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ABSTRACT
This paper proposes an open-source distributed solver for solving Sparse Convex
Optimization (SCO) problems over computational networks. Motivated by past al-
gorithmic advances in mixed-integer optimization, the Sparse Convex Optimization
Toolkit (SCOT) adopts a mixed-integer approach to find exact solutions to SCO
problems. In particular, SCOT brings together various techniques to transform the
original SCO problem into an equivalent convex Mixed-Integer Nonlinear Program-
ming (MINLP) problem that can benefit from high-performance and parallel com-
puting platforms. To solve the equivalent mixed-integer problem, we present the
Distributed Hybrid Outer Approximation (DiHOA) algorithm that builds upon the
LP/NLP based branch-and-bound and is tailored for this specific problem struc-
ture. The DiHOA algorithm combines the so-called single- and multi-tree outer
approximation, naturally integrates a decentralized algorithm for distributed con-
vex nonlinear subproblems, and utilizes enhancement techniques such as quadratic
cuts. Finally, we present detailed computational experiments that show the benefit
of our solver through numerical benchmarks on 140 SCO problems with distributed
datasets. To show the overall efficiency of SCOT we also provide performance profiles
comparing SCOT to other state-of-the-art MINLP solvers.

KEYWORDS
sparse optimization; mixed integer nonlinear programming; distributed computing,
outer approximation

1. Introduction

In recent years, Sparse Convex Optimization (SCO) has gained considerable attention
in several disciplines, from machine learning and engineering to economics and finance
[4, 6, 39]. Several mathematical optimization problems in this context can be formu-
lated as a general convex optimization problem subject to a constraint that allows only
up to a certain number of decision variables to be nonzero. We refer to this constraint
as a sparsity constraint. Hence, any convex optimization problem with the sparsity
constraint can be regarded as a SCO problem [2, 6, 9, 36].

Due to the non-convexity and discontinuity of the sparsity constraint, the SCO
problems are known to be NP-Hard [6, 27]. To overcome the computational difficulties
imposed by the sparsity constraint, computationally tractable convex optimization-
based methods have been proposed. One of the popular methods is a `1 norm relaxation
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Table 1. Acronyms

Acronym Meaning

API Application Programming Interface
BnB Branch and Bound
CLI Command Line Interface
DiHOA Distributed Hybrid Outer Approximation
DiPOA Distributed Primal Outer Approximation
D-MINLP Distributed Mixed Integer Nonlinear Programming
DSLinR Distributed Sparse Linear Regression
DSLogR Distributed Sparse Logistic Regression
LFC Local Fusion Center
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Nonlinear Programming
MIP Mixed Integer Programming
MPI Message Passing Interface
NLP Nonlinear Programming
OA Outer Approximation
QCLP Quadratically Constrained Linear Programming
RH-ADMM Relaxed Hybrid Alternating Direction Method of Multipliers
SCO Sparse Convex Optimization
SCOT Sparse Convex Optimization Toolkit
SOS-1 Specially Ordered Set of Type I

method where a `1 regularizer is imposed on the decision vector. The `1 method
naturally produces a sparse solution by setting many variables to zero. One of the
popular `1 based methods is Lasso which is widely used in statistics and machine
learning communities [10, 11, 38].

One of the important reasons behind the popularity of `1 based methods is their
computational efficiency and scalability to practical-sized problems. However, in spite
of their favorable computational properties, these methods can have some shortcom-
ings. For example, they cannot guarantee that `1 based methods find the correct
sparsity for general problems. Moreover, in some applications, the desired sparsity
structure is different from general sparsity and cannot be easily obtained by a `1 regu-
larization. An example of such a sparse structure is group sparsity in which a block or
a group of independent variables are either all zero or all nonzero. Some notable ap-
plications with group sparsity are block-wise linear regression [20], logistic regression
[4], compressed sensing [13], and microarray analysis [26].

Another approach to solving the SCO problems is to view the SCO problems as
equivalent Mixed Integer Programming (MIP) problems. Considering recent advances
in mixed-integer optimization algorithms and technologies, the MIP problems can be
solved efficiently by current mixed-integer optimization solvers such as Gurobi [18].
The resulting MIP formulation is flexible and can be adjusted based on the appli-
cation’s needs. Moreover, by defining suitable binary variables, the MIP framework
can provide exact sparse solutions to SCO problems. The MIP framework is gaining
popularity in various areas such as statistical data analysis and interpretable machine
learning [3, 5–7], sparse control [1], unit commitment, face recognition, sensor network
design [24], portfolio optimization [2], and compressed sensing [15].

The mentioned works focused on centralized solutions to SCO problems that might
not be suitable for modern real-world applications when the data is inherently dis-
tributed or available in large volumes. Considering the limitations of centralized ar-
chitectures, in the past few years, mainly because of the rise of Big data, distributed
optimization over networks has gained growing attention [30, 31]. The primary pur-
pose of distributed optimization is to solve an optimization problem over a network
of computing nodes. Each node performs local computations with access only to a

2



portion of the problem data. Nodes are also capable of exchanging information with
other nodes in the network. See [31] for a comprehensive overview of the most common
distributed optimization algorithms.

This paper introduces SCOT, a distributed optimization solver designed to solve SCO
problems over peer-to-peer networks of computing nodes. In essence, SCOT consists of
two distributed algorithms developed by the authors to solve SCO problems where an
iterative procedure is applied by each network node, alternating communication, and
computation phases until a solution is found. To the best of our knowledge, SCOT is the
first software framework that can solve SCO problems using distributed algorithms,
enabling practical applications with a large number of sample data points, while keep-
ing the data private to each node and allowing implementation in a computer cluster.

Formally, we consider the SCO problem as a mathematical programming problem
that consists of finding the κ-sparse optimal solution of a distributed convex optimiza-
tion problem of the following form,

min
x∈Rn

N∑
i=1

fi(x) (1a)

subject to Ax ≤ b (1b)

‖x‖0 ≤ κ (1c)

where N is the number of nodes of the computation network, x ∈ Rn is the vector of
decision variables, and fi : Rn −→ R is a convex function assumed to be continuously
differentiable and only known by node i, for all i ∈ {1, . . . , N}. We use the `0 norm (i.e.,
‖x‖0 = |supp(x)| = |{j : xj 6= 0}|) to define the sparsity constraint, which imposes the
number of non-zero elements of x to be less than a given integer κ. Finally, the matrix
A ∈ Rm×n and the vector b ∈ Rm define the set of given linear constraints assumed
to be known by all nodes.

1.1. Main Contributions

The main idea behind SCOT is to transform problem (1) into an equivalent Distributed
Mixed Integer Nonlinear Programming (D-MINLP) problem. By using the concept of
the so-called Local Fusion Centers (LFCs) presented in [32], we recast problem (1) as
a consensus optimization problem and introduce several constraints to model the spar-
sity constraint (1c). Based on the Outer Approximation (OA) algorithm [12, 17, 21],
SCOT consists of two main algorithms, namely, Distributed Primal Outer Approxima-
tion (DiPOA) and Distributed Hybrid Outer Approximation (DiHOA).

The DiPOA algorithm proposed in [33] extends the OA algorithm by embedding
a fully decentralized algorithm, namely the Relaxed Hybrid Alternating Direction
Method of Multipliers (RH-ADMM) [32]. The RH-ADMM assumes a particular hy-
brid architecture on the computational network, developed to solve distributed convex
optimization problems. In particular, DiPOA solves the primal problem of the OA us-
ing the RH-ADMM algorithm and handles distributedly the demanding computational
part of the OA algorithm that deals with the solution of convex NLPs. In practice,
there exist many cases where a significant part of the solution time is spent on solv-
ing the NLP problems. For example, in Table 1 [21], it can be seen that OA spends
more than 150 seconds on solving NLP problems when solving a moderate-size convex
MINLP. Moreover, for inherently distributed problems in which the data is spread
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over a possibly large computational network, a single NLP will be challenging, if even
possible, to solve in a classical centralized fashion. For such inherently decentralized
problems, a distributed algorithm can offer great computational advantages.

Despite solving problem (1) distributedly, DiPOA is developed based on a multiple-
tree OA algorithm whereby a BnB tree is built from scratch at each iteration of the
algorithm. Therefore, most of the overall solution time of DiPOA is usually spent
on solving MIP sub-problems. In this paper, we tackle the limitations of DiPOA by
proposing DiHOA, a distributed algorithm that improves DiPOA performance by grad-
ually building a single BnB tree to avoid constructing and solving many similar MILP
problems from scratch. The main idea of DiHOA is to solve problem (1) by dynamically
updating the MILP subproblem, in a fashion similar to the LP/NLP-BnB presented
by [34]. In principle, DiHOA starts with the multiple-tree search strategy up to a cer-
tain iteration and introduces high-quality cuts until a suitable event is triggered. Once
the event is triggered, DiHOA switches from the multiple-tree search strategy to the
single-tree search strategy that builds a single BnB tree, starting with multiple cuts
initially introduced to its root node to augment the initial formulation. The single BnB
tree then tightens up the integer relaxations by dynamically introducing more linear
approximations (cuts) to the MILP problem. The multiple-tree search strategy is only
applied in some initial iterations of the DiHOA since the MIP problems are typically
much easier to solve, as the nonlinear constraints are only roughly represented through
a few constraints. Moreover starting the BnB search with a tighter approximation of
the nonlinear constraints can result in a much smaller BnB tree, as a smaller infeasi-
ble region of the continuously relaxed search space is explored. Without these initial
cuts, the nonlinear constraints would be completely ignored until an integer solution is
found and the nonlinear constraints would be poorly approximated until a few integer
solutions is explored in the BnB tree.

The main contributions of this work are summarized as follows:

• SCOT, a distributed software framework to model and solve SCO problems.
• The distributed hybrid outer approximation algorithm to solve the SCO problem

(1).
• Modeling and heuristic techniques to improve the efficiency of the proposed

algorithm.
• A computational analysis of the proposed algorithms for various SCO real-world

applications.

1.2. Paper Organization

The paper is organized as follows. In Section 2 we introduce the distributed SCO
problem by reformulating problem (1) into an equivalent MINLP problem. Section 3
presents the primal and dual problems used by SCOT algorithms. The DiHOA algorithm
is proposed in Section 4. Section 5 introduces SCOT and its main components. Finally,
the numerical comparison and algorithm analysis are presented in Section 6. Section
7 concludes the paper.

2. Distributed Sparse Convex Optimization

Various modeling techniques are used by SCOT to find a solution to problem (1) effi-
ciently. First, SCOT transforms problem (1) into a consensus optimization problem and
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then multiple modeling techniques are used to handle the sparsity constraint (1c).

2.1. Consensus Optimization Modeling

As defined in problem (1), the decision variables are shared between the nodes. Each
node only has information to construct its objective function, while keeping the local
problem data private from other nodes. This distributed setting is a typical pattern in
some significant learning and control applications. For instance, in distributed machine
learning, an efficient technique to deal with large volumes of data consists of distribut-
ing the data over a network [28, 31]. In this case, a significant reduction in memory
size for computation can be achieved while keeping the same unknown parameters of
the model.

To decompose (1), we adhere to the concept of hypergraphs, which is a generalization
of a regular graph in which an edge can join an arbitrary number of vertices. Multiple
computational sources, called LFCs, can be employed by adopting this structure in the
network. We consider a hypergraph H = (V, E) defined as follows: V = {1, 2, ..., N}
is the set of nodes such that node i decides upon the values of vector variable xi;
E = {Ek ⊂ V : k = 1, . . . ,K} is the set of hyperedges, where a hyperedge Ek connects
all nodes i ∈ Ek and K is the number of hyperedges. Now we introduce the concept
of path in a hypergraph: a path p(i, j) = 〈E1, ..., E ′k〉 connects nodes i and j if i ∈ E ′1,
j ∈ E ′k, and E ′l ∩ E ′l+1 6= ∅ for l = 1, . . . , k − 1, and E ′l ∈ E for all l. Put another way,
through the hyperedges, a path p(i, j) establishes a communication channel between
nodes i and j.

We assume that the hypergraph H is connected, meaning that for all i, j ∈ V
there exists a path p(i, j) connecting i and j. By using the hypergraph structure, the
equivalent formulation for (1) is obtained as follows,

min
x1,...,xN
y1,...,yK

N∑
i=1

fi(xi) (2a)

subject to Axi ≤ b, ∀i = 1, ..., N, (2b)

xi = yj , ∀i ∈ Ej , Ej ∈ E (2c)

‖yj‖0 ≤ κ, ∀j = 1, . . . ,K (2d)

where xi ∈ Rn are vectors of decision variables associated with the nodes and yj ∈
Rn are auxiliary variables associated with the LFCs, which are represented by the
hyperedges.

2.2. Sparsity Constraint Modeling

Here, we present three modeling techniques implemented by SCOT to express the spar-
sity constraints (2d), namely the big-M, Specially Ordered Set of Type I (SOS-1), and
a hybrid approach.

2.2.1. Big-M Method

The Big-M method is arguably the simplest technique for modeling the sparsity con-
straint. This method incorporates a binary variable and an estimated upper bound into
the model for each continuous variable appearing in the sparsity constraint. By using
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the Big-M method, we recast the sparsity constraint (2d) as the following inequalities,

− Mjδjk ≤ yjk ≤ Mjδjk, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (3a)
n∑
k=1

δjk ≤ κ, ∀j = 1, . . . ,K (3b)

δjk ∈ {0, 1}, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (3c)

where yjk is the k-th element of yj , δj , ∀j = 1, . . . ,K, is a vector of binary variables
whose k-th element is denoted by δjk, and Mj is a constant assumed to be a valid upper
bound for ‖yj‖∞. In this case, if δjk = 0 then yjk = 0 and yjk = 1 otherwise. Thus,
inequalities (3a) and (3b) impose the maximum number of nonzero variables in yj .
The big-M parameter Mj is not known a priori, and a too small value of Mj may lead to
a sub-optimal solution. A large Mj on the other hand, will result in a weak continuous
relaxation and strongly affect the number of nodes that need to be explored in BnB.
Hence, a good choice of Mj affects the strength of the formulation, being critical for
MIP algorithms to obtain high-quality bounds. In the context of learning and control
applications, the big-M value Mj can typically be computed from data in statistical
learning tasks [7] and from the physical bounds in control applications [1].

2.2.2. Specially Ordered Set of Type I (SOS-1) Method

This section discusses the sparsity constraint reformulation using the SOS-1 constraint.
Any feasible solution to problem (2) satisfies the following complementary constraints,

(1− δjk)yjk = 0, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (4)

which is equivalent to constraint (2d). In order for constraint (4) to be satisfied, either
(1−δjk) or yjk must be zero. Such constraints can be modeled via integer optimization
software using Specially Ordered Sets of Type I (SOS-1) [8] as follows,

(yjk, 1− δjk) : SOS-1, ∀j = 1, . . . ,K, ∀k = 1, . . . , n. (5)

It is worth noting that such a constraint is not implemented explicitly employing alge-
braic equations, as in the Big-M method. Instead, the optimization solver can directly
enforces the SOS-1 constraint by branching on sets of variables. The MIP solvers usu-
ally adopt different approaches to handle the SOS-1 constraints. One approach is to use
an equivalent big-M formulation in case strong bounds on variables can be obtained.
Otherwise, the MIP solver can also handle the constraint directly through branching.
By using the SOS-1 technique, we allow the MIP solver to choose the approach it
determines to be the best choice to deal with the SOS-1 constraints.

2.2.3. MINLP Reformulation

This section discusses the primary problem formulation that SCOT considers. Although
the big-M formulation is relatively straightforward, choosing a suitable big-M value Mj
is important. In case Mj is too small, the optimization algorithm may cut off valid so-
lutions. However, if Mj is excessively large, the model may become numerically difficult
to solve. SOS-1 constraints, on the other hand, have the advantage of avoiding these
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types of problems, as they do not rely on a problem-dependent constant value. For
applications that require a relatively small value of Mj , the big-M modeling technique
may be a proper choice, although, for other cases, the SOS-1 method may be suitable.
In this regard, SCOT can provide the functionality to choose the most proper method
depending on the application and problem data. Considering big-M and SOS-1 con-
straints for modeling the sparsity constraint, the main optimization problem that SCOT
attempts to solve is expressed as follows,

min
γ

x1,...,xN
y1,...,yK

γ (6a)

subject to

N∑
i=1

fi(xi)− γ ≤ 0 (6b)

Axi ≤ b, ∀i = 1, ..., N, (6c)

xi = yj , ∀i ∈ Ej , Ej ∈ E (6d)

− Mjδjk ≤ yjk ≤ Mjδjk, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (6e)

(yjk, 1− δjk) : SOS-1, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (6f)
n∑
k=1

δjk ≤ κ, ∀j = 1, . . . ,K (6g)

δjk ∈ {0, 1}, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (6h)

in which the equivalent epigraph reformulation is used. The advantage of using both
constraints (6e) and (6f) is that it might be possible to determine better Mj coefficients
than the MIP solver is able to derive. In that way, SCOT provides more information
to the MIP solver by including constraint (6e) and (6f). Problem (6) is an MINLP
problem with a separable structure, where the objective function is linear and γ ∈ R is
an auxiliary variable. In the following sections, we introduce a distributed formulation
and algorithm that SCOT implements to solve problem (6).

3. SCOT Primal and Dual Problem

Here, we present the dual and primal problems and we discuss two algorithms that SCOT
implements in the next section. Akin to other decomposition-based MINLP algorithms,
SCOT decomposes problem (6) into two main sub-problems, namely, the primal and
dual problems [21, 25]. We use the term primal solution and primal bound as the
optimal solution and objective value of the primal problem respectively. Similarly,
dual solution and dual bound are used for the dual problem. It should be noted that
we use the terminology dual problem for a problem whose optimal solution provides
a valid lower bound on the optimal objective value of problem (6) and whose feasible
set contains all feasible solutions of problem (6).

The primal solution is assumed to satisfy all linear, nonlinear, and consensus con-
straints of problem (6) to a given tolerance. Additionally, the current best-known
primal solution found by the algorithm is referred to as the incumbent solution, and
its objective value is the current primal bound. The incumbent solution is updated
when SCOT algorithms find a primal solution with a lower objective value. In the stan-
dard OA algorithm, the primal problem is a convex NLP problem; however, owing
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to the distributed nature of problem (6), the primal problem of SCOT is a distributed
convex NLP problem which will be discussed later.

A solution point whose objective value provides a valid lower bound for the opti-
mum of problem (1), but not necessarily satisfying all constraints, is referred to as a
dual solution. Like the standard OA algorithm, SCOT obtains dual solutions by solving
relaxed problems that approximate the nonlinear constraints with polyhedral outer
approximations. Depending on the type of outer approximations, the dual problem
can be MILP, MIQP, or Mixed Integer Quadratically Constrained Linear (Quadratic)
(MIQCL(Q)P) problems. Moreover, the dual bound is the best possible objective value
of the dual problem. The primal and dual sub-problems are then iteratively solved by
proper MIP algorithms. The MIP algorithms are distinguished depending on how
the sub-problems are constructed, solved, and coordinated. Regardless of the solu-
tion algorithms adopted by SCOT, the dual and primal sub-problems are two primary
components of the algorithms.

The main problem reformulation that SCOT attempts to solve by default is problem
(6), which enforces both big-M and SOS-1 constraints and epigraph-reformulation. The
separability of nonlinear functions in problem (6) allows SCOT to employ an alternative
formulation, the so-called lifted formulation [22]. In this context, we use the lifted for-
mulation for each nonlinear function, fi, which results in tighter outer approximations
when approximating nonlinear functions [19, 22, 37].

According to the idea of lifted formulation and also following the procedure pre-
sented in [22], at each iteration q, we construct the dual problem as the following MIP
problem,

min
x1,...,xN
y1,...,yK
γ1,...,γN

N∑
i=1

γi (7a)

subject to f̃i(x
q
i )− γi ≤ 0, ∀xqi ∈ X

q
i , ∀i = 1, ..., N, (7b)

Axi ≤ b, ∀i = 1, ..., N, (7c)

xi = yj , ∀i ∈ Ej , Ej ∈ E (7d)

− Mjδjk ≤ yjk ≤ Mjδjk, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (7e)

(yjk, 1− δjk) : SOS-1, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (7f)
n∑
k=1

δjk ≤ κ, ∀j = 1, . . . ,K (7g)

δjk ∈ {0, 1}, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (7h)

where γi ∈ R, i = {1, ..., N}, are new auxiliary decision variables, xqi is a feasible point

that satisfies linear and consensus constraints, obtained at iteration q, and f̃i(x
q
i ) is

the outer approximation of fi(xi) around xqi . Finally, X qi is a finite set consisting of
local feasible points defined as,

X qi =
{
x`i : Ax`i ≤ b, ∀` ∈ {1, . . . , q}

}
,

Set X qi consists of the feasible points up to the current iteration q. The dual problem
(7) is a relaxation of problem (6) since approximations of nonlinear constraints are
used and its objective value is a lower bound of (6). At each iteration of SCOT algo-
rithms, q, a new outer approximation is generated by each node of the network and
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cooperatively added to problem (7) producing a tighter representation of the nonlinear
constraints. The quality of outer approximations generated by f̃i(x

q
i ) directly impacts

the convergence of the algorithms. Hence, SCOT provides first and second-order outer
approximations and an event-triggered scheme that controls the effectiveness of the ap-
proximations. According to first-order Taylor series and convexity of fi(xi) functions,
we can express constraints (7b) as,

fi(x
q
i ) +∇fi(xqi )

T (xi − xqi )− γi ≤ 0, (8)

which are linear inequalities. In case the nonlinear functions, fi(xi), are strongly convex
functions, SCOT replaces constraints (7b) with the following quadratic inequalities,

fi(x
q
i ) +∇fi(xqi )

T (xi − xqi ) +
mq
i

2
‖(xi − xqi )‖

2
2 − γi ≤ 0 (9)

where mq
i > 0 is a constant such that ∇2fi(xi) � mq

i I. With mq
i > 0, it is clear that

the cut given by (9) is stronger than the cut given by (8). However, the quadratic cuts
(9) tend to result in more challenging sub problems in BnB. Therefore, there can still
be a computational advantage of the linear cuts.

Remark 1. For general strongly convex functions, mq
i is not obtained easily. However,

in some practical problems found in statistical learning and control, the computation of
mq
i is feasible. For example, the objective function in sparse Model Predictive Control

(s-MPC) problems (which is a subclass of the SCO problem) is typically a convex
quadratic function. For convex quadratic functions, mq

i is the smallest Eigenvalue
of the Hessian matrix. In machine learning problems the objective function usually
consists of a convex function and a strongly convex regularization term. In this case,
mq
i can be computed from the regularization term.

A crucial step to forming the outer approximations is the computation of the ap-
proximation points xqi for which various strategies and methods exist. One of the
well-known methods to obtain xqi is fixing the local binary decision variables of prob-
lem (6), δjk = δqjk, and solving the resulting nonlinear optimization problem. In this
case, a distributed convex NLP problem is solved, and its optimal solution provides a
primal solution to the original MINLP problem. The problem of solving (6) for fixed
binary variables is the primal problem of SCOT, which, at each iteration q, is defined
as,

min
γ

x1,...,xN
y1,...,yK

N∑
i=1

γi (10a)

subject to fi(xi)− γi ≤ 0 (10b)

Axi ≤ b, ∀i = 1, ..., N, (10c)

xi = yj , ∀i ∈ Ej , Ej ∈ E (10d)

− Mjδ
q
jk ≤ yjk ≤ Mjδ

q
jk, ∀j = 1, . . . ,K, ∀k = 1, . . . , n. (10e)

Problem (10) is a distributed convex NLP problem and its solution has the advantage
of generating linearizations about points closer to the feasible region. Therefore, primal
solutions and primal bounds are obtained by iteratively solving problem (10).
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In the case that the primal problem is a centralized NLP, a feasible point that
satisfies all linear and nonlinear constraints is considered to be the primal solution
candidate. However, when the primal problem has to be solved distributedly, as in
problem (10), some numerical considerations have to be taken into account. Partic-
ularly, in this case, in addition to all linear and nonlinear constraints, the consensus
constraints (10d) have to be satisfied which is more challenging to deal with since all
computational nodes have to agree on a consensus solution. In case the primal solution
does not satisfy the consensus constraints within an acceptable numerical tolerance,
poor outer approximations are generated and added to the dual problem. Therefore
a larger number of iterations are required by the distributed NLP solver, especially
when a large computational network is considered. Another challenge in solving the
primal problem distributedly is the communication burden between the nodes of the
network and the LFCs.

4. Distributed Hybrid Outer Approximation

In this section, we propose the Distributed Hybrid Outer Approximation (DiHOA) al-
gorithm to solve problem (6). In essence, DiHOA is developed based on the LP/NLP-
based BnB algorithm proposed in [34]. The LP/NLP-based BnB algorithm is an im-
plementation of the standard OA algorithm, where only a single BnB tree is built and
outer approximations are added dynamically to the MIP master problem. Since only
one BnB tree is constructed during the solution procedure, the LP/NLP-based BnB
method is also called the single-tree OA algorithm. Similarly, the standard implemen-
tation of the OA algorithm where a BnB tree is constructed at each iteration of the
algorithm is called multiple-tree OA.

Before discussing the DiHOA algorithm, we briefly present Distributed Primal Outer
Approximation (DiPOA) which is proposed in [33]. DiPOA is the baseline algorithm
developed to solve problem (6) which, in essence, extends the standard OA algorithm
so that the main computational parts related to the NLP sub-problems are handled
in a distributed fashion. From the numerical point of view, DiPOA is a hierarchical
algorithm which consists of three main computational layers, namely, primal, cutting-
plane manager, and master levels.

The primal level deals with the nonlinear optimization part, particularly problem
(10), consisting of two sub-levels responsible for a specific computational task. The first
sub-level aims to simultaneously solve multiple local nonlinear optimization problems
in a fully decentralized fashion. The local nodes then synchronously communicate to
the second sub-level, which is responsible for another phase of computations. The sec-
ond sub-level is usually responsible for aggregating the solution of local NLP problems
connected to each LFC by a series of unconstrained NLP problems. The solution of
this level is then sent to the first sub-level until a consensus is reached.

The main purpose of the cutting-plane manager level is to generate and manage the
OA linearizations, which are obtained around the generated feasible points provided
by the primal level. This level is also responsible for adding the linearizations into the
master’s problem (7).

Finally, the master’s level corresponds to solving problem (7) based on the cuts
generated by the cutting-plane manager. The master MIP problem approximates the
nonlinear functions of problem (6). As the number of cuts increases, this approximation
improves until a good piece-wise outer approximator is achieved. The binary solution
of the master level is then sent to the primal level, which, together with the nonlinear
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optimization problems, solves another set of NLP problems.
Generally speaking, when solving problem (2) with DiPOA, most of the total solu-

tion time is usually spent on solving the MIP master’s problem. In such a scenario,
the MIP problems are similar in consecutive iterations since they only differ by a few
linear constraints. In particular, at iteration q of DiPOA, a new feasible point is pro-
vided by the primal, around which a new linear approximation constraint is generated
and added to the master’s problem. In the next iteration, q+ 1, the master’s problem
is reconstructed and solved from scratch.

Based on what we proposed in [33] and according to [34], we develop the DiHOA al-
gorithm to avoid constructing many similar MIP BnB trees. The main idea of DiHOA
is to iteratively build a single branch-and-bound tree whereby the primal problem is
solved distributedly, while dynamically updating the dual problem (7) without recon-
structing the branch-and-bound tree. However, the single-tree OA algorithm may lead
to a large BnB and weaker approximations. To avoid that, DiHOA introduces several
second-order outer approximations of the nonlinear functions to the root of the BnB
tree through an event-triggered scheme, which leads to a tighter problem represen-
tation and a BnB tree with a fewer number of nodes. This procedure constructs the
first MIP dual problem and initiates the BnB algorithm. During the BnB search, as
soon as a new integer-feasible solution is found, the primal problem (10) is distribut-
edly solved to determine whether a lazy constraint removing this integer-feasible point
should be generated. By lazy constraints, we mean cutting planes that are lazily added
to the MIP model whenever an integer feasible solution is found. At this point, the
RHADMM algorithm is applied, and the new primal information is distributed to the
computational nodes of the network. Then the generated lazy constraint is added to
the current node, and all open nodes of the BnB tree and the search continues. There-
fore, it is not required to reconstruct the BnB tree as in multiple-tree algorithms and
the same BnB tree can be used after adding new linearizations as lazy constraints. Fi-
nally, the algorithm is terminated until the MIP integer relaxation results in a feasible
integer solution to the MINLP problem (6).

A detailed description of the DiHOA algorithm is summarized in Algorithm 1. It
can be observed in Algorithm 1 that DiHOA consists of three primary computational
phases, namely, Initialization, MultipleTreeSearch, and SingleTreeSearch

steps. After the algorithm is successfully initialized, DiHOA starts a multiple-tree
strategy with second-order outer approximations and continues the computations un-
til either the solution is found or poor lower bound improvement is achieved. In the
former case, the algorithm is terminated and the optimal solution is returned. In the
latter case, however, DiHOA accumulates all the outer approximations obtained until
iteration q in the root of the latest BnB tree and, then, it starts a single-tree search
strategy whereby approximations are added dynamically. As the name of the algorithm
suggests, DiHOA is a hybrid algorithm that combines both single-tree and multiple-
tree strategies by introducing an event-triggered scheme that determines the switching
iteration, qswitch, at which a single-tree search strategy is started. In the following, we
describe each computational step in detail.

4.1. Initialization Step

The initialization step is started by solving the integer relaxation of problem (6) to
construct the dual problem (7) in the first iteration of the algorithm. The integer
relaxation of problem (6) is a consensus optimization problem that is solved using the
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RHADMM algorithm. In case the relaxation obtains a feasible solution with respect to
problem (6), we terminate DiHOA with the optimal solution. Otherwise, we generate
N first-order outer approximations by using the local information available in each
computational node of the network and construct the first MIP dual problem according
to (7).

4.2. Multiple Tree Search Step

The multiple-tree search step of the DiHOA algorithm is a crucial step that directly
affects the DiHOA performance. In the cases that qswitch is a large number, a pure
multiple-tree algorithm with second-order outer approximations is obtained. Other-
wise, the resulting algorithm becomes the single-tree OA. Therefore, qswitch should be
determined in such a way that maximizes the DiHOA performance. To do so, we in-
troduce an event-triggered scheme that selects qswitch based on the difference between
two consecutive lower bounds (i.e., lbq − lbq−1). In particular, during the solution
procedure, DiHOA checks if the generated lower bounds by the dual problem start
to flatten out within a given tolerance ε > 0 and triggers a switching event, Es, if
lbq − lbq−1 ≤ ε. As soon as Es is triggered, DiHOA switches to the single-tree strategy
by performing the BnB algorithm on the latest dual problem, which was obtained
during the multiple-tree strategy.

4.3. Single Tree Search Step

The single-tree search step is activated for q > qswitch after the Es event is triggered.
In this step, DiHOA accumulates all the outer approximations obtained during the
MultipleTreeSearch phase in the root of the latest BnB tree and then starts the
single-tree BnB procedure. The BnB search is initialized by solving an integer relax-
ation of the dual problem (7). In each node of the BnB tree, a QCLP relaxation is
solved and the search is stopped once an integer solution is obtained in one of the
nodes. The integer solution is then used to solve the primal problem (10) with integer
variables fixed. The primal solution provides a valid upper bound and new approxima-
tions can be generated. The new approximations are then added to all open nodes in
the BnB tree and the QCLP relaxation is resolved for the node which resulted in the
integer combination. The BB procedure continues from the existing search tree with
the improved polyhedral outer approximation.

As in the standard BnB, nodes can be pruned off in case the optimum of the QCLP
relaxation exceeds the upper bound. However, the search cannot be stopped once an
integer solution is obtained at a node, which must continue until the QCLP relaxation
results in a feasible integer solution for problem (6) or until the node can be pruned off.
Finally, since all variables in problem (1) are bounded, then the assumptions A1–A3
in [14] and assumptions in [21] are valid and Slater’s constraint qualification holds for
problem (6) when the binary variables are fixed. Hence, no NLP subproblem will be
infeasible and the convergence of Algorithm 1 is ensured.

5. SCOT: A Software Framework for Sparse Optimization

This section discusses the technical features of SCOT, including architecture and de-
sign, main components, basic syntax, and usage. SCOT is entirely written in C++17
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Algorithm 1: DiHOA Algorithm

(1) Initialization

1.1 obtain a relaxed solution x̃0
i , ỹ

0
j , and δ̃δδ

0

j , i ∈ {1, . . . , N}, j ∈ {1, . . . ,K} by
solving an integer relaxation of the MINLP problem (6)

1.2 generate N outer approximations according to (8) and construct the dual
problem (7)

1.3 store the generated outer approximations.
1.4 set q = 1, ub0 = +∞, lb0 = −∞

(2) MultipleTreeSearch

while lbq − lbq−1 > ε do

2.1 solve problem (7) and obtain a dual solution δδδqj
2.2 lbq ←−

∑N
i=1 γi

2.3 solve problem (10) and obtain a primal solution xqi , y
q
j

2.4 ubq ←− min
(∑N

i=1 fi(x
q
i ), ub

q−1
)

2.5 If ubq − lbq ≤ τ , return xqi as an optimal solution x∗i
2.6 generate and store outer approximations according to (9) and update dual

problem (7) by adding new outer approximations
2.7 q ←− q + 1

end
(3) SingleTreeSearch

3.1 start BnB search for the MIP problem obtained in the last step with all
second-order outer approximations accumulated in the root

while ubq − lbq > ε do

3.2 if a new feasible integer solution, δ̄δδ
q
j , is found, then δδδqj ←− δ̄δδ

q
j and update lbq

according to the current BnB tree
3.3 solve primal problem (10) and update the primal solution xqi , y

q
j

3.4 ubq ←− min
(∑N

i=1 fi(x
q
i ), ub

q−1
)
x∗i

3.5 generate outer approximations according to (8) and add them to the
current and open nodes of BnB

3.6 resolve the integer relaxation problem for the node which resulted in the
integer combination

3.7 q ←− q + 1 and continue exploring BnB tree

end
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programming language and at its core uses the Message Passing Interface (MPI) [16]
to perform distributed computation operations, communication and message-passing
between nodes of the network. To handle local NLP optimization problems, SCOT re-
lies on various open source solvers, such as OSQP [35] and IPOPT [40]. SCOT also
implements a truncated Newton’s method [29] to solve unconstrained optimization
problems. Moreover, SCOT integrates commercial and open source MIP solvers such
as Gurobi [18] and CBC to solve MIP dual problems. To solve the distributed NLP
problem (10), SCOT implements the RHADMM algorithm proposed in [32] using the
main MPI operations. Finally, both DiPOA and DiHOA algorithms are implemented
within SCOT and are available through SCOT Python API, ScotPy, or SCOT Command
Line Interface (CLI).

5.1. Architecture

A high-level overview of SCOT architecture, its main layers, and components are shown
in Figure 1. As observed in the figure, the primary layers of the framework are SCOTPY,
SMCLI, SCOT Solver, and Computing Network each of which consists of different tools
and components to build and solve the optimization problem. The layered architec-
ture of SCOT leads to a highly modular framework that can be easily extended by
new features and algorithms. In the following, we describe each layer of SCOT and its
components.

5.1.1. SCOTPY

SCOTPY is the main API written in Python 3.8 programming language, which pro-
vides various modules and classes to define the optimization problem and solver set-
tings. This layer consists of four components, namely, problem builder, validators and
parsers, solver settings, and file generators. In principle, SCOTPY receives the problem
input and algorithm settings from the application code layer and, after parsing and
validating the input data and settings, writes the optimization problem and settings in
JSON format with a specific naming convention. These steps are performed by valida-
tors and parsers, and file generator components. Moreover, according to the number of
nodes given by the user, N objective functions with different problem data are created
and stored on the file system as different JSON files.

Therefore, the resulting computation of this layer is to express the optimization
problem and solver settings in various JSON files that can be read by the subsequent
layers. Representing the optimization problem using files provides more flexibility since
it decouples the optimization model from the optimization solver. Therefore, it is possi-
ble to write the optimization model in any language of choice and call the optimization
solver from a different programming language or framework. Coupling the optimization
model and the optimization solver through file formats is well-known in the optimiza-
tion software industry and has been widely used for decades. We refer the interested
reader to [23] for more details.

5.1.2. SMCLI

SCOT MPI Command Line Interface (SMCLI) is the main layer utilized to directly
execute SCOT Solver according to different input and setting files. SMCLI can be used
directly without SCOTPY interface, however the problem definition using SCOTPY is
more appropriate. The validator and parsers component of SMCLI is responsible to
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parse and validate the problem input and settings files, providing suitable data struc-
tures containing the optimization problem data for the SCOT Solver. Additionally,
initializing computational nodes and various software libraries used in SCOT Solver

are among the responsibilities of SMCLI layer.

5.1.3. SCOT Solver

At its core, the SCOT framework consists ofSCOT Solver layer which is responsible to
solve the optimization problem using a proper algorithm and settings. The main com-
ponents of this layer are algorithms, engine, models, and utilities which are discussed
in this section.

The Engine component consists of various modules and classes to distributedly solve
the primal problem (10) and deliver the primal solution to the MINLP algorithms.
Owing to its flexible and modular implementation, Engine can be easily extended by
introducing user-defined and custom-distributed convex optimization algorithms and
solvers. In principle, Engine requires the solution of local NLP problems for which
multiple open-source and commercial solvers are available. At its core, Engine con-
sists of a sub-module, kernel that provides a flexible interface to third-party solvers
that can solve local optimization problems. The solvers supported by the kernel mod-
ule are OSQP, IPOPT, and Gurobi. As a final note, the Engine component is called by
all internal algorithms of SCOT and handles most of MPI communications and collec-
tive operations. More importantly, the quality of outer approximations depends on
this component since it provides feasible points around which nonlinear functions are
approximated.

One of the most critical components of SCOT Solver is algorithm component that
implements Algorithms 1 and DiPOA. The algorithms component consists of two
main modules, namely dipoa, and dihoa, which are responsible for implementing
their corresponding algorithm. Because all the implemented algorithms must man-
age and monitor outer approximations, the algorithm component also includes a
managers module. This module implements several classes to support the necessary
data structures that generate and store both first- and second-order outer approxi-
mations. Moreover, the managers module implements the event-triggered schemes to
improve the outer approximation’s quality and switch from MultipleTreeSearch to
SingleTreeSearch strategy. Among all classes, the managers module consists of two
important classes, namely CutStorage and CutGenerator. CutStorage provides a
simple way to validate and store the linear and quadratic outer approximations. The
primary responsibility of the CutGenerator class is to generate necessary outer approx-
imations from the information received from the Engine component. The algorithm

module also provides a flexible functionality to interface third-party MIP solvers such
as Gurobi and Cplex for solving the MIP dual problem (7).

The model component’s primary responsibility is to generate a concrete internal
representation of the optimization problem to be used by algorithms. This component
consists of various classes to present different types of nonlinear objective functions
and linear and sparsity constraints. By accessing the model component, the algorithm
will be able to access the optimization problem data whenever necessary during the
computations.

Finally, the utilities module implements classes and functions to provide com-
monly required functionalities, such as low-level parsing, measuring the CPU time,
writing logs, constant parameters, exceptions, and file handling functions.

15



Solver settings

Problem builder
SCOTPY

Application code layer

Validators and
Parsers

File generators

SMCLI Validators and
Parsers

Models

Algorithms
SCOT Solver

Engine

Utilities

Compuing Network

MPI
Communicator

MPI
Communicator

Initializers

Figure 1. SCOT Architecture

5.1.4. Computing Network

This layer is responsible for presenting and managing the computational network
using a graph data structure and Message Passing Interface (MPI) library. The
computing network layer is in tight communication with the SCOT Solver layer since
all distributed algorithms use MPI for performing distributed computations and inter-
process communications.

5.2. Message Passing Interface (MPI)

This section provides an overview of MPI and its important operations. MPI is a
message-passing library that supports parallel and distributed computations. For be-
ing independent of any programming language, MPI is arguably the most widely used
platform for high-performance distributed computing nowadays. MPI is a software
library for which various interfaces exist from various programming languages, in-
cluding C/C++ and Python. MPI adopts the Single Program, Multiple Data (SPMD)
programming paradigm to provide an efficient way to perform distributed comput-
ing. Using the SPMD paradigm, each node of the computing network runs the same
program code, but it works with its own set of local variables and a separate subset
of the data. To perform efficient distributed computing, MPI provides point-to-point
and collective communications between the nodes of the computing network. Point-to-
point communications refer to sending and receiving data between two different nodes,
whereas collective communication is primarily performed among a set of nodes. In the
following, we review some of the standard collective operations.
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Figure 2. MPI broadcast and scatter communication patterns.
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Figure 3. MPI Gather and Allgather communication patterns

5.2.1. MPI Broadcast

A broadcast is one of the basic collective communication strategies where one process
sends the same data to all processes. Figure 2a illustrates the broadcast communication
pattern.

5.2.2. MPI Scatter

A scatter is a collective routine that involves a designated root process sending data
to all other processes. The main difference between MPI scatter and broadcast is that
while the MPI broadcast sends the same piece of data to all other processes, the MPI
scatter sends chunks of an array to different processes, as shown in Figure 2b.

5.2.3. MPI Gather and AllGather

In principle, the MPI gather is the inverse of the MPI scatter. Instead of distributing
elements from one process to many processes, MPI gather takes elements from many
processes and brings them together in one single process. The MPI Allgather collects
all of the elements and then distributes them to all the processes. In the most basic
scenario, MPI allgather is an MPI gather followed by an MPI broadcast. For example,
Figure 3 illustrates the communication pattern in MPI gather and allgather.

5.2.4. MPI Reduce and Allreduce

MPI reduce involves reducing a set of elements into a small set of elements via a
function. The MPI reduce takes an array of input elements from each process and
returns an array of output elements to the root process. In a complementary style
of MPI allgather to MPI gather, MPI allreduce will reduce the values and distribute
the results to all processes. MPI reduce and allreduce communication patterns are
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depicted in Figure 4.

5.3. Basic Syntax and Usage

In this section, we present an illustrative example to show how SCOT Python API,
SCOTPY, is used to solve a distributed sparse logistic regression problem with random
data. To do so, we first import the required classes from SCOTPY as the following code
snippet shows,

from scotpy import (AlgorithmType ,

ProblemType ,

ScotModel ,

ScotPy ,

ScotSettings

)

Listing 1 Import statement of SCOT Python API

Here ScotPy is the main class that executes SCOT for a given problem and set-
tings defined by ScotModel and ScotSettings, respectively. The AlgorithmType and
ProblemType classes determine what problem class is solved and which algorithm will
be used. In order to create the optimization problem and SCOT settings, the following
code snippet can be used,

# Create a classification dataset with 1000 rows and 20 columns

dataset , res = make_classification(n_samples = 1000, n_features = 20)

scp = ScotModel(problem_name = "logistic_regression",

rank = 0,

kappa = 5,

ptype = ProblemType.CLASSIFICATION)

# Set problem data with normalization

scp.set_data(dataset , res , normalized_data = True)

# Create corresponding JSON files that represent the optimization problem.

scp.create ()

scot_settings = ScotSettings(

relative_gap = 1e-5,

time_limit = 100,

verbose = True ,

algorithm = AlgorithmType.DIHOA

)

Listing 2 Problem definition and settings
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where make_classification function, imported from Python scikit-learn library,
is used to generate a random classification dataset. The ScotModel object is then
created by a given problem name, MPI rank, number of nonzeros, and problem type.
The solver settings can be defined by creating an object from ScotSettings class. We
note that by executing MPI, the above code snippets are simultaneously executed by
each node of the network. Hence, each node can use its own problem data. Finally, we
solve the optimization problem by using the following code,

solver = ScotPy(problem , scot_settings)

status_code = solver.run()

Listing 3 SCOT Execution

where ScotPy class is responsible for creating a solver object for a given problem
and settings. By executing the run method of ScotPy, MPI execution with N nodes
is started.

6. Applications and Numerical Examples

In this section, we evaluate the SCOT performance by comparing SCOT to various state-
of-the-art MINLP solvers equipped with single-tree, multiple-tree, and nonlinear BnB
algorithms. We considered SHOT and BONMIN as decomposition-based and KNITRO as
nonlinear BnB solvers. However, one should keep in mind that these are general-
purpose solvers, and unlike SCOT they are not tailored for this specific problem struc-
ture. From the application point of view, we focus on sparse logistic and linear re-
gression problems with data distributed over a network of computational nodes. The
benchmark results are obtained by generating performance profiles according to vari-
ous problem instances over different computational nodes generated by SCOTPY.

6.1. Implementation Details and Set-up

All the experiments were performed on a Linux machine with an Intel Core i5 2.50
GHz processor, with four physical cores and 16 GB of RAM. The SCOT solver is entirely
implemented in C++ programming language and relies on MPI to carry out distributed
computation and inter-process communication. The source code of the solver is avail-
able on https://github.com/Alirezalm/scot. To perform linear algebra operations
required by the distributed NLP solver, SCOT uses Eigen 3.4 library. Moreover, the MIP
solver employed in SCOT is GUROBI 9.5.2 with an academic license. As for the compar-
ison with other MINLP solvers, GAMS 36.2 was selected as the optimization platform.
It should also be noted that to achieve a meaningful comparison, GUROBI is selected
as the primary MIP solver for all MINLP solvers considered in the benchmarks.

6.2. Experimental Set-up

This section presents the problem classes that compose the benchmarks and exper-
iments. We consider two well-known machine-learning problems: classification and
regression. For both problem classes, the dataset is assumed to be distributed over a
computational network, and the sparsity of the solution matters. Sparse classification
and regression problems are among the central problems in statistics and machine
learning, whose solutions usually lead to more interpretable models. In this paper, we
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choose logistic regression and linear regression as candidate models for classification
and regression.

Sparse classification and regression problems are tightly connected to SCO prob-
lems as it is often desired to identify a critical subset of features contributing to the
response. Furthermore, the sparse solution usually leads to more interpretable models
and improves prediction accuracy by eliminating unnecessary features. Accordingly,
we introduce Distributed Sparse Logistic Regression (DSLogR) and Distributed Sparse
Linear Regression (DSLinR) problems. The DSLogR problem is defined as,

min
θθθi,yj ,δj

N∑
i=1

p∑
`=0

log
[
1 + e−(θθθTi Xi,`)ΓΓΓi,`

]
+
λ

2
‖θθθi‖22 (11a)

θθθi = yj , ∀i ∈ Ej , Ej ∈ E , ∀j = 1, ...,K (11b)

− Mjδjk ≤ yjk ≤ Mjδjk, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (11c)
n∑
k=1

δjk ≤ κ, ∀j = 1, . . . ,K (11d)

yjk(1− δqjk) = 0, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (11e)

δjk ∈ {0, 1}, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (11f)

where Xi ∈ Rp×n and ΓΓΓi ∈ Rp are the dataset and response vector of the i-th node,
Xi,` is the column representation of `-th row of Xi, Γi,` it the `-th element of ΓΓΓi, and
λ > 0 is the regularization parameter. Clearly, problem (11) is a subclass of the SCO
problem (6) which is the primary reformulation that SCOT uses. Similarly, the DSLinR
problem is defined as,

min
θθθi,yj ,δj

N∑
i=1

‖Xiθθθi − bi‖22 +
λ

2
‖θθθi‖22 (12a)

θθθi = yj , ∀i ∈ Ej , Ej ∈ E , ∀j = 1, ...,K (12b)

− Mjδjk ≤ yjk ≤ Mjδjk, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (12c)
n∑
k=1

δjk ≤ κ, ∀j = 1, . . . ,K (12d)

yjk(1− δqjk) = 0, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (12e)

δjk ∈ {0, 1}, ∀j = 1, . . . ,K, ∀k = 1, . . . , n (12f)

We generate N random local datasets for both DSLogR and DSLinR problems with
zero mean and unit `2 norm for each column. We perform the numerical benchmarks
based on different solver settings. Default settings were adopted for Knitro as an NLP
BnB solver. The chosen settings for SCOT, SHOT, and Bonmin are reported in Table 2.

6.3. Benchmark Results

This section presents performance profiles comparing the SCOT performance with some
MINLP solvers with different settings. We considered seven benchmark scenarios con-
taining 20 different problem instances with different properties and settings. In each
scenario, we generate 15 DSLogR and 5 DSLinR random problem instances with a
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Table 2. MINLP Solver Settings

Settings

solver algorithm name mip solver nlp solver

SCOT dipoa scot-mt gurobi rhadmm
SCOT dihoa scot-st gurobi rhadmm
SHOT ESH multiple-tree shot-mt gurobi ipopt
SHOT ESH single-tree shot-st gurobi ipopt
Bonmin B-OA bonmin-mt gurobi ipopt
Bonmin B-QG bonmin-st gurobi ipopt
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Figure 5. Benchmark results for scenario 1.
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Figure 6. Benchmark results for scenario 2.
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Figure 7. Benchmark results for scenario 3.
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Figure 8. Benchmark results for scenario 4.
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Figure 9. Benchmark results for scenario 5.
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Figure 10. Benchmark results for scenario 6.
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Figure 11. Benchmark results for scenario 7.
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Table 3. Benchmark Settings for Performance Profiles

Scenario settings

scenario nmin nmax pmin pmax N np ptot

1 20 30 1000 2500 2 20 5000
2 20 30 1000 5000 2 20 10000
3 25 50 1000 5000 2 20 10000
4 25 100 1000 10000 4 20 40000
5 25 100 1000 20000 4 20 80000
6 25 100 1000 50000 4 20 200000
7 25 200 1000 50000 6 20 300000

different number of features and sample points within a given range. Therefore the
benchmark set consists of a total of 140 problem instances. Moreover, each algorithm
appearing in Table 2 is applied to solve all problem instances with 30 different max-
imum execution times limits, starting from 0.5 to 50 seconds. Therefore, the total
number of algorithm runs for each scenario is 600, leading to 4200 algorithm execu-
tions for all scenarios. Table 3 represents settings for each benchmark scenario where
nmin and nmax are the minimum and the maximum number of features, pmin and pmax

are the minimum and the maximum number of data points for each computational
node, np is the total number of problems, and ptot is the total number of data points
considering all computational nodes.

Figures 5-11 compare the solvers SCOT, Bonmin, SHOT, and Knitro with both single-
tree and multiple-tree algorithms. The comparison results for each scenario are shown
as performance profiles consisting of two different sparsity levels of the solution.

The benchmark results of the first three scenarios are depicted in Figures 5-7 where
small to medium size problem instances are considered. In both sparsity levels, the
DiPOA and DiHOA algorithms show better performance compared to other MINLP
solvers. It can be observed in Figure 7 that for larger problem instances the perfor-
mance gap between SCOT and other MINLP solvers is increased.

Figures 8-11 depict the performance profiles for the scenarios 4-7 in which medium
to large problem instances are taken into account. In these scenarios, all MINLP
solvers failed to solve the problem with the considered maximum execution time limit.
Therefore, we only provide performance profiles of DiPOA and DiHOA algorithms.
According to the performance profiles, the DiHOA algorithm is more efficient com-
pared to DiPOA as the performance gap between them is increasing for large problem
instances. For example, in scenario 7 with 80% of sparsity, DiHOA was able to solve 19
problem instances within the given maximum execution time limit, whereas DiPOA
only solved 10 instances.

6.4. Discussion

In this section, we compared the performance of SCOT using both DiHOA and DiPOA
algorithms with some state-of-the-art MINLP solvers. According to the numerical ex-
periments and performance profiles, the DiHOA algorithm achieves better performance
and efficiency in all problem instances. However, one should keep in mind that SCOT
is tailored for SCO problems which is not the case for the general purpose solvers. The
results also showed that for large and distributed problems a distributed solver can
provide an efficient and reliable solution.
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7. Conclusion

In this work, we introduced SCOT solver and DiHOA algorithm that SCOT imple-
ments to solve the DSCO problem (1). The DiHOA implements an outer approxima-
tion algorithm to solve an MINLP equivalent to the SCO problem, combining single-
and multiple-tree outer approximation with a decentralized algorithm for solving con-
vex nonlinear subproblems, which generates primal solutions and cuts for the master
dual problem. The numerical benchmark results and comparison to state-of-the-art
MINLP solvers indicated that SCOT equipped with DiHOA can be efficiently used
for solving sparse convex optimization problems in different application domains. The
performance and efficiency of the solver were achieved by augmenting SCOT with
modern convex and mixed-integer optimization techniques. Continuing work aims at
enhancing SCOT effectiveness by means of the development of decentralized mixed
integer algorithms and new heuristic techniques to obtain outer approximations.
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[40] A. Wächter and L.T. Biegler, On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming, Mathematical Programming 106 (2006),
pp. 25–57.

27


	1 Introduction
	1.1 Main Contributions
	1.2 Paper Organization

	2 Distributed Sparse Convex Optimization
	2.1 Consensus Optimization Modeling
	2.2 Sparsity Constraint Modeling
	2.2.1 Big-M Method
	2.2.2 Specially Ordered Set of Type I (SOS-1) Method
	2.2.3 MINLP Reformulation


	3 SCOT Primal and Dual Problem
	4 Distributed Hybrid Outer Approximation
	4.1 Initialization Step
	4.2 Multiple Tree Search Step
	4.3 Single Tree Search Step

	5 SCOT: A Software Framework for Sparse Optimization
	5.1 Architecture
	5.1.1 SCOTPY
	5.1.2 SMCLI
	5.1.3 SCOT Solver
	5.1.4 Computing Network

	5.2 Message Passing Interface (MPI)
	5.2.1 MPI Broadcast
	5.2.2 MPI Scatter
	5.2.3 MPI Gather and AllGather
	5.2.4 MPI Reduce and Allreduce

	5.3 Basic Syntax and Usage

	6 Applications and Numerical Examples
	6.1 Implementation Details and Set-up
	6.2 Experimental Set-up
	6.3 Benchmark Results
	6.4 Discussion

	7 Conclusion

