
For any two matrices A1 ≥ A2, we defined the resource

required for the transition from A1 to A2 as follows

Γ(A1, A2) =
∑
ij

WijUij(A
1, A2), (6)

where Wij are the weightings on resource costed by reducing
βij and increasing δi, respectively. And U is defined as

Uij(A
1, A2) =

{
log
(
β1
ij/β

2
ij

)
, (i, j) ∈ E ,

log
(
(∆i − δ1

i )/(∆i − δ2
i )
)
, i = j.

(7)

Given the matrix A1 and resource allocation allocation U ,
one can compute the matrix A2 by

A2 = f(A1, U), (8)

where A2 can be computed via (3) with β2
ij , δ

2
i given by

β2
ij = β1

ije
−Uij , δ2

i =
(
1− e−Uii

)
∆ + e−Uiiδ1

i .

The above logarithmic resource model was proposed in [11]
to encourage sparse resource allocation. One implication of
the above model is that certain proportional decrease for βij
always has the same cost. Note that it is impossible for βij
to be reduced to 0 since that would take infinite resources.

E. Problem Statement
In this paper we are interested in resource-constrained

intervention of the spreading process (2) using model pre-
dictive control. Specifically, the deliverable resource at each
time step is bounded by Γ > 0. The goal of intervention is
to minimize the risk R(x(k)) given the outbreak detection
x(k) at time step k, which can be formulated as an optimal
control problem (OCP):

min
β,δ

R(x(k))

s.t. x(`+ 1|k) = [A(`|k)−B(x, `|k)]x(`|k),

x(0|k) = x(k),

βij(`− 1|k) ≥ βij(`|k) ≥ β
ij
,

δi(`− 1|k) ≤ δi(`|k) ≤ δi,
Γ(`|k) ≤ Γ, ` = 0, . . . , L− 1

(9)



where L is the time horizon and Γ(`|k) is short for Γ(A(`−
1|k), A(`|k)). Here βij(−1|k) = βij(k−1) and δi(−1|k) =
δi(k − 1) refer to the rates at the previous time step. For
evaluating R(x(k)) we use βij(`|k) = βij(L − 1|k) and
δi(`|k) = δi(L− 1|k) for ` ≥ L.

Note that OCP (9) is a non-convex optimization problem
due to the complex dynamics (2), which may be intractable
for real-time intervention of large-scale spreading processes.

III. DYNAMIC PROGRAMMING RELAXATION

In this section we present a convex relaxation for OCP
(9). The key idea is to minimize an particular upper bound
of the risk (4), which can be constructed via a dynamic
programming formulation. We will show that under some
mild assumptions the risk bound will decrease asymptotically
after certain steps.

A. Risk Bounds

It is well-known that positive linear systems with non-
negative linear costs admit linear value (cost-to-go) functions
[19], [20]. Similarly, we will use a dynamic-programming-
alike approach to construct the risk bounds of nonlinear
positive system (2).

Proposition 1. Suppose that the rate sequences βij and δi
satisfy (5). If there exists a sequence of nonnegative row
vectors 0 ≤ p(`|k) ∈ R1×n such that

p(`|k) ≥ C + αp(`+ 1|k)A(`|k), ∀0 ≤ ` < L,

p(L|k) = p(L− 1|k),
(10)

then we have R(x(k)) ≤ R̄(x(k)) := p(0|k)x(k).

The above proposition appears in [17] and its continuous-
time version can be found in [21]. The underlying idea is
that R̄(x̂, `|k) := p(`|k)x̂(`|k) provides a risk upper bound
of a linear spreading process

x̂(`+ 1|k) = A(`|k)x̂(`|k), x̂(0|k) = x(k), (11)

where the solution x̂ bounds the state trajectory x of
nonlinear system (2) with the same initial condition, i.e.
x̂(0|k) = x(k) ⇒ x̂(`|k) ≥ x(k + `) for all `. Thus,
R̄(x(k)) := R̄(x̂, 0|k) also serves as a risk bound of (2).
Since the row vector p provides importance measurement of
the outbreak at node i, we call it a priority vector.

B. Relaxed OCP

We now present a relaxed version of OCP (9) by mini-
mizing the risk bounds over priority vectors, i.e.,

min
p,β,δ

R̄ε(p, x) := p(0|k)x(k) + ε
∑
i

pi(0|k)

s.t. p(`|k) ≥ 0, p(`|k) ≥ C + αp(`+ 1|k)A(`|k),

βij(`− 1|k) ≥ βij(`|k) ≥ β
ij
,

δi(`− 1|k) ≤ δi(`|k) ≤ δi,
Γ(`|k) ≤ Γ, ` = 0, . . . , L− 1

(12)

where ε > 0 is a small constant. We will give a convex
reformulation of the above problem in Section III-C.

Letting (p∗, β∗, δ∗) be a local optimal solution of (12),
we use A∗ to denote the matrix obtained by substituting
β∗, δ∗ into (3). Since (12) can be reformulated as a convex
problem, (p∗, β∗, δ∗) is also a global minimum. We describe
the properties of optimal solutions via the following propo-
sitions. In particular, Proposition 2 shows that the optimal
priority vectors satisfy the Bellman’s equation. Proposition 3
indicates that both A∗ and p∗ are monotonically decreasing
before hitting the lower bound. Proposition 4 implies that the
proposed controller (12) is an “all-in” policy, i.e., distributing
all available resources at each time step.

Proposition 2. The optimal solution of (12) satisfies

p∗(`|k) = C + αp∗(`+ 1|k)A∗(`|k) (13)

for ` = 0, . . . , L− 1, where p∗(L|k) = p∗(L− 1|k).

Proposition 3. If A(k − 1) 	 A, then we have

A∗(`− 1|k) 	 A∗(`|k), p∗(`− 1|k) 	 p∗(`|k) (14)

for ` = 0, . . . , L − 1, where L ≤ L is the largest integer
such that A∗(L− 1|k) 	 A.

Proposition 4. If Γ(A(k − 1), A) > Γ, then we have

Γ(A(k − 1), A∗(0|k)) = Γ. (15)

We now investigate the closed-loop behavior under the
MPC controller (12), i.e., implementing β∗(0|k), δ∗(0|k) at
time step k and resolving (12) when x(k + 1) is available.
We first make the following assumptions.

Assumption 5. The discount rate α satisfies αρ(A) < 1
where ρ(·) denotes the matrix spectrum radius.

Remark 6. Assumption 5 implies that the risk (4) is well-
defined (i.e. finite) for the linear spreading process (11),
despite that the state x̂(`|k) might be unbounded.

Assumption 7. The following set is nonempty:

A := {A | A ≤ A ≤ A,
∑
i

ciβij < cjδj , ∀j ∈ V}. (16)

Remark 8. Note that A is convex and satisfies A(k) ∈ A ⇒
A(k + 1) ∈ A due to (5). Later on we will prove that for
any A ∈ A the following inequality holds:

C − (1− α)p > 0, (17)

where p = C(I − αA)−1, which will be used to show the
asymptotic stability of closed-loop system.

Theorem 9. If Assumption 5 holds, then the proposed OCP
(12) is recursively feasible. Furthermore, if Assumption 7
holds, then R̄(x(k)) > R̄(x(k + 1)) for all x(k) 	 0 and
k ≥ K, where K =

⌈
ΓM

Γ

⌉
with ΓM = lim infA∈A Γ(A,A).

Remark 10. Since Γ(A,A) is a convex function and A is a
convex bounded set, then ΓM is well-defined and serves as
an estimate of the maximum resource required for making the
risk bound asymptotically decreasing. We will show that ΓM
can also be computed via exponential cone programming.



C. Exponential Cone Programming

In this section we show that the proposed dynamic re-
source allocation problem (12) can be reformulated as a
convex program, in particular exponential cone program
(ECP). We refer the readers to [22] for details on exponential
cone programming.

First, we introduce new decision variables as follows

y`i = log pi(`), U `ij = U(A(`− 1), A(`)) (18)

with ` = 0, . . . , L − 1, where the time step k is omitted
for simplicity. The following convex programming is an
equivalent formulation of (12):

min
r,y,U

r

s.t. log

(∑
i

exp
(
log(xi + ε) + y0

i − r
))
≤ 0 (19a)

log
(∑
i

exp
(
y`+1
i − y`j + log aij −

∑̀
s=0

Usij
)

+ exp
(
y`+1
j − y`j + log bj −

∑̀
s=0

Usjj
)

+ exp(log cj − y`j)
+ exp

(
y`+1
j − y`j + log dj

))
≤ 0, (19b)

j = 1, . . . , n, ` = 0, . . . , L− 1

U ` ≥ 0,

L−1∑
`=0

U l ≤ U(A(−1), A), (19c)∑
ij

WijU
`
ij ≤ Γ, ` = 0, . . . , L− 1

where aij = αhβij(k − 1), bj = αh(∆j − δj(k − 1)), dj =
α(1− h∆j), and yL = yL−1.

Remark 11. Constraint (19a) implies R̄ε(p, x) ≤ er while
(19b) is equivalent to the Bellman inequality (10), see
[17] for details. The `1-norm constraint in (19c), which is
based on our logarithmic resource model (6), can encourage
sparse resource allocation. One can apply the reweighted `1
optimization approach [23] to further minimize the number
of nodes and edges with non-zero resource allocated, which
is beneficial when resources cannot be distributed widely.

We also give an ECP for computing ΓM in Thm. 9:

min
U

∑
ij

WijUij

s.t. 0 ≤ U ≤ U(A,A) (20a)

log
(∑

i exp(log(ciβij/(cj∆j))− Uij)
+ exp(log((∆j − δj)/∆j)− Ujj) + ε2

)
≤ 0 (20b)

where ε2 > 0 is a small constant and ΓM is the optimal
objective value. The set A is transformed into Constraints

(20a) - (20b) since (20a)⇔ A ≤ A = f(A,U) ≤ A and

(20b)⇒
∑
i

ciβije
−Uij

cj∆j

+
cj(∆j − δj)e−Ujj

cj∆j

< 1

⇒
∑
i

ciβij

cj∆j

+
cj(∆j − δj)

cj∆j

< 1

⇒
∑
i

ciβij < cjδj .

IV. PROOFS

For the sake of simplicity, we use Le = L − 1 to denote
the last step in the time horizon and omit the dependency of
time step k if it does not cause any confusion.

A. Proof of Proposition 1

We first show that R̄(x̂, `) = p(`)x̂(`) with p(`) = p(Le)
for all ` > Le is a risk upper bound of the linear spreading
process (11). Since x̂(`) ≥ 0, Inequality (10) implies

R̄(x̂, `) ≥ Cx(`) + αR̄(x̂, `+ 1), ∀0 ≤ ` ≤ Le. (21)

For the case where ` > Le we have

R̄(x̂, `) = p(Le)x̂(`) ≥ (C + αp(Le + 1)A(Le))x̂(`)

≥ Cx̂(`) + αp(Le + 1)A(`)x̂(`)

= Cx̂(`) + αp(`+ 1)A(`)x̂(`)

= Cx(`) + αR̄(x̂, `+ 1)

(22)

where the last inequality follows from (5). By telescoping
sum we obtain R̄(x̂, `) ≥

∑T−1
t=0 αtx(t+`)+αT R̄(x̂, `+T )

for any T ∈ N. This further implies R̄(x̂, `) ≥ R(x̂, `) as
T →∞, where R(x̂, `) =

∑∞
t=0 α

tCx̂(t+ `).
Secondly, we show that R(x̂, `) also bounds the risk of

the nonlinear system (2). By setting x̂(0) = x(0) = x we
can have the following induction: if x̂(`) ≥ x(`) then

x̂(`+ 1) = A(`)x̂(`) ≥ A(`)x(`)

≥ [A(`)−B(x, `)]x(`) = x(`+ 1)

where inequalities follows by nonnegative A,B. Now we can
show that R(x) ≤ R(x̂, 0) ≤ R̄(x̂, 0) = R̄(x).

B. Proof of Proposition 2

Suppose that 0 ≤ s ≤ Le is the smallest integer such that
(13) does not hold, i.e.,

p∗(s) 	 C + αp∗(s+ 1)A∗(s). (23)

If s = 0, we construct a new sequence p̃ with p̃(`) = p∗(`)
for ` > 0 and p̃(0) = C + αp∗(1)A∗(0) � p∗(0). We have

R̄ε(p
∗, x)− R̄ε(p̃, x) =

∑
i

(p∗i (0)− p̃i(0))(xi + ε)

≥ ε
∑
i

(p∗i (0)− p̃i(0)) > 0,
(24)

which contradicts with the optimality of p∗.
For the case of s ≥ 1, we construct a sequence p̃ with

p̃(`) = p∗(`) for s < ` ≤ Le and

p̃(`) = C + αp̃(`+ 1)A∗(`), ` = s, . . . , 0. (25)



By comparing p∗ and p̃ we have

p∗(`)− p̃(`) = α[p∗(`+ 1)− p̃(`+ 1)]A(`), ∀0 ≤ ` < s.

Recursively applying the above relationship yields

p∗(0)− p̃(0) = αs[p∗(s)− p̃(s)]
s∏
j=1

A(s− j). (26)

By the construction we have p∗(s) 	 p̃(s). Moreover, since
A(`) ≥ 0 has positive diagonal, we can conclude that
p∗(0) 	 p̃(0). The rest is same as the case of s = 0.

C. Proof of Proposition 3

For the case where L < L, we can treat (12) as an OCP
with horizon of L as no resource can be distributed at time
step ` ≥ L. Therefore, we only give the proof for L = L.

We first prove that A∗(`− 1) 	 A∗(`) for all 0 ≤ ` ≤ Le
by contradiction. Let 0 ≤ s ≤ Le be the largest integer such
that A∗(s − 1) = A∗(s), i.e., there is no resource allocated
at time step s. We will construct feasible sequences Ã and
p̃ which yield a smaller cost than R̄ε(p∗, x).

We construct Ã by allocating certain amount of additional
resources to certain link/node at the time step s. Since
A∗(Le) 	 A, without loss of generality we assume that
β∗ij(Le) > β

ij
for some link (i, j) ∈ E . We now define

a new sequence

β̃ij(`) =

{
β∗ij(`), 0 ≤ ` < s

ηβ∗ij(`), s ≤ ` ≤ Le
(27)

where η = max
(
e−Γ,

β
ij

β∗
ij(Le)

)
. Note that β̃ij is decreasing

and satisfies β̃ij(Le) ≥ βij . The resource allocation does not
change except the time step s, which satisfies

Γ̃(s) = wij log
β∗ij(s− 1)

ηβ∗ij(s)
= −wij log η ≤ Γ.

Thus, Ã is a feasible solution.
We now construct a feasible p̃ based on Ã as follows

p̃(`) = C + αp̃(`+ 1)Ã(`), ` = Le − 1, . . . , 0 (28)

where p̃(Le) = C
(
I − αÃ(Le)

)−1
. From (13) and (28) we

can obtain

p∗(Le)− p̃(Le)
= C(I − αA∗(Le))−1 − C(I − αÃ(Le))

−1

= αC(I − αA∗(Le))−1[A∗(Le)− Ã(Le)]

(I − αÃ(Le))
−1 	 0.

Furthermore, by induction we have

p∗(`)− p̃(`) =α[p∗(`+ 1)A∗(`)− p̃(`+ 1)Ã(`)]

=αp∗(`+ 1)(A∗(`)− Ã(`))+

α(p∗(`+ 1)− p̃(`+ 1))Ã(`)

	 α(p∗(`+ 1)− p̃(`+ 1))Ã(`) 	 0

(29)

where s ≤ ` ≤ Le. For 0 ≤ ` < s, from (13), (27) and (28)
we can obtain

p∗(`)− p̃(`) = α(p∗(`+ 1)− p̃(`+ 1))A∗(`). (30)

Recursively applying (29) and (30) yields

p∗(0)− p̃(0) =

αLe(p∗(Le)− p̃(Le))×
s−1∏
j=0

A∗(j)×
Le∏
j=s

Ã(j) 	 0,

which leads to a contradiction due to (24).
We prove the second part of this proposition, i.e., p∗(`−

1) 	 p∗(`) for 0 ≤ ` ≤ Le. From (13) we have

p∗(Le − 1)− p∗(Le)
=α[p∗(Le)A

∗(Le − 1)− p∗(Le + 1)A∗(Le)]

=αp∗(Le)[A
∗(Le − 1)−A∗(Le)] 	 0

where the second equality is due to p∗(Le) = p∗(Le + 1).
Now we can obtain p∗(`− 1) 	 p∗(`) recursively since

p∗(`− 1)− p∗(`) = α[p∗(`)A∗(`− 1)− p∗(`+ 1)A∗(`)]

= α[p∗(`)(A∗(`− 1)−A∗(`))+
(p∗(`)− p∗(`+ 1))A∗(`)]

	 α(p∗(`)− p∗(`+ 1))A∗(`), ∀` < Le.

D. Proof of Proposition 4

First, the resource allocated at time step ` is

Γ∗(`) = Γ(A∗(`− 1), A∗(`)) =
∑
ij

WijU
∗
ij(`), (31)

where W is the resource weighting matrix. Supposing that
γ = Γ−Γ∗(0) > 0, we aim to construct a new solution that
leads to a lower risk bound. Let L ∈ [0, L] be the largest
integer such that A∗(L − 1) 	 A. Note that such L exists;
otherwise we have Γ(A∗(−1), A∗(0)) = Γ(A∗(−1), A) >
Γ. Similar to the proof of Proposition 3, we only consider
the case where L = L.

First, we construct a nonnegative matrix Û with Ûij = 0
for i 6= j and (i, j) /∈ E such that

f(A∗(L− 1), Û) ≥ A and
∑
ij

WijÛij ≤ γ′

where γ′ = min{Γ(A∗(Le), A), γ}. Then we consider a new
sequence Ũ with Ũ(0) = U∗(0) + Û and Ũ(`) = U∗(`) for
` = 1, . . . , Le. Then, a sequence Ã can be constructed via

Ã(`) = f(Ã(`− 1), Ũ(`)) = f(A∗(`), Û) (32)

where Ã(−1) = A∗(−1). It is easy to verify that Ã is a
feasible solution since

Γ̃(0) = Γ∗(0) +
∑
ij

WijÛij = Γ− γ + γ′ ≤ Γ,

Γ̃(`) = Γ∗(`) ≤ Γ, ` = 1, . . . , Le.

By construction (32) we have A∗(`) 	 Ã(`). Thus, similar
technique in the proof of Proposition 3 can be used to obtain
a contradiction.



E. Proof of Theorem 9

a) Recursive feasibility: Assumption 5 implies that I−
αA(−1) has a nonnegative inverse [20, p. 113]. Since A is
non-increasing, we have ρ(A(k − 1)) ≤ ρ(A(k)) ( [20, p.
15]) and thus (I − αA(k))−1 	 0 for all k.

Suppose that OCP (12) is feasible at the time step k. We
construct a candidate sequence for the time step (k + 1) as
follows

A(`|k + 1) =

{
A∗(`+ 1|k), 0 ≤ ` ≤ L− 2

A∗(L− 1|k), ` = L− 1

p(`|k + 1) =

{
p∗(`+ 1|k), 0 ≤ ` ≤ L− 2

p∗(L− 1|k), ` = L− 1

(33)

i.e., one time-step shift of the previous optimal solution. Note
that p is a nonnegative sequence and the sequence A satisfies
the non-increasing constraint (5) and resource budget Γ(`|k+
1) ≤ Γ. Thus, (p,A) is a feasible solution.

b) Stability: We first prove that Assumption 7 implies
(17) since

(16)⇒ αh(cjδj −
∑
iciβij) > 0

⇒ αC(I −A) > 0

⇒ C(I − αA) > (1− α)C

⇒ C − (1− α)C(I − αA)−1 > 0⇒ (17).

(34)

Then, we show A∗(0|k) ∈ A for k ≥ K. From Proposi-
tion 4 we have

Γ(A,A∗(0|k)) = (k + 1)Γ > lim inf
A∈A

Γ(A,A).

This also implies that Condition (17) holds for p∗(0|k)
with k ≥ K. Finally, the risk bounds are asymptotically
decreasing for k ≥ K and x(k) 	 0 since

R̄(x(k))− R̄(x(k + 1))

= p∗(0|k)x(k)− p∗(0|k + 1)x(k + 1)

≥ p∗(0|k)x(k)− p∗(1|k)x(k + 1)

≥ (p∗(0|k)− p∗(1|k)A∗(0|k))x(k)

=
1

α
[C − (1− α)p∗(0|k)]x(k) > 0.

(35)

V. AN ILLUSTRATIVE EXAMPLE

Let us consider an example of a wildfire which can spread
on a fictional landscape with different area types, as shown in
Fig. 1. We represent this landscape as a graph G(V, E) with
a total number of nodes n = 1000. We consider that the
fire can spread in vertical, horizontal, and diagonal direction
i.e., the edge set E connects each node to a maximum of 8
neighbouring nodes. We also consider the precise location of
a fire outbreak as shown in Fig. 1. For different vegetation
type, the rates of spreading are determined according to the
wildfire models in [4] and [24]. The spreading rate of an edge
is given by β = βbβvegβw, where βb = 0.5 is the baseline,
and βveg = 0.1, 1, 1.4 for desert, grassland and eucalyptus
forest, respectively. Water is considered unburnable, hence
those edges are removed. Following [24], βw is calculated
for a northeasterly wind with a wind speed of 4m/s. The

spreading rate is adjusted, following [4], for a spread between
the diagonally connected nodes. For all nodes i ∈ V , the
recovery rate is set as δ = 0.5.

Fire outbreak

Forest

Grassland

Desert

City

Water

Fig. 1: Fictional landscape with different type of areas and
the location of fire outbreak.

We implement our proposed MPC approach to minimize
the risk associated with the outbreak by allocating bud-
geted resources at each time step. We set the weightings
wij = 1, ∀ (i, j) ∈ E which indicates an equal cost to
apply resources to any edge. We assign a higher cost of
cj = 1 for all the city nodes, which could reflect either a
higher risk to human life or a higher economic cost of fire
reaching the city. The cost for the rest of the nodes is set as
cj = 0.001. The discount rate is set as α = 1/(0.05+ρ(A))
such that Assumption 5 holds.

The performance of our MPC method with L = 1 and
different resource bounds Γ = 10, 20, and 30, is shown
in Fig. 2. It shows the evolution of risk R(x(k)) given in
(4) as well as the risk bound R̄(x̂, 0|k) (see Proposition 1),
as the number of time steps increases. It can be seen that
for all three cases, our MPC method is able to reduce the
risk associated with the outbreak as time increases. However,
for a smaller resource budget of Γ = 10, the risk tends to
increase first which reflects the unavailability of sufficient
resources to suppress the risk at initial time steps. On the
other hand, with Γ = 30, the risk starts to decrease almost
instantly. Note that in all three case, the value of risk R(x(k))
is always less than the risk bound R̄(x̂, 0|k). It also shows
the estimated value of K such that for k ≥ K, the risk bound
decreases asymptotically (see Theorem 9 and Remark 10).
Note that, for instance Γ = 10, the K−estimate is 836
but the value of risk and the risk bound start to decrease
asymptotically after k = 400.

Fig. 3 illustrates the effect of increasing L on the evolution
of the risk R(x(k)) and the upper bound on risk R̄(p, x)
while we set the resource budget as Γ = 40 and we consider
that the fire outbreak affects 25% of nodes at time k = 0. It
indicates that a larger value of L performs better by resulting
in a smaller value of risk at the initial time steps.
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