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Optimal control problems governed by time-fractional diffusion

equations with control constraint

B.T.Kien? B.N.Muoi! C.F.Wen*and J.C.Yao®

Abstract. A class of optimal control problems governed by linear fractional diffusion equation with
control constraint is considered. We first establish some results on the existence of strong solution to the
state equation and the existence of optimal solutions for the optimal control problem. Then we derive

first-and second-order optimality conditions for locally optimal solutions to the problem.
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1 Introduction

Let Q be an open and bounded set in RY with N = 2,3 and boundary 99 € C?, Q = [0,7] x Q and
¥ =[0,7] x 99, where T > 0. Let D := H?(2) N H}(Q). We consider the problem of finding a function
u € L*(Q) and the corresponding state y € LP([0,T], D) with 1 < p < oo, which solve

P(y,u) = / L(t,z,y(t, z),u(t, z))dtdr — min (1)
Q

s.t.

% =Ay+u in @ 2

y=0 on X 3

4
5

y(0)=yo in
a<u(t,z) <b ae. (t,z)€qQ,

(2)
(3)
(4)
()

where 0 < o < 1 and 5% is a fractional derivative operator in the sense of Caputo, which is given in
Section 2, L : Q@ x R x R — R is a Caratheodory function, and yy € D.

The system (2)-() is a time-fractional diffusion equation. Note that several physical systems are not
truly modelled with differential equations of integer-order. So the fractional-order differential equations
have been introduced in order to describe accurately these systems. A motivation for studying fractional
diffusion equations comes from the fact that they describe efficiently anomalous diffusion on fractals
such as physical objects of fractional dimension, like some amorphous semiconductors or strongly porous

materials (see [2], [22] and references therein).
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In contrast with optimal control problems governed by differential equations with integer order (see
[8], [14] and [32]), the class of optimal control problems governed by fractional differential equations
have not been studied systematically yet. Recently, there have been some mathematicians studying
optimal control problems governed by fractional differential equations. For the papers which have close
connections to the present work, we refer the reader to [I], [4], [12], [I7], [24] and [25]. Among them, O.P.
Agrawal [I], considered optimal control problems governed by fractional differential equations (FDEs)
without constraints. She gave first-order necessary conditions and some numerical examples for the
problem. Kien et al. [I7] studied problems governed by FDEs with control constraint. They gave first-
and second-order optimality conditions for locally optimal solutions to the problem. G.M. Mophou et
al. [12], [24] and [25] considered strongly convex optimal control problems governed by a time-fractional

diffusion equations with Riemann-Liouville derivative and the cost functions of the type

1 gl
J(u) = 5”1/(“) —yollZ2(q) + 5”””%2(Q)7’7 >0

for cases: control constraints, no constraint and state constraints, respectively. Then they established
results on the existence of optimal solutions and first-order optimality conditions. Note that, this class
of problems are convex so the second-order optimality conditions are fulfilled automatically. Recently
Bahaa [4] has extended the results of [24] by considering the problem with control constraint. However,
all of them mainly investigated first-order optimality conditions for the problem.

In this paper we consider problem (II)-([G]) governed by time-fractional diffusion equation with Caputo
derivative and with control constraint (), where the cost function may not be convex. We shall prove
the existence of solutions to the state equation and the existence of optimal solutions to ([I)-([). We
then derive first- and second-order optimality conditions. We show that when p =2 and 1 > a > 1/2,
a theory of no-gap second-order optimality conditions is obtained. Optimality conditions are important
for numerical methods of computing optimal solutions. Based on second-order sufficient conditions, we
can give error estimate for approximate solutions. Nevertheless, to our best knowledge, so far there have
been no result on the second-order optimality conditions for this class of problems.

The study of optimal control problems governed by fractional diffusion equations are quite compli-
cated. One of the difficulties is that the regularity of the solution to the state equation is poor. It is
known that, if the control function is Hélder continuous, then the state function is also Héder continuous.
Unfortunately, in optimal control problems, the control variables usually belong to L*°-spaces. So the
solutions to the state equation only belong to LP-spaces. Therefore, the cost function is difficult to be
differentiable with respect to the state variable. Another difficulty for the problem is about compactness
of bounded sequences in function spaces with Banach space values. To overcome these difficulties, we
shall use a result from [I5] in order to study regularity of solutions to the state equation. We also use a
recent result on the compact embedding in [19] which is a version of the so-call Aubin’s Lemma for evo-
lution equations to show that if a sequence is weakly convergent then it is strongly convergent. Besides,
techniques of optimal control from [7], [16] and [I7], nonlinear and variational analysis are also used to
deal with the problem.

The paper is organized as follows. In Section 2, we present some auxiliary results on the fractional
derivatives for functions with values in Banach space. Section 3 is devoted to results on the existence
and regularity of solutions to the state equation and the existence of optimal solutions to the problem.

Section 4 is destined for establishing first-and second-order optimality conditions.

2 Some auxiliary results on fractional derivatives

Let X be a Banach space. We denote by LP([0,T], X) the space of X-valued functions w : [0,T] — X
such that ||ul|, := (fOT | (t)||5dt)/P < +o0, where 1 < p < 0o. Also we denote by C([0,T], X) the space



of continuous functions v : [0,T] — X, by W1P(]0,T], X) the space of absolutely continuous functions
y:[0,7] — X. The norm on WP([0,T], X) is defined by

19111 = llyllo + 195,

where [|y|lo = max;eo, 1) [|y(t)||x is the norm of y in C([0, 77, X).
Let 6 > 0 be a real number. The operator I§, defined on L'([0, 7], X), by

(18,000 = 1 | A ar

is called the left Riemann-Liouville fractional integral operator of order . The operator I%_ defined on
L'([0,T],R), by

T
R e

is called the right Riemann-Liouville fractional integral operator of order 6. For the case 8 = 0, we set
9 L= I9 = I, the identity operator. Here the integrals are taken in Bochner’s sense. By the same
argument as in the proof of [IT, Theorem 2.2], we can show that

(Io} (Io30)(8) = (o™ e)(t) Vo € L}(0,T], X). (6)

Let us denote by I, (LP([0,T], X)) the space of summable functions f : [0,7] — X such that f = I, ¢
for some ¢ € LP([0,T], X). The space I%_(LP) is defined similarly. We have the following characteristic
property for Ig+(Lp([O, T],X)). Its proof is similar to the proof of [I7, Proposition 2.1]

Proposition 2.1 f € I§, (L?([0,T), X)) if and only if Ié_:ef e Wtr([0,T], X).

Definition 2.1 Let 0 < o < 1 and ¢ € C([0,T], X). Then each of the expressions

t—71)™
and ) 1 o
OF-00 = 1=~y || G

is called a left Riemann-Liouville fractional derivative and a right Riemann-Liouville fractional derivative,

is called the left Riemann-Liouville fractional derivative operator

respectively. The operator Dg, and D%

and the right Riemann-Liouville fractional derivative operator, respectively.

A sufficient condition for the existence of D, (¢) and D$_(¢) is to require ¢ € WH([0,T], X) (see [11}
Lemma 2.12]).

Proposition 2.2 Let « € (0,1). Then the following assertions are fulfilled.
(i) If f € LM([0,T], X), then

Do Igy f =1 ae (7)
(i3) If f € I§ (L), then
Ig, DG f= [ ae (8)
Proof. (i). Using (@) and the definition of D, , we have
Do Ioy f = DlI&;aI&f = Dl[(}Jrf =TI
(ii). Let f = I§, ¢ for some ¢ € L'([0,T],X). Then from (), we have

15 Doy [ = 1o Do 1o = Iy ¢ = f-



4% is defined by

Definition 2.2 Let 0 < o < 1 and ¢ € LP([0,T], X) with p > 1. The operator 4 e

o e ¢(0)
dt‘l ¢( ) = Dgy(¢ — ¢(0)) = D5y ¢ — m

is called the left Caputo differential operator of order o, and the operator 4= defined by

dte

o(T)
(T —t)°T(1 - a)

P 6(0)i= D§ (6 (T) = Do -
is called the right Caputo differential operator of order o provided all terms exist.

From the definition, we see that if ¢(0) = 0, then j%(b = Df (¢). Also, if ¢(T') = 0, then i%(b =
D7 _(¢).

Lemma 2.1 Suppose that X = H is a Hilbert space, f € I$_(L9([0,T],H)) and g € 15, (LP([0,T], H)
with p,g > 1 and 1/p+1/q <1+ a. Then one has

T T
/ (f. DS, g)dt = / (9. D% f)sdt ()
0 0

Particularly, when f(T) =0 and g(0) =0, one has

dg, . [T, d*f
[ @5 = [ 05 (10)

Here (-,-)g denotes the scalar product in H.

Proof. We first claim that if ¢; € LP([0,T], H) and ¢2 € L9(]0,T], H) with 1/p+1/q <1+ «, then

T T
/0 (62(t), I, 61 (1)) srdt = / (61(t), 12— ba(t) s (11)

In fact, from the assumption we see that the integrals in both sides are defined. By Fubini’s Theorem,

we have

T N T 1 t 1
| @55 00t = [ (a(0) 7 / (t_s)l,aqsl(s)dsmdt

o B A R——

1

:@/0 ds/s <¢2<f>=m¢1<s>>m
T

= [ 6101 15 a(o) s

The claim is justified. We now prove ([@). By the assumption, we have f = I$_¢2 and g = I ¢ for
some ¢ € LI([0,T], H) and ¢1 € LP([0,T], H). Then ¢o = DF_(f). Using (1), we have

T

T T T
/ (. DS, g)mdt = / (I3 6o(t), 61 (8)) et = / (62(), IS, 1) srdt = / (DS £(t), g(t)) .
0 0 0

0

We obtain formula ([@)). O

Proposition 2.3 Suppose that f € L*°([0,T],X) and o € (0,1). Then Ig, f € C*([0,T], X)-the space
of Hélder continuous functions with order o. Moreover, one has

(63

o T
116 fll o1, x) < aT'(a) 1l o (0,77, %) - (12)




Proof. Take any tg,t € [0,T]. Let t > tg. Then we have

000 ~ U0t = iy [ 7 (T?l_adf—mla)/oo AR

(
B S L 1o W {Co NS U O (o B
~ @, T e i,

Hence

1055 )(8) = (L5 ) (to) |l x
1

eyl /t°| ] / —
- T+ —— oo ———dr
F(a) L~>=([0,T],X) 0 [(t—T)« (to — 7)1« I(a) L~=([0,71,X) " (t—7)i-
1 to 1 1 1 t 1
— d oo —d
F(Q)HfHL (0,71, X)/O [(to—T)lfa (t—T)lfa] T+F(O¢) £ 1l o= ([0,77, %) o= T
1 1 1 1
—(t —1t o — @ —_— oo —(t —tg)®
I‘(a)HfHL ([0, X)a[( 0)* +15 ]+I‘(a)|‘f”L ([O,T],X)a( 0)

1 1 1 1
—_— oo —(t —tg)* + —— oo —(t —tg)™
< F(a)HfHL ([O,T],X)a( 0)* + o) £z ([O,T],X)a( 0)
This implies that

(154 ) () — (L5 ) (o)l x < Kt —to|*.
Let t < tg. Then we write

(1o f)(to) — (154 £)(t)

I O o R N N (G NP S O (. B
‘r<a>/o (f e’ +r<a>/t (-’ r<a>/o i nra’

I R (. R Y O o R
‘r<a>/o e~ onra +r<a>/t (- ”

Therefore, we have

(154 ) (o) — (55 ) (D)l x

1 1 1
< Mmoo [ | irms ~ sl + W lamtomn) [ ooy
1 ¢ 1 1 1 K
_ d oo
1ﬂ(a)HfHL [OT],X)/O [(t—T)l_a (tO_T)l—a} T+P(a)|\f|\L [OT]X)/ o= dr
1
(

1 o o 1 1 o
a)HfHL ([0,77,X) a[f —ty + (to — t) ]+ml|f||L°°([0,T],X)a(t0_t)

T

1 1 1 1
< oo to —t) + —— oo —(tg — )
* T )HfHL ([0,7], X)a( 0o—1)*+ o) If1lz ([O,T],X)a( 0o—t)

which implies that

(1o ) (to) — (Lo F)B)l x < Kot —to]®

Consequently, I§, ¢ is Holder continuous with order a. Also,

1 K 1 1 1
I§ ds = 9 ¢ < — o T
1551 0lx < s lmqor) | G = zpra M le=com ot < sl =m0
for all ¢ € [0,T]. Hence (I2) is obtained. The proof of the proposition is completed. ]

Let J = [0,T] and g : J — X be a X—valued function. We consider the equation of finding
y € C(J,X) such that

{%y(t) =g(t) ae tel (13)

y(0) = yo.



Proposition 2.4 Suppose that g € L*(J,X) and y € C(J, X). Then y is a solution of equation (I3) if

and only if y is a solution of the following integral equation

_ L gl
y(t)—yoJrF(Oé)/0 ( ds. (14)

t—s)l-@

Proof. (=). Suppose that y is a solution to (I3). Then we have

_d¥y d 4, 1
9= dto‘ - dtIOJr (y y(O)) EL ([OvT]uX)
Hence 1), *(y — y(0)) € WH1([0, T, X). By Proposition 21 (y — y(0)) € I, (L'). By (8), we have
154 Doy (y = 9(0)) = y — y(0) = y — %o

We now act I§, on both sides of (I3) to get

_ L e
y—yo—r()/o( ds. (15)

a t—s)l-@

Hence y is a solution of equation (I4]).
(«<). Suppose that y € C(J,X) and satisfies equation (I4)). Acting Dg, on both sides of (IT]) and using
[@), we obtain

d%y

dte = D&L(?J - yO) = D8+I(?+9 =g

3 Solution existence

In this section, we investigate the existence of solutions to the state equation [2))-#) and the existence of
optimal solution to problem (1)-(5).
In the sequel, we will assume that J = [0,7], D = H?(Q) N H(Q), V = HI(Q) and H = L*(Q).
Then we have
D~V < H.

Besides, since n = 2,3, the embedded theorem implies that D < C(f)) is compact. Given functions f
and g on J, the convolution of f and ¢ is denoted by f * g which is defined by

(fxg)t) = /0 f(t—s)g(s)ds.

We say y is a strong solution to [@)-) if y € C(J, H) and Ay 4+ u € LP(J, H) with p > 1 such that

&y Ay + ae. teJ
dte Y u ’ (16)
y(0) = yo.

Here yo € D and u € LP(J, H) are given.
Let us assume that y € C(J, H) is a solution to (I6). Then Ay + v € LP(J,H) with p > 1. By
Proposition 2.4] y satisfies the integral equation

B 1 b Ay(s) . 1 Eou(s) .
0=+ 57 |, G T ), T "

or equivalently



where

1

kl_a(t) = W

(19)

Each solution of (I§) is called a mild solution to [@)-{ ). It is clear that any strong solution is a mild
solution. We now establish formula representing solution of (IS]).
It is know that A : D C H — H is a sectorial operator. Namely, the resolvent set p(A) contains the
sector
Sog={NeC: N£0,|arg\| < 0}, 7/2 <0 <,

and y
IR A)ll(ra)) < == YA€ Sp.

Hence A is a generator of a uniformly bounded analytic semigroup {S(t),t > 0} (see Theorem 2.4.1 and
Proposition 2.4.2 in [21], [20, Theorem 3.1.2] and [26, Theorem 2.7, p. 211]). Besides, the following

formula for the resolvent operator is valid:
+oo
R\ A) = (M- A)™! :/ e MS(t)ydt Yt > 0. (20)
0

In other words, R(A, A) is the Laplace transform of S(t).
Let us denote by z the Laplace transform of y, that is

+oo
4&—5@@%—4 ety (t)dt.

By taking Laplace transform both sides of (I8) and using the property of Laplace transform for convo-
lution (see [I8, Theorem 1, p. 232]), we get

=5+ A%AZ(A) + /\%E(u)()\).
This implies that
2(A) = (AT = A)TH AT hyo] + (AT = A)THL(u) (V)] (21)

By taking the inverse Laplace transform, we obtain

y@—F@%+AE@—W$M&

where
F(t) = i/ AMNTINCT + A) LA,
211 To.s
B(t) = i,/ AT + A) A,
27Tl 1‘*9‘5

Here I'p s is a Hankel contour which is oriented with an increasing imaginary part. Namely,
Tos={N€C: |\ =6 |arg\ <O}U{N€C:\=pet? p> 4}

We refer the reader to [I5, Theorem 6.4] for properties of F and E.
There is another way to represent solution y(t) of (I8]). Let ¢, be the one-sided probability density

function such that

/OO ¢a(T)dr =1 and /OO e N Go(r)dr = e
0

0



For the explicit formula of ¢, we refer the reader to [23] and [29]. Moreover, from the explicit formula
of ¢ in [23], we can show (see [27]) that

o _ T(=p/a)
/O t6a(t)dt = LS (22)

Let us define
1 1

CalT) = ot/ ¢O‘(Tl/a )-

Then we can check that fooo Ca(T)dT = 1. Moreover, using ([22), we can show that

> 1
/0 06 (0)d0 = — o

Using (2I)), we have
2(A) = (X1 — A) AN = /O h e "5S(s)h(\)ds

= [ e stemas

/ / e o (1)dr S (s)h(N)ds
/ / 1/a¢a< L )dtS (s)h(N)ds
_/0 eAt[/O 1/a¢a(51%)5(s)h(A)ds]dt.

Here h()\) :== \* yo + L(u)()\). By changing variable s = 0, we have
z(\) = / e M / at®10¢,(0)S(0t*)h(N)db)dL.
0 0

By defining

P(t) = / b at*10¢,(0)S(6t*)adp, (23)
0
we get

2(A) = LIPYNA T yo + L{uw)(V)]
1

A=)

* P)(Nyo + LIP * u)(A).

By acting the converse Laplace transform on both sides and using the convolution property of Laplace

transform, we obtain

y(t) = F(ll—a)/o G _1S)aP(s)y0ds+/ P(t — s)u(s)ds (24)

= I‘(ll_a)/o (t _1S)a /OOO a— 19<a( ) 98 yod9ds+/ / _ a 19Co¢( ) ( (t—s)a)deu(s)ds
(25)

- F(la— a)/o 1 —r)l arl-a /OOO 0Ca(9)S(6(t7)" )yodbdr

+i / (1—=7)*" 1/ 0Ca (0)S (0% (1 — 7)*)u(tr)dbdr. (26)

Based on the above representation of y(t), we have



Proposition 3.1 Let yo € D = H*(Q) N HE(Q). The following assertions are fulfilled:
(1) If w € LP(J, H) with p > 1/a, then equation [A8) has a unique mild solution y € C(J, H) which is
given by [26) and there exist constants K > 0 and K' > 0 such that

yllee,my < Kllyollar + K TPl 1o a)- (27)

Moreover, y(t) € D for a.e. t € [0,T].
(#) If u € CY(J, X) with 0 < v < 1, then equation ([I8)) has a unique solution y € C(J, D) N CV(J, X)
and there exist positive constants K, K1 and Ky such that

1Yllcp) < Kllyollp + Killullevx) + Kallulle.x)- (28)
In this case y is also a strong solution to ([2))-().

Proof. (i) Let us represent y by 24))-([26). We now show that lim;_,o4 y(t) = yo. In fact, it is clear that

« 1 o)
tH%l-i-y(t) - il —«a) /0 (1— T)laTlfa /0 0¢a (0)S(0)yodOdr + 0
a ! 1 oo
TT(1-a) /0 (1—r)eri-a dT/O 0Ca (0)yodt
1
= Ta—a) Pl — )y

Here the beta function is defined by

Bla,b) = /01 t2 1 — 1) dt = %,0 < a,b < +oo.

Note that S(7) is uniformly bounded. Hence there exists a constant & > 0 such that
IP(t)||lg < Kt*™' vt > 0.
We now claim that y € C([0,T], H). Take any to,t € [0,7] and assume that ¢y < ¢t. Then we have

(0%

19t = wtlln = s | crsgemms [, GG (OS0) = S(B(tar)nasar

1 [eS)
4o /0 (1— 7)o /0 0C.(0)S (01 (1 — ) )u(tr)dbdr
— tg‘/o (1—7)t /000 0¢.(0)S(0t5 (1 — T)O‘)u(toT)deTH.

(67

1 1 oo
< it [ e [ @56 - $(0t0r) ) vl b

1 oo
+||t°‘/0 (1—7)“1/ 0C.(0)S (0t (1 — 7)*)u(tT)dbdr

0
5 =t [0S0 71t
=1I(t) + 11(1). )

Since S(t) is continuous and uniformly bounded, the Dominated Convergence Theorem implies that



I(t) — 0 as t — to. To estimate II(t), we write

_H/Pt—s ds—/o P(to — s)u(s)ds||

- H/tO(P(t—s)—P(to—s))u(s)ds+/t:P(t—s)u(s)dsHH
= [ et = s @s0 - 9a0 - [ att - )0, @501t — 51l
+/ P(t — s)u(s)ds||,,
= [ et = o @)s 60 - 91 - S0 - 5)%)a8

/ / ((t = )21 = (to — 8)*1)0Ca(8)S(O(to — 5)*)dO]u(s)ds
+/tOP(t—s) s)ds|| ,
< losinan [ ([ = o0 06 @500~ ) ~ 5000 — ) a)"as]
o | N / (= 97 = (0 — 570G O)1S(O(to — 5)°)do) ds]
s | 1P sas]
<l [ N / "t )" 106 0)|5(0(t - 5)°) — S(O(to — 5))do)"ds]
Hlleram| [ N | 1= o = ) G 015600 — )]

+lull Lo my K (t — to)@e—D)+1)/q
= TI(t) + T12(t) + 113(t).

Since p > 1/a, g — 1) +1 > 0. Hence II3(t) — 0 as t — to+. By the continuity of S,
alt —8)* 710, (0)[|S(0(t — 5)™) — S(O(to — 5)*)|| = 0 as t— to+

and
Iy Tt — 5 0GOSOt — 5)*) — S(6(to — 5)°)d6)"ds
< 2K/ / a(to — 5)*710¢.(0)do) ‘ds
q(

_ a—1)+1
I‘(a+1)q 0

The Dominated Convergence Theorem implies that I1;(t) — 0 when ¢t — tp+. By the same argument,
we can show that II5(t) — 0 as t — to+. Combining these we conclude that

Jim[ly(t) = y(to)x = 0.

Repeating the procedure, we also have

lim_|[y(t) = y(to)[x = 0.

t—to

10



Hence y is continuous at tg. Since t( is arbitrary in [0, 7], we have y € C([0,T], H). To prove ([21), we
use (25) and the fact that ||S(¢)|| < K for all ¢ > 0. Then we have

0l < s [ =92t [ atea @150 llsnllnasas
+ / / ot — 52710 OIS (O(t — ) | u(s) | ndbds
< Kyolla + %)[ / (t — )91 D s | oy

K _
71" UpHuHLP(J,H)-

<K

This leads to (2.
(73). Note that S’(t) = AS(¢). Since yo € D, AS(t)yo = S(t)Ayo. Therefore, we have from ([25]) that

I'l-a) t—s)™

Ay(t)z ! /0 ( 1) /OOOaso‘_lﬁca(H)S(ﬁsa)AyOdﬁds
// —8)*70CL () AS(O(t — 5)*)u(s)dbds

= 1 OOozso‘_l s% s
- T /O T /O 0C.(0)S(0s™) Ayoddd
/ / — $) 10C, (0)AS((t — 5)°)[u(s) — u(t)]dods

/ / — )"0 (O)AS(O(t — 5)* u(t)dodt

1—04)/0 (t —15) /000aSa_lHCa(e)S(esa)Ayodﬁds
// — 8)*710Ca () AS(O(t — 5)*)[u(s) — u(t)]dOds
+/0 Ca(e)/o E[S(e(t—s)a)]u(t)dsdH
- (1—a)/o (t—ls) /0 as®™0a(9)S(05*) Ayoddds
/ / —5)* 1 0Ca (0)AS(O(t — 5)*)[u(s) — u(t)|dbds
/ Ca(0)S(0t* Yu(t)db.

It follows that

I89(0)1 < K)ol + [ t / " aft = 5 0C O ASO( — ) lu(s) — u(t)|sdbds + (1 + K u(t) |
< K| Ayolln + / t / " aft = ) GO K Ju(s) — u(®)l|nd0ds + (1 -+ K)u)]l
< KlAwl+ [ ot — ) K ullenoirant — s + (14 K )l

t'Y
= Kllyollp + KI”“”CW([O,T],H); + (1 + K)[u(®)] a-

This implies that
! T’Y
lyllces,py < Kllyollp + K ||U||Cv([o,T],H)T + (1 + K)llulles,m)-
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Hence (28)) is obtained. Since Ay € C(J, H), we have Ay +u € L*°(J,H). By Proposition 23] y €
C*(J, H). By Proposition[24] y is a strong solution to (2])-). O

Proposition 3.2 Suppose that yo € D and u € L”/([O T|,H) with 1 <p’ < co. Then equation ([I8) has
a unique solution y € LP ([0, T], D) such that % dt_a e L ([0,T), H) and

dOt
Il £+ (0,79, 0) + ”dt_ayHLP/([O,T],H) < Cullull o o,17,m) + C2ll Aol &, (30)

where C1 and Cs are positive constants which are independent of y, f and yo. In addition if p" > 1/a,
then y € C([0,T), H)N L ([0,T], D). In this case y is a strong solution to (@)-(@).

Proof. Define v(t) = y(t) —
computation, we have Cl:—ty = fl— Then equation (I6]) becomes

yo. Then v(0) = 0, y(t) = v(t) + yo and D§,v = L. By a simple

LY = Av+ (u+ Ayo)

v(0) = 0. (31

Since u € L¥ (.J, H), we have u + Ayo € L¥' (J, H). By Theorem 6.11 in [I5], equation (BI) has a unique

mild solution v € L (J, D) with Cgll:a e L (J,H) and

da
[Vl o (g, 0y + ”dt_a’UHLP'(J,H) < CONf +Avoll o (g,m1)-

It follows that equation (I7) has a unique solution y € L*'(J, D) and 4% e L (J, H) such that

dto‘

d* 1
1yl Lo (7,00 + ”dt_ay”LP’(J,H) S Clfllpwr gy + 1+ )T [ Ayolla,

where ¢ is a positive constant which is independent of f and yo. If p’ > 1/, then Proposition Bl implies
that y € C(J, H). Finally, since Ay +u € Lp/(J, H), Proposition 24 implies that y is a strong solution
to @)- ). The proof of the proposition is completed. O

In the sequel, we shall denote by ® the feasible set of problem (I)-(E]). In order to establish a result
for the existence of optimal solution to problem (Il)-(l), we make the following assumption

(A1) L : [0,T] x 2 x R x R — R is a Carathéodory function, that is, for each y,u € R, L(-,-,y,u) is
integrable in (¢, ) and for each (t,z) € [0,T] xQ, L(t, z, -, -) is continuous. Moreover, there exist functions

o1, 02 € L1(Q), nonnegative numbers a1, b1, 51, B2 and positive numbers ag, by such that
¢1(t, ) — arlyl?” — brful™ < L(t, z,y,u) < ¢o(t, x) + as|y|’ + ba|ul™ (32)

for all (¢t,2,y,u) € [0,T] x Q@ x R x R.
(A2) L(t,z,-,-) is convex in (y,u) for each fixed (¢,2) € [0,T] x Q.
(A3) L(t,x,y,-) is convex in u for each fixed (¢, z,y) € [0,T]x Q2 xR, p > 1/ and p < 6 whenever N = 3.

Theorem 3.1 Suppose that (Al) and (A2) are satisfied or (Al) and (A3) are satisfied. Then problem
@)-@) has an optimal solution.

Proof. Let & = inf(, ,yes ¥ (y,u). Then for each (y,u) € ®, (y,u) satisfies equation (IG) and inequality
@0) is valid. It follows that

lyllzeq) + HdtayHLP(JH < Wyllzr,p) + Hdtay”LP (J,H)

< Cillullpeer,my + CollAyoll o
< C'ullpe(q) + Call Ayoll -
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This and (32) imply that £ is finite, that is, £ € R.

Let (Yn,u,) € ® such that V = lim, 00 ¥(yn, un). Since a < u, < b, {u,} is bounded in L*>(Q).
Therefore, we may assume that u,, converges in o(L>(Q), L*(Q)), the weak star topology, to a function
w € L*°(Q). From the above inequality, we see that {y,} is bounded in L?(J, D), {Ay,} and {%yn}
is bounded in LP(J, H). Therefore, we may assume that y, converges weakly to 7 in LP(J, D) and so
Ay, — Ay in LP(J, H). Let us claim that (,u) € ®. Since (yn,u,) € ®, from ([I8) we have

Yn = Yo + klfa * (Ayn + un)

Taking any ¢ € L4(J, H), we have

(U 0), 6 = (o, (1)) 11 + ﬁ / (£ — )2 B(t), Ayn(5) + un(s)) . (33)

Integrating both sides of [B3]) on [0,7] and using Fubini’s theorem, we have
T T
| nro0mat = [ oeymat + 5 / / (6 = 5)*0(8), Aya(s) + n(s)) lsdlt
T 1
= [ somas s [ s [0 900, 80n(6) + ot
o r 1 a—1
= [ stnma s s [ o0t 8 (5) + o)

—TtdtlTTt’T"‘_ltth’T "+ T))uds'
= [ ottt s [ = o =Tt A+ T) (s D)) s

1

r r o / Na—1 / ’ / / /
:/0 (Yo, ¢(t)) mdt — @/O (/0 (t' — Y Lot +T)dt', Ay, (s' +T) + un(s' +T))uds

T T
_/O (yo,(b(t))Hdt—/O (k1_axd(- +T)($), Ay (s +T) + un(s’ + T))pds'.

By a property for convolution (see [6, Theorem 4.15]), we see that the function s’ — k1_o * ¢(- + T)(s')
belongs to L(J, H). Thus we have shown that

T T T
/ (yn(t), (1)) mdt = / (yo, ¢(t)) mdt — / (k1—a * ¢(- +T)(s"), Ayn(s' +T) + un(s' +T)) gds’.
0 0 0

By letting n — oo, we obtain

T T T
/ @), 6(t))mdt = / (Yo, o(t)) mdt — / (k1—a * ¢(- + T)(s'), AY(s" + T) +a(s’ + T))nds’.
0 0 0
This implies that
T =Yoo+ ki—o* (A7 +7).

It remains to show that a <@(t,z) < b for a.e. (t,z) € Q. In fact, the set
K :={uel?(Q):a<a(t,z) <bae}

is a closed convex set in LP(Q). Hence it is a weakly closed set. Since u,, € K and u, — @ in LP(Q), we
have w € K. In a summary, we have showed that (yn,u,) — (7, %) in LP(J, D) x LP(Q) and (7,u) € .
(¢) If (A1) and (A2) are valid, then the functional ¢ (y, u) is sequentially lower semicontinuous on LP(Q) x
LP(Q). Since LP(J, D) x LP(Q) — LP(Q) x LP(Q), we see that (yn,u,) — (7,7) in LP(Q) x LP(Q). Tt
follows that

= nlggo Y (Yn, un) > (7, 7).

Hence (7, u) is an optimal solution to problem ([I)-(E).
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(74) Suppose that (A1) and (A3) are valid. We claim that y, — 7 strongly in LP(Q). In fact, it is known
that the embeddings

D—=V—H
are compact. Since 1/p < a < 1, we have
1 ¢ 1 ¢
m/@ (t = 5)"" lyn(s)llpds < m(/o (t — 8) @ D9d) )y | Lo (1)
: F(la) (o — 1); ¥ 1)1/qt(a_1)+1/q|‘yn||LP<JyD>
< ! TP M = M.

I'(e) ((a = 1)g)t/a
Hence

1 /t .
sup —— (t—9)* yn(s)||pds < M.
te(0,T) ['(a) Jo

Besides, we have p > 1 and p > L=, and {D§, yn} = {i—iyn} is bounded in L?(.J, H). By Theorem 4.1
in [T9], we see that {y,} is a relatively compact set in LP(.J, V). Therefore, we may assume that z; — z
strongly in LP(J,V). If N =2, then V — L>®°(Q). If N = 3, then V < L%(Q). Since 1 < p < 6, we have
LP(J, V) < LP(J,L%(Q)) — LP(Q). Thus we have shown that y,, — 7 strongly in LP(Q) and u,, — U in
L?(Q). By (A3), the functional ¥ (y,u) is sequentially lower semicontinuous (see Theorem 3.23 in [9]).
Hence we have

§= nlggo1/)(ynvun) > 1/’(?75)

and so (g, @) is an optimal solution to problem (I)- (). The proof of the theorem is completed. O

4 Optimality conditions

We now impose the following assumption for L which makes sure that 1 is of class C2? around a feasible
point (7,u). Given 1 < p < +oo, we denote by ¢ the conjugate number of p, that is, ¢ > 1 and
1/p+1/q¢=1.

(A4) L:[0,T) x 2x R xR — R is a Carathéodory function of class C? with respect to variable (y,u) and
satisfies the property that for each M > 0, there exist a positive number k7,5 and a function rp; € L*(Q)
such that

Ly (t, 2y, w)| + Lot 2,y w)| < kear ([yP70 + Jul) + 7t ),
|Lu(t7x7y17u1) - Lu(t7$7y27u2)| S kLM(|y1 - y2| + |U1 - U2|),

[p—1]

|Ly(ta €z, ylvu) - Ly(ta xZ, y27u)| < kLM Z |y1 - y2|p*1*j|y2|j
=0

for all u, u1,us € R satisfying |u|, |u;| < M and any y1,y2 € R. Also for each M > 0, there is a number
krar > 0 such that
| L (t, 2,91, u1) — Luu(t, 2,92, u2)| < kpar(Jyr — ya| + Jur — uzl),
- L

|Lyu(t7$7y1aul) yu(tv'rvaqu)‘ < kLM(€|y1 - y2|p*1 + |u1 - u2|)

(withe=0ifp=2ande=1ifp>2) and

=0 it p=2,

[p—2] —2—j A (34>
< krum Zj:o lyr — y2|P~2yo|? if p>2

|Lyy(t7$7y17u) - Lyy(tvxvy% u)|
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for a.e. x € Q, for all w,u;,y; € R with |ul, |u;] < M and ¢ = 1,2, where [p — 2] is the integer part of
p — 2. Moreover, we require that L(¢,z,0,0) € L'(Q) and Ly, (¢, 2,0,u) € L>=(Q).

Note that (A4) makes sure that the functional v is of class C2. The following example shows that L
satisfies (A44).

Example 4.1 Let p > 2 and p € N. Then
L(t,x,y,u) = (y — yo(t,2))P + 9" 4+ y> +yu+u® ot -
satisfies assumption (A44), where yo € LP(Q) is given.
Let us define the mapping F' : LP(J, D) x L*>(Q) — LP(J, X) by setting
Fy,u) =y —yo — ki-a * (Ay + u), (35)
where k1_,, is given by ([d)). Put

Ky :={ue L®(Q)a<u(t,z)<b ae teQ} (36)
Ky:={ueLlP(Q)la <u(t,z) <b ae teQ} (37)
Obviously, Ko = K,. Besides, we can check that ¥ is a strong solution to (2)-() corresponding to

u € L*(Q) if and only if 5 € LP(J, D) and F(y,u) = 0. Therefore, problem (I)-(E]) can be formulated in
the following form: find (g,u) € LP(J, D) x L>(Q) which solves

¥(y,u) — inf (38)
s.t.

F(y,u) =0, (39)
ue Ko (40)

In this section we assume that (7,u) € ®, that is, F'(y,u) = 0 and @ € K. The symbols
Lit,x], Ly[t, x|, Ly[t, z], Lyy[t, 2], Luu[t, ], Lyu[t, 2]
stand for

L(t,z,y(t,x),u(t, x)), Ly(t, z,5(t, ), u(t, x)), L, (¢, 2, G(t, z), u(t, x))

and so on, respectively.

Proposition 4.1 Suppose that assumption (A4) is valid. Then the mappings ¢ and F are of class C?
on LP(J, D) x L*°(Q). Moreover, the following formulae are valid:

(Y, ), y) = Lyt, z|y(t, x)dtdz, (¥, (y,1),u) = Ly|t, x|u(t, z)dtdzx,

(W, (7.7).9) /Q I, aly(t, 2)dtde, (7. 7),u) /Q it au(t, x)dt

<1/}yy(yvﬂ)ylay2>:/ Lyy[t,x]yl(t,x)yg(t,a:)dtdx, <¢yu(yaﬂ)yvu>:/ Lyu[t,x]y(t,J:)u(t,a:)dtdx,
Q Q

(Y (T, W), v) = /QLuu[t, z]u(t, z)o(t, z)dtdx

and

Fyy(yvﬂ [ylva] = Oa Fuu(yaﬂ)[uvv] = 07 Fyu(yaﬂ)[yvu] = 07
for ally € LP(J, D) and u,v € L*>(Q).
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Proof. By the same argument as in the proof of Proposition A in [16], we can show that 1) is of class C?
on LP(Q) x L*(Q). Since LP(J, D) < LP(Q), we see that 1 is of class C? on LP(J, D) x L>(Q). The
differentiability of F' follows from the linear property of F'. O

Fix any u € L*°(Q). By Proposition B.2 the equation F(y,u) = 0 has a unique solution y = y(u) €
L?(J, D). Let us define the mapping G : L>°(Q) — LP(J, D) by setting G(u) = y(u). The mapping G is
said to be a control-to-state mapping. By ([24)), we have

G(u) = kq * Pyg + P x u.

It is clear that G(u) is linear and so it is of class C*°. Namely, we have G’ (u)v = Pxv and G” (u)[v, v] = 0.
Let us define the mapping f(u) = ¢¥(G(u),u). Then by a simple argument, we can show that (7, ) is
a locally optimal solution of [B8)-(0) if and only if 7 is a locally optimal solution of the problem:

f(u) =9y (G(u),u) — min

(41)
u € K.
The following proposition gives some properties of control-to-state mapping G.

Proposition 4.2 The mapping G : L*°(Q) — LP(J, D) has the following properties.

(1) If v € L™(Q) and z, = G'(W)v, then z, is a unique solution of two equivalent equations:
2y = k1—a * (Azy + ) (42)

and

d®z,

—— = Az, +v, 2z,(0)=0. (43)

dt

(12) For every vi,ve € L, G"(u)|v1,v2] =0
Proof. For all u € L*(Q), we have F(G(u),u) = 0. By differentiating both sides in u, we get

This means
F,(7,u)G'(@)v+ F,(g,u)v =0 Yv e L¥(Q).

By Proposition [A.], we get
2y — k1o % (Azy) —ki—qxv =0.
Hence z, is a solution of ([@2]) and @3]). Assertion (i7) follows from the linear property of G(u). O

Proposition 4.3 The function f is of class C* around U and for any v,vi,ve € L>(Q) the following
formulae are valid:

(F@.0) = [ (Lult.a] = olt,))olt,z)dode (44)
Q
and
' (@)[vy,v2] = / (Lyyt, )20, 2oy + Lyu[t, )20, v2 + Luy[t, €20, 2 + Ly [t, ]vrve)dtde, (45)
Q

where ¢ € L1(J, D) is a unique mild solution of the adjoint equation
czo‘ga
ae Ap — Ly[-,], o(T) = 0. (46)
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Proof. We first show that equation (Z6) has a unique solution. Indeed, by changing variable ((t) =
o(T —t), equation ({g]) is equivalent to the equation

de

dt—as&(T—t):AC(t)—Ly[T—t, ], ¢(0) = 0. (47)
Since ¢(T") = 0, we have =D%_¢ and
o _ 1 a gt o(7) _ 1 d ["(T—s)
DT =t =1q —Q)E/Tt T+ T a)a/ G—sp &
1 d [Te(T—5) _
- T ), s = DB = .
Hence equation ([@T) is equivalent to
G0 = AL ~ Ly [T 1, ¢(0) =0. (49)

By assumption (H1), L,[-, -] € LY(J, L>°(R)) < L9(J, H). By Proposition[3.2] equation (48] has a unique
mild solution ¢ € L4(J, D) with dtQC € Li(J, H). Consequently, equation (Z6]) has a unique mild solution
o(t) = ¢(T —t) € LIY(J, D). We now have f'(u) = ¢, (G(u), u)G'(u) + ¥, (G(u), u). Hence

(f'(w),v) = by (G(u), W) G (u)v + Yu (G(u), w)v. (49)
By taking u = @ and putting z = 2z, = G'(T)v, we get
(f'(@),v) = ¥y (7,0)G (@Wv + Yu (7, W)v = /Q(Ly[t, )z (t, ) + Lult, x]o(t, z))didz. (50)

Note that z = z, satisfies ([3]) and ¢ is a mild solution of ({@6]). Hence

¢ =I7_(Ap = Lyl ). (51)
Since Ap — Ly[-,-] € L(J, H), we see that ¢ € I$_(L9). Hence Lemma 2] is applicable for ¢ and
z = 2z, € 1§, (LP). By applying operator D% _ on both sides of (&I)), we get

Di_p=Ap = Lyl
and so
Lyl ]=Ap - D7 _¢.
Besides, for each t € J, p(t), 2(t,-) € H*(Q) N H} (). By Lemma 1.5.3.2 in [13], we have

A(p(t,x)z(t,x)dxz/gp(t,x)Az(t,a:)da:.

Q Q

Using this, (3), (@0) and (@), we obtain

T
<f’(ﬂ),v>:/ /(—D%,wm)z(t,x)+Lu[t,x]v(t,x))dtdx

T
/ (—DF_z(t x)dazdt+/ Ap(t, z)z(t,x)dzdt —|—/ / Ly[t, z]v(t, x)dzdt
Q Q Q

:—/O(DTQD( Hdt+// txAztxdxdt—i—// ult, x]u(t, x)dadt
_—/()T(D3+z(t),ga(t,'))Hdt+/O /Q<p(t,x)Az(t,x)dxdt+/o /Q L[t z]o(t, x)ddt
:/OT(_da;t(j') —|—Az(t,-),cp(t,'))Hdt—I—/OT/QLu[t,:v]v(t,:v)d:vdt

_/OT(—U,<p)Hdt+/OT /QLu[t,x]v(t,x)dxdt

_ / (Lult, 2] — o(t, 2))o(t, @)dadt.
Q
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Hence ([#4)) is obtained. Next, we have from ([@9) that
f (W = Wy (G(u), w)G' (1) + Yyu(G(u),u)) G (w)v + Py (G(u), w)G" (u)v
+ (Yuy (G(w), u)G' (1) + Yuu (G (u), w))v.
Replacing u =, v = v1 and acting on vy, we obtain
F(@)[vr, va] = Yyy (T,77) (20,5 205) + Yy (T, T)[20,, v2] +0
+ wuy (ya E) [Z'Ul ) UQ] + 1/)uu (yv ﬂ) [1}1, ’02]

= / (Lyy[t, )20, 2o, + Lyu[t, )20, v2 + Luy[t, €] 20, V2 + Ly [t, ]vrve)dtde
Q

which is (#3]). The proof of the proposition is complete. O

In the sequel, we shall use the following sets.

Q. ={(t,z) € Q :u(t,x) = a},
Qp = {(t,.’L‘) €Q: ﬂ(t,.’L‘)
Qu = {(t,7) € Q : a <u(t,z) < b}.

The following theorem is a result on the first-order necessary optimality conditions.

Theorem 4.1 Suppose that assumption (A4) is valid. If (y,u) € ® is a locally optimal solution of problem
@-@), then there exist a function ¢ € LI(J, D) with Cf;f € LYJ, H) and a function e € L1(J, L>°(Q))
such that the following conditions are fulfilled:

(1) ¢ is a mild solution of the adjoint equation

do
= =D —Ly[ ), o(T,) =0; (52)

(ii) (the stationary condition in u)
Lult ] — () = elt,) ae. (he) € Q;
(#i7) (the complimentary condition) e(t,x) has the property that

>0 ae. (t,x) € Qq,
e(t,r)<{ <0 a.e. (t,x) € Qp,
0 a.e. (t,7) € Qup-

Proof. It is clear that (g, @) is a locally optimal solution of ({)-() if and only if @ is a locally optimality
solution of problem (I]). By definition, there exists an open ball B(w,€) C L>(Q) so that

fu) > f(@) Yue B, e)N Ku.
Fix any v € K. Then for A > 0 small enough, we have vy =T+ A\(v — %) € B(u,¢) N K. Hence
f+ Mo —u)) = f(w).
This implies that

fE+ A=)~ 1@
. >0,

By letting A — 04, we obtain

(f'(@),v—1u)y >0 VYve Kx. (53)
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By Proposition B2 equation (52)) has a unique solution ¢ € C(J, H)NLY(J, D). Hence (i) is valid. From
Proposition I3 and (G3), we have

/ (Ly[t, z] — o(t, 2)) (v(t,x) —Tu(t,x))dtde > 0 VYo € K. (54)
Q
By putting L, [t, z] — o(t, ) = e(t, x), we see that e € L(J, L°°(Q2)) which satisfies (i7) and (54]) becomes
/ e(t,z)(v(t,x) —u(t,z))dtde >0 Vv € K. (55)
Q

Using variational arguments as in the proof of [I7, Theorem 4.1], we can show that e satisfies (iéi). The

theorem is proved. O

To deal with second-order optimality conditions, we need the so-called critical cone as follows.

Definition 4.1 A couple (y,v) € LP(J, D) x LP(Q) is said to be a critical direction to problem (I))-(B)
at (y,u) zf the followmg conditions are fulfilled:

(c1) Jo(Lylt,zly(t, ) + Lult, 2]o(t, 2))dtdz < 0;
(c2) y = kl a (Ay +v);
(c3) v(t,x) >0 for a.e. (t,x) € Qq and v(t,x) <0 for a.e. (t,z) € Q.

The set of critical directions at (g,u) is denoted by Cp[(Y,@)] which is a closed convexr cone containing

(0,0).

We now take a couple (y,v) € C(g,u) such that v € L*°(Q). Then (c2) is equivalent to saying that
y = 2z, = G'(@W)v. Moreover, if (7, @) is a locally optimal solution, then

/Q(Ly[taw]y(t, x) + Ly[t, z]o(t, x))dtdx = 0.

Indeed, it is clear that e(¢,z)v(t,z) > 0 for a.e. (t,z) € Q. Since y = z, we have from Proposition [1.3]
and (B0) that

0> /Q(Ly[t, x)y(t,x) + Ly[t, z]v(t, z))dtde = /Q(Lu[t,x] —o(t, z))v(t, z)dtde = / e(t,z)v(t,z)dt > 0.

Q
(56)
Let L(y,u, ¢, e) be the Lagrange function associated with the problem, which is given by
Llvuee) = [ Lty +y(G — ) = pu = culdrda. 67)
Q
Then conditions () and (i7) of Theorem A1 is equivalent to the condition
v(y,u)ﬁ(ya u, 2 6) =0. (58)

We have the following result on second-order necessary optimality conditions.

Theorem 4.2 Suppose that (A4) is valid, (g, @) is a locally optimal solution of [M)-@) and (p,e) satisfies
the conclusion of Theorem [} Then

V?ymﬁ@, , @, e)|(y,v), (y,v)] = /Q(Lyy[t, 2]y + Lyult, ©|yv + Luy[t, ©]yv + Lyu[t, 2]v?)dtdz > 0 (59)

for all (y,v) € Cp[(T,w)], where p > 2.
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Proof. We divide the proof into two steps.
Stepl. Proving (B9)) for the case (y,v) € Cp[(Z,@)] where v € L>(Q).
Take any (y,v) € Cp[(Z,w)] with v € L*®(Q). By (c2), y = 2. For each 0 < p < b — a, we define
0 if a<u(t,z)<a+p or b—p<u(t,z)<b
vp(ta I) =

v(t) otherwise
and y, = z,,. Then by the same argument as in the proof of [I7, Theorem 4.3], we can show that
(Yps up) € Cpl(7,w)] and v, — v strongly in LP(Q). For A € (0, p/||v||00), we have T + Av, € Ko. Since u
is an optimal solution, for A > 0 small enough, we get

) < F@+20,) — §(@)
A

where 0 < # < 1. By Proposition [£.3]

/\2
= )\f/(ﬂ)vp + gf”(ﬂ + 0Mv,)[vp, V],

(@, = / e(t, x)v,(t, z)dtdx < 0.
Q
It follows that
0 < f"(u+ 0Xvp) vy, v,).
By letting A — 0+, we obtain 0 < f”(@)[v,,v,]. This and Proposition 3] imply
0< / [Lyylt, :E]yﬁ + 2Ly [t, x]y,v, + Lyult, x]vﬁ]dtdw (60)
Q
Now we have
y=ki_ox(Ay+v)
Yp = ki—a * (Ayn +v,)
Hence
Y= Yp = k1o (Ay —yp) + (v —1,)).
By Proposition 3.2], there exist positive constants C' and C’ such that
4
dt>

This implies that [y, — yllze(spy — 0 as p — 0+. Since LP(J,D) — LP(J, L>(2), we also have
9o — yllLe (s, Lo0()) — 0. From assumption (A4), we see that Ly,[-, -], Lyu[-, ], Luy[-,-] € LI(J, L>). We

19 = YllLe.p) + 175 Wo = Wllrrm) < Cllv = vpllrrmy < Cllv = vpllLe@)- (61)

now claim that

/[Lyy[ta$]y§—>/ Ly, [t, 2]y*dtdz.
Q@ Q

In fact, using 34) with y; = 0 and y, =7, we have
‘/[Lyy[t,x]yi _/ Lyy[t,x]y2dtd:1:’ = ‘/ Lyy[tvx](yp - y)(yp —I—y)dtdx‘
Q Q Q
T
<c" / 1Lyl locllve — wllooltp + ylloodt
T s T T
<o / 1Lyl E2 e 2] / lyp — ylZ.]dg 7] / lyp + ylIZ.1de”

T T T
—|p— _P_ —
SC”[/O (G122 + | Lyy[, Yl e (@) 7= Idt])* 2/”[/0 IIyp—yllﬁo]dlﬁ]l“"[/0 llyp + ylZJde]

< Mllyp = yllrs=@) ¥ + YllLe(s,Lo@)) — 0.
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The claim is justified. Similarly, we also have
/Q[2Lyu[t, z]ypvp + Luult, x]vi]dtdaj — /Q[ZLyu[t, T)yv + Ly [t, v]v?]dtdz.
By letting p — 0+, we obtain from (60) that
0< /Q (Lyy [t 2192 + 2Lyt 2lyo + Luult, 2]v?]dtde.

Hence ([B9) is valid.
Step 2. Proving (B9) for any (y,v) € Cp[(T,)].

Next we take (y,v) € Cp[(Z,@)]. Then from (c2) of Cp[(T,w)], we have y = z,. For each n > 1, we
define

vk(t, ) = Py, »)(v(t, 2)) = min{max{—n, v(t, )}, +n},
where Pr_,, ,,(§) denotes the metric projection of § on [-n,n] in R. It is clear that v, € L*°(Q) and
vn(t, ) = v(t, z) a.e. ¢t € [0,1]. By the nonexpansive property of metric projection, we have

|vn(t,:1:)| = |P[—n,n] (’U(t,:t)) - P[—n,n] (0)| < |’U(t,$)|.

The Dominated Convergence Theorem implies that v, — v in LP(Q) and in L?*(Q). Let us put y, = 2, .
We now claim that (yn,v,) € Cp[(Z,@)]. Indeed, condition (c2) is obvious. To verify condition (c3), we
note that if w(t,z) = a, then v(t,z) > 0. Hence vy, (t,z) = min{v(t,z),n} > 0. If w(t,z) = b, then
v(t,x) < 0. Hence v, (t,2) = max{—n,v(t)} <0. To check (¢1), we have

/(Ly[t,x]yn(t,x) + Lyt x|v, (¢, x))dtdx :/ e(t, x)vy, (t, x)dtdx
Q

Q
:/ e(t,;v)vn(t,:t)dt—i—/ €(t,$)vn(t,$)dtd$=/ e(t,x)min{v(t,x),n}dtdw—i—/ e(t, z) max{—n,v(t, z)}dtdx
< /ae(t,x)v(t,x)dtdx—l—/Qbe(t,:E)v(t,x)dtd:E < /Qe(t,x)v(t,x)dtda: <0.

Therefore, the claim is justified. Now we have
y=kiax(Ay+v)
Yn = k1_q * (Ayn + vn)'

Hence y — yn = k1—a * (A(y — yn) + (v — v,)). By Proposition B.2] there exist positive constants C' and
C’ such that

dOt
lyn — yllLe g0y + ”dt_a(y" —Wleem) < Cllv=vallLermy < C'Mlv — vnllLe(q)- (62)

This implies that ||y, — yllzrrp)y — 0 as n — oo. Since LP(J, D) < LP(J,L>(f2), we also have
lyn — yllLe(s,L () — 0. By Step 1, we have

/ (Lyy[ts 2)y2 + Lyult, 2)ynvn + Luy[t, 2]ynvn + Lyu[t, 2Jv?)dtdz > 0.
Q
By letting n — oo and using similar arguments as in Step 1 with noting that y,, — vy, u, — u, we obtain
/ (Lyy[t, 2]y* + Lyu[t, lyv + Luy[t, 2lyv + Luu[t, ]v?)dtds > 0.
Q

The proof of the theorem is completed. O

For the remaining part of this section, we give second-order sufficient optimal conditions for locally
optimal solution to ([Il)-(@). To do this, we need some tools of variational analysis.
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Let K be a nonempty and closed subset in a Banach space X and w € K. The sets

T°(K;w) == {h € X |Yt, = 07,3h, = h, @+ t,h, € K Yn €N},
T(K,@):={heX|3t,—0",3h, > hT+t,h, € K ¥neN},

are called the adjacent tangent cone and the contingent cone to K at w, respectively. It is well-known
that when K is convex, then
T"(K;w) = T(K;w) = cone(K — ),

where
cone(K —w) :={ANh—w) | heQ,\>0}.

Let K, be defined by (317). Then from [16, Lemma 2.4], we have
T°(Kp, 1) = {v € LP : v(t,x) satisfies (c3)}.

Hence condition (c3) in C,[(7,@)] is equivalent to saying that v € T°(K),, ).
Below, we set Y = LP(J, D) and U = L*>°(Q). Given € > 0, the symbols B(7,€)y is a ball in ¥ with
center at ¥ € Y and radius € > 0.

‘We now have

Theorem 4.3 Suppose (A4), p > 2, 1 > a > 1/2 and (p,e) satisfies the conclusion of Theorem 4.1.
Furthermore, suppose that the following conditions are satisfied:
(@) Lyyl-,-]s Lyuls ] € L=(Q) and there ezists a number A > 0 such that

Lyt z,y,u) > A V(t,z,y,u) € Q X R x R. (63)
(i1) (the strictly second-order condition)
VL@ ¢,0)[(2,0), (2,0)] >0 V(z,0) € C[7.w)] \ {(0,0)}- (64)
Then there exist positive constants o and € such that
Yy, u) = ¥, %) + ellu—all3 V(y,u) € By (7€) x Bu(ae).

Proof. On the contrary, we suppose the conclusion were false. Then, we could find sequences {(yn, u,)} C
® and {p,} C int R such that y, = FinY, u, > win U, g, — 0 and

U(Yn, un) < V(G @) + okllun —all3- (65)

If u,, = @, then we can show that y,, = 7. It follows that (7, %) < (7, @)+ 0 which is absurd. Therefore,
we can assume that u, # u for all n > 1.

Define t,, = ||u, — |2, 2, = 2=% and v, = “2=%. Then ¢, — 0% and ||v,||2 = 1. By the reflexivity

of L?(Q), we may assume that v, — v. From the above, we have
Yy, un) = U(7,7) < thon < o(t7). (66)
We claim that z, converges to some z in L?(.J, D). In fact, since (y,,u,) € ®, we have

Yn(t) = yo + k1—a * (Ayn + un),
T=1yo+ ki—o * (AT + 7).

This implies that

Zn =ki—a * (Azy +vp), 2,(0)=0.
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By Proposition [3.2], there exists constant C' > 0 such that

da
| znllz2(s,0) + Hdt_aanL%J,H) < Cllvnll 2,z = CllvnllL2()-

Hence {z,} is bounded in L?(J, D). Without loss of generality, we may assume that z, — z in L?(J, D).
Let us claim that if 2 > é, then z, — 2 strongly in L?(J, V). In fact, it is known that the embeddings

D—V—H
are compact. For oo > 1/2, we have
1 t ! 1 ' 1)2,7.\1/2
(@) /O (t —8)* zi(s)|| pds < o) (/0 (t — )@ 02d8) /2| 24| L2
1 1 a—1/2
= (@) (a— 1/2)1/2t 2|2k Lo (s,0)
1 1

T Y20 = M.

ST (@ 1/2)7
Hence

1 /t 1 /
sup —— t— ) |zn(8)|| pds < M.
S @) o (t—=35)*" lzn(s)ll

Besides, we have 2 > H%’ and {Dg, z,} = {%zn} is bounded in L?(.J, H). By Theorem 4.1 in [19], we
see that {z,} is a relatively compact set in L?(J, V). Therefore, we may assume that z, — z strongly in
L?(J,V). The claim is justified.

By repeating the procedure in the the proof of Theorem [3.I] we can show that
z2=ki_q * (Az +v). (67)

The remaining part of the proof will be divided into two steps.
Step 1. Showing that (y,v) € Co[(y, )]
By a Taylor expansion, we have from (G0) that
oftn) _ o)

<
7 %

Yy (T,0) 2n + Vu (T, T)vn +

Note that L,[-,-] € L°°(Q) and 9, (7,%): L*(Q) — R is a continuous linear mapping, where
(Yo (g, ), u) == / Ly[t, x|u(t, x)dtdr  Yu € L*(Q).
Q

By [6, Theorem 3.10], ¢, (y,u) is weakly continuous on L?*(Q). On the other hand, L,[-, ] € L4(J,H) C
(LP(J,D))*. Hence limy o0 [, Ly[t, @]2k(t, x)dtdx = [, Ly[t, z]2(t, z)dtdz. Letting k — oo in (G8), we
get

¥y (U, 0)z + Yo (g, 7)o = /Q(Ly[t,x]z(t,x) + Ly[t, z]v(t, x))dtdx < 0. (69)

Hence condition (¢1) in C2[(7,w)] is valid. By (G7)), condition (cz) is fulfilled. For (c3), we note that
Unp — U € Koo — . This implies that
1
vn € —(Koo =) T°(Koo; ),

n

where T?(K ;@) is the tangent cone to Ko, at @ in L%([0, 1], R). Note that K., = K. Since T°(K ;)
is convex and closed in L2, it is weakly closed. Passing to the limit, we obtain v € Tb(Koo;E). Hence
condition (c3) of Co[(7,w)] is fulfilled.

23



Step 2. Showing that (z,v) = 0.
Note that (e, u, — ) > 0 and
Yn = Yo + klfa * (Ayn + un)
¥=yo+ki—a*(AY+7).
This implies that
(Yn —Y) = k1—a * (A(yn — ) +un —u) = 0.
Hence 5o
dt_a(y" _y) - A(yn _y) - (un _ﬂ) =0.
This and Lemma 2.1 yield

/Q (U — D% ¢ — DAl — T) — olun — W)dtde

= | PO e )~ Al ) o~ Wt =0
Combining these with (66]) and definition of Lagrange function (&1), we have
L(Yns un, s €) = LG, U, @, €) = P (Yn, un) = (G, 1) = (€, un — )
< Y (Yn, un) = (7, 7) < o(t7).
From this, (58) and a second-order Taylor expansion, we get

t _
?v%y,u)‘c(yv U, @, 6)[(Zn, ’Un), (va ’Un)] + O(ti) < O(ti)a

or, equivalently,

_ o(t2
VL0059, 0 )] < 22 (70)
This means
2
/Q(Lyy[t, 2]22 + 2Ly [t, 2] 2nvn + Luy[t, vl )dtdr < O(t2n) (71)

Let us claim that

lim [ (Lyylt, )22 + 2Lyut, ¥) 2000 + Loy [t, ©]02 )dtd

n—oo
Q

> / (Lyy[t, 2]2% 4 2Ly [t, ©]20 + Ly [t, x]v?)dtdx.
Q

Indeed, since Ly, [t,x] > A > 0, the functional u — fQ Ly [t, w]u?dtdz is convex and so it is sequentially
lower semicontinous. Hence

lim Luu[t,x]vidtdxz/ Luyu[t, x)v?dtdz.

Since z, — z in L2(J, V), ||l2n + 2|l 12(s,v) < M for some constant M > 0. Using assumption Lyy[-,-] €
L>(Q) in (i), we have

T
|/QLyy[t, x)(z; — z°)dtdx| < /o /Q |Lyylt, x]||2n(t, ) — 2(t, 2)||2n (t, ) + 2(t, z)|dzdt

T
S/O [ Lyylts e llznlt, ) = 2(E ) 2@ llzn(t, ) + 2 )l 2@

< Lyyls Mz @Mzn(s ) = 205 )z@llznls ) + 205 )22 @)
< Lyyls Mz @) Mzn(s ) = 205 )2 (@) M-
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This implies that
lim Lyy[t, ©)22(t, z)dtdx = / Ly, [t, ©)2%(t, z)dtdz.
Q

n—oo
Q

Similarly, we can show that

lim Lyu[t,x]zn(t,x)vn(t,:zr)dtdx:/ Ly[t, x)2(t, )v(t, z)dtd.

Hence the claim is justified. By letting n — 0o, we obtain from (TI]) that
V%y)u)ﬁ@, u, ¢, e)|(z,v), (z,v)] <0.
Combining this with (64]), we conclude that (z,v) = (0,0).
Finally, from (63)), (1) and |[lvn||z2(q) = 1, we have
/ (Lyy[t, 2]22 + 2Lyu[t, 2] 20 )dtds + A
Q

o(t)
< /Q(Lyy[t, x]zi + 2Lyt )20 v + Luult, x]vi)dtdm < R

By letting n — oo and using (z,v) = (0,0), we obtain A < 0 which is absurd. Therefore, the theorem is
proved. ]

Remark 4.1 When 0 < a < 1/2, the embebded theorem is not applicable and the proof of Theorem (2]
is collapsed. Therefore, establishing second-order sufficient conditions for this case is an open problem.
When 1/2 < a < 1 and p = 2, Theorem [Tl and Theorem give no-gap second-order conditions on

the common critical cone C3[(7,@)].

Acknowledgments

The research of the first author was partially supported by Vietnam Academy of Science and Technology
under grant number QTRU 01-01/21-22. The second author was supported by Taiwan MOST grant
111-2811-M-110-017.

References

[1] O.P. Agrawal, A General formulation and solution scheme for fractional optimal control problems,
Nonlinear Dynamics 38 (2004), 323-337.

[2] V.V. Anh, N.N. Leonenko, Spectral analysis of fractional kinetic equations with random data, Journal
of Statistical Physics 104 (2001) 13491387

[3] J.-P, Aubin and H. Frankowska, Set- Valued Analysis, Birkhauser Boston, 1990.

[4] G. M. Bahaa, Fractional optimal control problem for differential system with control constraints,
Filomat 30 (2016), 2177-2189

[5] E.G.Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. thesis, Eindhoven University
of Technology, Eindhoven, 2001. MR 1868564

[6] H. Brézis, Functional Analysis, Sobolev spaces and Partial Differential Equations, Springer, 2010.

[7] E. Casas, Optimal Control of PDE: Theory and Numerical Analysis, CIMPA School on Optimization
and Control, CIEM - Castro Urdiales, August - September 2006.

25



8]

[9]
[10]

[11]

L. Cesari, Optimization Theory and Applications, Problems with Ordinary Differential Equations,
Springer-Verlage, New York Inc., 1983.

B.Dacorogna, Direct Methods in the Calculus of Variations, Springer, 2008.

E. Demirci and N. Ozalp, A method for solving differential equations of fractional order, J. Comput.
Appl. Math., 236 (2012) 2754-2762.

K.Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag Berlin Heidelberg,
2010.

R.Dorville, G.M.Mophou and V.S.Valmorin, Optimal control of a monhomogeneous Dirichlet
boundary fractional diffusion equation, Computers and Mathematics with Applications 62 (2011)
1472-1481.

P.Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing Inc., 1985.

A .D.Joffe and V.M.Tihomirov, Theory of Extremal Problems, North-Holland Publishing Company,
1979.

B.Jin, Fractional Differential Equations, An Approach via Frational Derivatives, Springer, 2021.

B.T.Kien, V.H.Nhu and N.H.Son, Second-rrder optimality conditions for a semilinear elliptic optimal
control problem with mized pointwise constraints, Set-Valued Var. Anal., 25 (2017), 177-210.

B.T.Kien, V.E.Fedorov and T.D.Phuong, Optimal control problems governed by frational differential
equations with constraints, STAM J. Control Optim., 60 (2022), 1732-1762.

E. Kreyszig, Advanced Engieering Mathematics , John Wiley & Sons, Inc., 2011.

L. Li and J.-G.Liu, Some compacness criteria for weak solutions of the time-fractional PDEs, STAM
J. Math. Anal., 50 (2018), 3963-3995

A Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Springer Basel, 1995.

L.Lorenzi, A.Lunardi, G.Metafune and D.Pallara, Analytic Semigroups and Reaction-Diffusion Prob-
lems, Internet Seminar 2004-2005.

R. Metzler, J.Klafter, The random walk’s guide to anomalous diffusion:a fractional dynamics ap-
proach, Physics Reports, 339 (2000), 1-77.

J. Mikusinski, On the function whose Laplace-transform is e*”, Studia Math. 18, 191 (1959).

G.M. Mophou, Optimal control of fractional diffusion equation, Computers and Mathematics with
Applications 61 (2011), 68-78.

G.M. Mophou and G.M.N’Guérékata, Optimal control of a fractional diffusion equation with state
constraints, Computers and Mathematics with Applications 62 (2011) 1413-1426.

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-
Verlag New York, Inc, 1983.

K. A. Penson and K. Gorska, Exact and explicit probability densities for one-sided Lévy stable dis-
tributions, Physical Review Letters, November 2010 DOI: 10.1103 /PhysRevLett.105.210604.

B.G.Priya and P.Muthukumar, Controllability and minimum energy control of fractional neutral
delay system, IFAC Papers OnLine 51-1 (2018), 592-597.

26



[29] H.Pollard, The representation of e=*" as a Laplace integral, Bull. Amer. Math. Soc. 52 (1946),
908-910.

[30] F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E 53, 1890 — Pub-
lished 1 February 1996.

[31] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integral and Derivatives: Theory and Ap-
plications, Gordon and Breach Science Publishers, 1993.

[32] F. Troltzsch, Optimal control of Partial Differential Equations, Theory, Methods and Applications,
American Mathematical Society, Providence, Rhode Island, 2010.

[33] K.B. Oldham and J. Spaier, The Fractional Calculus: Theory and application of differentiation and

integration to arbitrary order, Academic Press, INC, 1974.

27



	1 Introduction
	2 Some auxiliary results on fractional derivatives
	3 Solution existence
	4 Optimality conditions

