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Optimal control problems governed by time-fractional diffusion

equations with control constraint

B.T.Kien∗, B.N.Muoi†, C.F.Wen‡and J.C.Yao§

Abstract. A class of optimal control problems governed by linear fractional diffusion equation with

control constraint is considered. We first establish some results on the existence of strong solution to the

state equation and the existence of optimal solutions for the optimal control problem. Then we derive

first-and second-order optimality conditions for locally optimal solutions to the problem.

Key words. Optimal control, Fractional diffusion equation, Solution existence, First-and second-order

optimality conditions.
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1 Introduction

Let Ω be an open and bounded set in R
N with N = 2, 3 and boundary ∂Ω ∈ C2, Q = [0, T ] × Ω and

Σ = [0, T ]× ∂Ω, where T > 0. Let D := H2(Ω) ∩H1
0 (Ω). We consider the problem of finding a function

u ∈ L∞(Q) and the corresponding state y ∈ Lp([0, T ], D) with 1 < p <∞, which solve

ψ(y, u) =

∫

Q

L(t, x, y(t, x), u(t, x))dtdx → min (1)

s.t.

dαy

dtα
= ∆y + u in Q (2)

y = 0 on Σ (3)

y(0) = y0 in Ω (4)

a ≤ u(t, x) ≤ b a.e. (t, x) ∈ Q, (5)

where 0 < α ≤ 1 and dα

dtα is a fractional derivative operator in the sense of Caputo, which is given in

Section 2, L : Q× R× R → R is a Caratheodory function, and y0 ∈ D.

The system (2)-(4) is a time-fractional diffusion equation. Note that several physical systems are not

truly modelled with differential equations of integer-order. So the fractional-order differential equations

have been introduced in order to describe accurately these systems. A motivation for studying fractional

diffusion equations comes from the fact that they describe efficiently anomalous diffusion on fractals

such as physical objects of fractional dimension, like some amorphous semiconductors or strongly porous

materials (see [2], [22] and references therein).
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In contrast with optimal control problems governed by differential equations with integer order (see

[8], [14] and [32]), the class of optimal control problems governed by fractional differential equations

have not been studied systematically yet. Recently, there have been some mathematicians studying

optimal control problems governed by fractional differential equations. For the papers which have close

connections to the present work, we refer the reader to [1], [4], [12], [17], [24] and [25]. Among them, O.P.

Agrawal [1], considered optimal control problems governed by fractional differential equations (FDEs)

without constraints. She gave first-order necessary conditions and some numerical examples for the

problem. Kien et al. [17] studied problems governed by FDEs with control constraint. They gave first-

and second-order optimality conditions for locally optimal solutions to the problem. G.M. Mophou et

al. [12], [24] and [25] considered strongly convex optimal control problems governed by a time-fractional

diffusion equations with Riemann–Liouville derivative and the cost functions of the type

J(u) =
1

2
‖y(u)− y0‖

2
L2(Q) +

γ

2
‖u‖2L2(Q), γ > 0

for cases: control constraints, no constraint and state constraints, respectively. Then they established

results on the existence of optimal solutions and first-order optimality conditions. Note that, this class

of problems are convex so the second-order optimality conditions are fulfilled automatically. Recently

Bahaa [4] has extended the results of [24] by considering the problem with control constraint. However,

all of them mainly investigated first-order optimality conditions for the problem.

In this paper we consider problem (1)-(5) governed by time-fractional diffusion equation with Caputo

derivative and with control constraint (5), where the cost function may not be convex. We shall prove

the existence of solutions to the state equation and the existence of optimal solutions to (1)-(5). We

then derive first- and second-order optimality conditions. We show that when p = 2 and 1 > α > 1/2,

a theory of no-gap second-order optimality conditions is obtained. Optimality conditions are important

for numerical methods of computing optimal solutions. Based on second-order sufficient conditions, we

can give error estimate for approximate solutions. Nevertheless, to our best knowledge, so far there have

been no result on the second-order optimality conditions for this class of problems.

The study of optimal control problems governed by fractional diffusion equations are quite compli-

cated. One of the difficulties is that the regularity of the solution to the state equation is poor. It is

known that, if the control function is Hölder continuous, then the state function is also Höder continuous.

Unfortunately, in optimal control problems, the control variables usually belong to L∞-spaces. So the

solutions to the state equation only belong to Lp-spaces. Therefore, the cost function is difficult to be

differentiable with respect to the state variable. Another difficulty for the problem is about compactness

of bounded sequences in function spaces with Banach space values. To overcome these difficulties, we

shall use a result from [15] in order to study regularity of solutions to the state equation. We also use a

recent result on the compact embedding in [19] which is a version of the so-call Aubin’s Lemma for evo-

lution equations to show that if a sequence is weakly convergent then it is strongly convergent. Besides,

techniques of optimal control from [7], [16] and [17], nonlinear and variational analysis are also used to

deal with the problem.

The paper is organized as follows. In Section 2, we present some auxiliary results on the fractional

derivatives for functions with values in Banach space. Section 3 is devoted to results on the existence

and regularity of solutions to the state equation and the existence of optimal solutions to the problem.

Section 4 is destined for establishing first-and second-order optimality conditions.

2 Some auxiliary results on fractional derivatives

Let X be a Banach space. We denote by Lp([0, T ], X) the space of X-valued functions u : [0, T ] → X

such that ‖u‖p := (
∫ T

0 ‖u(t)‖pXdt)
1/p < +∞, where 1 ≤ p ≤ ∞. Also we denote by C([0, T ], X) the space
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of continuous functions v : [0, T ] → X , by W 1,p([0, T ], X) the space of absolutely continuous functions

y : [0, T ] → X . The norm on W 1,p([0, T ], X) is defined by

‖y‖1,p = ‖y‖0 + ‖ẏ‖p,

where ‖y‖0 = maxt∈[0,T ] ‖y(t)‖X is the norm of y in C([0, T ], X).

Let θ > 0 be a real number. The operator Iθ0+ defined on L1([0, T ], X), by

(Iθ0+φ)(t) =
1

Γ(θ)

∫ t

0

φ(τ)

(t− τ)1−θ
dτ

is called the left Riemann-Liouville fractional integral operator of order θ. The operator IθT−
defined on

L1([0, T ],R), by

(IθT−φ)(t) =
1

Γ(θ)

∫ T

t

φ(τ)

(τ − t)1−θ
dτ

is called the right Riemann-Liouville fractional integral operator of order θ. For the case θ = 0, we set

I00+ = I0T−
= I, the identity operator. Here the integrals are taken in Bochner’s sense. By the same

argument as in the proof of [11, Theorem 2.2], we can show that

(Iθ10+(I
θ2
0+φ)(t) = (Iθ1+θ2

0+ φ)(t) ∀φ ∈ L1([0, T ], X). (6)

Let us denote by Iθ0+(L
p([0, T ], X)) the space of summable functions f : [0, T ] → X such that f = Iθ0+φ

for some φ ∈ Lp([0, T ], X). The space IθT−
(Lp) is defined similarly. We have the following characteristic

property for Iθ0+(L
p([0, T ], X)). Its proof is similar to the proof of [17, Proposition 2.1]

Proposition 2.1 f ∈ Iθ0+(L
p([0, T ], X)) if and only if I1−θ

0+ f ∈W 1,p([0, T ], X).

Definition 2.1 Let 0 < α < 1 and φ ∈ C([0, T ], X). Then each of the expressions

(Dα
0+φ)(t) :=

d

dt
I1−α
0 φ(t) =

1

Γ(1− α)

d

dt

∫ t

0

φ(τ)

(t− τ)α
dτ

and

(Dα
T−φ)(t) := −

d

dt
I1−α
T−

φ = −
1

Γ(1− α)

d

dt

∫ T

t

φ(τ)

(τ − t)α
dτ

is called a left Riemann-Liouville fractional derivative and a right Riemann-Liouville fractional derivative,

respectively. The operator Dα
0+ and Dα

T−
is called the left Riemann-Liouville fractional derivative operator

and the right Riemann-Liouville fractional derivative operator, respectively.

A sufficient condition for the existence of Dα
0+(φ) and D

α
T−

(φ) is to require φ ∈ W 1,1([0, T ], X) (see [11,

Lemma 2.12]).

Proposition 2.2 Let α ∈ (0, 1). Then the following assertions are fulfilled.

(i) If f ∈ L1([0, T ], X), then

Dα
0+I

α
0+f = f a.e. (7)

(ii) If f ∈ Iα0+(L
1), then

Iα0+D
α
0+f = f a.e. (8)

Proof. (i). Using (6) and the definition of Dα
0+, we have

Dα
0+I

α
0+f = D1I1−α

0+ Iα0+f = D1I10+f = f.

(ii). Let f = Iα0+φ for some φ ∈ L1([0, T ], X). Then from (7), we have

Iα0+D
α
0+f = Iα0+D

α
0+I

α
0+φ = Iα0+φ = f.

✷
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Definition 2.2 Let 0 < α < 1 and φ ∈ Lp([0, T ], X) with p ≥ 1. The operator dα

dtα is defined by

dα

dtα
φ(t) := Dα

0+(φ− φ(0)) = Dα
0+φ−

φ(0)

(t− 0)αΓ(1 − α)

is called the left Caputo differential operator of order α, and the operator d̂α

dtα defined by

d̂α

dtα
φ(t) := Dα

T−(φ − φ(T )) = Dα
T−φ−

φ(T )

(T − t)αΓ(1− α)

is called the right Caputo differential operator of order α provided all terms exist.

From the definition, we see that if φ(0) = 0, then dα

dtαφ = Dα
0+(φ). Also, if φ(T ) = 0, then d̂α

dtαφ =

Dα
T−(φ).

Lemma 2.1 Suppose that X = H is a Hilbert space, f ∈ IαT−
(Lq([0, T ], H)) and g ∈ Iα0+(L

p([0, T ], H)

with p, q ≥ 1 and 1/p+ 1/q ≤ 1 + α. Then one has

∫ T

0

(f,Dα
0+g)Hdt =

∫ T

0

(g,Dα
T−f)Hdt (9)

Particularly, when f(T ) = 0 and g(0) = 0, one has

∫ T

0

(f,
dαg

dtα
)Hdt =

∫ T

0

(g,
d̂αf

dtα
)Hdt. (10)

Here (·, ·)H denotes the scalar product in H.

Proof. We first claim that if φ1 ∈ Lp([0, T ], H) and φ2 ∈ Lq([0, T ], H) with 1/p+ 1/q ≤ 1 + α, then

∫ T

0

(φ2(t), I
α
0+φ1(t))Hdt =

∫ T

0

(φ1(t), I
α
T−φ2(t))Hdt. (11)

In fact, from the assumption we see that the integrals in both sides are defined. By Fubini’s Theorem,

we have

∫ T

0

(φ2(t), I
α
0+φ1(t))Hdt =

∫ T

0

(φ2(t),
1

Γ(α)

∫ t

0

1

(t− s)1−α
φ1(s)ds)Hdt

=
1

Γ(α)

∫ T

0

∫ t

0

(φ2(t),
1

(t− s)1−α
φ1(s)Hdsdt

=
1

Γ(α)

∫ T

0

ds

∫ T

s

(φ2(t),
1

(t− s)1−α
φ1(s))Hdt

=

∫ T

0

(φ1(s), I
α
T−φ2(s))Hds.

The claim is justified. We now prove (9). By the assumption, we have f = IαT−φ2 and g = Iα0+φ1 for

some φ2 ∈ Lq([0, T ], H) and φ1 ∈ Lp([0, T ], H). Then φ2 = Dα
T−

(f). Using (11), we have

∫ T

0

(f,Dα
0+g)Hdt =

∫ T

0

(IαT−φ2(t), φ1(t))Hdt =

∫ T

0

(φ2(t), I
α
0+φ1)Hdt =

∫ T

0

(Dα
T−f(t), g(t))Hdt.

We obtain formula (9). ✷

Proposition 2.3 Suppose that f ∈ L∞([0, T ], X) and α ∈ (0, 1). Then Iα0+f ∈ Cα([0, T ], X)-the space

of Hölder continuous functions with order α. Moreover, one has

‖Iα0+f‖C([0,T ],X) ≤
Tα

αΓ(α)
‖f‖L∞([0,T ],X). (12)
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Proof. Take any t0, t ∈ [0, T ]. Let t > t0. Then we have

(Iα0+f)(t)− (Iα0+f)(t0) =
1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ −

1

Γ(α)

∫ t0

0

f(τ)

(t0 − τ)1−α
dτ

=
1

Γ(α)

∫ t0

0

[
f(τ)

(t− τ)1−α
−

f(τ)

(t0 − τ)1−α
]dτ +

1

Γ(α)

∫ t

t0

f(τ)

(t− τ)1−α
dτ.

Hence

‖(Iα0+f)(t)− (Iα0+f)(t0)‖X

≤
1

Γ(α)
‖f‖L∞([0,T ],X)

∫ t0

0

∣

∣

1

(t− τ)1−α
−

1

(t0 − τ)1−α

∣

∣dτ +
1

Γ(α)
‖f‖L∞([0,T ],X)

∫ t

t0

1

(t− τ)1−α
dτ

=
1

Γ(α)
‖f‖L∞([0,T ],X)

∫ t0

0

[
1

(t0 − τ)1−α
−

1

(t− τ)1−α
]dτ +

1

Γ(α)
‖f‖L∞([0,T ],X)

∫ t

t0

1

(t− τ)1−α
dτ

=
1

Γ(α)
‖f‖L∞([0,T ],X)

1

α
[(t− t0)

α + tα0 − tα] +
1

Γ(α)
‖f‖L∞([0,T ],X)

1

α
(t− t0)

α

≤
1

Γ(α)
‖f‖L∞([0,T ],X)

1

α
(t− t0)

α +
1

Γ(α)
‖f‖L∞([0,T ],X)

1

α
(t− t0)

α

This implies that

‖(Iα0+f)(t)− (Iα0+f)(t0)‖X ≤ K1|t− t0|
α.

Let t < t0. Then we write

(Iα0+f)(t0)− (Iα0+f)(t)

=
1

Γ(α)

∫ t

0

f(τ)

(t0 − τ)1−α
dτ +

1

Γ(α)

∫ t0

t

f(τ)

(t0 − τ)1−α
dτ −

1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ

=
1

Γ(α)

∫ t

0

[
f(τ)

(t0 − τ)1−α
−

f(τ)

(t− τ)1−α
]dτ +

1

Γ(α)

∫ t0

t

f(τ)

(t0 − τ)1−α
dτ.

Therefore, we have

‖(Iα0+f)(t0)− (Iα0+f)(t)‖X

≤
1

Γ(α)
‖f‖L∞([0,T ],X)

∫ t

0

∣

∣

1

(t0 − τ)1−α
−

1

(t− τ)1−α

∣

∣dτ +
1

Γ(α)
‖f‖L∞([0,T ],X)

∫ t0

t

1

(t0 − τ)1−α
dτ

=
1

Γ(α)
‖f‖L∞([0,T ],X)

∫ t

0

[ 1

(t− τ)1−α
−

1

(t0 − τ)1−α

]

dτ +
1

Γ(α)
‖f‖L∞([0,T ],X)

∫ t0

t

1

(t0 − τ)1−α
dτ

=
1

Γ(α)
‖f‖L∞([0,T ],X)

1

α
[tα − tα0 + (t0 − t)α] +

1

Γ(α)
‖f‖L∞([0,T ],X)

1

α
(t0 − t)α

≤
1

Γ(α)
‖f‖L∞([0,T ],X)

1

α
(t0 − t)α +

1

Γ(α)
‖f‖L∞([0,T ],X)

1

α
(t0 − t)α

which implies that

‖(Iα0+f)(t0)− (Iα0+f)(t)‖X ≤ K2|t− t0|
α

Consequently, Iα0+φ is Hölder continuous with order α. Also,

‖Iα0+f(t)‖X ≤
1

Γ(α)
‖f‖L∞([0,T ],X)

∫ t

0

1

(t− s)1−α
ds =

1

αΓ(α)
‖f‖L∞([0,T ],X)t

α ≤
1

αΓ(α)
‖f‖L∞([0,T ],X)T

α

for all t ∈ [0, T ]. Hence (12) is obtained. The proof of the proposition is completed. ✷

Let J = [0, T ] and g : J → X be a X−valued function. We consider the equation of finding

y ∈ C(J,X) such that






dα

dtα y(t) = g(t) a.e. t ∈ J,

y(0) = y0.
(13)
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Proposition 2.4 Suppose that g ∈ L1(J,X) and y ∈ C(J,X). Then y is a solution of equation (13) if

and only if y is a solution of the following integral equation

y(t) = y0 +
1

Γ(α)

∫ t

0

g(s)

(t− s)1−α
ds. (14)

Proof. (⇒). Suppose that y is a solution to (13). Then we have

g =
dαy

dtα
=

d

dt
I1−α
0+ (y − y(0)) ∈ L1([0, T ], X).

Hence I1−α
0+ (y − y(0)) ∈W 1,1([0, T ], X). By Proposition 2.1, (y − y(0)) ∈ Iα0+(L

1). By (8), we have

Iα0+D
α
0+(y − y(0)) = y − y(0) = y − y0.

We now act Iα0+ on both sides of (13) to get

y − y0 =
1

Γ(α)

∫ t

0

g(s)

(t− s)1−α
ds. (15)

Hence y is a solution of equation (14).

(⇐). Suppose that y ∈ C(J,X) and satisfies equation (14). Acting Dα
0+ on both sides of (15) and using

(7), we obtain
dαy

dtα
= Dα

0+(y − y0) = Dα
0+I

α
0+g = g.

✷

3 Solution existence

In this section, we investigate the existence of solutions to the state equation (2)-(4) and the existence of

optimal solution to problem (1)-(5).

In the sequel, we will assume that J = [0, T ], D = H2(Ω) ∩ H1
0 (Ω), V = H1

0 (Ω) and H = L2(Ω).

Then we have

D →֒ V →֒ H.

Besides, since n = 2, 3, the embedded theorem implies that D →֒ C(Ω) is compact. Given functions f

and g on J , the convolution of f and g is denoted by f ∗ g which is defined by

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds.

We say y is a strong solution to (2)-(4) if y ∈ C(J,H) and ∆y + u ∈ Lp(J,H) with p ≥ 1 such that







dαy
dtα = ∆y + u a.e. t ∈ J,

y(0) = y0.
(16)

Here y0 ∈ D and u ∈ Lp(J,H) are given.

Let us assume that y ∈ C(J,H) is a solution to (16). Then ∆y + u ∈ Lp(J,H) with p ≥ 1. By

Proposition 2.4, y satisfies the integral equation

y(t) = y0 +
1

Γ(α)

∫ t

0

∆y(s)

(t− s)1−α
ds+

1

Γ(α)

∫ t

0

u(s)

(t− s)1−α
ds (17)

or equivalently

y(t) = y0 + k1−α ∗ (∆y + u), (18)
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where

k1−α(t) :=
1

Γ(α)t1−α
. (19)

Each solution of (18) is called a mild solution to (2)-(4). It is clear that any strong solution is a mild

solution. We now establish formula representing solution of (18).

It is know that ∆ : D ⊂ H → H is a sectorial operator. Namely, the resolvent set ρ(∆) contains the

sector

Sθ = {λ ∈ C : λ 6= 0, |argλ| < θ}, π/2 < θ < π,

and

‖R(λ,∆)‖L(L2(Ω)) ≤
M

λ
∀λ ∈ Sθ.

Hence ∆ is a generator of a uniformly bounded analytic semigroup {S(t), t ≥ 0} (see Theorem 2.4.1 and

Proposition 2.4.2 in [21], [20, Theorem 3.1.2] and [26, Theorem 2.7, p. 211]). Besides, the following

formula for the resolvent operator is valid:

R(λ,A) = (λI −A)−1 =

∫ +∞

0

e−λtS(t)dt ∀t > 0. (20)

In other words, R(λ,∆) is the Laplace transform of S(t).

Let us denote by z the Laplace transform of y, that is

z(s) = L(y)(s) :=

∫ +∞

0

e−sty(t)dt.

By taking Laplace transform both sides of (18) and using the property of Laplace transform for convo-

lution (see [18, Theorem 1, p. 232]), we get

z(λ) =
y0
λ

+
1

λα
∆z(λ) +

1

λα
L(u)(λ).

This implies that

z(λ) = (λαI −∆)−1[λα−1y0] + (λαI −∆)−1[L(u)(λ)]. (21)

By taking the inverse Laplace transform, we obtain

y(t) = F (t)y0 +

∫ t

0

E(t− s)u(s)ds,

where

F (t) =
1

2πi

∫

Γθ,δ

eλtλα−1(λαI +∆)−1dλ,

E(t) =
1

2πi

∫

Γθ,δ

eλt(λαI +∆)−1dλ.

Here Γθ,δ is a Hankel contour which is oriented with an increasing imaginary part. Namely,

Γθ,δ = {λ ∈ C : |λ| = δ, |argλ| < θ} ∪ {λ ∈ C : λ = ρe±iθ, ρ ≥ δ}.

We refer the reader to [15, Theorem 6.4] for properties of F and E.

There is another way to represent solution y(t) of (18). Let φα be the one-sided probability density

function such that
∫ ∞

0

φα(τ)dτ = 1 and

∫ ∞

0

e−λτφα(τ)dτ = e−λα

.
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For the explicit formula of φα, we refer the reader to [23] and [29]. Moreover, from the explicit formula

of φα in [23], we can show (see [27]) that

∫ ∞

0

tµφα(t)dt =
Γ(−µ/α)

αΓ(−µ)
. (22)

Let us define

ζα(τ) =
1

ατ1+1/α
φα(

1

τ1/α
).

Then we can check that
∫∞

0
ζα(τ)dτ = 1. Moreover, using (22), we can show that

∫ ∞

0

θζα(θ)dθ =
1

αΓ(α)
.

Using (21), we have

z(λ) = (λαI −A)−1[h(λ)] =

∫ ∞

0

e−λαsS(s)h(λ)ds

=

∫ ∞

0

e−(λs1/α)αS(s)h(λ)ds

=

∫ ∞

0

∫ ∞

0

e−λs1/ατφα(τ)dτS(s)h(λ)ds

=

∫ ∞

0

∫ ∞

0

e−λt 1

s1/α
φα(

t

s1/α
)dtS(s)h(λ)ds

=

∫ ∞

0

e−λt[

∫ ∞

0

1

s1/α
φα(

t

s1/α
)S(s)h(λ)ds]dt.

Here h(λ) := λα−1y0 + L(u)(λ). By changing variable s = θtα, we have

z(λ) =

∫ ∞

0

e−λt[

∫ ∞

0

αtα−1θζα(θ)S(θt
α)h(λ)dθ]dt.

By defining

P (t) =

∫ ∞

0

αtα−1θζα(θ)S(θt
α)dθ, (23)

we get

z(λ) = L(P )(λ)[λα−1y0 + L(u)(λ)]

= L((
1

Γ(1 − α)tα
) ∗ P )(λ)y0 + L(P ∗ u)(λ).

By acting the converse Laplace transform on both sides and using the convolution property of Laplace

transform, we obtain

y(t) =
1

Γ(1− α)

∫ t

0

1

(t− s)α
P (s)y0ds+

∫ t

0

P (t− s)u(s)ds (24)

=
1

Γ(1− α)

∫ t

0

1

(t− s)α

∫ ∞

0

αsα−1θζα(θ)S(θs
α)y0dθds+

∫ t

0

∫ ∞

0

α(t− s)α−1θζα(θ)S(θ(t − s)α)dθu(s)ds

(25)

=
α

Γ(1− α)

∫ 1

0

1

(1 − τ)ατ1−α

∫ ∞

0

θζα(θ)S(θ(tτ)
α)y0dθdτ

+ tα
∫ 1

0

(1− τ)α−1

∫ ∞

0

θζα(θ)S(θt
α(1− τ)α)u(tτ)dθdτ. (26)

Based on the above representation of y(t), we have
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Proposition 3.1 Let y0 ∈ D = H2(Ω) ∩H1
0 (Ω). The following assertions are fulfilled:

(i) If u ∈ Lp(J,H) with p > 1/α, then equation (18) has a unique mild solution y ∈ C(J,H) which is

given by (26) and there exist constants K > 0 and K ′ > 0 such that

‖y‖C(J,H) ≤ K‖y0‖H +K ′Tα−1/p‖u‖Lp(J,H). (27)

Moreover, y(t) ∈ D for a.e. t ∈ [0, T ].

(ii) If u ∈ Cγ(J,X) with 0 < γ < 1, then equation (18) has a unique solution y ∈ C(J,D) ∩ Cγ(J,X)

and there exist positive constants K,K1 and K2 such that

‖y‖C(J,D) ≤ K‖y0‖D +K1‖u‖Cγ(J,X) +K2‖u‖C(J,X). (28)

In this case y is also a strong solution to (2)-(4).

Proof. (i) Let us represent y by (24)-(26). We now show that limt→0+ y(t) = y0. In fact, it is clear that

lim
t→0+

y(t) =
α

Γ(1 − α)

∫ 1

0

1

(1− τ)ατ1−α

∫ ∞

0

θζα(θ)S(0)y0dθdτ + 0

=
α

Γ(1 − α)

∫ 1

0

1

(1− τ)ατ1−α
dτ

∫ ∞

0

θζα(θ)y0dθ

=
α

Γ(1 − α)
B(α, 1 − α)

1

αΓ(α)
y0

=
α

Γ(1 − α)

Γ(α)Γ(1 − α)

Γ(1)

1

αΓ(α)
y0 = y0.

Here the beta function is defined by

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
, 0 < a, b < +∞.

Note that S(τ) is uniformly bounded. Hence there exists a constant K > 0 such that

‖P (t)‖H ≤ Ktα−1 ∀t > 0.

We now claim that y ∈ C([0, T ], H). Take any t0, t ∈ [0, T ] and assume that t0 < t. Then we have

‖y(t)− y(t0)‖H =
∥

∥

α

Γ(1 − α)

∫ 1

0

1

(1− τ)ατ1−α

∫ ∞

0

θζα(θ)[S(θ(tτ)
α)− S(θ(t0τ)

α))]y0dθdτ

+ tα
∫ 1

0

(1 − τ)α−1

∫ ∞

0

θζα(θ)S(θt
α(1− τ)α)u(tτ)dθdτ

− tα0

∫ 1

0

(1 − τ)α−1

∫ ∞

0

θζα(θ)S(θt
α
0 (1− τ)α)u(t0τ)dθdτ

∥

∥.

≤
α

Γ(1− α)

∫ 1

0

1

(1− τ)ατ1−α

∫ ∞

0

θζα(θ)‖S(θ(tτ)
α)− S(θ(t0τ)

α))‖‖y0‖Hdθdτ

+
∥

∥tα
∫ 1

0

(1− τ)α−1

∫ ∞

0

θζα(θ)S(θt
α(1− τ)α)u(tτ)dθdτ

− tα0

∫ 1

0

(1 − τ)α−1

∫ ∞

0

θζα(θ)S(θt
α
0 (1− τ)α)u(t0τ)dθdτ

∥

∥

:= I(t) + II(t). (29)

Since S(t) is continuous and uniformly bounded, the Dominated Convergence Theorem implies that
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I(t) → 0 as t→ t0. To estimate II(t), we write

II(t) =
∥

∥

∫ t

0

P (t− s)u(s)ds−

∫ t0

0

P (t0 − s)u(s)ds
∥

∥

H

=
∥

∥

∫ t0

0

(P (t− s)− P (t0 − s))u(s)ds +

∫ t

t0

P (t− s)u(s)ds
∥

∥

H

=
∥

∥

∫ t0

0

[

∫ ∞

0

α(t − s)α−1θζα(θ)S(θ(t − s)α)dθ −

∫ ∞

0

α(t0 − s)α−1θζα(θ)S(θ(t0 − s)α)dθ]u(s)ds

+

∫ t

t0

P (t− s)u(s)ds
∥

∥

H

=
∥

∥

∫ t0

0

[

∫ ∞

0

α(t − s)α−1θζα(θ)(S(θ(t − s)α)− S(θ(t0 − s)α)dθ

+

∫ t0

0

∫ ∞

0

α((t− s)α−1 − (t0 − s)α−1)θζα(θ)S(θ(t0 − s)α)dθ]u(s)ds

+

∫ t

t0

P (t− s)u(s)ds
∥

∥

H

≤ ‖u‖Lp(J,H)

[

∫ t0

0

(

∫ ∞

0

α(t− s)α−1θζα(θ)‖S(θ(t− s)α)− S(θ(t0 − s)α)‖dθ
)q
ds
]1/q

+ ‖u‖Lp(J,H)

[

∫ t0

0

(

∫ ∞

0

|(t− s)α−1 − (t0 − s)α−1|θζα(θ)‖S(θ(t0 − s)α)‖dθ
)q
ds
]1/q

+ ‖u‖Lp(J,H)

[

∫ t

t0

‖P (t− s)‖qds
]1/q

≤ ‖u‖Lp(J,H)

[

∫ t0

0

(

∫ ∞

0

α(t− s)α−1θζα(θ)‖S(θ(t− s)α)− S(θ(t0 − s)α)‖dθ
)q
ds
]1/q

+ ‖u‖Lp(J,H)

[

∫ t0

0

(

∫ ∞

0

|(t− s)α−1 − (t0 − s)α−1|θζα(θ)‖S(θ(t0 − s)α)‖dθ
)q
ds
]1/q

+ ‖u‖Lp(J,H)K(t− t0)
(q(α−1)+1)/q

:= II1(t) + II2(t) + II3(t).

Since p > 1/α, q(α − 1) + 1 > 0. Hence II3(t) → 0 as t→ t0+. By the continuity of S,

α(t− s)α−1θζα(θ)‖S(θ(t − s)α)− S(θ(t0 − s)α)‖ → 0 as t→ t0+

and

∫ t0

0

(

∫ ∞

0

α(t− s)α−1θζα(θ)‖S(θ(t − s)α)− S(θ(t0 − s)α)‖dθ
)q
ds

≤ 2K

∫ t0

0

(

∫ ∞

0

α(t0 − s)α−1θζα(θ)dθ
)q
ds

=
(2K)q

Γ(α+ 1)q
t
q(α−1)+1
0 .

The Dominated Convergence Theorem implies that II1(t) → 0 when t → t0+. By the same argument,

we can show that II2(t) → 0 as t→ t0+. Combining these we conclude that

lim
t→t0+

‖y(t)− y(t0)‖X = 0.

Repeating the procedure, we also have

lim
t→t0−

‖y(t)− y(t0)‖X = 0.
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Hence y is continuous at t0. Since t0 is arbitrary in [0, T ], we have y ∈ C([0, T ], H). To prove (27), we

use (25) and the fact that ‖S(t)‖ ≤ K for all t > 0. Then we have

‖y(t)‖H ≤
1

Γ(1− α)

∫ t

0

(t− s)−αsα−1

∫ ∞

0

αθζα(θ)‖S(θs
α)‖‖y0‖Hdθds

+

∫ t

0

∫ ∞

0

α(t− s)α−1θζα(θ)‖S(θ(t− s)α)‖‖u(s)‖Hdθds

≤ K‖y0‖H +
K

Γ(α)
[

∫ t

0

(t− s)q(α−1)ds]1/q‖u‖Lp(J,H)

≤ K‖y0‖H +
K

Γ(α)
Tα−1/p‖u‖Lp(J,H).

This leads to (27).

(ii). Note that S′(t) = ∆S(t). Since y0 ∈ D, ∆S(t)y0 = S(t)∆y0. Therefore, we have from (25) that

∆y(t) =
1

Γ(1− α)

∫ t

0

1

(t− s)α

∫ ∞

0

αsα−1θζα(θ)S(θs
α)∆y0dθds

+

∫ t

0

∫ ∞

0

α(t− s)α−1θζα(θ)∆S(θ(t − s)α)u(s)dθds

=
1

Γ(1− α)

∫ t

0

1

(t− s)α

∫ ∞

0

αsα−1θζα(θ)S(θs
α)∆y0dθds

+

∫ t

0

∫ ∞

0

α(t− s)α−1θζα(θ)∆S(θ(t − s)α)[u(s)− u(t)]dθds

+

∫ t

0

∫ ∞

0

α(t− s)α−1θζα(θ)∆S(θ(t − s)α)u(t)dθdt

=
1

Γ(1− α)

∫ t

0

1

(t− s)α

∫ ∞

0

αsα−1θζα(θ)S(θs
α)∆y0dθds

+

∫ t

0

∫ ∞

0

α(t− s)α−1θζα(θ)∆S(θ(t − s)α)[u(s)− u(t)]dθds

+

∫ ∞

0

ζα(θ)

∫ t

0

d

ds
[S(θ(t− s)α)]u(t)dsdθ

=
1

Γ(1− α)

∫ t

0

1

(t− s)α

∫ ∞

0

αsα−1θζα(θ)S(θs
α)∆y0dθds

+

∫ t

0

∫ ∞

0

α(t− s)α−1θζα(θ)∆S(θ(t − s)α)[u(s)− u(t)]dθds

+ u(t) +

∫ ∞

0

ζα(θ)S(θt
α)u(t)dθ.

It follows that

‖∆y(t)‖H ≤ K‖∆y0‖H +

∫ t

0

∫ ∞

0

α(t − s)α−1θζα(θ)‖∆S(θ(t − s)α)‖‖u(s)− u(t)‖Hdθds+ (1 +K)‖u(t)‖H

≤ K‖∆y0‖H +

∫ t

0

∫ ∞

0

α(t − s)−1ζα(θ)K
′‖u(s)− u(t)‖Hdθds+ (1 +K)‖u(t)‖H

≤ K‖∆y0‖H +

∫ t

0

α(t− s)−1K ′‖u‖Cγ([0,T ],H)|t− s|γds+ (1 +K)‖u(t)‖H

= K‖y0‖D +K ′‖u‖Cγ([0,T ],H)
tγ

γ
+ (1 +K)‖u(t)‖H.

This implies that

‖y‖C(J,D) ≤ K‖y0‖D +K ′‖u‖Cγ([0,T ],H)
T γ

γ
+ (1 +K)‖u‖C(J,H).
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Hence (28) is obtained. Since ∆y ∈ C(J,H), we have ∆y + u ∈ L∞(J,H). By Proposition 2.3, y ∈

Cα(J,H). By Proposition 2.4, y is a strong solution to (2)-(4). ✷

Proposition 3.2 Suppose that y0 ∈ D and u ∈ Lp′

([0, T ], H) with 1 < p′ <∞. Then equation (18) has

a unique solution y ∈ Lp′

([0, T ], D) such that dαy
dtα ∈ Lp′

([0, T ], H) and

‖y‖Lp′([0,T ],D) + ‖
dα

dtα
y‖Lp′([0,T ],H) ≤ C1‖u‖Lp′([0,T ],H) + C2‖∆y0‖H , (30)

where C1 and C2 are positive constants which are independent of y, f and y0. In addition if p′ > 1/α,

then y ∈ C([0, T ], H) ∩ Lp′

([0, T ], D). In this case y is a strong solution to (2)-(4).

Proof. Define v(t) = y(t) − y0. Then v(0) = 0, y(t) = v(t) + y0 and Dα
0+v = dαv

dtα . By a simple

computation, we have dαy
dt = dαv

dtα . Then equation (16) becomes







dαv
dtα = ∆v + (u +∆y0)

v(0) = 0.
(31)

Since u ∈ Lp′

(J,H), we have u+∆y0 ∈ Lp′

(J,H). By Theorem 6.11 in [15], equation (31) has a unique

mild solution v ∈ Lp′

(J,D) with dαv
dtα ∈ Lp′

(J,H) and

‖v‖Lp′(J,D) + ‖
dα

dtα
v‖Lp′(J,H) ≤ C‖f +∆y0‖Lp′(J,H).

It follows that equation (17) has a unique solution y ∈ Lp′

(J,D) and dαy
dtα ∈ Lp′

(J,H) such that

‖y‖Lp′(J,D) + ‖
dα

dtα
y‖Lp′(J,H) ≤ C‖f‖Lp′(J,H) + (1 + c)T

1

p′ ‖∆y0‖H ,

where c is a positive constant which is independent of f and y0. If p
′ > 1/α, then Proposition 3.1 implies

that y ∈ C(J,H). Finally, since ∆y + u ∈ Lp′

(J,H), Proposition 2.4 implies that y is a strong solution

to (2)-(4). The proof of the proposition is completed. ✷

In the sequel, we shall denote by Φ the feasible set of problem (1)-(5). In order to establish a result

for the existence of optimal solution to problem (1)-(5), we make the following assumption

(A1) L : [0, T ] × Ω × R × R → R is a Carathéodory function, that is, for each y, u ∈ R, L(·, ·, y, u) is

integrable in (t, x) and for each (t, x) ∈ [0, T ]×Ω, L(t, x, ·, ·) is continuous. Moreover, there exist functions

φ1, φ2 ∈ L1(Q), nonnegative numbers a1, b1, β1, β2 and positive numbers a2, b2 such that

φ1(t, x) − a1|y|
p − b1|u|

β1 ≤ L(t, x, y, u) ≤ φ2(t, x) + a2|y|
p + b2|u|

β2 (32)

for all (t, x, y, u) ∈ [0, T ]× Ω× R× R.

(A2) L(t, x, ·, ·) is convex in (y, u) for each fixed (t, x) ∈ [0, T ]× Ω.

(A3) L(t, x, y, ·) is convex in u for each fixed (t, x, y) ∈ [0, T ]×Ω×R, p > 1/α and p ≤ 6 whenever N = 3.

Theorem 3.1 Suppose that (A1) and (A2) are satisfied or (A1) and (A3) are satisfied. Then problem

(1)-(5) has an optimal solution.

Proof. Let ξ = inf(y,u)∈Φ ψ(y, u). Then for each (y, u) ∈ Φ, (y, u) satisfies equation (16) and inequality

(30) is valid. It follows that

‖y‖Lp(Q) + ‖
dα

dtα
y‖Lp(J,H) ≤ ‖y‖Lp(J,D) + ‖

dα

dtα
y‖Lp(J,H)

≤ C1‖u‖Lp(J,H) + C2‖∆y0‖H

≤ C′‖u‖L∞(Q) + C′
2‖∆y0‖H .
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This and (32) imply that ξ is finite, that is, ξ ∈ R.

Let (yn, un) ∈ Φ such that V = limn→∞ ψ(yn, un). Since a ≤ un ≤ b, {un} is bounded in L∞(Ω).

Therefore, we may assume that un converges in σ(L∞(Q), L1(Q)), the weak star topology, to a function

u ∈ L∞(Q). From the above inequality, we see that {yn} is bounded in Lp(J,D), {∆yn} and { dα

dtα yn}

is bounded in Lp(J,H). Therefore, we may assume that yn converges weakly to y in Lp(J,D) and so

∆yn ⇀ ∆y in Lp(J,H). Let us claim that (y, u) ∈ Φ. Since (yn, un) ∈ Φ, from (18) we have

yn = y0 + k1−α ∗ (∆yn + un).

Taking any φ ∈ Lq(J,H), we have

(yn(t), φ(t))H = (y0, φ(t))H +
1

Γ(α)

∫ t

0

((t− s)α−1φ(t),∆yn(s) + un(s))Hds. (33)

Integrating both sides of (33) on [0, T ] and using Fubini’s theorem, we have

∫ T

0

(yn(t), φ(t))Hdt =

∫ T

0

(y0, φ(t))Hdt+
1

Γ(α)

∫ T

0

∫ t

0

((t− s)α−1φ(t),∆yn(s) + un(s))Hdsdt

=

∫ T

0

(y0, φ(t))Hdt+
1

Γ(α)

∫ T

0

ds

∫ T

s

((t− s)α−1φ(t),∆yn(s) + un(s))Hdt

=

∫ T

0

(y0, φ(t))Hdt+
1

Γ(α)

∫ T

0

(

∫ T

s

(t− s)α−1φ(t)dt,∆yn(s) + un(s))Hds

=

∫ T

0

(y0, φ(t))Hdt+
1

Γ(α)

∫ T

0

(

∫ T

s′+T

(t− s′ − T )α−1φ(t)dt,∆yn(s
′ + T ) + un(s

′ + T ))Hds
′

=

∫ T

0

(y0, φ(t))Hdt−
1

Γ(α)

∫ T

0

(

∫ s′

0

(t′ − s′)α−1φ(t′ + T )dt′,∆yn(s
′ + T ) + un(s

′ + T ))Hds
′

=

∫ T

0

(y0, φ(t))Hdt−

∫ T

0

(k1−α ∗ φ(· + T )(s′),∆yn(s
′ + T ) + un(s

′ + T ))Hds
′.

By a property for convolution (see [6, Theorem 4.15]), we see that the function s′ 7→ k1−α ∗ φ(· + T )(s′)

belongs to Lq(J,H). Thus we have shown that

∫ T

0

(yn(t), φ(t))Hdt =

∫ T

0

(y0, φ(t))Hdt−

∫ T

0

(k1−α ∗ φ(·+ T )(s′),∆yn(s
′ + T ) + un(s

′ + T ))Hds
′.

By letting n→ ∞, we obtain

∫ T

0

(y(t), φ(t))Hdt =

∫ T

0

(y0, φ(t))Hdt−

∫ T

0

(k1−α ∗ φ(·+ T )(s′),∆y(s′ + T ) + u(s′ + T ))Hds
′.

This implies that

y = y0 + k1−α ∗ (∆y + u).

It remains to show that a ≤ u(t, x) ≤ b for a.e. (t, x) ∈ Q. In fact, the set

K := {u ∈ Lp(Q) : a ≤ u(t, x) ≤ b, a.e.}

is a closed convex set in Lp(Q). Hence it is a weakly closed set. Since un ∈ K and un ⇀ u in Lp(Q), we

have u ∈ K. In a summary, we have showed that (yn, un)⇀ (y, u) in Lp(J,D)× Lp(Q) and (y, u) ∈ Φ.

(i) If (A1) and (A2) are valid, then the functional ψ(y, u) is sequentially lower semicontinuous on Lp(Q)×

Lp(Q). Since Lp(J,D) × Lp(Q) →֒ Lp(Q) × Lp(Q), we see that (yn, un) ⇀ (y, u) in Lp(Q) × Lp(Q). It

follows that

ξ = lim
n→∞

ψ(yn, un) ≥ ψ(y, u).

Hence (y, u) is an optimal solution to problem (1)-(5).
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(ii) Suppose that (A1) and (A3) are valid. We claim that yn → y strongly in Lp(Q). In fact, it is known

that the embeddings

D →֒ V →֒ H

are compact. Since 1/p < α < 1, we have

1

Γ(α)

∫ t

0

(t− s)α−1‖yn(s)‖Dds ≤
1

Γ(α)
(

∫ t

0

(t− s)(α−1)qds)1/q‖yn‖Lp(J,D)

≤
1

Γ(α)

1

((α− 1)q + 1)1/q
t(α−1)+1/q‖yn‖Lp(J,D)

≤
1

Γ(α)

1

((α− 1)q)1/q
Tα−1/pM :=M1.

Hence

sup
t∈(0,T )

1

Γ(α)

∫ t

0

(t− s)α−1‖yn(s)‖Dds ≤M1.

Besides, we have p > 1 and p > p
1+pα , and {Dα

0+yn} = { dα

dtα yn} is bounded in L2(J,H). By Theorem 4.1

in [19], we see that {yn} is a relatively compact set in Lp(J, V ). Therefore, we may assume that zk → z

strongly in Lp(J, V ). If N = 2, then V →֒ L∞(Ω). If N = 3, then V →֒ L6(Ω). Since 1 < p ≤ 6, we have

Lp(J, V ) →֒ Lp(J, L6(Ω)) →֒ Lp(Q). Thus we have shown that yn → y strongly in Lp(Q) and un ⇀ u in

Lp(Q). By (A3), the functional ψ(y, u) is sequentially lower semicontinuous (see Theorem 3.23 in [9]).

Hence we have

ξ = lim
n→∞

ψ(yn, un) ≥ ψ(y, u)

and so (y, u) is an optimal solution to problem (1)-(5). The proof of the theorem is completed. ✷

4 Optimality conditions

We now impose the following assumption for L which makes sure that ψ is of class C2 around a feasible

point (y, u). Given 1 < p < +∞, we denote by q the conjugate number of p, that is, q > 1 and

1/p+ 1/q = 1.

(A4) L : [0, T ]×Ω×R×R → R is a Carathéodory function of class C2 with respect to variable (y, u) and

satisfies the property that for eachM > 0, there exist a positive number kLM and a function rM ∈ L∞(Q)

such that

|Ly(t, x, y, u)|+ |Lu(t, x, y, u)| ≤ kLM

(

|y|p−1 + |u|
)

+ rM (t, x),

|Lu(t, x, y1, u1)− Lu(t, x, y2, u2)| ≤ kLM (|y1 − y2|+ |u1 − u2|),

|Ly(t, x, y1, u)− Ly(t, x, y2, u)| ≤ kLM

[p−1]
∑

j=0

|y1 − y2|
p−1−j |y2|

j

for all u, u1, u2 ∈ R satisfying |u|, |ui| ≤ M and any y1, y2 ∈ R. Also for each M > 0, there is a number

kLM > 0 such that

∣

∣Luu(t, x, y1, u1)− Luu(t, x, y2, u2)
∣

∣ ≤ kLM (|y1 − y2|+ |u1 − u2|),
∣

∣Lyu(t, x, y1, u1)− Lyu(t, x, y2, u2)
∣

∣ ≤ kLM (ε|y1 − y2|
p−1 + |u1 − u2|)

( with ε = 0 if p = 2 and ε = 1 if p > 2 ) and

|Lyy(t, x, y1, u)− Lyy(t, x, y2, u)|







= 0 if p = 2,

≤ kLM

∑[p−2]
j=0 |y1 − y2|

p−2−j |y2|
j if p > 2

(34)
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for a.e. x ∈ Ω, for all u, ui, yi ∈ R with |u|, |ui| ≤ M and i = 1, 2, where [p − 2] is the integer part of

p− 2. Moreover, we require that L(t, x, 0, 0) ∈ L1(Ω) and Lyy(t, x, 0, u) ∈ L∞(Q).

Note that (A4) makes sure that the functional ψ is of class C2. The following example shows that L

satisfies (A4).

Example 4.1 Let p ≥ 2 and p ∈ N. Then

L(t, x, y, u) := (y − y0(t, x))
p + yp−1 + · · ·+ y2 + yu+ u2 + u4 + · · ·+ u2p

satisfies assumption (A4), where y0 ∈ Lp(Q) is given.

Let us define the mapping F : Lp(J,D)× L∞(Q) → Lp(J,X) by setting

F (y, u) = y − y0 − k1−α ∗ (∆y + u), (35)

where k1−α is given by (19). Put

K∞ : = {u ∈ L∞(Q)|a ≤ u(t, x) ≤ b a.e. t ∈ Q} (36)

Kp : = {u ∈ Lp(Q)|a ≤ u(t, x) ≤ b a.e. t ∈ Q}. (37)

Obviously, K∞ = Kp. Besides, we can check that y is a strong solution to (2)-(4) corresponding to

u ∈ L∞(Q) if and only if y ∈ Lp(J,D) and F (y, u) = 0. Therefore, problem (1)-(5) can be formulated in

the following form: find (y, u) ∈ Lp(J,D)× L∞(Q) which solves

ψ(y, u) → inf (38)

s.t.

F (y, u) = 0, (39)

u ∈ K∞. (40)

In this section we assume that (y, u) ∈ Φ, that is, F (y, u) = 0 and u ∈ K∞. The symbols

L[t, x], Ly[t, x], Lu[t, x], Lyy[t, x], Luu[t, x], Lyu[t, x]

stand for

L(t, x, y(t, x), u(t, x)), Ly(t, x, y(t, x), u(t, x)), Lu(t, x, y(t, x), u(t, x))

and so on, respectively.

Proposition 4.1 Suppose that assumption (A4) is valid. Then the mappings ψ and F are of class C2

on Lp(J,D)× L∞(Q). Moreover, the following formulae are valid:

〈ψy(y, u), y〉 =

∫

Q

Ly[t, x]y(t, x)dtdx, 〈ψu(y, u), u〉 =

∫

Q

Lu[t, x]u(t, x)dtdx,

〈ψyy(y, u)y1, y2〉 =

∫

Q

Lyy[t, x]y1(t, x)y2(t, x)dtdx, 〈ψyu(y, u)y, u〉 =

∫

Q

Lyu[t, x]y(t, x)u(t, x)dtdx,

〈ψuu(y, u)u, v〉 =

∫

Q

Luu[t, x]u(t, x)v(t, x)dtdx

and

Fy(y, u)y = y − k1−α ∗ (∆y),

Fu(y, u)u = −k1−α ∗ (u),

Fyy(y, u)[y1, y2] = 0, Fuu(y, u)[u, v] = 0, Fyu(y, u)[y, u] = 0,

for all y ∈ Lp(J,D) and u, v ∈ L∞(Q).
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Proof. By the same argument as in the proof of Proposition A in [16], we can show that ψ is of class C2

on Lp(Q) × L∞(Q). Since Lp(J,D) →֒ Lp(Q), we see that ψ is of class C2 on Lp(J,D) × L∞(Q). The

differentiability of F follows from the linear property of F . ✷

Fix any u ∈ L∞(Q). By Proposition 3.2, the equation F (y, u) = 0 has a unique solution y = y(u) ∈

Lp(J,D). Let us define the mapping G : L∞(Q) → Lp(J,D) by setting G(u) = y(u). The mapping G is

said to be a control-to-state mapping. By (24), we have

G(u) = kα ∗ Py0 + P ∗ u.

It is clear that G(u) is linear and so it is of class C∞. Namely, we have G′(u)v = P ∗v and G′′(u)[v, v] = 0.

Let us define the mapping f(u) = ψ(G(u), u). Then by a simple argument, we can show that (y, u) is

a locally optimal solution of (38)-(40) if and only if u is a locally optimal solution of the problem:







f(u) = ψ(G(u), u) → min

u ∈ K∞.
(41)

The following proposition gives some properties of control-to-state mapping G.

Proposition 4.2 The mapping G : L∞(Q) → Lp(J,D) has the following properties.

(i) If v ∈ L∞(Q) and zv = G′(u)v, then zv is a unique solution of two equivalent equations:

zv = k1−α ∗ (∆zv + v) (42)

and

dαzv
dt

= ∆zv + v, zv(0) = 0. (43)

(ii) For every v1, v2 ∈ L∞, G′′(u)[v1, v2] = 0

Proof. For all u ∈ L∞(Q), we have F (G(u), u) = 0. By differentiating both sides in u, we get

Fy(y, u)G
′(u) + Fu(y, u) = 0.

This means

Fy(y, u)G
′(u)v + Fu(y, u)v = 0 ∀v ∈ L∞(Q).

By Proposition 4.1, we get

zv − k1−α ∗ (∆zv)− k1−α ∗ v = 0.

Hence zv is a solution of (42) and (43). Assertion (ii) follows from the linear property of G(u). ✷

Proposition 4.3 The function f is of class C2 around u and for any v, v1, v2 ∈ L∞(Q) the following

formulae are valid:

〈f ′(u), v〉 =

∫

Q

(Lu[t, x]− ϕ(t, x))v(t, x)dxdt (44)

and

f ′′(u)[v1, v2] =

∫

Q

(Lyy[t, x]zv1zv2 + Lyu[t, x]zv1v2 + Luy[t, x]zv1v2 + Luu[t, x]v1v2)dtdx, (45)

where ϕ ∈ Lq(J,D) is a unique mild solution of the adjoint equation

d̂αϕ

dtα
= ∆ϕ− Ly[·, ·], ϕ(T ) = 0. (46)
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Proof. We first show that equation (46) has a unique solution. Indeed, by changing variable ζ(t) =

ϕ(T − t), equation (46) is equivalent to the equation

d̂α

dtα
ϕ(T − t) = ∆ζ(t)− Ly[T − t, ·], ζ(0) = 0. (47)

Since ϕ(T ) = 0, we have d̂αϕ
dtα = Dα

T−
ϕ and

Dα
T−ϕ(T − t) =

1

Γ(1− α)

d

dt

∫ T

T−t

ϕ(τ)

(τ − T + t)α
dτ = −

1

Γ(1− α)

d

dt

∫ 0

t

ϕ(T − s)

(t− s)α
ds

=
1

Γ(1− α)

d

dt

∫ t

0

ϕ(T − s)

(t− s)α
ds = Dα

0+ζ(t) =
dα

dtα
ζ(t).

Hence equation (47) is equivalent to

dα

dtα
ζ(t) = ∆ζ(t) − Ly[T − t, ·], ζ(0) = 0. (48)

By assumption (H1), Ly[·, ·] ∈ Lq(J, L∞(Ω)) →֒ Lq(J,H). By Proposition 3.2, equation (48) has a unique

mild solution ζ ∈ Lq(J,D) with dα

dtα ζ ∈ Lq(J,H). Consequently, equation (46) has a unique mild solution

ϕ(t) = ζ(T − t) ∈ Lq(J,D). We now have f ′(u) = ψy(G(u), u)G
′(u) + ψu(G(u), u). Hence

〈f ′(u), v〉 = ψy(G(u), u)G
′(u)v + ψu(G(u), u)v. (49)

By taking u = u and putting z = zv = G′(u)v, we get

〈f ′(u), v〉 = ψy(y, u)G
′(u)v + ψu(y, u)v =

∫

Q

(Ly[t, x]z(t, x) + Lu[t, x]v(t, x))dtdx. (50)

Note that z = zv satisfies (43) and ϕ is a mild solution of (46). Hence

ϕ = IαT−(∆ϕ− Ly[·, ·]). (51)

Since ∆ϕ − Ly[·, ·] ∈ Lq(J,H), we see that ϕ ∈ IαT−
(Lq). Hence Lemma 2.1 is applicable for ϕ and

z = zv ∈ Iα0+(L
p). By applying operator Dα

T−
on both sides of (51), we get

Dα
T−ϕ = ∆ϕ− Ly[·, ·]

and so

Ly[·, ·] = ∆ϕ−Dα
T−ϕ.

Besides, for each t ∈ J , ϕ(t), z(t, ·) ∈ H2(Ω) ∩H1
0 (Ω). By Lemma 1.5.3.2 in [13], we have

∫

Ω

∆ϕ(t, x)z(t, x)dx =

∫

Ω

ϕ(t, x)∆z(t, x)dx.

Using this, (43), (46) and (9), we obtain

〈f ′(u), v〉 =

∫ T

0

∫

Ω

(−Dα
T−ϕ+∆ϕ)z(t, x) + Lu[t, x]v(t, x))dtdx

=

∫ T

0

∫

Ω

(−Dα
T−ϕz(t, x)dxdt+

∫ T

0

∫

Ω

∆ϕ(t, x)z(t, x)dxdt +

∫ T

0

∫

Ω

Lu[t, x]v(t, x)dxdt

= −

∫ T

0

(−Dα
T−ϕ(t), z(t, ·))Hdt+

∫ T

0

∫

Ω

ϕ(t, x)∆z(t, x)dxdt +

∫ T

0

∫

Ω

Lu[t, x]v(t, x)dxdt

= −

∫ T

0

(Dα
0+z(t), ϕ(t, ·))Hdt+

∫ T

0

∫

Ω

ϕ(t, x)∆z(t, x)dxdt +

∫ T

0

∫

Ω

Lu[t, x]v(t, x)dxdt

=

∫ T

0

(−
dαz(t, ·)

dtα
+∆z(t, ·), ϕ(t, ·))Hdt+

∫ T

0

∫

Ω

Lu[t, x]v(t, x)dxdt

=

∫ T

0

(−v, ϕ)Hdt+

∫ T

0

∫

Ω

Lu[t, x]v(t, x)dxdt

=

∫

Q

(Lu[t, x]− ϕ(t, x))v(t, x)dxdt.
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Hence (44) is obtained. Next, we have from (49) that

f ′′(u)v = (ψyy(G(u), u)G
′(u) + ψyu(G(u), u))G

′(u)v + ψy(G(u), u)G
′′(u)v

+ (ψuy(G(u), u)G
′(u) + ψuu(G(u), u))v.

Replacing u = u, v = v1 and acting on v2, we obtain

f ′′(u)[v1, v2] = ψyy(y, u)[zv1 , zv2 ] + ψyu(y, u)[zv1 , v2] + 0

+ ψuy(y, u)[zv1 , v2] + ψuu(y, u)[v1, v2]

=

∫

Q

(Lyy[t, x]zv1zv2 + Lyu[t, x]zv1v2 + Luy[t, x]zv1v2 + Luu[t, x]v1v2)dtdx

which is (45). The proof of the proposition is complete. ✷

In the sequel, we shall use the following sets.

Qa = {(t, x) ∈ Q : u(t, x) = a},

Qb = {(t, x) ∈ Q : u(t, x) = b},

Qab = {(t, x) ∈ Q : a < u(t, x) < b}.

The following theorem is a result on the first-order necessary optimality conditions.

Theorem 4.1 Suppose that assumption (A4) is valid. If (y, u) ∈ Φ is a locally optimal solution of problem

(1)-(5), then there exist a function ϕ ∈ Lq(J,D) with d̂αϕ
dtα ∈ Lq(J,H) and a function e ∈ Lq(J, L∞(Ω))

such that the following conditions are fulfilled:

(i) ϕ is a mild solution of the adjoint equation

d̂αϕ

dtα
= ∆ϕ− Ly[·, ·], ϕ(T, ·) = 0; (52)

(ii) (the stationary condition in u)

Lu[t, x]− ϕ(t, x) = e(t, x) a.e. (t, x) ∈ Q;

(iii) (the complimentary condition) e(t, x) has the property that

e(t, x)















≥ 0 a.e. (t, x) ∈ Qa,

≤ 0 a.e. (t, x) ∈ Qb,

0 a.e. (t, x) ∈ Qab.

Proof. It is clear that (y, u) is a locally optimal solution of (1)-(5) if and only if u is a locally optimality

solution of problem (41). By definition, there exists an open ball B(u, ǫ) ⊂ L∞(Q) so that

f(u) ≥ f(u) ∀u ∈ B(u, ǫ) ∩K∞.

Fix any v ∈ K∞. Then for λ > 0 small enough, we have vλ = u+ λ(v − u) ∈ B(u, ǫ) ∩K∞. Hence

f(u+ λ(v − u)) ≥ f(u).

This implies that
f(u+ λ(v − u))− f(u)

λ
≥ 0.

By letting λ→ 0+, we obtain

〈f ′(u), v − u〉 ≥ 0 ∀v ∈ K∞. (53)
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By Proposition 3.2, equation (52) has a unique solution ϕ ∈ C(J,H)∩Lq(J,D). Hence (i) is valid. From

Proposition 4.3 and (53), we have

∫

Q

(Lu[t, x]− ϕ(t, x))(v(t, x) − u(t, x))dtdx ≥ 0 ∀v ∈ K∞. (54)

By putting Lu[t, x]−ϕ(t, x) = e(t, x), we see that e ∈ Lq(J, L∞(Ω)) which satisfies (ii) and (54) becomes

∫

Q

e(t, x)(v(t, x) − u(t, x))dtdx ≥ 0 ∀v ∈ K∞. (55)

Using variational arguments as in the proof of [17, Theorem 4.1], we can show that e satisfies (iii). The

theorem is proved. ✷

To deal with second-order optimality conditions, we need the so-called critical cone as follows.

Definition 4.1 A couple (y, v) ∈ Lp(J,D) × Lp(Q) is said to be a critical direction to problem (1)-(5)

at (y, u) if the following conditions are fulfilled:

(c1)
∫

Q(Ly[t, x]y(t, x) + Lu[t, x]v(t, x))dtdx ≤ 0;

(c2) y = k1−α ∗ (∆y + v);

(c3) v(t, x) ≥ 0 for a.e. (t, x) ∈ Qa and v(t, x) ≤ 0 for a.e. (t, x) ∈ Qb.

The set of critical directions at (y, u) is denoted by Cp[(y, u)] which is a closed convex cone containing

(0, 0).

We now take a couple (y, v) ∈ C(y, u) such that v ∈ L∞(Q). Then (c2) is equivalent to saying that

y = zv = G′(u)v. Moreover, if (y, u) is a locally optimal solution, then

∫

Q

(Ly[t, x]y(t, x) + Lu[t, x]v(t, x))dtdx = 0.

Indeed, it is clear that e(t, x)v(t, x) ≥ 0 for a.e. (t, x) ∈ Q. Since y = zv we have from Proposition 4.3

and (50) that

0 ≥

∫

Q

(Ly[t, x]y(t, x) + Lu[t, x]v(t, x))dtdx =

∫

Q

(Lu[t, x]− ϕ(t, x))v(t, x)dtdx =

∫

Q

e(t, x)v(t, x)dt ≥ 0.

(56)

Let L(y, u, ϕ, e) be the Lagrange function associated with the problem, which is given by

L(y, u, ϕ, e) =

∫

Q

[L(t, x, y, u) + y(
d̂αϕ

dtα
−∆ϕ)− ϕu − eu]dtdx. (57)

Then conditions (i) and (ii) of Theorem 4.1 is equivalent to the condition

∇(y,u)L(y, u, ϕ, e) = 0. (58)

We have the following result on second-order necessary optimality conditions.

Theorem 4.2 Suppose that (A4) is valid, (y, u) is a locally optimal solution of (1)-(5) and (ϕ, e) satisfies

the conclusion of Theorem 4.1. Then

∇2
(y,u)L(y, u, ϕ, e)[(y, v), (y, v)] =

∫

Q

(Lyy[t, x]y
2 + Lyu[t, x]yv + Luy[t, x]yv + Luu[t, x]v

2)dtdx ≥ 0 (59)

for all (y, v) ∈ Cp[(x, u)], where p ≥ 2.
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Proof. We divide the proof into two steps.

Step1 . Proving (59) for the case (y, v) ∈ Cp[(x, u)] where v ∈ L∞(Q).

Take any (y, v) ∈ Cp[(x, u)] with v ∈ L∞(Q). By (c2), y = zv. For each 0 < ρ < b− a, we define

vρ(t, x) =







0 if a < u(t, x) < a+ ρ or b− ρ < u(t, x) < b

v(t) otherwise

and yρ = zvρ . Then by the same argument as in the proof of [17, Theorem 4.3], we can show that

(yρ, uρ) ∈ Cp[(y, u)] and vρ → v strongly in Lp(Q). For λ ∈ (0, ρ/‖v‖∞), we have u+ λvρ ∈ K∞. Since u

is an optimal solution, for λ > 0 small enough, we get

0 ≤
f(u+ λvρ)− f(u)

λ
= λf ′(u)vρ +

λ2

2
f ′′(u+ θλvρ)[vρ, vρ],

where 0 ≤ θ ≤ 1. By Proposition 4.3,

f ′(u)vρ =

∫

Q

e(t, x)vρ(t, x)dtdx ≤ 0.

It follows that

0 ≤ f ′′(u+ θλvρ)[vρ, vρ].

By letting λ→ 0+, we obtain 0 ≤ f ′′(u)[vρ, vρ]. This and Proposition 4.3 imply

0 ≤

∫

Q

[Lyy[t, x]y
2
ρ + 2Lyu[t, x]yρvρ + Luu[t, x]v

2
ρ]dtdx (60)

Now we have

y = k1−α ∗ (∆y + v)

yρ = k1−α ∗ (∆yn + vρ)

Hence

y − yρ = k1−α ∗ (∆(y − yρ) + (v − vρ)).

By Proposition 3.2, there exist positive constants C and C′ such that

‖yρ − y‖Lp(J,D) + ‖
dα

dtα
(yρ − y)‖Lp(J,H) ≤ C‖v − vρ‖Lp(J,H) ≤ C′‖v − vρ‖Lp(Q). (61)

This implies that ‖yρ − y‖Lp(J,D) → 0 as ρ → 0+. Since Lp(J,D) →֒ Lp(J, L∞(Ω), we also have

‖yρ − y‖Lp(J,L∞(Ω)) → 0. From assumption (A4), we see that Lyy[·, ·], Lyu[·, ·], Luy[·, ·] ∈ Lq(J, L∞). We

now claim that
∫

Q

[Lyy[t, x]y
2
ρ →

∫

Q

Lyy[t, x]y
2dtdx.

In fact, using (34) with y1 = 0 and y2 = y, we have

∣

∣

∫

Q

[Lyy[t, x]y
2
ρ −

∫

Q

Lyy[t, x]y
2dtdx

∣

∣ =
∣

∣

∫

Q

Lyy[t, x](yρ − y)(yρ + y)dtdx
∣

∣

≤ C′′

∫ T

0

‖Lyy[·, ·]‖∞‖yρ − y‖∞‖yρ + y‖∞dt

≤ C′′[

∫ T

0

‖Lyy[·, ·]‖
p

p−2

∞ ‖dt]1−2/p[

∫ T

0

‖yρ − y‖p∞]dt]1/p[

∫ T

0

‖yρ + y‖p∞]dt]1/p

≤ C′′[

∫ T

0

(‖y‖p−2
∞ + ‖Lyy[·, ·]‖L∞(Q))

p
p−2 ‖dt]1−2/p[

∫ T

0

‖yρ − y‖p∞]dt]1/p[

∫ T

0

‖yρ + y‖p∞]dt]1/p

≤M‖yρ − y‖Lp(J,L∞(Ω))‖yρ + y‖Lp(J,L∞(Ω)) → 0.
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The claim is justified. Similarly, we also have
∫

Q

[2Lyu[t, x]yρvρ + Luu[t, x]v
2
ρ]dtdx→

∫

Q

[2Lyu[t, x]yv + Luu[t, x]v
2]dtdx.

By letting ρ→ 0+, we obtain from (60) that

0 ≤

∫

Q

[Lyy[t, x]y
2 + 2Lyu[t, x]yv + Luu[t, x]v

2]dtdx.

Hence (59) is valid.

Step 2. Proving (59) for any (y, v) ∈ Cp[(x, u)].

Next we take (y, v) ∈ Cp[(x, u)]. Then from (c2) of Cp[(x, u)], we have y = zv. For each n ≥ 1, we

define

vk(t, x) = P[−n,n](v(t, x)) = min{max{−n, v(t, x)},+n},

where P[−n,n](ξ) denotes the metric projection of ξ on [−n, n] in R. It is clear that vn ∈ L∞(Q) and

vn(t, x) → v(t, x) a.e. t ∈ [0, 1]. By the nonexpansive property of metric projection, we have

|vn(t, x)| = |P[−n,n](v(t, x)) − P[−n,n](0)| ≤ |v(t, x)|.

The Dominated Convergence Theorem implies that vn → v in Lp(Q) and in L2(Q). Let us put yn = zvn .

We now claim that (yn, vn) ∈ Cp[(x, u)]. Indeed, condition (c2) is obvious. To verify condition (c3), we

note that if u(t, x) = a, then v(t, x) ≥ 0. Hence vn(t, x) = min{v(t, x), n} ≥ 0. If u(t, x) = b, then

v(t, x) ≤ 0. Hence vn(t, x) = max{−n, v(t)} ≤ 0. To check (c1), we have
∫

Q

(Ly[t, x]yn(t, x) + Lu[t, x]vn(t, x))dtdx =

∫

Q

e(t, x)vn(t, x)dtdx

=

∫

Qa

e(t, x)vn(t, x)dt +

∫

Qb

e(t, x)vn(t, x)dtdx =

∫

Qa

e(t, x)min{v(t, x), n}dtdx+

∫

Qb

e(t, x)max{−n, v(t, x)}dtdx

≤

∫

Qa

e(t, x)v(t, x)dtdx +

∫

Qb

e(t, x)v(t, x)dtdx ≤

∫

Q

e(t, x)v(t, x)dtdx ≤ 0.

Therefore, the claim is justified. Now we have

y = k1−α ∗ (∆y + v)

yn = k1−α ∗ (∆yn + vn).

Hence y − yn = k1−α ∗ (∆(y − yn) + (v − vn)). By Proposition 3.2, there exist positive constants C and

C′ such that

‖yn − y‖Lp(J,D) + ‖
dα

dtα
(yn − y)‖Lp(J,H) ≤ C‖v − vn‖Lp(J,H) ≤ C′‖v − vn‖Lp(Q). (62)

This implies that ‖yn − y‖Lp(J,D) → 0 as n → ∞. Since Lp(J,D) →֒ Lp(J, L∞(Ω), we also have

‖yn − y‖Lp(J,L∞(Ω)) → 0. By Step 1, we have

∫

Q

(Lyy[t, x]y
2
n + Lyu[t, x]ynvn + Luy[t, x]ynvn + Luu[t, x]v

2
n)dtdx ≥ 0.

By letting n→ ∞ and using similar arguments as in Step 1 with noting that yn → y, un → u, we obtain
∫

Q

(Lyy[t, x]y
2 + Lyu[t, x]yv + Luy[t, x]yv + Luu[t, x]v

2)dtdx ≥ 0.

The proof of the theorem is completed. ✷

For the remaining part of this section, we give second-order sufficient optimal conditions for locally

optimal solution to (1)-(5). To do this, we need some tools of variational analysis.
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Let K be a nonempty and closed subset in a Banach space X and w ∈ K. The sets

T ♭(K;w) :=
{

h ∈ X | ∀tn → 0+, ∃hn → h,w + tnhn ∈ K ∀n ∈ N
}

,

T (K,w) : =
{

h ∈ X | ∃tn → 0+, ∃hn → h,w + tnhn ∈ K ∀n ∈ N
}

,

are called the adjacent tangent cone and the contingent cone to K at w, respectively. It is well-known

that when K is convex, then

T ♭(K;w) = T (K;w) = cone(K − w),

where

cone(K − w) := {λ(h− w) | h ∈ Ω, λ > 0}.

Let Kp be defined by (37). Then from [16, Lemma 2.4], we have

T ♭(Kp, u) =
{

v ∈ Lp : v(t, x) satisfies (c3)
}

.

Hence condition (c3) in Cp[(y, u)] is equivalent to saying that v ∈ T ♭(Kp, u).

Below, we set Y = Lp(J,D) and U = L∞(Q). Given ǫ > 0, the symbols B(y, ǫ)Y is a ball in Y with

center at y ∈ Y and radius ǫ > 0.

We now have

Theorem 4.3 Suppose (A4), p ≥ 2, 1 > α > 1/2 and (ϕ, e) satisfies the conclusion of Theorem 4.1.

Furthermore, suppose that the following conditions are satisfied:

(i) Lyy[·, ·], Lyu[·, ·] ∈ L∞(Q) and there exists a number Λ > 0 such that

Luu(t, x, y, u) ≥ Λ ∀(t, x, y, u) ∈ Q× R× R. (63)

(ii) (the strictly second-order condition)

∇2
(y,u)L(y, u, ϕ, e)[(z, v), (z, v)] > 0 ∀(z, v) ∈ C2[(y, u)] \ {(0, 0)}. (64)

Then there exist positive constants ̺ and ǫ such that

ψ(y, u) ≥ ψ(y, u) + ̺‖u− u‖22 ∀(y, u) ∈ BY (y, ǫ)×BU (u, ǫ).

Proof. On the contrary, we suppose the conclusion were false. Then, we could find sequences {(yn, un)} ⊂

Φ and {̺n} ⊂ intR+ such that yn → y in Y , un → u in U , ̺n → 0 and

ψ(yn, un) < ψ(y, u) + ̺k‖un − u‖22. (65)

If un = u, then we can show that yn = y. It follows that ψ(y, u) < ψ(y, u)+0 which is absurd. Therefore,

we can assume that un 6= u for all n ≥ 1.

Define tn = ‖un − u‖2, zn = yn−y
tn

and vn = un−u
tn

. Then tn → 0+ and ‖vn‖2 = 1. By the reflexivity

of L2(Q), we may assume that vn ⇀ v. From the above, we have

ψ(yn, un)− ψ(y, u) ≤ t2n̺n ≤ o(t2n). (66)

We claim that zn converges to some z in L2(J,D). In fact, since (yn, un) ∈ Φ, we have

yn(t) = y0 + k1−α ∗ (∆yn + un),

y = y0 + k1−α ∗ (∆y + u).

This implies that

zn = k1−α ∗ (∆zn + vn), zn(0) = 0.
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By Proposition 3.2, there exists constant C > 0 such that

‖zn‖L2(J,D) + ‖
dα

dtα
zn‖L2(J,H) ≤ C‖vn‖L2(J,H) = C‖vn‖L2(Q).

Hence {zn} is bounded in L2(J,D). Without loss of generality, we may assume that zn ⇀ z in L2(J,D).

Let us claim that if 2 > 1
α , then zn → z strongly in L2(J, V ). In fact, it is known that the embeddings

D →֒ V →֒ H

are compact. For α > 1/2, we have

1

Γ(α)

∫ t

0

(t− s)α−1‖zk(s)‖Dds ≤
1

Γ(α)
(

∫ t

0

(t− s)(α−1)2ds)1/2‖zk‖L2(J,D)

≤
1

Γ(α)

1

(α− 1/2)1/2
tα−1/2‖zk‖Lp(J,D)

≤
1

Γ(α)

1

(α− 1/2)1/2
Tα−1/2M :=M ′.

Hence

sup
t∈(0,T )

1

Γ(α)

∫ t

0

(t− s)α−1‖zn(s)‖Dds ≤M ′.

Besides, we have 2 > 2
1+2α , and {Dα

0+zn} = { dα

dtα zn} is bounded in L2(J,H). By Theorem 4.1 in [19], we

see that {zn} is a relatively compact set in L2(J, V ). Therefore, we may assume that zn → z strongly in

L2(J, V ). The claim is justified.

By repeating the procedure in the the proof of Theorem 3.1 we can show that

z = k1−α ∗ (∆z + v). (67)

The remaining part of the proof will be divided into two steps.

Step 1. Showing that (y, v) ∈ C2[(y, u)].

By a Taylor expansion, we have from (66) that

ψy(y, u)zn + ψu(y, u)vn +
o(tn)

tn
≤
o(t2n)

tn
. (68)

Note that Lu[·, ·] ∈ L∞(Q) and ψu(y, u) : L
2(Q) → R is a continuous linear mapping, where

〈ψu(y, u), u〉 :=

∫

Q

Lu[t, x]u(t, x)dtdx ∀u ∈ L2(Q).

By [6, Theorem 3.10], ψu(y, u) is weakly continuous on L2(Q). On the other hand, Ly[·, ·] ∈ Lq(J,H) ⊂

(Lp(J,D))∗. Hence limk→∞

∫

Q
Ly[t, x]zk(t, x)dtdx =

∫

Q
Ly[t, x]z(t, x)dtdx. Letting k → ∞ in (68), we

get

ψy(y, u)z + ψu(y, u)v =

∫

Q

(Ly[t, x]z(t, x) + Lu[t, x]v(t, x))dtdx ≤ 0. (69)

Hence condition (c1) in C2[(y, u)] is valid. By (67), condition (c2) is fulfilled. For (c3), we note that

un − u ∈ K∞ − u. This implies that

vn ∈
1

tn
(K∞ − u) ⊂ T ♭(K∞;u),

where T ♭(K∞;u) is the tangent cone to K∞ at u in L2([0, 1],R). Note that K∞ = K2. Since T
♭(K∞;u)

is convex and closed in L2, it is weakly closed. Passing to the limit, we obtain v ∈ T ♭(K∞;u). Hence

condition (c3) of C2[(y, u)] is fulfilled.
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Step 2. Showing that (z, v) = 0.

Note that 〈e, un − u〉 ≥ 0 and

yn = y0 + k1−α ∗ (∆yn + un)

y = y0 + k1−α ∗ (∆y + u).

This implies that

(yn − y) = k1−α ∗ (∆(yn − y) + un − u) = 0.

Hence
dα

dtα
(yn − y)−∆(yn − y)− (un − u) = 0.

This and Lemma 2.1 yield
∫

Q

[(yn − y)Dα
∗T−ϕ− ϕ(∆(yn − y)− ϕ(un − u)]dtdx

=

∫

Q

ϕ(t)[
dα

dtα
(yn − y)−∆(yn − y)− (un − u)]dtdx = 0.

Combining these with (66) and definition of Lagrange function (57), we have

L(yn, un, ϕ, e)− L(y, u, ϕ, e) = ψ(yn, un)− ψ(y, u)− 〈e, un − u〉

≤ ψ(yn, un)− ψ(y, u) ≤ o(t2n).

From this, (58) and a second-order Taylor expansion, we get

t2n
2
∇2

(y,u)L(y, u, ϕ, e)[(zn, vn), (zn, vn)] + o(t2n) ≤ o(t2n),

or, equivalently,

∇2
(y,u)L(y, u, ϕ, e)[(zn, vn), (zn, vn)] ≤

o(t2n)

t2n
. (70)

This means
∫

Q

(Lyy[t, x]z
2
n + 2Lyu[t, x]znvn + Luu[t, x]v

2
n)dtdx ≤

o(t2n)

t2n
. (71)

Let us claim that

lim
n→∞

∫

Q

(Lyy[t, x]z
2
n + 2Lyu[t, x]znvn + Luu[t, x]v

2
n)dtdx

≥

∫

Q

(Lyy[t, x]z
2 + 2Lyu[t, x]zv + Luu[t, x]v

2)dtdx.

Indeed, since Luu[t, x] ≥ Λ > 0, the functional u 7→
∫

Q Luu[t, x]u
2dtdx is convex and so it is sequentially

lower semicontinous. Hence

lim
n→∞

∫

Q

Luu[t, x]v
2
ndtdx ≥

∫

Q

Luu[t, x]v
2dtdx.

Since zn → z in L2(J, V ), ‖zn + z‖L2(J,V ) ≤ M for some constant M > 0. Using assumption Lyy[·, ·] ∈

L∞(Q) in (i), we have

|

∫

Q

Lyy[t, x](z
2
n − z2)dtdx| ≤

∫ T

0

∫

Ω

|Lyy[t, x]||zn(t, x)− z(t, x)||zn(t, x) + z(t, x)|dxdt

≤

∫ T

0

‖Lyy[t, ·]‖L∞(Ω)‖zn(t, ·)− z(t, ·)‖L2(Ω)‖zn(t, ·) + z(t, ·)‖L2(Ω)

≤ ‖Lyy[·, ·]‖L∞(Q)‖‖zn(·, ·)− z(·, ·)‖L2(Q)‖zn(·, ·) + z(·, ·)‖L2(Q)

≤ ‖Lyy[·, ·]‖L∞(Q)‖‖zn(·, ·)− z(·, ·)‖L2(Q)M.
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This implies that

lim
n→∞

∫

Q

Lyy[t, x]z
2
n(t, x)dtdx =

∫

Q

Lyy[t, x]z
2(t, x)dtdx.

Similarly, we can show that

lim
n→∞

∫

Q

Lyu[t, x]zn(t, x)vn(t, x)dtdx =

∫

Q

Lyu[t, x]z(t, x)v(t, x)dtdx.

Hence the claim is justified. By letting n→ ∞, we obtain from (71) that

∇2
(y,u)L(y, u, ϕ, e)[(z, v), (z, v)] ≤ 0.

Combining this with (64), we conclude that (z, v) = (0, 0).

Finally, from (63), (71) and ‖vn‖L2(Q) = 1, we have

∫

Q

(Lyy[t, x]z
2
n + 2Lyu[t, x]znvn)dtdx + Λ

≤

∫

Q

(Lyy[t, x]z
2
n + 2Lyu[t, x]znvn + Luu[t, x]v

2
n)dtdx ≤

o(t2n)

t2n
.

By letting n → ∞ and using (z, v) = (0, 0), we obtain Λ ≤ 0 which is absurd. Therefore, the theorem is

proved. ✷

Remark 4.1 When 0 < α ≤ 1/2, the embebded theorem is not applicable and the proof of Theorem 4.2

is collapsed. Therefore, establishing second-order sufficient conditions for this case is an open problem.

When 1/2 < α < 1 and p = 2, Theorem 4.1 and Theorem 4.2 give no-gap second-order conditions on

the common critical cone C2[(y, u)].
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[27] K. A. Penson and K. Górska, Exact and explicit probability densities for one-sided Lévy stable dis-
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